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Existence Theorem for the Solution of the Equation 
dy
dx  = f(x, y)

NotesUnit 1: Existence Theorem for the

Solution of the Equation dy
dx  = f(x, y)

CONTENTS

Objectives

Introduction

1.1 On the solution of a Differential Equation

1.2 Picard’s Method

1.3 Remark on Approximate Solutions

1.4 Solutions by Power Series Expansion

1.5 Summary

1.6 Keyword

1.7 Review Questions

1.8 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss the existence and the uniqueness of the solution of the first order equation.

 Employ Picard’s method of finding the solution. The method consists in successive
approximation. It also leads to integral equations under certain conditions.

 Learn that the method is not so famous as it involves a lengthy set of solving integrals.

Introduction

The Picard’s method of finding the existence of the solution of first order equation is well
explained in Yosida’s book.

The method is quite general and can be applied to a system of n coupled first order differential
equations as well as equations of nth order. The case of nth order differential equation will be
taken up in the next unit.

1.1 On the Solution of a Differential Equation

In the previous units we have been studying different types of differential equations and their
solutions. Those differential equations chosen were for special purposes of studying certain
functions like Bessel function, Legendre polynomials, Hermite polynomials and Laguerre
polynomials. We also studied some differential equations which were easily soluble. In this
unit we want to study whether a given differential equation has a solution or not. We shall see
under what conditions the solution does exist.

An ordinary differential equation involves the dependent variable y, its derivatives
2

2, .....
n

n
dy d y d y
dx dx dx

, and independent variable x in the form of a functional relation

Sachin Kaushal, Lovely Professional University
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Notes 2

2, , , ..... 0
n

n
dy d y d yx y
dx dx dx

 ...(1)

The general solution of an nth order differential equation involves n arbitrary constants a1, a2,
..... an. In the following we shall study the existence of an ordinary first order differential equation.
The ordinary differential equation of the first order is generally written in the form

, , 0dyx y
dx

 ...(2)

we shall study the solution of the equation (2) with the initial conditions i.e. at

x = x0, y = y0 ...(3)

We can vary x in a certain range i.e.

x0  h  x  x0 + h ...(4)

where h is an increment to x. The above range of x is in a domain D. When x varies in the above
range we want to see how y changes from the initial value y0. Let us assume that y varies in the
range

y0  k  y  y0 + k ...(5)

So let D be a domain in (x, y) plane given by (4) and (5). Let the set of points in (4) are given by
x0, x1, ... xn,... and set of points in (5) are given by y0, y1, ... yn,... .  We want to study the existence
and uniqueness of the solution of equation (2). There are various forms of (2). We in particular
study the equation in the form

dy
dx  = f(x, y) ...(6)

subject to the initial conditions (3).

1.2 Picard’s Method

Our purpose is to find a solution of equation (6) subject to the initial condition (3). To formula
the problem we have to make the following assumptions concerning f(x, y). The behaviour of
f(x, y) will decide the solution of (6).

Assumption 1: The function f(x, y) is real-valued and continuous on a domain D of the (x, y) plane
given by

x0  h  x  x0 + h, y0  k  y  y0 + k ...(7)

Here h, k are positive numbers.

Assumption 2: f(x, y) satisfies the Lipschitz condition with respect to y in D, that is, there exists a
positive constant k such that

|f(x, y1) f(x, y2)|  k|y1  y2| ...(8)

for every pair of points (x, y1), (x, y2) of D.

If f(x, y) has a continuous partial derivative ( , )t x y
y




 then assumption 2 is satisfied. Now since D

is a bounded closed domain and ( , )f x y
y

  is continuous in D so ( , )f x y
y

 is bounded. Put

2
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Existence Theorem for the Solution of the Equation 
dy
dx  = f(x, y)

Notes
( , )

( , )sup x y D
t x yk

y



 ...(9)

where k is a limit superior.

Then the mean value theorem implies that (8) holds for f(x, y). By Assumption 1, f(x, y) is
continuous on the bounded domain D, therefore |f(x, y)| is bounded on D, that is,

( , )SUP ( , )x y D f x y M ...(10)

Set

 = Min (h, k/m) ...(11)

Let us define a sequence of functions {yn(x)} for |x  x0| ,

successively by

0

0

0 0

1 0 0

2 0 1

0 1

( )

( ) ( , )

( ) ( , )

..........................................

..........................................

..........................................

( ) , ( )

x

x

x

x

n n
x

y x y

y x y f t y dt

y x y f t y dt

y x y f t y t dt
0

x

...(12)

Theorem: That {yn (x)} converges uniformly on the internal |x  x0| , and the limit y(x) of the
sequence is a solution of (5) which satisfies (3).

Picard’s Method of Successive Approximation

The above theorem is proved by Picard’s method of successive approximation as follows. We
here give this proof as shown by K. Yosida.

Proof: According to (10) and (11), we obtain

|y1(x)  y0| M  k

for |x  x0| . Therefore 
0

1( , ( )
x

x
f t y t dt  can be defined for |x  x0| h, and

|y2(x)  y0| M  K

In the same manner, we can define y3(x),......yn(x) for |x  x0|  and obtain

|yk(x)  y0| M  K, for K = 1, 2, ...n

using assumption (2), we have

0
1 1| ( ) ( )| | | ( ) ( )|

x

k k k k
x

y x y x K y t y t dt–

for |x  x0| . Therefore, if we assume that for k = 1, 2, ......n

3



LOVELY PROFESSIONAL UNIVERSITY

Notes 1
0

1 0
| | || ( ) ( )| for| |

( 1)!

l

l l
h K x xy x y x x x

l
–  ...(13)

We obtain for l = n + 1,

0
1 0

| | || ( ) ( )| for| |
!

n

n n
k K x xy x y x x x

n
–  ...(14)

Since (13) holds for n = 1 as mentioned above, we see, by mathematical induction, that (14) holds
for every n. Thus for m > n, we obtain

1 1

1
( )| ( ) ( )| ( ) ( )

!

m m l

m n l l
l n l n

ky x y x y x y x k
l

–


...(15)

Since the right hand side of (15) tends to zero as n , {yn(x)} converges uniformly to a function
y(x) on the interval |x  x0| . As the convergence is uniform, y(x) is continuous and more over,
evidently, y(x0) to y0. To prove that y(x) is the solution, we know that as the sequence of functions
{yn(x)} converges uniformly and yn(x) is continuous on the interval |x  x0| , then the lim and
integral can be interchanged. Thus

0 0
lim ( ) lim ( )

x x

n nn nx x
y x dx y x dx

Hence we obtain

0

0

0

1

0

0

0

( ) lim ( )

lim ( , ( ))

[ lim ( , ( ))]

( , ( ))

nn

x

nn x

x

nnx

x

x

y x y x

y f t y t dt

y f t y t dt

y f t y t dt

that is,

0
0( ) ( , ( ))

x

x
y x y f t y t dt ...(16)

The integrand f(t, y(t)) on the right side of (16) is a continuous function, hence y(x) is differentiable
with respect to x, and its derivative is equal to f(x, y(x)).

Hence the proof.

Integrating from x0 to x, we see that a solution y(x) of (6) satisfying the initial conditions (3), must
satisfy the integral equation (16). The above proof also shows that the integral equation can be
solved by the method of successive approximation.

Uniqueness of Solution

In the above treatment we have obtained by the method of successive approximation, a solution
y(x) of (6) satisfying the initial condition (3). We have yet to show the uniqueness of the above
solution.

Proof:

If the solution y(x) is not unique, let z(x) be another solution of (6), such that z(x0) = y0. Then

0
0( ) , ( ) .

x

x
z x y f t z t dt

4
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Existence Theorem for the Solution of the Equation 
dy
dx  = f(x, y)

NotesBy assumption 2, we obtain

0
| ( ) ( )| | ( ) ( ) |

x

x
y x z x y t z t dt ...(17)

Therefore we also obtain for |x  x0| .

0| ( ) ( )| | |y x z x KN x x

where

N = SUP|x  x0|  |y(x)  z(x)|.

Substituting the above estimate for |y(t)  z(t)| on the right side of (17), we obtain

2
0| ( ) ( )| ( | ) |2!y x z x N K x x

for |x  x0| . Substituting this estimate for |y(t)  z(t)| once more on the right side of (17), we
have

|y(x)  z(x)| N(K|x  x0|)3/3! for |x  x0| .

Repeating this substitution, we obtain

|y(x)  z(x)| N(K|x  x0|)m/m!, m = 1, 2, ...... ...(18)

for |x  x0| . The right side of the above inequality tends to zero as m  . This means that

N = SUP|x  x0|   |y(x)  z(x)|

is equal to zero.

Hence y(x) given by (16) is a unique solution.

Example 1: Solve

dy xy
dx ...(1)

with the initial conditions x = 0.0, y(0) = 0.1

Now y0(x) = 0.1

y1(x) = 0
0

0.1 ( )
x
x y x dx

=
0

0.1 (0.1)
x
x dx

=
2 2

0.1 0.1 0.1 1
2 2
x x

y2(x) = 2
0

0.1 ( )
x
x y x dx

=
2

0
0.1 0.1 1

2
x xx dx

=
2 4

0.1 0.1
2 2.4
x x

=
2 4

0.1 1
2 2.4
x x

5
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Notes
y3(x) =

2 4

0
0.1 0.1 1

2 2.4
x x xx dx

=
2 4 6

0.1 0.1
2 2.4 2.4.6
x x x

=
2 4 6

0.1 1
2 2.4 2.4.6
x x x

...............................................................

...............................................................

...............................................................

yk(x) = 0.1
2 2

2 2
2
1 ( )1 ( ) ......

2 2 .1.2 2 !

k

k
x xx

k
...(2)

So the solution of equation (1) is y(x)

y(x) =
32 2

2 2
2 3
1 1lim ( ) 0.1 1 ( ) ......

2 22 2! 2 3!kk

x xy x x ...(2)

The above series is a convergent series

Example 2: Solve the following by Picard’s method of integrating by successive
approximation

dy
dx = z,

dy
dx = x3(y + z)

where y = 1 and z = 
1
2  when x = 0

Here y = 3

0 0

11 and ( )
2

x x
z dx z x y z dx

The first approximation gives us

y =
0

11 1 ,
2 2

x xdx

z =
4

3

0

1 1 1 31 .
2 2 2 2 4

x xx dx

Second approximation

y = 4 5

0

1 3 31 1
2 8 2 40

x xx dx x

z = 3 4 4 5 8

0

1 3 3 1 3 1 3
2 2 2 8 2 8 10 64

x xx x dx x x x

Third approximation

y = 4 5 8

0

1 3 1 31
2 8 10 64

x
x x x dx

6
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 Existence Theorem for the Solution of the Equation 
dy
dx  = f(x, y)

Notes
=

6 9
531

2 40 60 192
x x xx

z = 3 4 5 8

0

1 3 3 7 3
2 2 2 8 40 64

x xx x x x dx

=
5 12

4 8 91 3 3 7
2 8 10 64 360 256

x xx x x

and so on. So the series solution of y and z are convergent for x < 1.

Self-Assessment

1. Solve the differential equation

dy
dx = y

under the initial conditions y = 1 for x = 1 by the method of successive approximations.

2. Solve the differential equation

dy
dx = x + y2

under the initial condition y = 0 when x = 0.

1.3 Remark on Approximate Solutions

On letting m   in equation (15), we obtain

( )( ) ( )
k

n
k n

Ky x y x K ...(1)

for |x  x0| . The equation (17) is an estimate of the error of the nth approximate solution
yn(x). The method of successive approximation may be used, in principle. However this method
is not always practical because it requires one to repeat the evaluation of indefinite integrals
many times.

We shall now consider another method which is sometimes rather useful. Suppose that g(x, y) is
a suitable approximation to f(x, y) such that we can find the solution z(x) of the differential
equation

dz
dx = g(x, y) ...(2)

On the interval |x  x0|  satisfying the initial condition z(x0) = y0. We put

( , )SUP | ( , ) ( , )|x y D f x y g x y  ...(3)

Let y(x) be the unique solution of the differential equation

dy
dx = f(x, y) ...(4)

on the interval |x  x0|  h satisfying the initial condition y(x0) = y0. Then from (2) it follows that

y(x)  z(x) =
0
( ( , ( )) ( , ( )) .

x

x
f t y t g t z t dt

7
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Notes We obtain by assumption 2,

|y(x)  z(x)| =
0 0
{ ( , ( ) ( , ( )} { ( , ( ) ( , ( )}

x x

x x
f t z t g t z t dt f t y t f t z t dt

0 0
{ ( , ( ) ( , ( )} | ( ) ( )|

x x

x x
f t z t g t z t dt K y t z t dt

0
0| | | | |( ) ( )

x

x
x x K y t z t dt ...(5)

Therefore setting

0| |SUP | ( ) ( )| ,x x y x z x M

We have

|y(x)  z(x)|  |x  x0| + KM |x  x0|

for |x  x0| . Substituting this estimate for |y(t) z(t)| on the right hand side of (5), we obtain

0 0
22 2 1

1

' | | | || ( ) ( )|
2 !

m m

m

M K x x K x xy x z x
m



for |x  x0| . Repeating this substitution, we obtain, for each n = 1, 2, 3, ......,

0 0
1

1

' | | | || ( ) ( )|
! !

nn n m m

m

M K x x K x xy x z x
n m



for |x  x0| . As  n  the first term on the right hand side converges to zero uniformly on
the interval |x  x0| . The second term is less than

1
0{exp( | |) 1}K K x x

Accordingly, the estimate of the error of the appropriate solution z(x) in the interval |x  x0| 
 is given by

|y(x)  z(x)|  ( K) (exp(K(x  x0)  1) ...(6)

1.4 Solutions by Power Series Expansion

Consider the differential equation

dy
dx = f(x, y) ...(1)

in the case when f(x, y) is a complex valued function of complex variables x and y. We assume that
f(x, y) can be expanded in a convergent power series in (x  x0) and (y  y0) in a domain D, of the
complex (x, y) space given by

|x  x0| < a,, |y  y0| < b,.

8
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Existence Theorem for the Solution of the Equation 
dy
dx  = f(x, y)

NotesIn other words, f(x, y) is regular function in the domain D,. From this assumption it follows that
( , )f x y
dy

  is also regular in D,. Therefore, for any positive numbers a, b such that a < a, and b < b,,

both |f(x, y)| and ( , )f x y
dy

  are continuous on the closed domain D given by

|x  x0| a, |y  y0| b

Thus there exist positive numbers M and K such that

( , )

( , )

SUP | ( , )|
( , )SUP | |

x y D

x y D

f x y M
f x y K

y








...(2)

Integrating ( , )f x y
y




 along the segment connecting y1 and y2, we obtain

f(x, y1) f(x, y2) = 
2

1

( , ) .
y

y

f x y dy
y





Hence the Lipschitz condition

|f(x, y2)  f(x, y1)| K|y2  y1| ...(3)

holds on D. Therefore, under the above assumption, we can apply to the equation (1), the
method of successive approximations and the domain

|x  x0|  h = min|a, b/M| ...(4)

as follows, we write

0

0

0

1 0 0

2 0 1

0 1

( ) ( , )

( ) ( , )

.............................................

.............................................

( ) { , ( )}

x

x

x

x

x

n n
x

y x y f x y dt

y x y f x y dt

y x y f x y t dt

where the integration means complex integration along a smooth curve connecting x0 and x in
the domain (4). Since f(x, y0) is regular in the domain |x  x0| < h, the first integral is well-
defined, independent of the curves, and hence so is y1. Taking the first integral along the segment
connecting x0 and x, we obtain,

|y, (x)  y0|  hM  b

Hence f{x, y1(x)} is well defined for |x  x0| < h as a function of x.

Since y1(x) is given by the integral of the regular function f(x, y0), y1(x) is regular in the domain
|x  x0| < h. Hence f{(f, y1(x)} is also regular. Therefore the second integral is well defined and
hence y2(x) is well defined and regular. Taking the integral along the segment connecting x0 and
x, we obtain further

|y2(x)  y0(x)|  hM  b.

9
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Notes In this way we can define  y3(x), y4(x),...... successively in the domain |x  x0| < h. The functions
fn(x), n = 1, 2, 3, ..... all regular in the domain |x  x0| < h and

|yn(x)  y0|  b.

So taking the integral along the segment connecting x0 and x we can prove that the sequence of
regular functions |yn(x)| converges uniformly in the domain |x  x0| < h and that the limit
function y(x) satisfies

y(x0) = y0 and 
( )dy x

dx  = f(x, y)

in the domain |x  x0) < h. As y(x) being the uniform limit of the sequence of regular functions is
also regular.

The Method of Undetermined Coefficients

Since in the previous section we have guaranteed the existence of the regular solution y(a), we
can calculate this solution by the method of undetermined coefficients as follows. By virtue of its
regularity, y(x) can be expanded in a power series

y(x) = y0 + (x  x0)
0

2 2
0

2
( ) ....

2x

dy x x d y
dx dx

in the domain |x  x0| < h. Substituting this expansion for y on the right hand side of the
equation and differentiating we obtain

dy
dx = f(x, y)

2

2
d y
dx =

( , ) ( , )f x y f x y dy
x y dx



 

.......................................................

.......................................................

setting in these equations x = x0 and y = y0 we can determine successively the expansion coefficients

0 0 0

2 3

2 3, , ......
x x x

dy d y y
dx dx x

1.5 Summary

 Picard method of finding the conditions under which the solution of the first order
differential equation is described.

 The method involves on the successive approximation and proving the uniform
convergence of the series. It also reduces to an integral equation.

 The Picard method of successive approximation does not find favour of the method of
existence as compared to Cauchy’s method of comparison test or other numerical methods
like Runge’s method.

10
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 Existence Theorem for the Solution of the Equation 
dy
dx  = f(x, y)

Notes1.6 Keyword

The method of finding the conditions for the existence of the solution of the first order differential
equation is quite appealing but sometimes cumbersome.

1.7 Review Questions

1. Solve dy x y
dx

.

when x = 0, y = 1, by Picard method up to fifth successive approximation

2. Solve 23dy x y
dx

 

given x = 0, y = 1.

up to third successive approximation.

Answers: Self-Assessment

1. y =
2 3 4

1 ......
2 3 4

x x xx

   =
0

.
n

n

x
n

2. y = 2 5 8 111 1 1 1
2 20 160 4400

x x x x .

1.8 Further Readings

Books Yosida, K., Lectures in Differential and Integral Equations

Piaggio, H.T.H., Differential Equations

11
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Notes Unit 2: General Properties of Solutions of Linear
Differential Equations of Order n

CONTENTS

Objectives

Introduction

2.1 Existence and Uniqueness of the Solution of a System of Differential Equations

2.2 General Properties of Solution of Linear Differential Equations of Order n

2.3 Solution of the Linear Equation with Constant Coefficients

2.4 Particular Integral

2.5 Summary

2.6 Keywords

2.7 Review Questions

2.8 Further Readings

Objectives

After studying this unit, you should be able to:

 Deal with a differential equation of order n, and there are lots of properties to be kept in
mind before actually solving any problem.

 Discuss Picard method of existence and uniqueness of the linear differential equation
before solving any problem.

 Know some properties of linear differential equation of nth order with constant coefficients
and the solutions obtained both for complementary functions (C.F.) and Particular Integral
(P.I.)

Introduction

The method of proof of the existence of the solution of nth order differential equation is similar
to that of first order one.

Some properties of the differential equations are listed and later used to find the solutions of a
class of nth order differential equations.

2.1 Existence and Uniqueness of the Solution of a System of

Differential Equations

An nth order linear differential equation involving dependent variable y and independent
variable x can be written as

1 2

1 21 2 ...
n n n

n n nn n n
d y d y d ya a a ay
dx dx dx = 0

Sachin Kaushal, Lovely Professional University
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General Properties of Solutions of Linear Differential Equations of Order n

NotesAssuming that an  0, we can write the above equation in the form

n

n
d y
dx =

2 1

2 1, , , ,...,
n

n
dy d y d yf x y
dx dx dx

...(1)

We are interested in solving the equation (1) under the initial conditions

0( )y x =
1

1
0 0 0 0 01, ( ) ,...., ( )

n
n

n
dy d yy x y x y
dx dx ...(2)

Let us define

dy
dx = y1

1dy
dx = y2

                            ...........................
                            ........................... (3)
                            ...........................

2ndy
dx = yn 1

1ndy
dx = 1 1( , , ,...., )n ny f x y y y

with the initial conditions

0( )y x = ( 1)
0 1 0 0 2 0 0 1 0 0, ( ) , ( ) .... ( ) n

ny y x y y x y y x y ...(4)

We may consider more generally, the system of ordinary differential equations

1dz
dx = 1 1 2( , , ,.... )nf x z z z

2dz
dx = 2 1 2( , , ,... )nf x z z z

                              .................................................. (5)
                              ..................................................

ndz
dx = 1 2( , , ,...., )n nf x z z z

with the initial conditions

0( )mz x = ( 1)
0 , 1, 2,...,my m n

where (0)
0 0 .y y  For this problem we shall prove the following theorem 1.

Theorem 1: Let

1 1 2 2 1 2 1 2( , , ,.... ), ( , , ,.... ),.... ( , , ,... )n n n nf x z z z f x z z z f x z z z ...(6)

be real valued and continuous on a Domain of the real 1 2( , , ,..., )nx z z z  space given by

( 1)
0 0, ,m

mx x a z y b m = 1, 2, ...n ....(7)
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Notes Assume that Lipschitz condition with respect to z1, z2, ... zn is satisfied in D, that is, there exists
positive constant k such that for every pair of points 1 2 1, 2 ,...( , , ... ), ( , )n nx x  in D

1 2 3 1 2( , , ,.... ) ( , , ,..., )i i nf x f x
1

( )
n

m m
m

K

for every i = 1, 2, ..., n. Further let

h = min (a, b/m)

M =
1

1 2 3( , ,...., )
1,2 ,3,....

SUP ( , , , ,.... )
n

i nx z z D
i m

f x z z z z
...(8)

Then there exists one and only one set of solution 1 2( ), ( )... ( )nz x z x z x  of (5) on the interval

0x x h ...(9)

satisfying the initial conditions (6).

This theorem implies the following:

Assume that 1 2( , , ,.... )nf x z z z  is real valued and continuous on the domain D and satisfies the
Lipschitz condition on D, that is for every pair of points 1 2 1 2( , , ,...., ),( , , ,.... )nx x  of D,

1 2 1( , , ,... ) ( , ,... )n nf x f x
1

.
n

n m
m

K

Then there exists one and only one solution y(x) of the equation (1) satisfying the initial conditions
(2) on the interval.

0x x h.

where min( , / )h a b m  and 
1 2 ,...

1 2( , , )
SUP ( , , ,... )

zn
nx z z D

m f x z z z

Proof of the theorem 1

The  proof of the theorem 1 is entirely the same as in the case of the first order differential
equation in unit 6. The initial value problem for (5) with (6) can be reduced to the system of
integral equations.

( )mz x =
0

( 1)
0 2, ,( ), ( ),... ( )

xm
m n

x
y f t z t z t z t dt (m = 1, 2, ... n)

and solved by the method of successive approximations. In this case the successive approximation
functions are defined by

zm, 1(x) =
0

( 1) ( 1)1 2
0 0 0 0 0( , , , ,..., )

x
m n

m
x

y f t y y y y dt

zm, 2 (x) =
0

( 1)
0 1 1 ,1( , ,( ), ,1( ),.... ( )

x
m

m n
x

y f t z t z t z t dt

                              ..........................................................................................

zm, k (x) =
0

( 1)
0 1, 1 2, 1 3, 1 , 1, ,( ) ( ), ( )... ( )

x
m

m k k k n k
x

y f t z t z t z t z t dt
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 General Properties of Solutions of Linear Differential Equations of Order n

NotesThen by virtue of the Lipschitz condition, we obtain

, , 1
1

( ) ( )
m

m k m k
n

z x z x
0

, 1 , 2
1

( ) ( )
x n

m k m k
mx

K z t z t dt

From this we obtain, for k > s

,
1

( ) ( )
n

mk m s
m

z x z x
1

0( )k t

t s

K x x
nb

t
...(10)

On the interval (9), provided that , 0( ) .m l
m lz x y  This suffices to prove the theorem.

2.2 General Properties of Solution of Linear Differential Equations

of Order n

We now discuss some of the properties of the solution of nth order linear differential equations.
For this purpose write down the differential equation in the form

1

1 1( ) ...
nn

nn n
d yd y p x p y

dx dx
= ( )np y q x ...(1)

The equation (1) is said to homogeneous if q(x) = 0, otherwise it is called inhomogeneous. We
assume that the coefficients 1 2, ,.... , ( )np p p q x are all continuous on a domain D. We state that

(1) If y1(x) and y2(x) are any two non-zero solutions of equation (1) then y1(x) + y2(x) is also a
solution.

(2) In fact if y1(x), y2(x), y3(x)...yn(x) are solutions of equation (1) then any linear combination

y =
1

m

i i
i

c y ...(2)

of these solutions with arbitrary coefficients c1, c2, ...., cm is also a solution of (1). This fact
is called the principle of superposition.

(3) Let y1(x), y2,...yn + 1 be an  arbitrary set of n + 1 solutions of equation (1), then there exist
n + 1 numbers c1, c2, ...., cn + 1 not all zero such that

1

1

( )
n

i i
i

c y x = 0 ...(3)

that means that the set of n + 1 functions y1, y, ...yn + 1 is a dependent set.

Thus if we have a set of n independent functions y1,.... yn then the most general solution of
equation (1) is written as

y =
1

n

i i
i

c y ...(4)

So a set of n solutions of y1(x), y2(x),...yn(x), which are linearly independent is called a
fundamental system of the solutions of equation (1) (or general solution)
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Notes (4) Relations between the solution and the coefficients

Let y1(x), y2(x),...yn(x) be a fundamental system of the solutions of (1). If every yi(x) (i = 1, 2,
.... n) satisfies another equation

1

1 1 ....
n n

i
n in n

d y d yr r y
dx dx = 0

With continuous coefficients ri (x), i = 1, 2, ... n in the domain D then we have

ri (x) ( ), 1, 2,... .ip x i n

This fact may be stated as follows:

The coefficients of a linear differential equation of the nth order are determined uniquely
by an arbitrary chosen fundamental system of the solutions, provided the coefficient of

n

n
d y
dx  is identically one.

Let us write equation (1) as

1 2
2 ....n n n

i ny p y p y p y = 0 ...(5)

with conditions

0( )y x = 0 0 0, ( ) ,.... ( ) ,.... ( )n n ny x y x y x ...(6)

(5) Wronskian. Liouville s formula

We shall enter into the details of the relations between the solutions and the coefficients
mentioned above. We denote by W(y, y1, y2,....yn) the determinant

1 2

1 2

1 2
( ) ( )( ) ( )
1 2

...

...

...

...

n

n

n
n nn n

n

y y y y

y y y y

y y y y

y y y y

which is called the Wronskian of the n + 1 functions y, y1, y2, ...., yn. We consider the linear
differential equation

1 2( , ( ), ( ),...., ( ))nW y y x y x y x = 0 ...(i)

where y is unknown and 1 2( ), ( ),...., ( )ny x y x y x  is a fundamental system of the solutions of
(5). Since

1 2( ( ), ( ), ( ),..., ( ))i nW y x y x y x y x = 0 (i = 1, 2, ...., n)

every yi(x) satisfies the equation (i). Furthermore, as will be shown shortly, the coefficient

1 2( 1) ( ( ), ( ),..., ( ))n
nW y x y x y x ...(ii)

of y(n) in (i) does not vanish at any point in the domain D. Therefore, we obtain the
following identity

( ) ( 1)
1 1( ) ... ( ) ( )n n

n ny p x y p x y p x y = 1 2

1 2

( 1) ( , ( ), ( ),..., ( ))
( ( ), ( ),..., ( ))

n
n

n

W y y x y x y x
W y x y x y x

...(iii)

This gives the relations between the solutions and the coefficients.
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General Properties of Solutions of Linear Differential Equations of Order n

NotesNow we shall prove that (ii) does not vanish at any point in D. Suppose that there exists a
point x0 in D for which

1 0 2 0 0( ( ), ( ),..., ( ))nW y x y x y x = 0 ...(iv)

Then the system of linear equations with the coefficients ( )
0( )j

iy x

1 1 0 2 2 0 0( ) ( ) ... ( )n nC y x C y x C y x = 0

1 1 0 2 2 0 0( ) ( ) ... ( )n nC y x C y x C y x = 0

                         ................................................................................

( 1) ( 1) ( 1)
1 1 0 2 2 0 0( ) ( ) ... ( )n n n

n nC y x C y x C y x = 0

has solutions C1, C2, ...., Cn, not all zero. The linear combination

y(x) =
1

( )
n

i i
i

C y x

of yi(x) with these coefficients Ci obviously satisfies the equation (5) and the initial conditions
(6) at the point x0 in D. Therefore, we have

y(x) =
1

( ) 0
n

l i
i

C y x

This contradicts the fact that 1 2( ), ( ),...., ( )ny x y x y x  are linearly  independent. Therefore, the
Wronskian of linearly independent solutions 1 2( ), ( ),...., ( )ny x y x y x  does not vanish at any
point in D.

Next we shall consider the Wronskian 1 2( ), ( ),..., ( )nW y x y x y x  of n solutions y1(x), y2(x),
..., yn(x) where 1 2( ), ( ),... ( )ny x y x y x  are not necessarily linearly independent. Differentiating

1 2( ), ( ),..., ( )nW y x y x y x  with respect to x, we obtain

1 2( ), ( ),..., ( )ndW y x y x y x
dx

=

1 2

1 2

( 1) ( 2) ( 2)
1 2

( ) ( ) (2)
1 2

( ), ( ), ..., ( )

( ), ( ), ..., ( )
.........................................................

( ), ( ), ..., ( )

( ), ( ), ..., ( )

n

n

n n n
n

n n
n

y x y x y x

y x y x y x

y x y x y x

y x y x y x

...(v)

Since yl(x) satisfies the equation (5)

( )( )n
ly x =

1
( )

1

( ) ( ) ( ) ( )
n

n k
k n il

k

p x y x p x y x

Substituting this in the above determinant, we obtain

= 1 2( ), ( ),..., ( )ndW y x y x y x
dx

...(vi)

= 1 2( ) ( ), ( ),..., ( )i np x W y x y x y x
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Notes Accordingly, 1 2( ), ( )..., ( )nW y x y x y x  transpose is a solution of the linear homogeneous

equation (vi) with coefficients continuous in D. Therefore, if 1 2( ), ( )..., ( )nW y x y x y x

vanishes at a point in D, then, 1 2( ), ( )..., ( )nW y x y x y x  is identically zero in the whole
domain D. This proves the following theorem.

Theorem 1: Either the Wronskian of n solutions of (5) is identically zero or it never vanishes
at any point in D.

By integration of the equation (vi), we obtain

1 2( ), ( )..., ( )nW y x y x y x = 1 0 2 0 0 1
0

( ), ( )..., ( ) exp ( ) ,
x

n
x

W y x y x y x p t dt x D ...(vii)

which is called Liouville s formula. From (3), it follows immediately that, if n solutions y1(x),
y2(x), .... yn(x) of (5) are linearly dependent, then the Wronskian 1 2( ( ), ( ),..., ( ))nW y x y x y x  is
identically zero on D. Thus we obtain the following:

Theorem 2: Let y1(x), y2(x), .... yn(x) be n solutions of the equation (5). Then these solutions
are linearly independent if and only if the Wronskian 1 2( ( ), ( ),..., ( ))nW y x y x y x  does not
vanish at any point in D. Further, these solutions are linearly dependent if and only if their
Wronskian is identically zero in D.

(6) Lagrange s method of variation of constants and Di Alembert s method of reduction of
order

We shall be concerned with the inhomogeneous linear differential equation (1). Let y1(x),
y2(x) be solutions of (1). Then, clearly, y(x) = y1(x)  y2(x) is a solution of the associated
homogeneous equation (5). This proves the following theorem.

Theorem 1: The general solution of (1) is written as the sum of a particular solution of (1)
and the general solution of (5).

However, if we know a fundamental system of the solutions of (5), then we can obtain a
particular solution of (1) by the method of variation of constants which is due to Lagrange.
Accordingly, in order to solve linear differential equations, it is sufficient to solve the
associated homogeneous equations.

The method of variation of constants. Let y1, y2, ..., yn be a fundamental system of the solutions
of (5). Then the general solution of (5) is written in the form

y(x) =
1

( )
n

i n
i

C y x ...(i)

Now we regard these constants Ct as functions of x, and try to determine them in such a
way that

y(x) =
1

( ) ( )
n

t i
i

C x y x

satisfies (1). As was shown by Lagrange, if 1 2( ), ( ), ..., ( )nC x C x C x  satisfy the system of
linear equations

1 1 2 2( ) ( ) ( ) ( ) ... ( ) ( )n ny x C x y x C x y x C x = 0

1 1 2 2( ) ( ) ( ) ( ) ... ( ) ( )n ny x C x y x C x y x C x = 0
                     ................................................................................. ...(ii)

( 2) ( 2) ( 2)
1 1 2 2( ) ( ) ( ) ( ) ... ( )n n n

n ny x C x y x C x y C x = 0
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General Properties of Solutions of Linear Differential Equations of Order n

Notes( 1) ( 1) ( 1)
1 1 2 2( ) ( ) ( ) ( ) ... ( )n n n

n ny x C x y x C x y C x = q(x)

then 1 ( ) ( )n
i l iC x y x  satisfies (1).

In fact, if there exist C1(x), C2(x), ..., Cn(x) satisfying (ii), then, by differentiation and by
making use of (ii), we obtain successively

y(x) =
1

( ) ( )
n

i i
i

C x y x

( )y x =
1

( ) ( )
n

i i
i

C x y x

                                                                               ..............................................

( 1)( )ny x = ( 1)

1

( ) ( )
n

n
i i

i

C x y x

( )( )ny x = ( )

1

( ) ( ) ( )
n

n
i i

i

C x y x q x

Since yi(x) satisfies (5), y(x) is certainly a solution of (1).

Now we consider the system (ii). According to Theorem 2, the Wronskian W(y1(x), y2(x), ...,
yn(x)) of the fundamental system {yi(x)} never vanishes at any point in the domain D, in
which the coefficients p1(x), p2(x), ..., pn(x) of (5) are continuous. Therefore, there exists one
and only one set of solutions 2( ), ( ),..., ( )i nC x C x C x  of (ii), which is written as

( )/idC x dx = 2( ) ( )/ ( ( ), ( ),...., ( ))i i nq x W x W y x y x y x ...(iii)

= ( ), ( 1,2,..., )iZ x i n

where Wi (x) is the cofactor of ( 1)( )n
iy x  in W(y1(x), y2(x),..., yn(x)). Integrating (iii), we

obtain

Ci(x) =
0

( ) , ( 1,2,..., )
x

i t
x

Z t dt C i n ...(iv)

where tC  is a constant of integration. Consequently, a particular solution of the equation
(1) is

y(x) =
0

( ) ( )
n x

i i i
xx

Z t dt C y x ...(v)

The method of reduction of order. If a particular solution y1(x), not identically zero, of the nth
order linear differential equation (5) is known, then, by setting

y = y1z

(5) can be reduced to a linear differential equation of the (n  1) order with respect to dz/
dx.  This procedure is called the method of reduction of order and is due to D  Alembert.
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Notes In fact, Leibnitz s formula yields

y(p) = ( )( ) ( 1)
1 1 1 ( 1,2,...., )pp py z p y z y z p n

Substituting these in (5), we see that the coefficient of z(n) is y1, and that of z is zero. Thus (5)
becomes an equation of the (n  1) order with respect to z ,

( ) ( 1) ( 1)
1 1 2 1( ) ( ) ... ( )n n n

ny z q x z q x z q x z = 0 (vi)

In particular, when n = 2, the reduced equation (vi) can be solved. Hence, by virtue of this
method, we obtain the general solution

y(x) = 2
1 1 1( ) ( ) exp ( )

x i
y x y t p d dt ...(viii)

y1(x) being a particular solution of (5) with n = 2.  This method is useful in the practical
treatment of the linear differential equations.

Self Assessment

1. Consider the second order differential equations

1 2( ) ( ) 0y p x y p x y

having two independent solutions y1 and y2. Find a relation between p1, p2 in terms of y1,
y2 and their derivatives.

2. Obtain the particular solution of the differential equation

2xy y e

by the method of variation of constants.

2.3 Solution of the Linear Equation with Constant Coefficients

To solve the equation

1

0 1 1 ...
n n

nn n
d y d yP P P y
dx dx = 0, ...(i)

where P0, P1,...., Pn are constants.

Substitute y = emx on a trial basis,

Then 1
0 1( ... )mx n n

ne P m P m P = 0 ...(ii)

Now, emx is a solution of (i) if m is a root of the algebraic equation

1
0 1 ...n n

nP m P m P = 0 ...(iii)

Auxiliary Equation

The equation (iii) is called the auxiliary equation. Therefore if m have a value say m1 that satisfies
(iii), y = em1x is an integral of (i), and if the n roots  of (iii) be m1, m2, m3, ...mn the complete solution
of (i) is

y = 1 2
1 2 ... .nm xm x m x

nc e c e c e
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General Properties of Solutions of Linear Differential Equations of Order n

NotesThis will be the case when all the roots, m1, m2, m3,... mn of the auxiliary equation are real, distinct
and different.

Auxiliary Equation having Equal Roots

If  the auxiliary equation has two equal roots, say m1 and m2, the solution of the given equation

1

0 1 1 ...
n n

nn n
d y d yP P P y
dx dx = 0

will be y = 1 2
1 2 3( ) ... nm xm x m x

nc c e c e c e

or y = 1 2
3 ... nm xm x m x

nce c e c e

where c1 + c2 = c.

This is not the general solution of (i), because it contains (n  1) arbitrary constants while the
order of the equation is n. To obtain the general solution of (i) in this case, we proceed as follows:

Consider the repeated factor as 
2

1 0.dy m y
dx

This can be written as 2
1( ) 0,D m y

where D = .d
dx

Put (D  m1) y = ;

then (D  m1) = 0.

Therefore
d
dx = 1m

or
d

= m1 dx

Integrating, we have log 
2c

 = m1 x

Hence = 1
2 .m xc e

or (D  m1) y = 1
2

m xc e

or 1
dy m y
dx = 1

2
m xc e

This is a linear differential equation and we will have

1m xye = 1 1
1 2 .m x m xc c e e dx

= 1 2c c x

y = 1
1 2( ) .m xc c x e
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Notes This consequently means that if two roots of the auxiliary equation are equal, the general
solution of (i) will be

y = 1 2
1 2 3( ) ... .nm xm x m x

nc c x e c e c e

In general, if r roots of the auxiliary equation 1
0 1 ... 0n n

nP m P m P  are equal to m1 say, the
general solution of (i) will be

y = 112 1
1 2 3 1( ... ) ... .r nm x m xr m x

r r nc c x c x c x e c e c e

Auxiliary Equation having Complex Roots

If some of the roots of auxiliary equation are complex, then we shall follow the procedure as
given below:

Let  i  be the roots of the auxiliary equation; then the corresponding part shall become

= ( ) ( )
1 2

i i xc e c e

= 1 2
i x x i xxc e e c e e

= 1 1 2 2( cos sin ) ( cos sin )ax axe c x ic x e c x ic x

= 1 2 1 2[( )cos ( )sin ]axe c c x ic ic x

= [ cos sin ],axe A x b x

where A and B are arbitrary constants.

Therefore the solution is

y = 2
1 2 3( cos sin ) ... nm xax m x

ne c x c x c e c e

Example 1: The expression ( cos sin )axe A x b x  can be also written as

1 2cos( )axc e x c  or 1 2sin( ),axc e x c

Example 2: if the auxiliary equation has two equal pairs of complex roots, say  i 
occurring twice, then the portion of the solution corresponding to these roots, is

1 2 3 4( )cos ( )sinxe c c x x c c x x

Example 3: If the auxiliary equation has the roots as , then the portion of the
solution corresponding to these roots is

1 2 1 2cos or sinax axc e h x c c e h x c

Solution of equations of the form

1

0 1 1 ... 0.
n n

nn n
d y d yP P P y
dx dx
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General Properties of Solutions of Linear Differential Equations of Order n

Noteswill have the following properties.

Nature of the roots Solution 

1. Real and distinct 
 i.e., 1 2, ,... nm m m  

1 2
1 2 ... nm xm x m x

ny c e c e c e  

2. Real and equal, each m1 (say) 12 1
1 2 3

...( )n m x
ny c c x c x c x e  

3. Non-repeated roots as i  
1 2( cos sin ) axy c x c x e  

or 1 2cos( )xy c e x c  

4. Repeated roots ,i r times 1 1
1 2 1 2

... ...[( ) cos ( )r r
r ry c c x c x x c c x c x  

sin ] xx e  

5. Irrational roots as      1 2cos ( )axy c e h x c  

or 1 2sin ( )xy c e h x c  

 
Example 4: The symbol D is used for 

d
dx  for Dn for .

n

n
d
dx  It should be kept in mind that

D and D 1 are the inverse operations, i.e., as D means differentiations, D 1 means integrations.

Illustrative Examples

Example 1: Solve: 
2

2 7 44 0.d y dy y
dxdx

Solution: The equation can be written as (D2  7D  44) y = 0

The auxiliary equation is

2 7 44m m = 0 or (m  11) (m + 4) = 0

 m = 11,  4, which are real and distinct. Hence solution of the given equation is

y = 11 4
1 2 .x xc e c e

Example 2: Solve: 
2

2 4 0.d y dy y
dxdx

Solution: The given equation is

(D2  4 D + 1) = 0

The auxiliary equation is

m2  4 m + 1 = 0

m =
4 16 4 2 3

2
Hence general solution is

y = (2 3 ) (2 3 )
1 2

x xc e c e
It can also be written in the form

y = 33
1 2( )xx xe c e c e
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Notes
or y = 2

1 2cos 3 sin 3 .xe c h x c h x

Example 3: Solve: 
3 2

3 22 4 8 0.d y d y dy y
dxdx dx

Solution: The given equation is

(D3  2D2  4D + 8) y = 0

Auxiliary equation is

m2  2m2  4m + 8 = 0

or (m  2) (m2  4) = 0; m = 2,  2.

General solution is

y = 2 2
1 2 3( ) .x xc c x e c e

Example 4: Solve: 
2

2 4 0.d y y
dx

Solution: The given equation is

(D2 + 4) y = 0.

Auxiliary equation is

m2 + 4 = 0 or m =  2i.

The general solution is

y = c1 cos 2x + c2 sin 2x.

Self Assessment

3. Solve

3 2

3 29 23 15 0d y d y dy y
dxdx dx

4. Solve

2

2 8 25 0d y dy y
dxdx

5. Solve

3 2

3 24 5 2 0d y d y dy y
dxdx dx

6. Solve

4 3 2

4 3 22 5 8 4 0d y d y d y dy y
dxdx dx dx
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General Properties of Solutions of Linear Differential Equations of Order n

Notes2.4 Particular Integral

Let
1
( )

Q
f D ...(i)

denote som e function of x which when operated upon by f(D) gives Q. This function of x is a
particular solution of the differential equation.

( )f D y = Q ...(ii)

As f(D) and f(D) 1 are inverse operations, therefore

1{ ( )}D D Q = Q (Particular case)

or 1{ ( )}d D Q
dx = Q

D 1(Q) = Q dx

Example: Properties of 
1 .
( )f D

1. If 1 2 3 nQ u u u u  then

1 2
1 1 1 1 .
( ) ( ) ( ) ( ) nQ u u u

f D f D f D f D


2.
1 1( ) . .
( ) ( )

k Q k Q
f D f D  where k is a constant

3. 1
( )f D

 can be resolved into factors.

4. 1
( )f D

 can be broken into partial fractions.

5. 1
( )f D

Q is a particular integration.

To show that 
1 x exQ e e Qdx

D

Let
1

( )
Q

D = V

Therefore (D  ) V = Q

or d V
dx

= Q

This is a linear differential equation. The solution is
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Notes
axV e = axQe dx c

V = .ax ax axe Q e dx ce

Now c can be taken zero, for we want only a particular solution.

Hence V = .ax axe Q e dx

or
1

( )
Q

D = .ax axe Q e dx

We are now in a position to evaluate

1{ ( )}f D Q

Let on factorization

( )f D = 1 2( )( ) ( )nD D D

Then 1 2( )( ) ( )nD D D y = Q

It follows that

1 2( )( ) ( )nD D D y = 1
1( )D Q

= 1 1x xe e Qdx

Therefore

3( ) ( )nD D y = 1 11
2( ) x xD e e Qdx

or 3( ) ( )nD D y = 1 22 1( )xx xe e e Qdx

and so on.

Hence, we get generally

y =  1 1 2 1( ) ( ) .n nn a x xx xe e e e Qdx dx

This is the required particular integral.

Note: In case f(D) fails to give real linear factors, we may use imaginary factors and use the above
method and finally put the result in a real form.

Let 
1
( )f D  be  capable of resolving into partial fractions. Thus

1
( )f D = 1 2

1 2

n

n

A A A
D D D



Now, particular integral

= 1 2

1 2

1 ... .
( )

n

n

A A AQ Q Q Q
f D D D D
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 General Properties of Solutions of Linear Differential Equations of Order n

Notes
1 1 2 2

1 2
x x x xA e e Qdx A e e Qdx

.n nx x
nA e e Qdx

To evaluate 1
( )

xe
f D

, where

f(D) = 1
0 1 ,n n

nP D P D P

and ( ) 0.f

We know that ( )axD e = axae

2 ( )axD e = 2 axa e
                                                 ...............................
                                                 ...............................

( )n axD e = .n axa e

Therefore,

( ) axf D e = 1
0 1( )n n ax

nP D P D P e

= 1
0 1

n ax n ax ax
nP D e P D e P e

= 1
0 1

n ax n ax ax
nP a e P a e P e

= 1
0 1( )n n ax

nP a P a P e

Now, ( ) ( ) .ax axf D e f a e

Operating upon both sides with 1
( )f D

 we have

1 ( )
( )

axf D e
f D

= 1 ( ) ,
( )

axf a e
f D

eax = 1( )
( )

axf a e
f D

( )

axe
f a = 1 ,

( )
axe

f D
 provided ( ) 0.f a

Illustrative Examples

Example 1: Solve the following equation

2( 3 2)D D y = 5 .xe
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Notes Solution: The given equation is

2( 3 2)D D y = 5xe

Auxiliary equation is

2 3 2m m = 0 or (m  1) (m  2) =0

m = 1, 2

C.F. = 2
1 2

x xc e c e

P.I. = 5
2

1
3 2

xe
D D

= 5 51 1
25 3.5 2 12

x xe e

y = C.F. + P.I.

= 2 5
1 2

1
12

x x xc e c e e

Example 2: Solve: 
2

2 .xd y dy y e
dxdx

Solution: Here the auxiliary equation is

m2 + m + 1 = 0,
1 3
2 2

m i

C.F. =
1
2 1 1cos 3 sin 3

2 2
x

e A x B x

Also P.I. = 2
1

1
xe

D D

= 2
1

( 1) ( 1) 1
x xe e

Hence the general solution of the given equation is

y =
1
2 3 3cos sin

2 2
x xe A x B x e

Self Assessment

Solve the following differential equations:

7. 2 2( 5 6) .xD D y e

8. 3 2 3( 4 4) .xD D D y e

9. 2 2(4 4 3) xD D y e

10. 3 2( 1) ( 1)xD y e
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General Properties of Solutions of Linear Differential Equations of Order n

Notes
To evaluate 1 sin ,

( )
ax

f D
 where 1

0 1( ) ... .n n
nf D P D P D P

Case I. When f(D) contains even powers of D

Let 2( )f D = 2 2 1
0 1 .( ) ( )n n

nP D P D P

We notice that D2 sin ax = a2 sin ax.

D4 sin ax = ( a2)2 sin ax

D6 sin ax = ( a2)3 sin ax
                                              .................................................
                                              .................................................

(D2)n sin ax = ( a2)n sin ax

Therefore 2( )sinf D ax = 2 2 2
0 1( )sinn n

nP D P D P ax

or 2( )sinf D ax

= 2 2 2
0 1sin sin sinn n

nP D ax P D ax P ax

= 2 2 1
0 1( ) sin ( ) sin ... sinn n

nP a ax P a ax P ax

= 2( )sin .f a ax

Operating on both sides with 2
1 ,

( )f D we have

2
2

1 ( )sin
( )

f D ax
f D

=
2

2
1 ( )sin

( )
f a ax

f D

or sin ax = 2
2

1( ). sin .
( )

f a ax
f D

Dividing both sides by 2( ),f a  we have

2
1 sin

( )
ax

f D
= 2

1 sin .
( )

ax
f a

Case II. When f(D) contains odd powers of D.

Let it be put in the form 2 2
1 2( ) ( );f D Df D  then

1 sin
( )

ax
f D

= 2
1 2

1 sin
( ) ( )

ax
f D D f D

= 2 2
2

1 sin
( ) ( )

ax
f a D f a

=
1 sin sayax

m nD
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Notes 2 2
1 2[where ( ), ( )]m f a n f a

= 1 1( ) . sin
( )

m nD ax
m nD m nD

Since 
1( ),

( )
m nD

m nD  are inverse operations.

= 2 2 2
1( ) sin

( )
m nD ax

m n D

= 2 2 2
1( ) sinm nD ax

m n a

= 2 2 2
sin cosm ax na ax

m n a

=
2 2

1 2
2 22 2 2

1 2

( )sin ( ) cos

( ) ( )

f a ax f a a ax

f a a f a

Notes  Similar results are true for 1
( )f D

cos ax.

Illustrative Examples

Example 1: Solve: (D2 + D + 1) y = sin 2x.

Solutions: Here C.F. = /2
1 2

3 3cos sin
2 2

xe c x c x

P.I. = 2
1 sin 2

1
x

D D

= 2
1 sin 2

(2) 1
x

D

=
1 sin 2

3
x

D

= 2
3 sin 2
9

D x
D

=
(sin 2 ) 3sin 2

4 9
D x x

=
1 (2 cos2 3sin 2 )

13
x x
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 General Properties of Solutions of Linear Differential Equations of Order n

NotesTherefore the general solution is

y = C.F. + P.I.

= /2
1 2

3 3 1cos sin (2 cos2 3sin 2 )
2 2 13

xe c x c x x x

Self Assessment

11. Solve the following differential equations

( 2) sin 2D D y x

12.
2

2 5 6 sin 3d y dy y x
dxdx

2.5 Summary

 The unit starts with the existence the uniqueness of the solution of nth order differential
equation.

 Here the nth order linear differential equation is reduced to a system of n first order
equations and the method of last unit applied.

 Some of the properties listed, help us in finding the general solution of the equation when
the coefficients are constant.

2.6 Keywords

Complementary functions are the solutions of the nth order differential equation without the
non-homogeneous term and involves n arbitrary constants.

Particular Integral (P.I.): It is the solution of non-homogeneous, nth order differential equation
without having any arbitrary constants.

2.7 Review Questions

1. Solve

2

29 18 16 0d y dy y
dxdx

2. Solve

4

4 0d y y
dx

3. Solve

(D4  D3  9D2  11D  4) y = 0

4. Solve

2
4

2 5 6 xd y dy y e
dxdx
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Notes 5. Solve

2
5

2 3 2 xd y dy y e
dxdx

6.
2

2 4 sin 2xd y y e x
dx

Answers: Self Assessment

1.
1 2 2 1 1 2 1 2

1 2
1 2 1 2 1 2 1 2

( ) ( ),
( ) ( )
y y y y y y y yp p
y y y y y y y y

2. Particular integral, P.I. = 
2

3

xe

3. 3 5
1 2 3

x x xy c e c e c e

4. 4
1 2( cos3 sin 3 )xy e c x c x

5. 2
1 2 3( ) x xy c c x e c e

6. 1 2 3 4( ) cos2 sin 2xy c c x e c x c x

7. 2 3 2
1 2

1
20

x x xy c e c e e

8. 2 2 3
1 2 3

1
10

x x x xy c e c e c e e

9.
3

/2 22
1 2

1
21

x
x xy c e c e e

10.
/2 2

1 2 3
3 3 1cos sin 1

2 2 4
x x x xy c e e c x c x e e

11. 2
1 2

1 (cos2 3sin 2 )
20

x xy c e c e x x

12. 2 3
1 2

1 (5 cos3 sin 3 )
78

x xy c e c e x x x

2.8 Further Readings

Books Yosida, K., Lectures in Differential and Integral Equations

Piaggio, H.T.H., Differential Equations
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 Total Differential Equations, Simultaneous Equations

NotesUnit 3: Total Differential Equations,
Simultaneous Equations

CONTENTS

Objectives

Introduction

3.1 Total Differential Equation

3.2 Condition of Integrability of Total Differential Equation

3.3 Methods for Solving the Differential Equations

3.4 Simultaneous Differential Equations

3.5 Summary

3.6 Keywords

3.7 Review Questions

3.8 Further Readings

Objectives

After studying this unit, you should be able to:

 Deal with equations which are total differentials as well as simultaneous differential
equations involving more than one dependent variable and one independent variable.

 See whether total differential equations are integrable and study the condition of
integrability as well its uniqueness of the solution.

Introduction

The total differential equations are seen to be integrable with some illustrated examples. There
are four differential methods of obtaining the solution of total differential equations. The
conditions when the total differential is exact are obtained.

3.1 Total Differential Equation

An equation of the form

P dx Q dy R dz = 0 ...(i)

Where, P, Q, R are functions of x, y, z is known as ,total differential equation,. The equation (i) is
said to be integrable if there exists a relation of the form

( , , )u x y z = c, ...(ii)

which on differentiation gives the above differential equation (i). The relation (ii) is called the
complete integral or solution of the given differential equation.

Now consider equation (i). If (ii) is the integral of (i) and since

du = ,u u udx dy dz
x y z

...(iii)

Sachin Kaushal, Lovely Professional University
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Notes du = 0, gives on comparison with (i) the relations

u
x

P
=

u u
y z

Q R
(say) ...(iv)

So we get

u
x

= , ,u uP Q R
y z

...(v)

3.2 Condition of Integrability of Total Differential Equation

Now differentiating these three equations (v), first with respect to y and z, second with respect to
z and x and third with respect to x and y, we get

2u
y x

=
2

,P u PP P
y y z x z z

2u
x y

=
2

,Q u QQ Q
x x z y z z

2u
x z

=
2

, ,R u RR R
x x y z y y

equating the values of 
2u

x y  etc., and rearranging

P Q Q P
y x x y

Q R R Q
z y y z

R P P R
x z z x

....(vi)

Now multiplying the above three equations by R, P, Q respectively and adding, we get

P Q Q R R PR P Q
y x z y x z

= 0 ...(vii)

which is the required condition.

Sufficiency of the Condition (vii)

Now if (vii) holds for the coefficients of (i), a similar relation holds for coefficients of

µPdx µQdy µRdz = 0 ...(viii)

where  is a function of x, y, z. Now consider .Pdx Qdy  If it is not an exact differential with
respect to x, y an integrating factor  can be found for it. So Pdx Qdy  can be regarded as an
exact differential.
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Total Differential Equations, Simultaneous Equations

NotesNow  Pdx Qdy  is an exact differential,

P
y

= ,Q
x

and if V = P dx Q dy

V
x = and VP Q

y

P
z =

2 2

,V Q V
zdx z z y

...(ix)

Putting these values in (vii)

2 2V V R V R V
x z y y y x z x

= 0

or V V V VR R
x y z y x z

= 0

or

V V R
x x z
V V R
y y z

= 0

This equation shows that a relation independent of x and y exists between

V and .V R
z

Therefore V R
z

 can be expressed as a function of z and V alone.

Suppose

V R
z

= ( , )z V

Since Pdx Qdy Rdz =
V V V Vdx dy dz R dz
x y z z ...(x)

Equation (i) may be written, on taking into account (x) as

( , )dV z V dz = 0 ...(xi)

The equation is an equation in two variables. Its integration will lead to an equation of the form

( , )F V z = c.
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Notes Hence the condition (vii) is necessary and sufficient both. In the vector form the equation (i) can
be written as

.A dr
 

= 0

where

A
 =

 
ˆ ˆ ˆPi Q j R k  and

dr


=
 

ˆ ˆ ˆdxi dy j dzk

The necessary and sufficient condition then becomes .A


 Curve 0A
  i.e.

P Q R

x y z
P Q R

= 0

Self Assessment

1. Show that the differential equation

3 2 0xz dx z dy y dz

is integrable.

2. Show that the differential equation

( ) ( ) ( ) 0yz y z dx zx z x dy xy x y dz

is integrable.

3.3 Methods for Solving the Differential Equations

Pdx Qdy Rdx = 0 ...(1)

The condition for integrability of the above equation is

Q R R P P QP Q R
z y x z y x = 0 ...(2)

If the differential equation (1) is exact differential then its integral is of the form

( , , )u x y z = c, ...(3)

Now

du = 0u u udx dy dz
x y z

...(4)

Giving us the conditions

P = , ,u u uQ R
x y z
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 Total Differential Equations, Simultaneous Equations

Notes
Now P

y
=

2 2u u Q
y x x y x

or P
y

= Q
x

Similarly
Q
z = ,R R P

y x z

...(5)

There are various methods of solving equation (1) which are shown below.

Method I : Solution by Inspection

If the conditions of integrability are satisfied, then sometimes by rearranging the terms of the
given equation and/or by dividing by some suitable function, the given equation may be
changed to a form containing several parts, all of which are exact differential. Then integrating
it, the integral can be obtained directly.

Note:  Certain common exact differentials, which may occur in the transformed total differential
equation are as follows:

xdy y dx = ( )d xy

xy dz xzdy yzdz = ( )d x y z

2
x dy y dx

x
= ( / );d y x

2
y dx x dy

y = ( / )d x y

2 2
x dy y dx

x y
= 1(tan ( / ))d y x

2 2
x dx y dy

x y =
2 21 log( )

2
d x y

( , , )
( , , )

d f x y z
f x y z = log ( , , )d f x y z

2 2 2
x dx y dy zdz

x y z
= 2 2 21 log( )

2
d x y z

Example 1: Solve

2 2 2( ) ( ) ( )y yz dx z zx dy y xy dz = 0 ...(1)
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Notes Solution:

Let

P = 2 2 2, ,y yz Q z zx R y xy ...(2)

The condition for integrability of equation (1) is

Q R R P P QP Q R
z y x z y x

= 0 ...(3)

Now

Q
z = 2 , 2Rz x y x

y

R
x = , Py y

z

P
y

= 2 , Qy z z
x

Substituting in equation (3) we get

2 2 2( )(2 2 2 ) ( )( ) ( )(2 )y yz z x y z zx y y y xy y z z

or 2 2 2(2 2 2 2 ) (2 2 2 ) 2 ( ) 2y z x y y yz z x y y z zx xy

= 2 2 2 2 2 22 2 2 2 2 2 2 2y z xy yz xyz y z yz xyz xy = 0 = R.H.S.

So condition of integrability is verified.

Let z be constant, so that dz = 0. So from (1) we get

2 2( ) ( )y yz dx z zx dy = 0 ...(4)

So 2
zdydx

x z y yz
= 0

or 1 1dx dy
x z y z y

= 0 ...(5)

Integrating we get

log( ) log yx z
y z

= Constant

or ( )log x z y
y z

= constant ...(6)

= log  (say)

so ( )y x z
y z

=  ...(7)
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Total Differential Equations, Simultaneous Equations

NotesWhere  is only a function of z. Taking the differential of both the sides, we get

2

( ) ( ) ( ) ( )( )
( )

y z y dx dz x z dy y x z dy dz
y z = d

or

2 2 2

2
( ) ( ) ( )

( )
y yz dx dy z zx dz y zy yx yz

y z
= d ...(8)

Now from (1) and (8) we have,

d = 0 or k  (constant)

Thus from (7)

( )y x z
y z

= k

or the solution is

( )y x z = ( )k y z Q.E.D.

Example 2: Solve

2 3 2 2 2 3 2 2( ) ( ) ( )x y y y z dx xy x z x dy xy x y dz = 0 ...(1)

Let P = 2 3 2 2 2 3 2 2, ,x y y y z Q xy x z x R xy x y

The condition of integrability is

Q R R P P QP Q R
z y x z y x

= 0 ...(2)

So

Q
z = 2 2, 2Rx xy x

y

R
x = 2 22 , Py xy y

z

P
y = 2 2 2 23 2 , 2 3Qx y yz y xz x

x

Substituting in (2) we have

= 2 3 2 2 2 2 2 3 2 2( ) 2 ( 2 )x y y y z x xy x xy x z x y xy y

2 2 2 2 2 2( ) 3 2 2 3xy x y x y yz y xz x

= 2( )( ) 2 ( ) ( )( ) (2 )( )y x y x y yz x x y x y x y x x z y x y

22 ( )[2 2 ]xy x y x y yz xz
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Notes = 2 2 2 2 2 22 ( )[ 2 2 ]yx x y x y yz y x xz x y yz xz

= 2 ( )[0] 0xy x y ...(3)

So integrability condition is satisfied.

Now dividing by 2 2x y  eq. (1) we have

2 2 2 2
1 1 1 1y z z xdx dy dz
y x x y y y x y

= 0

or 2 2 2
y dx x dy x dy y dx x dz zdx y dz zdy

y x x y
= 0

or yx z zd d d d
y x x y

= 0 ...(4)

Integrating (4) we have

yx z z
y x x y

= 0 (say)             ...(5)

or

2 2 ( )x y z x y = c xy  is the solution of equation (1).

Self Assessment

3. Solve the differential equation

2 (1 )yzdx zxdy xy z dz

4. Solve the differential equation

2 2 2 0x dx y dy a x y dz

Method II: Regarding one Variable as Constant

If the differential equation satisfies the condition of integrability and any two terms say
0Pdx Qdy  can easily be integrated, then the third variable (say z) may be regarded as

constant so that 0.dz

Note that we should choose such a variable constant so that the remaining equation may be
integrated easily.

So the given differential equation will reduce to the integrable form

Pdx Qdy = 0 ...(1)

suppose its solution is

u = c (constant) ...(2)
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Total Differential Equations, Simultaneous Equations

Notesi.e. not involving x, y. Now we take

u = ( )z ...(3)

where ( )z  is the function of z alone as the solution of the given equation. Now taking the
differential of both sides of equation (3), we must get the given equation.

On equating the two, we may get the value of .d
dz Eliminating x, y from the value of ,d

dz  using

(3), and then integrating we can obtain the value of ( ).z  Substituting the value of  in (3), we get
required solution.

Example 1: Solve

2 2 3 3 23 3 ( )zx dx y dy x y e dz = 0 ...(1)

by regarding one variable as constant.

Solution:

Let z be constant so that

dz = 0 ...(2)

Then (1) gives

2 23 3x dx y dy = 0 ...(3)

This gives

3 3x y = constant = (z) (say) ...(4)

Taking the differential of (4) we have

2 23 3x dx y dy = d ...(5)

Comparing (5) with (1) we have

3 3 2( )zdz x y e  = d ...(6)

or eliminating x, y from (6) we have

2( )ze =
d
dz


or
d
dz

  = 2ze ...(7)

This equation is linear in , whose . . .zI F e  So

ze = 2 .z ze e dz

  + constant

= ze dz C  (say)

Thus ( )z = 2z ze Ce
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Notes Now from (4) we have

3 3x y = 2z ze Ce ...(8)

which is the required solution

Example 2: Solve

2 2(2 2 2 1) .2x xy xz dx dy dz z     = 0 ...(1)

by regarding one variable as constant.

Solution: Let x be constant, so that

dx = 0 ...(2)

Then 2dy z dz = 0

or 2( )d y z = 0

so 2y z = constant

= ( )x (say) ...(3)

Taking differential of (3) we have

2dy z dz = ( )d x ...(4)

Comparing (4) with (1) we have

2 2(2 2 2 1)x xy x z dx    = ( )d x

d
dx


 = 2 22 1 2 ( )x x y z  

or
d
dx


 = 22 1 2x x  

So 2d x
dx

  = 2 12x  ...(5)

The equation (5) is linear in , so I.F. is 
22 .x dx xe e 

Thus
2xe =

22(2 1) xx e dx C  

=
2 2

2 x xx x e dx e dx C   
   

=
2 2x x xx e e dx e dx C    

=
2xx e C 

So 
2
.xx C e  Thus 

22 xy z x C e     Q.E.D.
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Total Differential Equations, Simultaneous Equations

NotesSelf Assessment

5. Solve the differential equation

2 3 0yz dx zx dy xy dz  

6. Solve

2( ) ( ) (2 ) 0y z dx x z dy y x z dz      

Method III: For Homogeneous Equations

Consider the equation

P dx Q dy R dy  = 0 ...(1)

If the functions P, Q and R are homogeneous functions of x, y, z then one variable say z, can be
separated from the other variables by substituting x = z u and y = zv, so that

dx = ,z du udz

dy = ,z dv v dz ...(2)

in the given equation. Then transformed equation can be integrated as

1 2( , ) ( , )
( , )

du f u v f u v dv dz
F u v z


 = 0 ...(3)

Now to integrate the first term, we find [ ( , )]d F u v  and add and subtract it to numerator. After
doing so, the first term will also be integrable.

Example 1: Solve

2( )yz z dx xz dy xy dz   = 0 ...(1)

Here 2 ,yz z xz  and xy are homogeneous in x, y, z. Let us put x = uz, and y = vz, so that

dx = z du u dz

dy = z dv v dz

...(2)

Substituting (2) in (1) we have

2 2 2 2( )( ) ( )vz z zdu udz uz zdv v dz uv z dz = 0

( 1) ( 1)
uv

z v du udv u v dz
uv = 0 ...(3)

or
( 1)

( 1)
v du u dv dz

u v z = 0 ...(4)

Simplifying we have

1
du dv dz
u v z = 0 ...(5)






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Notes Integrating

log log(1 ) logu v z = logc (c being constant)

or 1
uz

v = c

or u z2 = ( )c z zv

or xz = ( )c y z ...(6)

is the solution of the equation (1).

Example 2: Solve

( ) ( ) ( )z z y dx z z x dy x x y dz = 0 ...(1)

Here P = ( ), ( ), ( )z z y Q z z x R x x y ...(2)

P
y = , Qz z

x

R
x = 2 , 2Dx y z y

z ...(3)

Q
z = 2 , Rz x x

y

The integrability condition

dQ R R P P QP Q R
dz y x z y x = 0 ...(4)

L.H.S. of equation (4) is

= ( ) 2 ( )[2 2 ] ( )[ ]z z y z x x z z x x y z y x x y z z

= 22 ( ) ( )(2 2 2 ) 2 ( )z z y z z x x y z zx x y

= 3 2 2 2 2 3 2 22 2 2 2 2 2 2 2 2 2 0z z y z x zx yz xyz z z x zx xyz  = R.H.S.

So condition (4) is satisfied

Let

x = ,uz dx z du udz

y = ,vz dy z dv vdz
...(5)

Substituting in equation (1)

2 2(1 )[ ] (1 )[ ] ( )z v zdu udz z u zdv v dz z u u v dz = 0

or (1 ) (1 ) (1 ) (1 ) ( )v zdu z u dv u v v u u u v dz = 0
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Notes
or

(1 ) (1 )
( )(1 )
v du u dv dz
u v u z = 0

[1 ]
( )(1 )

u u v du dv dz
u v u u v z = 0

or
1 1

1
dv dzdu

u v u u v z = 0

1
du dv du dz
u v u z = 0

Integrating we have

log( ) log(1 ) logu v u z = 1log
c

being
constant
c

or ( )cz u v = 1 u

or ( )c x y z = z + x ...(6)

is the solution of the equation (1).

Self Assessment

7. Solve the differential equation

2 2 2( 2 ) (2 ) 0z dx z yz dy y yz zx dz

8. Solve

2 2 2( ) 2 2 0y z x dx xy dy xz dz

Method IV: Method of Auxiliary Equations

Let the given equation

P dx Q dy R dz = 0 ...(1)

be integrable. Then we must have

dQ R R P P QP Q R
dz y x z y x

= 0 ...(2)

Comparing these two, we obtain

dx
dQ R
dz y

=
dy dz

R P P Q
x z y x

These equations are called auxiliary equations and can be solved as shown in the two examples
below.
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Notes
Example 1: Solve

2 2 2 2 2 2( ) ( ) ( )y yz z dx z zx x dy x xy y dz = 0 ...(1)

Here put P = 2 2 2 2,y yz z Q z zx x

R = 2 2x xy y ...(2)

Now Q
z

= 2 , 2Rz x y x
y

R
x = 2 , 2Px y z y

z

P
y = 2 , 2Qy z x z

x

The auxiliary equations are

dx
Q R
z y

=
dy dz

R P P Q
x z y x

...(3)

or
2( )

dx
z y

=
2( ) 2( )

dy dz
x z y x

...(4)

so

dx dy dz
z y x z y x

= 0
dx dy dz

...(5)

Thus dx dy dz = 0

or x y z = constant = u (say) ...(6)

Also from (4)

2 2
( )z y dx
z y

= 2 2 2 2
( ) ( )x z dy y x dz
x z y x

So
( ) ( ) ( )

0
z y dx x z dy y x dz

...(7)

Gives us

( ) ( ) ( )z y dx x z dy y x dz = 0 ...(8)

or y dx xdy zdy y dz zdx xdz = 0

or ( )d xy yz zx = 0

So xy yz zx = constant = v (say) ...(9)
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NotesLet the solution of (1) is

Adu B dv ...(10)

then Adu Bdv = 0 ...(11)

is identical to (1) i.e.

( ) ( ) ( ) ( )A dx dy dz B z y dx x z dy y x dz = 0 ...(12)

( ) ( ) ( )A B z y dx A B x z dy A B y x dz = 0 ...(12 )

Comparing (12 ) with (1) we have

( )A B y z 2 2y yz z

( )A B x z 2 2z zx x ...(13)

( )A B x y 2 2x xy y

From (13) we have B x y z u ...(14)

And A = ( )xy yz xz v ...(15)
Hence

Au Bv = 0 ...(16)

becomes vdu udv = 0

or
du dv
u v = 0

on integrating

log u
v

= log k

or
u
v = k ...(17)

From (6) and (9) we have

x y z
xy yz zx = k ...(18)

which is the solution of equation (1).

Example 2: Solve

2 2(2 ) (2 ) ( )xz yz dx yz zx dy x xy y dz = 0 ...(1)

Solution: By the method of forming auxiliary equations

Here 2 22 , 2 ,P xz yz Q yz zx R x xy y
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Notes The set of Auxiliary equations are

dx
Q R
z y

=
dy dz

R P P Q
x z y x

...(2)

Q
z = 2 , 2Ry x z x y

y

R
x = 2 , 2Px y x y

z

P
y = , Qz z

x

Q R
z y = 2 2y x x y

R P
x z = 2 2x x ...(3)

P Q
y x = 0z z

Thus substituting (3) into equation (2) we have

(2 ) ( 2 )
dx

y x x y = ( 2 ) (2 ) ( )
dy dz

y x x y z z

2(2 )
dx
y x = 2( 2 ) 0

dy dz
y x ...(4)

Last equation gives dz = 0

or z = a = u (say) ...(5)

From first two members of equation (4) we have

2
dx
y x

=
2

dy
y x

or ( 2 )y x dx = (2 )y x dy

Re-arranging we have

2 2y dx xdy xdx y dy = 0

or 2 2( ( ) ( )d xy d x d y = 0

2 2( )d xy x y = 0

Thus 2 2xy x y = constant = v (say) ...(6)
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NotesLet the given equation (1) be identical to

Adu Bdv = 0 ...(7)

From (5) du = dz.

From (6) and (7) we have

2 2( )Adz Bd xy x y = 0

or ( 2 2 )Adz B xdy y dx xdx y dy = 0 ...(8)

Rearranging in (8) we have

( 2 ) ( 2 )By xB dx x y Bdy Adz = 0 ...(9)

Comparing (9) with (1) we have

2By xB = 2 , .xz yz i e B z u ...(10)

And A = 2 2xy x y v ...(11)

Hence (7) gives

vdu udv = 0 ...(12)

Integrating (12)

du dv
u v = 0

or log logu v = constant = log c (say)

Therefore

u
v = c

or 2 2
z

xy x y = c

is the solution of equation (1).

Self Assessment

9. Solve

( )( ) 0a z y dx xdy xy dz

10. Solve

2 2 2 2 2 2( ) ( ) ( ) 0y yz z dx z zx x dy x xy y dz

3.4 Simultaneous Differential Equations

In the unit 5 we have discussed differential equations involving two variables i.e. one independent
variable and another dependent variable. There is quite a lot of situations in which we have to
deal with a  number of dependent variables that depend on one independent variable. In the
above sections also we have been dealing with more than two variables. So in these cases we can
take one variable as independent and solve the equations for the other remaining variables. We
illustrate these by means of examples.
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Notes
Example 1: Solve

dx wy
dt = 0 ...(1)

dy wx
dt = 0 ...(2)

Differentiate (1) by t, we have

2

2
dyd x w
dtdt = 0 ...(3)

Substituting the value of 
dy
dt  from (2) into (3) we have

2
2

2
d x w x
dt = 0 ...(4)

The solution of (4) is

x =  cos sinA wt B wt ...(5)

Where A, B are constants. Substituting this value of x in (1) we have

sin cosw A wt wB wt wy = 0

or y = sin cosA wt B wt ...(6)

Example 2: Solve

4 3dx x y
dt = t ...(1)

2 5dy x y
dt = e t ...(2)

Introducing D operator, dD
dt

 in (1) and (2) we have

( 4) 3D x y = t ...(3)

( 5) 2D y x = e t ...(4)

Operating equation by (D + 5),

( 5)( 4) 3( 5 )D D x D y = ( 5)D t

or ( 5)( 4) 3( 5)D D x D y = 5 1t ...(5)

Eliminating y from (5)

( 5)( 4) 3( 2 )tD D x e x = 5 1t

or 2( 9 20) 6D D x x = 5 1 3 te
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Notes
or 2( 9 14)D D x = 1 5 3 tt e ...(6)

or ( 7)( 2)D D x = 1 5 3 tt e ...(7)

C.F. is 7
1

tC e 2
2

tC e

The particular integral, P.I. is given by

P.I. = 2
1 {1 5 3 }

[14 9 ]
tt e

D D

=
121 91 1 5 3

14 14
tD D t e

= 2
1 9 31 (1 5 )

14 14 14 9(1) (1)

tD et

=
1 45 31 5

14 14 24

tet

=
1 31 5

14 14 8

tet ...(8)

So the complete solution is

7
1

tC e + 2
2

5 31
14 196 8

t
t eC e t ...(9)

Self Assessment

11. Solve 7 0dx x y
dt

 2 5 0dy x y
dt

12. Solve 2 2 2 3 tdydx x y e
dt dt

 33 2 4 tdydx x y e
dt dt

The equation of the type

1 1 1P dx Q dy R dz = 0

2 2 2P dx Q dy R dz = 0
...(1)

Where  1 2 1 2, , ,P P Q Q  and 1 2,R R  are functions of , ,x y z

We can write these equations as

1 1 1
dydxP Q R

dz dz = 0
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2 2 2

dydxP Q R
dz dz = 0

Solving for 
dx
dz  and 

dy
dz

dx
dz = 1 2 2 1 1 2 1 2

1 2 1 2 1 2 1 2
, dyQ R Q R R P P R

P Q Q P dz P Q Q P

hence

1 2 2 1

dx
Q R Q R

=
1 2 1 2 1 2 2 1

dy dz
R P P R P Q P Q

...(2)

i.e. equations (1) can be put in the form

dx
P = dy dz

Q R
...(3)

Hence forth the equations (3) will be taken as the standard form of a pair of ordinary simultaneous
equations of the first order and of the first degree.

Solution of
dx
P = dy dz

Q R

We have

dx
P = dy ldx mdy ndzdz

Q R l P mQ nR
...(4)

and if l P mQ nR = 0 ...(5)

then l dx mdy ndz = 0 ...(6)

and if (5) is an exact differential, say du, then u = a is one equation of the complete solution.

Similarly choosing ,l m  and n  such that

l P m Q n R = 0.

then l dx m dy n dz = 0dv ...(7)

Whence v = b is another equation of the complete solution.

This method may be used with advantage in some examples to obtain a zero denominator and
a numerator that is an exact differential or a non-zero denominator of which the numerator is
the differential.

Example 1: Solve

( )
dx

z x y = 2 2( )
dy dz

z x y x y ...(1)

Each fraction is equal to

= 2 2 0( ) ( ) ( )
x dx y dy zdz x dx y dy zdz

xz y x yz x y z x y
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NotesTherefore

xdx y dy zdz = 0 ...(2)

or
22 2

2 2 2
yx zd = 0

or 2 2 2x y z = constant = c1 ...(3)

Similarly

2 2( ) ( ) ( )
y dx x dy zdz

yz y x xz x y z x y = 0
y dx xdy zdz

Thus

y dx xdy zdz = 0

Thus
2

2
zxy = constant = c2 ...(4)

So the two integrals (3), (4) are complete integrals of (1) Q.E.D.

Example 2: Solve

2 2
dx

x y = 2 ( )
dy dz
xy x y z ...(1)

Solution: From the first two members

2 2 2
dx dy

x y xy = ( )
dz

x y z

or

dx dy
x y =

dz
z ...(2)

Integrating (2) we have

log( )x y = log logz c

x y = cz ...(3)

Also from (i)

2( )
dx dy
x y = 2( )

dx dy
x y ...(4)

Integrating (4) we have

1( )x y = 1
2( )x y c (c2 being a constant)                 ...(5)

or
1

x y = 2
1 c

x y
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Notes
or 2

1 1 c
x y x y = 0

22 2( )
x y x y c

x y = 0

2 2
22 ( )y c x y = 0

So c2 = 2 2
2y

y x

So complete solution is

1 2( , )c c = 2 20 , 0x y zy
z y x

...(6)

Example 3: Solve

dx
xy

= 2 22
dy dz
y xyz x

...(1)

Solution:

From the first two members

dx
xy = 2

dy
y

dx
x =

dy
y ...(2)

Integrating (2) we have
log x = 1log logy c

or x = c1y ...(3)

From the second and third member of (1) we have

2
dy
y = 22

dz
xyz x ...(4)

Putting the value of x from (3) we have from (4)

2
dy
y

= 2 2 2
1 1[ 2 ]

dz
zc y c y

or dy = 2
1 1( 2 )

dz
c z c

...(5)

Integrating (5) we have

dy = 2

1 1 1( 2 )
dz c

c z c c
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Notes
or y = 2

1
1 1

1 log( 2 ) cz c
c c

or 1c y = 1 2log( 2 )z c c ...(6)

Substituting value of c1 from (3)

x = 2
2log xz c
y

...(7)

Thus from (3), (7) we have

c1 = x
y

...(8)

c2 = 2log zy xx
y

So equation (8) form the complete integral of the set of equations.

Self Assessment

13. Solve

1 1
dydx dz

y x z

14. Solve

2 2 2 2 ( )
dydx dz

z x yx y yz x y yz

Geometrical Meaning of

dx
P =

dy dz
Q R ...(1)

We know that the direction ratio of the tangent to a curve at any point (x, y, z) on it are proportional
to , ,dx dy dz  at that point. Hence geometrically the given equations represent a system of
curves in space, such that the direction ratios of the tangent to any one of these curves in space,
at that point ( , , )x y z  on it are proportional to P, Q and R at that point. If ,u a v b  are the
general solutions of (1), then system of curves must be the curves of intersection of the surfaces

, .u a v b  It is also clear that since a, b are arbitrary constants, the system of curves represented
by the equations is doubly infinite.

3.5 Summary

 Total differential equations can be solved under certain conditions.

 Simultaneous Differential equations are also shown to be solved by the above method.

 Illustrated examples are solved so that the technique of solving by various methods is
clear.
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Notes 3.6 Keywords

Exact Differential: An equation

          0,Pdx Qdy Rdz ...(1)

is an exact differential if its integral is found in the form

         ( , , ) ,u x y z c (c being a constant)

Exact Differential Equation: When equation (1) is put into the form

( , , ) 0,du x y z Pdx Qdy Rdz

it is called Exact Differential Equation

Integrable: A differential equation when solved is said to be integrable.

3.7 Review Questions

1. Solve dydx dz
x y z

2. Solve log log 0yz y dx z x z dy xy dz

3. Solve ( )( ) ( )( ) ( )( ) 0y b z c dx x a z c dy x a y b dz

4. Solve 2 2 2 2 2( ) ( ) ( ) 0yz x yz dx zx y xz dy xy z xy dz

5. Solve 2 2 2( )
dydx dz

y x xyz x y

Answers: Self Assessment

3. 2 2 ,x y cze (c being a constant)

4. 2 2 2 1/2( ) ,a x y C Z (c being a constant)

5. 2 3 ,xy cz (c being a constant)

6. 2( ) ( )x z c y z (c being a constant)

7. 2 2( )z x y y cz (c being a constant)

8. 2 2 2x y z cx (c being a constant)

9. ( )xy c a z (c being an arbitrary constant)

10. ( ),xy yz zx c x y z (c being a constant)

11. 6tx e  (A cos t + B sin t)

6 [( )cos ( )sin ]ty e A B t A B t
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Notes
12.

2

1
6 3
5 2 11

t te ex c t

1
2

6exp
8 5

t cy c e t

13. 1x y z c z

2
(2 )
(2 )

x x c
y y

14. 1x y z c

2 2 2
2x y c z

3.8 Further Readings

Books H.T. Piaggio, Differential Equations

. E.L. Ince, Ordinary Differential Equations
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Notes Unit 4: Adjoint and Self-Adjoint Equations

CONTENTS

Objectives

Introduction

4.1 Adjoint and Self-adjoint Operators

4.2 Boundary Conditions

4.3 Eigenvalues and Eigenfunctions of Hermitian Linear Operators

4.4 Eigenfunction Expansions

4.5 Summary

4.6 Keywords

4.7 Review Question

4.8 Further Readings

Objectives

After studying this unit, you should be able to:

 See that adjoint and self-adjoint operators play an important part in the solution of certain
types of equations.

 Observe that the properties of the solutions as well as the values of certain parameter are
obtained in a systematic manner.

 Notice that the self-adjoint equations when solved under certain boundary conditions
yield values of  the solutions known as eigenfunctions corresponding to certain eigenvalues.

Introduction

In this unit the method of putting an equation into a self-adjoint form is dealt with. This method
and the Sturm Liouville’s method leads us to the solutions of the differential equations which
are orthogonal.

The solutions form a set of eigenfunctions which are complete and so any function on the given
interval can be expanded in terms of these eigenfunctions.

4.1 Adjoint and Self-adjoint Operators

In this unit we are interested in solving inhomogeneous boundary value problems for linear,
second order differential equations. We will now develop an approach that is based upon the
idea of linear algebra. We shall work with the simplest possible type of linear differential
operator L, C2[a, b}  C{a, b} being in self-adjoint form:

L = ( ) ( )d dp x q x
dx dx

...(1)

where p(x)  C1[a, b] and is strictly non-zero for all x  (a, b), and q(x)  C [a, b]. The reasons for
referring to such an operator as self-adjoint will become clear later in this unit.

Sachin Kaushal, Lovely Professional University
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NotesThis definition encompasses a wide class of second order differential operators.

For example, if

L1
2

2 1 02( ) ( ) ( )d da x a x a x
dxdx

...(2)

is non-singular on [a, b], we can write it in self-adjoint form by defining

1 0 1

2 2 2

( ) ( ) ( )( ) exp , ( ) exp
( ) ( ) ( )

x xa t a x a tp x dt q x dt
a t a x a t ...(3)

Note that p(x)  0 for x  [a, b]. By studying inhomogeneous boundary value problems of the
form Ly = f, or

( ) ( ) ( )dyd p x q x y f x
dx dx ...(4)

we are therefore considering all second order, non-singular, linear differential operators. For
example, consider Hermite’s equations.

2

2 2 0,d y dyx y
dxdx ...(5)

for  < x < . This is not in self-adjoint form, but, if we follow the above procedure, the self-
adjoint form of the equation is

2 2
0x xdyd e e y

dx dx

This can be simplified, and kept in self-adjoint form, by writing 
2 2x

u e y to obtain

2
2

2 ( 1)d u x u u
dx ...(6)

4.2 Boundary Conditions

To complete the definition of a boundary value problem associated with (4), we need to know
the boundary conditions. In general these will be of the form

1y(a) + 2y(b) + 3y
,(a) + 4y

,(b) = 0,

1y(a) + 2y(b) + 3y
,(a) + 4y

,(b) = 0. ...(7)

Since each of these is dependent on the values of y and y, at each end of [a, b], we refer to these
as mixed or coupled boundary conditions. It is unnecessarily complicated to work with the
boundary conditions in this form, and we can start to simplify matters by deriving Lagrange ’s
identity.

Lagrange’s Identity: If L is the linear differential operator given by (1) on [a, b] and if y1, y2  C2

[a, b], then

y1(Ly2)  y2(Ly1) = [p(y1y
,
2  y,

1y2)]
,. ...(8)

Proof: From the definition of L,
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1 2 2 1 1 2 2 2 1 1( ) ( ) ( ) ( )y Ly y Ly y py qy y py qy

= 1 2 11 2 2 1 2 2 1( ) ( )y py y py y py p y y py p y

= 1 2 1 2 1 2 1 2 1 2 1 2( ) ( ) [ ( )]p y y y y p y y y y p y y y y

Now recall that the space C[a, b] is a real inner product space with a standard inner product
defined by

, ( ) ( )
b

a
f g f x g x dx

If we now integrate (8) over [a, b] then

1 2 1 2, ,y Ly Ly y = 1 2 1 2[ ( )] b
ap y y y y ...(9)

This result can be used to motivate the following definitions. The adjoint operator of T, written

,T  satisfies 1 2 1 2, ,y Ty Ty y  for all y1 and y2. For example, let us see if we can construct the
adjoint to the operator

2

2 ,d d
dxdx



with ,   R, on the interval [0, 1], when the functions on which  operates are zero at x = 0 and
x = 1. After integrating by parts and applying these boundary conditions, we find that

1 1 1 11 1
1 2 1 2 2 2 1 2 1 2 1 2 1 2 1 2000 0 0 0
, ( )dx dx dx dx

= 
1 1 11

1 2 1 2 1 2 1 2 1 20 0 0 0
( , ),dx dx 

where

2
2

d dD
dxdx

A linear operator is said to be Hermitian, or self-adjoint. If 1 2,y Ty = 1 2,Ty y  for all y1 and y2.
It is clear from (9) that L is a Hermitian, or self-adjoint, operator if and only if

1 2 1 2( 0
b

a
p y y y y

and hence

1 2 1 2 1 2 1 2( ){ ( ) ( ) ( ) ( )} ( ){ ( ) ( ) ( ) ( )} 0p b y b y b y b y b p a y a y a y a y a ...(10)

In other words, whether or not L is Hermitian depends only upon the boundary values of the
functions in the space upon which it operates.

There are three different ways in which (10) can occur.

(i) p(a) = p(b) = 0. Note that this doesn’t violate our definition of p as strictly non-zero on the
open interval (a, b). This is the case of singular boundary conditions.
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Notes(ii) p(a) = p(b)  0, yi(a) = yi(b) and ( ) ( ).i iy a y b  This is the case of periodic boundary conditions.

(iii) 1yi(a) + 2 1( ) 0y a  and 1yi(b) + '
2 1( ) 0,y b  with at least one of the i and one of the i

non-zero. These conditions then have non-trivial solutions if and only if

1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) 0, ( ) ( ) ( ) ( ) 0,y a y a y a y a y b y b y b y b

and hence (10) is satisfied.

Conditions (iii), each of which involves y and y  at a single endpoint, are called unmixed or
separated. We have therefore shown that our linear differential operator is Hermitian with
respect to a pair of unmixed boundary conditions. The significance of this result becomes apparent
when we examine the eigenvalues and eigenfunctions of Hermitian linear operators.

As an example of how such boundary conditions arise when we model physical systems, consider
a string that is rotating or vibrating with its ends fixed. This leads to boundary conditions
y(0) = y(a) = 0 - separated boundary conditions. In the study of the motion of electrons in a crystal
lattice, the periodic conditions p(0) = p(l), y(0) = y(l) are frequently used to represent the repeating
structure of the lattice.

4.3 Eigenvalues and Eigenfunctions of Hermitian Linear Operators

The eigenvalues and eigenfunctions of a Hermitian linear operator L are the non-trivial solutions
of Ly = y subject to appropriate boundary conditions.

Theorem 1. Eigenfunctions belonging to distinct eigenvalues of a Hermitian linear operator are
orthogonal.

Proof: Let y1 and y2 be eigenfunctions that correspond to the distinct eigenvalues 1 and 2. Then

1 2 1 1 2 1 1 2, , ,Ly y y y y y

and

1 2 1 2 2 2 1 2, , ,y Ly y y y y

so that the Hermitian property 1 2 1 2, ,Ly y y Ly  gives

1 2 1 2( )( , ) 0y y

Since 1  2, (y1, y2) = 0, and y1 and y2 are orthogonal.

As we shall see in the next section, all of the eigenvalues of a Hermitian linear operator are real,
a result that we will prove once we have defined the notion of a complex inner product.

If the space of functions C2[a, b] were of finite dimension, we would now argue that the orthogonal
eigenfunctions generated by a Hermitian operator are linearly independent and can be used as
a basis (or in the case of repeated eigenvalues, extended into a basis). Unfortunately, C2[a, b] is
not finite dimensional, and we cannot use this argument. We will have to content ourselves with
presenting a credible method for solving inhomogeneous boundary value problems based
upon the ideas we have developed, and simply state a theorem that guarantees that the method
will work in certain circumstances.

4.4 Eigenfunction Expansions

In order to solve the inhomogeneous boundary value problem given by (4) with f  C[a, b] and
unmixed boundary conditions, we begin by finding the eigenvalues and eigenfunctions of L.
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Notes We denote these eigenvalues by 1, 2,..., n,..., and the eigenfunctions by 1(x), 2(x)..., n(x),...
Next, we expand f(x) in terms of these eigenfunctions, as

1

( ) ( )n n
n

f x c x ...(11)

By making use of the orthogonality of the eigenfunctions, after taking the inner product of (11)
with n, we find that the expansion coefficients are

,
,

n
n

n n

f
c ...(12)

Next, we expand the solution of the boundary value problem in terms of the eigenfunctions, as

1

( ) ( ),n n
n

y x d x ...(13)

and substitute (12) and (13) into (4) to obtain

1 1

( ) ( ).n n n n
n n

L d x c x

From the linearity of L and the definition of n this becomes

1 1

( ) ( ).n n n n n
n n

d x c x

We have therefore constructed a solution of the boundary value problem with dn = cn/ n, if the
series (13) converges and defines a function in C2(a, b). This process will work correctly and give
a unique solution provided that none of the eigenvalues n is zero. When m = 0, there is no
solution if cm  0 and an infinite number of solutions if cm = 0.

Example 1: Consider the boundary value problem

y” = f(x) subject to y(0) = y( ) = 0 ...(14)

In this case, the eigenfunctions are solutions of

y” + y = 0 subject to y(0) = y( ) = 0,

which we already know to be n = n2, n(x) = sin nx. We therefore write

1

( ) sin ,n
n

f x c nx

and the solution of the inhomogeneous problem (14) is

2
1

( ) sin ,n

n

cy x nx
n

In the case f(x) = x,

1
0

2

0

sin 2( 1) ,
sin

n

n

x nx dx
c

nnx dx
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Notesso that

1

3
1

( 1)( ) 2 sin
n

n

y x nx
n

This type of series is known as a Fourier series.

This example is, of course, rather artificial, and we could have integrated (14) directly. There are,
however, many boundary value problems for which this eigenfunction expansion method is the
only way to proceed analytically.

Example 2: Consider the inhomogeneous equation

(1  x2)y   2xy + 2y = f(x) on 1 < x < 1, ...(15)

with f  C[ 1, 1], subject to the condition that y should be bounded on [ 1, 1]. We begin by noting
that there is a solubility condition associated with this problem. If u(x) is a solution of the
homogeneous problem, then, after multiplying through by u and integrating over [ 1, 1], we
find that

11 12 2
1 1 1

(1 ) (1 ) ( ) ( )u x y u x y u x f x dx

If u and y are bounded on [ 1, 1], the left hand side of this equation vanishes, so that
1

1
( ) ( ) 0.u x f x dx  Since the Legendre polynomial, u = P1(x) = x, is the bounded solution of the

homogeneous problem, we have

1

1
1

( ) ( ) 0P x f x dx

Now, to solve the boundary value problem, we first construct the eigenfunction solutions by
solving Ly = y, which is

(1  x2)y   2xy  + (2  )y = 0

The choice 2   = n(n + 1), with n a positive integer, gives us Legendre’s equation of integer
order, which has bounded solutions yn(x) = Pn(x). These Legendre polynomials are orthogonal
over [ 1, 1]. If we now write

0

( ) ( ),m m
m

f x A P x

where A1 = 0 by the solubility condition, and then expand y(x) = 0
( )m mm

B P x

we find that

{2  m(m + 1)}Bm = Am for m  0

The required solution is therefore

0 1 1
2

1( ) ( ) ( )
2 2 ( 1)

m
m

m

Ay x A B P x P x
m m

with B1 an arbitrary constant.
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Notes Having seen that this method works, we can now state a theorem that gives the method a
rigorous foundation.

Theorem: If L is a non-singular, linear differential operator defined on a closed interval [a, b] and
subject to unmixed boundary conditions at both endpoints, then

(i) L has an infinite sequence of real eigenvalues 0, 1,..., which can be ordered so that

| 0} < | 1|<...<| n|<...

and

nlim | |
n

(ii) The eigenfunctions that correspond to these eigenvalues form a basis for C[a, b], and the
series expansion relative to this basis of a piecewise continuous function y with piecewise
continuous derivative on [a, b] converges uniformly to y on any subinterval of [a, b] in
which y is continuous.

We will not prove this result here. Instead, we return to the equation, Ly = y, which defines the
eigenfunctions and eigenvalues. For a self-adjoint, second order. Linear differential operator,
this is

( ) ( ) ,dyd p x q x y y
dx dx ...(16)

which, in its simplest form, is subject to the unmixed boundary conditions

1y(a) + 2y (a) = 0,     1y(b) + 2y
,(b) = 0, ...(17)

with 2 2 2 2
1 2 1 20 and 0  to avoid a trivial condition. This is an example of a Sturm

Liouville system, and we will devote the unit II for study of the properties of the solutions of
such systems.

Self Assessment

1. Consider the linear second order differential equation

2

2 (1 ) 0d y dyx x y
dxdx

Show that the Sturm Liouville form of the above equation is

(xe xy )  + e xy = 0, for x > 0

2. Show that the equation

2

2 ( ) [ ( ) ( )] 0d y dyA x B x C x y
dxdx

can be written in self-adjoint form by defining

p(x) = exp ( )A x dx

what are q(x), r(x) in terms of A, B, C?
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Notes4.5 Summary

 In this unit we rearrange certain linear equations of the second order in a way in which the
differential operator is self-adjoint.

 Examples of self-adjoint equations are Legendre equation, Bessel’s equations, Hermite
equations and many more.

 Putting these equations into self-adjoint form enables us to study certain properties known
as eigenvalue and eigenfunction expansions and completeness etc.

4.6 Keywords

Eigenfunctions are a set of solutions of the self-adjoint equations that form an orthonormal set
of complete system.

The real symmetric matrix is self-adjoint or an Hermitian operator.

4.7 Review Question

1. Show that

(xy,(x)), = xy(x)

is self-adjoint on the interval (0, 1), with x = 0 a singular end point and x = 1 a regular end
point with the condition y(1) = 0.

4.8 Further Readings

Books King A.C., Billingham and Otto S.R., Differential Equations.

Pipes L.A. and Harrill L.R., Applied Mathematics for Engineers and Physicists

Yosida K., Lectures on Differential and Integral Equations.
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CONTENTS

Objectives

Introduction

5.1 Boundary Value Problem of Sturm Liouville Type

5.2 Green’s Function for one dimensional problem

5.3 Periodic Solutions. Generalized Green’s Function

5.3.1 Construction of Green’s Function

5.4 Green’s Function for Two independent Variables

5.5 Green’s Function for Two Dimensional Problem

5.6 Summary

5.7 Keywords

5.8 Review Questions

5.9 Further Readings

Objectives

After studying this unit, you should be able to see that:

 Green’s function plays an important part in the solution of the differential equations.

 It finds its applications in most of the boundary value problems.

 Green’s function is quite helpful in converting a differential equation into an integral
equation.

Introduction

Green’s function method helps in solving most of the boundary value problems. It is quite
useful in reducing a differential equation to an integral equation. With the help of the Green ’s
function method the problem of solution of differential equations becomes simpler.

5.1 Boundary Value Problem of Sturm Liouville Type

We consider a differential equation of the second order

2

1 22 ( ) ( ) 0d y dyp x p x y
dxdx ...(1)

where p1(x), p2(x) are real-valued continuous function on a closed interval a  x  b. The equation

(1) can be put into the form

( ) ( )dyd p x q x y
dx dx ...(2)

Sachin Kaushal, Lovely Professional University
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Notesby multiplying equation (1) with

exp 1( ) ( )
x

a

p x dx p x ...(3)

and putting

q(x) = p2(x)p (x) ...(4)

The coefficients p(x) and q(x) satisfy the following conditions:

p(x) and q(x) are real-valued continuous functions on the interval a  x  b and p(x) > 0 there.

Putting z = p(x) 
dy
dx  in (2) we have

dy
dx = ( )

z
p x ...(5)

dz
dx = q(x) y ...(6)

If a pair of functions y(x) and z(x) is a solution of the equations (5) and (6) and if y(x)  0, then y(x),
and z(x) do not vanish at any point in the interval a  x  b. So due to y(x)  0, we may seek a
solution.

y(x) = (x) sin (x)

z(x) = (x) cos (x)

with p(x) = (y2(x) + z2(x))1/2 > 0 ...(7)

Substituting in (5) and (6) we have

d
dx sin (x) + (x) cos (x)

d
dx  = 

( )cos ( )
( )

x x
p x

and d
dx

 cos (x)  (x) sin (x) 
d
dx  = q(x) (x) sin (x)

Simplifying the above equations, we have

( ) 1 ( ) sin ( ) cos ( )
( )

d x q x P x x
dx p x ...(8)

2
2cos ( ) ( )sin ( ), ( ) 0

( )
d x q x x p x
dx p x

The second equation of (8) does not contain the unknown , hence we can find a solution (x).
Then substituting this solution in the first equation, we can obtain the general solution p(x)

(x) = ( ) exp 1 ( ) sin ( )cos ( )
( )

x

a

q x x x dx
p x

...(9)
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Notes Since p(x) > 0 or < 0 or every point a  x  b, according as p(a) > 0 or < 0, we can find a positive
solution p(x) from which, along with (x), we can obtain a solution y(x) = p(x) sin (x), not
identically zero, of the original equation (2).

Now for an integer n, (x) + 2  n is also a solution of the second equation of (8). Thus the
solutions y1(x) and y2(x) obtained from (x) and (x) + 2n  are linearly dependent. So if the two
solutions y1(x) and y2(x) given by

y1(x) = 1(x) sin 1(x)

y2(x) = 2(x) sin 2(x)

are linearly dependent, then for some integer n

1(x) = 2(x) + 2 .

Now, an initial condition for q(x),

(a) = ...(10)

gives a relation between y(a) and y1(a) as follows

At x = a from (5) and (7) we have

z(a) = p(a) y (a) = (a) cos (a)

So p(a) y (a) sin (a) = (a) cos (a) sin (a)

or p(a) y (a) sin (a) = y(a) cos (a)

or p(a) y (a) sin (a)  y(a) cos (a) = 0 ...(11)

In this section we shall be concerned with the problem of finding the solution y(x) corresponding
to the solution (x) satisfying the boundary conditions

(a) = , (b) = 

at both ends of the interval a  x  b.

Condition (12) corresponds to the conditions

p(a) y (a) sin   y(a) cos  = 0

p(b) y (b) sin   y(b) cos  = 0 ...(13)

for y(x). It should be noted that the boundary value problem of finding the solution of (2)
satisfying the boundary conditions (13) between y and y  is essentially different from the initial
value problem.

5.2 Green’s Function for One Dimensional Problem

Let us denote Lx(y), a differential operator

Lx(y) = ( ) ( )dyd p x q x y
dx dx

...(1)

which is defined for every function y(x) such that 
dy
dx  and ( ) dyd p x

dx dx  are defined and continuous

on the interval   x  b. Let us define Lagrange’s identity

y Lx(z) z Lx(y) = ( ) ( ) dyd dz dp x y z p x
dx dx dx dx
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Notes
= ( ) ( ) dyd dzp x y x z

dx dx dx ...(2)

Integrating both sides of equation (2) we obtain

( ) ( ) ( ) [ ( ) ( )] ,
bb

x x
a a

dydzp x y x z x y L z ZL y dx a a b b
dx dx

...(3)

Equation (3) is known as Green’s theorem in one dimension. If y(x) and z(x) both satisfy the
boundary conditions

p(a) y,(a) sin   y(a) cos  = 0

p(b) y,(b) sin   y(b) cos  = 0

p(a) z,(a) sin   z(a) cos  = 0

p(b) y,(b) sin   z(b) cos  = 0 ...(4)

Then for a, = a and b, = b, L.H.S. is zero and we get

[ ( ) ( ) ( ) ( )] 0
b

x x
a

y x L x z x L y dx ...(5)

Suppose that two functions 1( ) 0y x  and 2( ) 0y x  satisfy

Lx(y1) = 0

p(a) y1,(a) sin   y1(a) cos  = 0 ...(6)

and

Lx(y2) = 0

p(b) y2, (b) sin   y2(b) cos  = 0 ...(7)

respectively, and suppose that these two functions y1(x) and y2(x) are linearly independent.
Write

C = p( ) [y1( ) y,2( )  y,1( ) y2( )].

Differentiating C with respect to  and making use of (2), we see, by virtue of (6) and (7), that C
must be constant. Moreover, the linear independence of y1(x) and y2(x) implies that C is not zero.
Now we define a function G(x, ) of two variables x and  by

G(x, ) =  1 2
1 ( ) ( ) ( )y y x x
C

= 1 2
1 ( ) ( ) ( )y x y x
C

C = 1 2 1 2( ) ( ) ( ) ( ) ( ) Constantp y y y y

The function G(x, ) is called Green’s Function for the equation Lx(y) = 0 subject to the boundary
conditions (4). Obviously Green function G(x, ) has the following properties:

G(x, ) is continuous at any point (x, ) in the domain ,a x b .

As a function of x, G(x, ) satisfies the given boundary conditions for every . ...(9)

If x  , G(x, ) satisfies the equation Lx(G) = 0 as a function of x.
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Notes Both Gx(x, ) and {p(x)Gx(x, )}x are bounded in the region x , ,a x b . ...(10)

If a < x0 < b then as x  x0, keeping the relation x <  and as x  x0,   x0, keeping the relation
x < , G(x, ) tends to finite values Gx(x0 + 0, x0) and G(x0  0, x0) respectively, and ...(11)

Gx(x0 + 0, x0)  Gx(x0  0, x0) = 
0

1
( )p x

...(12)

G(x, ) = G( , x) ...(13)

Example: On the basis of equation (8), we have

Lx = 
2

2 , (0) (1) 0d y y
dx

x = 0, x = 1

Now solutions of

               Lx(y) = 0

or               
2

2
d y
dx  = 0 ...(14)

Suppose that a Green’s function G(x, ) exists. Then since

Lx(G(x, )) = 0 for x ,

G(x, ) must be represented, by means of a fundamental system y1(x), y2(x) of the solutions of
Lx(y) = 0, as follows:

The general solution of 
2

2
d y
dx  = 0.

So the solution of (14) is

y = c1 x + c2 ...(15)

Let the two solutions be y1(x) and y2(x). Thus

if y1(0) = 0 then c2 = 0

so y1(x) = x, ...(16)

y2(1) = 0 = c1 1 + c2 = 0

c1 =  c2 = 1

y2 = (1  x), ...(17)

Thus

C = 1 ( 1) 1 (1 ) 1x x

G(x, ) = 1 (1 ) ( )x x

= (1  x) (x > ). ...(18)
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NotesSelf Assessment

1. Find the Green function for the equation

Lx y = 
2

2
d
dx  y = 0

with the conditions

y(0) = 0, y (1) = 0

5.3 Periodic Solutions Generalized Green’s Function

A system of important boundary conditions not included earlier is

y(a) = y(b), y (a) = y (b) ...(1)

If the coefficients p(x), g(x), r(x) are periodic functions with period b  a, that is

p(x + b  a) = p(x), q (x + b  a) = q(x), r(x + b  a) = r(x)

Then the conditions (1) are just the conditions that the solution y(x) of the equation

(p(x)y )  q(x)y + r(x)y = 0 ...(A)

is periodic with the same period b  a, that is

y(x + b  a) = y(x)

For in each case, y(x), ya, b (x + b  a) both satisfy the equation (A) together with the same initial
conditions

y(a) = ya,b (a), y (a) = ya,b (a)

Hence by the uniqueness of the solutions, we must have

y(x) = ya,b (x)

In the following we shall be concerned with more general conditions, which include the
conditions (1), of the form

y(a) = y(b), p(a) y (a) = 
( )p b

y (b) ...(2)

or y(a) = p(b), y (b), p(a) y (a) =  1 ( )y b ...(3)

where  is a non-zero constant. It is easily seen that if y(x) and z(x) both satisfy either (2) or (3),
then the relation

( ) ( ( ) ( ) ( ) ( )) 0b
ap x y x z x y x z x ...(4)

holds.

5.3.1 Construction of Green ’s Function
Suppose that a Green’s function exists. Then since Lx(G(x, )) = 0 for x , y(x, ) must be
represented by means of a fundamental system y1(x), y2(x) of the solution of Lx(y) = 0 as follows:

G(x, ) = 1 1 2 2

3 1 4 2

( ) ( ) ( )
( ) ( ) ( )

c y x c y x a x
c y x c y x x b

...(5)
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Notes where every Ci is a function of . We shall determine the relations between Ci so that G(x, )
satisfies the required properties for the Green’s function pertaining to the boundary condition
(2). Since G(x, ) is continuous at x = , we obtain

c1 y1( ) + c2 y2( ) = c3 y3( ) + c4 y4( ) ...(6)

By equation (12) of section (10.2), we obtain

c1 y1  ( ) + c2 y2 ( )  c3 y3 ( )  c4 y4 ( ) = 1
( )p

...(7)

Finally from the boundary conditions (2) we obtain

c1 y1(a) + c2 y2(a) =  (c3 y3(b) + c4 y4(b))

 p(a) (c1 y1 (a) + c2 y2 (a) = p(b) (c3 y3 (b) + c4 y4 (b)) ...(8)

Also Green’s function should be symmetric i.e.

G(x, ) = G( , x) ...(8a)

Only the last relation of (8) must be changed according as the corresponding boundary conditions,
if we are concerned with Green’s function under the boundary conditions (3).

Example: Find the Green’s function for Lx y = 0 with the boundary conditions

y(0) =  y(1), y (0) =  y (1).

Solution:

The general solution of Lx y = 0 is of the form c1 x +c2. Now taking as a fundamental system of the
solutions of y  = 0, as

y1(x) = (x), y2(x) = 1, p(x) = 1,  = 1

Let G(x, ) be given by the relation (5) where a = 0, b = 1 from the equations (6), (7) and (8) we have

c1  + c2 = c3  +c4, c1  c3 = 1, c2 =  (c3 + c4), c1 =  c3

Solving these equations, we obtain

2 c1 = 1, c1 = 1
2

 =  c3, (c1  c3)  + c2 = c4

c2  1
2

 =  c4

2 c2  1
2

 +  = 0

c2 = 1
4

  /2, c4 = 1
4

+ /2

Therefore

1 1( , ) 1 for 0 x<22 4
G x x

1 1 1 for x 122 4
x

or 1 1( , ) ( , )
2 4

G x x G x .
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Let us consider the inhomogeneous equation

Lx y = (x)

whose solution y(x) satisfies the boundary conditions. Let us assume that there exists a non-
trivial solution y0(x)  0 of the equation Lx y(x) = 0. We can show that the function (x) must
satisfy

0( ) ( ) 0
b

a
x y x dx ...(9)

where y0(x) also satisfying the boundary conditions. To see this we have

0( ) ( )
b

a

x y x dx = 0 0( ) ( ) ( ) ( )
b

x x
a

y x L y y x L y dx

= 0 0( ) ( ( ) ( ) ( ) ( ) 0b
ap x y x y x y x y x

On the other hand the solution y(x) may be written in the form

y(x) = z(x) + c y0(x)

where z(x) is a solution of Lx(z) = (x), satisfying the boundary conditions. Since y0(x)  0 we can
choose the constant C so that

0( ) ( ) 0
b

a

y x y x dx ...(10)

Now it can be proved that such a function y(x) of the boundary value problem satisfying (10) can
be written as

y(x) = ( , ) ( )
b

a

G x d ...(11)

by means of the generalized Green’s function G(x, ).

By a generalized Green’s function, we mean a such G(x, ) satisfying the following five conditions:

1. Continuity of G(x, ) at any point (x, ) in the domain a  x   < b. As a function of x,
G(x, ) satisfies the given boundary conditions.

2. If x  , G(x, ) satisfies the equation

G(x, ) = y0(x) y0( )

as a function of x. Gx(x, ) is bounded in the region x  .

3. If a < x0 < b then as x  x0,   x, keeping the relation x >  and as x  x0,  x0 keeping
the relation x < , Gx(x, ) tends to finite values Gx(x0 + 0, x0) and Gx(x0  0, x0), respectively,
and

Gx(x0 + 0, x0)  Gx(x0  0, x0) = 
0

1
( )p x

4. G(x, ) = G( , x)

5. 0( , ) ( ) 0
b

a

G x y x dx
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Example: Find generalized Green’s  function for Lx = 

2

2
d
dx , with the boundary conditions

y (0) = y (1) = 0.

Solution:

The general solution of y (x) = 0 is a polynomial of degree 1. Hence there exists a non-trivial
solution y0(x) = 1 of the boundary value problem. So from the condition (2) we have

Lx G(x, ) = 1, that is, Gxx(x, ) = 1.

Hence we have

G(x, ) = A1 + A2 x + 
2

2
x

x

= B1 + B2 x + 
2

2
x

x > 

By the boundary conditions Gx(0, x) = 0, Gx(1, ) = 0, we obtain

A2 = 0, B2 =  1. So the condition

                     ( 0, ) ( 0, ) 1x xG G

holds automatically. By the continuity at x = , that is G(  + 0, )  G(   0, ) = 0, we obtain
B1    A1 = 0. Hence we obtain

G(x, ) = A1 + 
2

2
x

x

= A1 +   x + 
2

2
x

x > 

Finally, from the relation

1

0
0

( , ) ( )G x y d = 0,

we obtain A1 = 0. Thus the generalized Green’s function is given by

G(x, ) =
2

2
x

x

=   x +
2

2
x

x > .

Self Assessment

2. Find the generalized Green’s function for Lx = 
2

2
d
dx , with the boundary conditions

y( 1) = y(1), y ( 1) = y (1). (Hint: take y0(x) = 
1
2 )
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Let us assume that a function z of x and y satisfies the differential equation

L(z) = f(x, y) ...(1)

Where L denotes the linear operator

2
a b c

x y x y ...(2)

Now let w be another function with continuous derivatives of the first order. We may write

2 2z ww z
x y x y

z ww z
y x x y

( ) ( )z awwa z awz
x x x

( ) ( )z awwb z bwz
y y y

Defining the M operator by the relation

Mw = 
2 ( ) ( )w aw bw cw

x y x y
...(3)

we find that

wLz  z Mw = w
2z z za b cz

x y x y

2 ( ) ( )w aw bwz cw
x y x y

= ( ) ( )w zawz z bwz w
x x y y y x

or

wLz  zMw = u v
x y

...(4)

where u = awz  z w
y

, v = bwz + w
z
x ...(5)

The operator M defined by equation (3) is called the adjoint operator. If M = L, we say the operator
L is self-adjoint.

Now if  is a closed curve enclosing an area , then it follows from equation (4) and a straight
forward use of Green’s theorem that

wLz zLw dx dy = u dx dy
x y
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= udy dx

= cos( , ) cos( , )u n x x y ds ...(6)

w here n denotes the direction of the inward drawn normal to the curve .

Suppose now that the values of z, ordz dz
dx dy

 are prescribed along a curve C in the xy plane (see

Figure 10.1) and that we wish to find the solution of the equation (1) at the point p( , n) agreeing
with boundary conditions. Through P we draw PA parallel to the x-axis and cutting the curve in
the point A and PB parallel to the y-axis and cutting curve in B. We then take the curve to be the
closed curve PABPA since dx = 0 on PB and dy = 0 on PA, we have immediately from (6)

wLz zMw dxdy  = ( ) (
AB BP PA

udy vdx udy vdx

Now ( ) { } ( )Pz wvdx bwz w dx bw z bw dx
x x

.

 So [z w]P + ( ) ( ) ( )w wz bw dx udy vdx z aw dy
x x

+ ( )wLz zMw dx dy ...(7)

Here the function w has been arbitrary. Suppose now that we choose function w(x, y, , ) which
has the properties

Mw = 0

w
x  = b (x, y)w when y = 

w
y

 = a (x, y)w when x = 

w = 1 when x = , y = 

Figure 5.1
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NotesHere w function is called Green’s function for the problem. Since also Lz = f, we find that

[z w] = ( )
AB AB

w zwz ady b dx z dy w dx w f dxdy
y x

...(9)

Equation (7) enables us to find the value of z at the point P when 
dz
dx  is prescribed along the

curve C. When 
dz
dx  is prescribed, we make use of the following calculation

[z w]B  [z w]A = ( ) ( )

AB

zw zwdx dy
x y

to show that we can write equation (7) in the form

( ) ( )[ ] [ ] ( ) ( )P B
AB AB

w zz zw wz a dy b dx z dx w dy wf dx dy
x y ...(10)

Finally adding (9) and (10), we obtain the symmetrical results

[z]P = 1 1[ ] [ ] ( )
2 2A B

AB

z zzw zw wz a dy b dx w dy dx
y x

1 ( )
2

AB

w wz dx dy wf dxdy
x y …(11)

So we can find z at any point in terms of prescribed values of , ,z zz
x y

, along a given curve.

Self Assessment

3. If L denotes the operator

2 2 2

2 2R S T P Q Z
x y x yx y

and M is the adjoint operator defined by

2 2 2

2 2
( ) ( ) ( ) ( ) ( )Rw Sw Tw Pw QwMw zw

x y x yx y

show that

( ) cos( , ) cos( , )wLZ ZMw dx dy U n x V n y ds

where  is a closed curve enclosing an area  and

( ) ( )z Rw SwU Rw z z Pzw
x x y

( ) .z z TwV Sw Tw z Qzw
x y y
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Notes 5.5 Green ’s Function for Two Dimensional Problem

The theory of the Green function for the two dimensional Laplace equation may be developed
as follow s. It is w ell know n that if P(x, y) and Q(x, y) are functions defined inside and on the
boundary C of the closed area , then

Q P dS
x y

 = ( )
C

Pdx Qdy ...(1)

If we put

, ,P Q
y x

 in equation (1) we find that

2 ds ds
x x y y

 =
C

dx dy
y x

 =
C

ds
n

...(2)

where n  denotes the derivative of  in the direction of the outward normal to C and we have

used the relation

dy dx
x y

 = n ...(3)

If we interchange  and  in (2) and subtract the two equations, we find that

2 2 ds  =
C

ds
n n

...(4)

Suppose that P with co-ordinates (x, y) is a point in the interior of the region S in which the
function  is assumed to be harmonic. Draw a small circle  with center P and small radius  (see

Figure 5.2
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figure) and apply the result (4) to the region k bounded by the curves C and  with 

1

1log .
r r


Since both  and  are harmonic, it follows that if S is measured in the direction shown in the
fig.,

  1 1

1 1, log log
C

x y
n nr r r r

= 0 ...(5)

we can show that

1

1log 2 ( , ) 0( )ds x y
n r r



and that

1

1log 2 log ,ds M
nr r



where M is an upper bound of .
r  Inserting these results into equation (5), we find that

(x, y) =   1 1

,1 1 1log , log
2

C

x y
x y ds

n nr r r r
...(6)

we now introduce a Green’s function G(x, y, x , y ) defined by the equations

G(x, y, x , y ) =
1

1( , , , ) logW x y x y
r r
 ...(7)

where the function W(x, y, x , y ) satisfies the relations

2 2

2 2 ( , , , )W x y x y
x y

= 0 ...(8)

W(x, y, x , y ) = 1log onr r C


...(9)

then for  satisfying equations
2 = 0 within ,

and = f(x, y) on C ...(10)

is given by the expression

(x, y) =
1 , , , ,

2
Gx y G x y x y ds
n ...(11)
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Where n  is the outward drown normal to the boundary curve C.

Dirichlet’s Problem for a Half Plane Suppose that we wish to solve the boundary value problem
2  = 0 for x  0,  = f(y) on x = 0, and  = 0 as x  . If P(x, y) is a point (x > 0), and P  is ( x, y),

then ( , , , ) log ,QPG x y x y
QP

 satisfies both equations (8) and (9) since P Q = PQ. on x = 0.

The required Green’s function is therefore

( , , , )G x y x y =
22

2
1 log
2

x x y y

x x y y
...(12)

Now on C

22
0

2 ,
x

G G x
x x x y y

 so substituting in (11), we find that

(x, y) = 22

( )f y dy
x x y y

...(13)

5.6 Summary

 Green’s functions and its properties are described for one and two dimensional problems.

 It is seen that depending upon the boundary conditions the structure of the Green’s functions
is established.

 It also gives a link to reduce a differential equation into an integral equation.

5.7 Keywords

We can have an initial value problem where the values of the dependent function and its
derivatives are given.

In a boundary value problem the values of the dependent function and its derivatives are given
at both the ends of the interval of the independent variable.

Figure 5.3
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1. Find the Green’s function for the one dimensional case given by

2

2 0x
dL y y
dx

with y(0) = y (0), y(1) = y (1)

2. Find the Green’s function for the boundary value problem 
2 2

2
2 2 0,

x y
 for

r < 0, given that  = f(0) for r = a

3. Prove that for the equation

2 2 0z z z
x y x y x y

the Green’s function is

3
( ) 2 ( )( ) 2

, , , .
x y xy x y

G x y

Answers: Self Assessment

1. ,
x x

G x
x

2.
21 1 1, .

2 4 6
G x x x

5.9 Further Readings

Books K. Yosida, Lectures in Differential and Integral Equations

Sneddon L.N., Elements of Partial Differential Equations

King A.C, Billingham J. and S.R. Otto, Differential Equations
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CONTENTS

Objectives

Introduction

6.1 Sturm-Liouville’s Equation

6.2 Boundary Conditions

6.3 Properties of the Eigenvalues and Eigenfunctions

6.4 Bessel’s Inequality, Approximation in the Mean and Completeness

6.5 Summary

6.6 Keywords

6.7 Review Questions

6.8 Further Readings

Objectives

After studying this unit, you should be able to:

 Understand the structure of self-adjoint equations. If we are dealing with only second
order differential equations, we see that under what conditions we can put them in self-
adjoint form.

 Know that Sturm-Liouville boundary value problem is a method of dealing with equations
which can be put into Sturm-Liouville form.

 Find the solutions for some values of the parameters. The solutions are known as
eigenfunctions and the values of the parameter are known as eigenvalues.

 Know that important examples of Sturm-Liouville boundary value problems are Legendre
equation, Bessel’s equations and many more.

Introduction

This method helps us in finding certain sets of functions which are orthogonal and we can
express any function in terms of these eigenfunctions on the interval a  x   b where a and b may
be finite or one of them finite and the other infinite or both a and b to be infinite.

These methods are known as Fourier Legendre expansion if we use Legendre polynomials and
so on.

6.1 Sturm-Liouville’s Equation

In the first four units we have studied linear second order differential equations. After examining
some solutions techniques that are applicable to such equations in general we studied the
particular cases of Legendre’s equation, Bessel’s equations, the Hermite equations and Laguerre’s
equations, as they frequently arise in models of physical systems in spherical, cylindrical
geometries and in Quantum mechanics. In each case we saw that we can construct a set of

Richa Nandra, Lovely Professional University
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Notessolutions that can be used as the basis for series expansion of the solution of the physical
problem in question, namely the Fourier-Legendre’s and Fourier-Bessel series. In this unit we
will see that Legendre’s, Bessel’s, Hermite and Laguerre’s equations are examples of Sturm-
Liouville’s equations which are also in self-adjoint form. Some of the properties of Sturm-
Liouville’s equations are examined in the previous unit also. In this unit we deduce some more
properties of such equations independent of the function form of the coefficients.

Sturm-Liouville equations are of the form

(p(x)y (x))  + q(x)y(x) = r(x)y(x) ...(1)

which can be written more concisely as

Sy(x, ) = r(x)y(x, ) ...(2)

where the differential operator S is defined as

 ( ) ( ) .d dS p x q x
dx dx

f
f f ...(3)

This is a slightly more general equation. In (1) the number  is the eigenvalue, whose possible
values, which may be complex, are critically dependent upon the given boundary conditions. It is
often more important to know the properties of  than it is to construct the actual solutions of (1).

We seek to solve the Sturm-Liouville equation (1) on an open interval, (a, b) of the real line. We will
also make some assumptions about the behaviour of the coefficients of (1) for x  (a, b), namely that

(i) p(x), q(x) and r(z) are real-valued and continuous

(ii) p(x) is differentiable, ...(4)

(iii) p(x) > 0 and r(z) > 0.

Some Example of Sturm-Liouville Equations

Perhaps the simplest example of a Sturm-Liouville equation is Fourier’s equations,

y (x, ) = y(x, ) ...(5)

which has solutions cos( )x   and sin( )x  . We discussed a physical problem that leads naturally
to Fourier’s equation at the start of least unit.

We can write Legendre’s equation and Bessel’s equation as Sturm-Liouville problems. Recall
that Legendre’s equation is

2

2 2 2
2 0

1 1
d y dyx y

dxdx x x


and we are usually interested in solving this for 1 < x < 1. This can be written as

[(1  x2)y ]  = y.

If  = n(n  1), we showed in unit 2 that this has solutions Pn(x) and Qn(x). Similarly, Bessel’s
equation, which is usually solved for 0 < x < a, is

x2y  + xy  + ( x2  2)  = 0.

This can be rearranged into the form
2

( ) .xy y xy
x



Again, from the results of unit 1, we know that this has solutions of the form ( )vJ x   and

( )vY x  .

Although the Sturm-Liouville forms of these equations may look more cumbersome than the
original forms, we will see that they are very convenient for the analysis that follows. This is
because of the self-adjoint nature of the differential operator.
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We begin with a couple of definitions. The endpoint, x = a, of the interval (a, b) is a regular
endpoint if a is finite and the conditions (4) hold on the closed interval [a, c] for each c (a, b). The
endpoint x = a is a singular endpoint if a =  or if a is finite but the conditions (4) do not hold on
the closed interval [a, c] for some c  (a, b). Similar definitions hold for the other endpoint, x = b.
For example, Fourier’s equation has regular endpoints if a and b are finite. Legendre’s equation
has regular endpoints if 1 < a < b > 1, but singular endpoints if a = 1 or b =1, since p(x) = 1  x2

= 0 when x = 1. Bessel’s equation has regular endpoints for 0 < a < b < , but singular endpoints
if a = 0 or b = , since q(x) = v2/x is unbounded at x = 0.

We can now define the types of boundary conditions that can be applied to a Sturm-Liouville
equation.

(i) On a finite interval, [a, b], with regular endpoints, we prescribe unmixed, or separated,
boundary conditions, of the form

0y(a, ) + 1y (a, ) = 0,  0y(b, ) + 1y (v, ) = 0. ...(6)

These boundary conditions are said to be real if the constants  0, 1, 0 and 1 are real,

 with   
       and  

      .

(ii) On an interval with one or two singular endpoints, the boundary conditions that arise in
models of physical problems are usually boundedness conditions. In many problems,
these are equivalent to Friedrich’s boundary conditions, that for some c  (a, b) there exists
A  + such that

|y(x, )|  A for all x  (a, c)

and similarly if the other endpoint, x = b, is singular there exists B  + such that y(x, )  
B for all x  (a, b)

We can now define the Sturm-Liouville boundary value problem to be the Sturm-Liouville
equation,

(p(x)y (x))  + q(x)y(x) = r(x)y(x) for x  (a, b)

where the coefficient functions satisfy the conditions (4), to be solved subject to a separated
boundary condition at each regular endpoint and a Friedrich’s boundary condition at each
singular endpoint. Note that this boundary value problem is homogeneous and therefore always
has the trivial solution, y = 0. A non-trivial solution, y(x, )   0, is an eigenfunction, and  is the
corresponding eigenvalue.

Some Examples of Sturm-Liouville Boundary Value Problems.

Consider Fourier’s equation.

y (x, ) = x(x, ) for x 0, 1)

subject to the boundary conditions y(0, ) = y(1, ) = 0, which are appropriate since both endpoints

are regular. The eigenfunctions of this system are sin nx  for x = 1, 2,...., with corresponding

eigenvalues  =   = n2 2.

Legendre’s equation is 

{(1  x2)y (x, )}  = y(x, ) for x ( 1, 1).

Note that this is singular at both endpoints, since p( 1) = 0. We therefore apply Friedrich’s
boundary conditions, for example with c = 0, in the form

|y(x, )|  A for x ( 1, 0), |y(x, )|  B for x  (0, 1),
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Notesfor some A, B  +. In unit 2 we used the method of Frobenius to construct the solutions of
Legendre’s equation, and we know that the only eigenfunctions bounded at both the endpoints
are the Legendre polynomials, Pn(x) for n = 0, 1, 2,..., with corresponding eigenvalues  = n =
n(n + 1).

Let’s now consider Bessel’s equation with v = 1, over the interval (0, 1),

( ) .yxy xy
x



Because of the form of q(x), x = 0 is a singular endpoint, whilst x = 1 is a regular endpoint. Suitable
boundary conditions are therefore

|y(x, )|  A for x 
10,
2 , y(1, ) = 0

for some A  +. In unit 1 we constructed the solutions of this equation using the method of

Frobenius. The solution that is bounded at x = 0 is 1 , .J x  The eigenvalues are solutions of

1 0,nJ

which we write as  = 2 2
1 2, ,  ...., where J1( n) = 0.

Finally, let’s examine Bessel’s equation with v = 1, but now for x  (0, ). Since both endpoints
are now singular, appropriate boundary conditions are

|y(x, )|  A for x 
10,
2 , |y(x, )|  B for x  

1 ,
2 ,

for some A, B  +. The eigenfunctions are again 1 ,J x  , but now the eigenvalues lie on the

half-line [0, ). In other words, the eigenfunctions exist for all real, positive . The set of eigenvalues
for a Sturm-Liouville system is often called the spectrum. In the first of the Bessel function examples
above, we have a discrete spectrum, whereas for the second there is a continuous spectrum. We
will focus our attention on problems that have a discrete spectrum only.

Self Assessment

1. Put the equation

x2y  + xy  + ( 2x2  4) y = 0

in Sturm-Liouville’s form

2. Put the equation

2

2 2 2 0d y dyx y
dxdx

into Sturm-Liouville’s form

6.3 Properties of the Eigenvalues and Eigenfunctions

In order to study further the properties of the eigenfunctions and eigenvalues, we begin by
defining the inner product of two complex-valued functions over an interval I to be

1
*

1 2 2( ), ( ) ( ) ( ) ,
I

x x x x dxf f f f
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Notes where a superscript asterisk denotes the complex conjugate. This means that the inner product
has the properties

(i) 1, 2  = 2, 1

(ii) a1 1, a2 2  = a1
* a2 1, 2

(iii) 1, 2 + 3  = 1, 2  + 1, 3 , 1 + 2, 3  = 1, 3  + 2, 3

(iv) ,  = I | |2 dx  0, with equality if and only if (x)  0 in I.

Note that this reduces to the definition of a real inner product if 1 and 2 are real. If 1, 2  = 0
with 1  0 and 2  0, we say that 1 and 2 are orthogonal.

Let y1(x), y2(x)  C2 [a, b] be twice-differentiable complex-valued functions. By integrating by
parts, it is straightforward to show that

2 1 2 1 1 2 1 2( ){ ( )( ( )) ( ) ( )}y Sy Sy y p x y x y x y x y x



...(7)

which is known as Green’s formula. The inner products are defined over a sub-interval [ , ] 
(a, b), so that we can take the limits   a+ and  b  when the endpoints are singular, and the
Sturm-Liouville operator, S, is given by (3). Now if x = a is a regular endpoint and the function
y1 and y2 satisfy a separated boundary condition at a, then

* *
1 2 1 2( ){ ( )( ( )) ( ) ( )} 0.p a y a y a y a y a ...(8)

If a is a finite singular endpoint and the functions y1 and y2 satisfy the Friedrich’s boundary
condition at a,

* *
1 2 1 2lim [ ( ){ ( ) ( )) ( ) ( )}] 0

x a
p x y x y x y x y x ...(9)

Similar results hold at x = b.

We can now derive several results concerning the eigenvalues and eigenfunctions of a Sturm-
Liouville boundary value problem.

Theorem 1: The eigenvalues of a Sturm-Liouville boundary value problem are real.

* *( , ) ( , ) ( , ), ( , )y x Sy x Sy x y x   

*[ ( ){ ( , )( ( , )) ( , ) ( , )}] 0b
ap x y x y x y x y x     

Proof: If we substitute y1(x) = y(x, ) and y2(x) = y*(x, ) into Green’s formula over the entire

interval, [a, b], we have * ( , ), ( , ) * ( , ), ( , )y x Sy x Sy x y x

( ) ( , )( * ( , ) ( , ) * ( , ) 0
b

a
p x y x y x y x y x

making use of (8) and (9). Now, using the fact that the function y(x, ) and y*(x, ) are solutions
of (1) and its complex conjugate, we find that

* * 2( ) ( , ) ( , )( ) ( ) ( )[ ( , )] 0
b b

a a
r x y x y x dx r x y x dx      

Since r(x) > 0 and y(x, ) is nontrivial, we must have  = * and hence  . i.e. the eigenvalues
are real.

Theorem 2: If y(x, ) and y(x,  ) are eigenfunctions of the Sturm-Liouville boundary value

problem, with   ), then these eigenfunctions are orthogonal over Cp[a, b] with respect to the
weighing function r(x), so that

( ) ( , ) ( , ) 0
b

a
r x y x y x dx  ...(10)
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NotesProof: Firstly, notice that the separated boundary condition (6) at x = a takes the form

0y1(a) + 1y 1(a) = 0, 0y2(a) + 1y 2(a) = 0. ...(11)

Taking the complex conjugate of the second of these gives

0y*2(a) + 1(y 2(a))* = 0. ...(12)

since 0 and 1 are real. For the pair of equations (11) and (12) to have a nontrivial solution, we
need

y1(a)(y 2(a))*  y 1(a)y 2(a) = 0.

A similar result holds at the other endpoint, x = b. This clearly shows that

*( ){ ( , ) ( ( , )) ( , )( ( , )) } 0p x y x y x y x y x 

as x  a and x   b, so that, from Green’s formula (7),

( , ) ( , ) ( , ), ( , )y x Sy x Sy x y x

If we evaluate this formula, we find that

( ) ( , ) ( , ) 0
b

a
r x y x y x dx

so that the eigenfunctions associated with the distinct eigenvalues  and   are orthogonal with
respect to the weighting function r(x).

Example: Consider Hermite’s equation
2

2 2 0d y dyx y
dxdx ...(i)

for  < x < . This is not in self-adjoint form. To do that let us define

2

( ) exp ( 2 )

exp ( )

x
p x x dx

x
...(ii)

Thus the equation (i) becomes

2
( ) 0xdyd p x e y

dx dx ...(iii)

By using the method of Frobenius, we showed in unit (3) that the solutions of equation (i) are
polynomials defined by Hn(x) when  = 2n for n = 0, 1, 2, .... . The solutions of equation (iii), the
self-adjoint form of the equation, that are bounded at infinity for  = 2n, then take the form

2
2 ( )

x

n nu e H x ...(iv)

and from theorem (2) satisfy the orthogonality condition

2
( ) ( ) 0x

n me H x H x dx for n m

Self Assessment

3. Put the Laguerre’s equation

xy  + (1  x) + y = 0, for 0 < x < 

into self-adjoint form and deduce orthogonality condition for Laguerre ’s polynomials.
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Completeness

We can now define a sequence of orthonormal eigenfunctions

( ) ( , )
( )

( ) ( , ), ( ) ( , )
n

n
n n

r x y x
x

r x y x r x y x

which satisfy

( ), ( )n m nmx x , ...(13)

where nm is the Kronecker delta. We will try to establish when we can write a piecewise
continuous function f(x) in the form

0

( ) ( )i i
i

f x a x


f ...(14)

Taking the inner product of both sides of this series with j(x) shows that

( ), ( )j ja f x x , ...(15)

using the orthonormality condition (13). The quantities ai are known as the expansion coefficients,
or generalized Fourier coefficients. In order to motivate the infinite series expansion (14), we
start by approximating f(x) by a finite sum,

0

( ) ( , )
Ν

N i i
i

f x A xf

for some finite N, where the Ai are to be determined so that this provides the most accurate
approximation to f(x). The error in this approximation is

0

( ) ( ) ( , )
Ν

N i i
i

R x f x A xf

We now try to minimize this error by minimizing its norm

2
2

0

( ), ( ) ( ) ( ) ,
Νb

N N N i i
a i

R R x R x f x A x dxf

which is the mean square error in the approximation. Now

2

0 0

( ) ( ), ( ) ( )
Ν Ν

N i i i i
i i

R f x A x f x A xf f

2

0

0 0 0

( ) ( ), ( )

( ), ( ) ( ), ( )

Ν

i i
i

Ν Ν Ν

i i i i i i
i i i

f x f x A x

A x f x A x A x

f

f f f

We can now use the orthonormality of the eigenfunctions (13) and the expression (15), which
determines the coefficients ai, to obtain
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Notes
22

0

( ) ( ) ( ), ( )
Ν

N i i
i

R x f x A f x x f 

* *

0 0

( ), ( ) , ( ), ( )
i i

Ν Ν

i i i i
i i

A x f x A A x xf  f f 

2 * * *

0

( ) { }
Ν

i i i i i i
i

f x A a A a A A

2 2 2

0

( ) {| | | | }
Ν

i i i
i

f x A a a

The error is therefore smallest when Ai = ai for i = 0, 1, ...., N, so the most accurate approximation
is formed by simply truncating the series (14) after N terms. In addition, since the norm of RN(x)
is positive,

22

0

( )
Ν b

i
ai

a f x dx

As the right side of this is independent of N1 if follows that

22

0

( )
b

i
ai

a f x dx ...(16)

which is Bessel’s inequality. This shows that the sum of the squares of the expansion coefficients
converges. Approximations by the method of least squares are often referred to as approximations
in the mean, because of the way the error is minimized.

If, for a given orthonormal system,  1(x), 2(x)..., any piecewise continuous function can be
approximated in the mean to any desired degree of accuracy by choosing N large enough, then
the orthonormal system is said to be complete. For complete orthonormal systems, RN(x)  0 as
N , so that Bessel’s inequality becomes an equality,

22

0

( )
b

i
ai

a f x dx ...(17)

for every function f(x).

The completeness of orthonormal systems as expressed by

2

0

lim ( ) ( ) 0
Nb

i iN a i

f x a x dx

does not necessarily imply that f(x) = 0
( )i ii

a x , in other words that f(x) has an expansion in

terms of the i(x). If however, the series 0
( )i ii

a x ,  is uniformly convergent, then the limit

and the integral can be interchanged, the expansion is valid, and we say that 0
( )i ii

a x ,
converges in the mean to f(x). The completeness of the systems 1(x), 2(x).... , should be seen as
a necessary condition for the validity of the expansion, but, for an arbitrary function f(x), the
question of convergence requires a more detailed investigation.

The Legendre polynomials P0(x), P1(x),... on the interval ( 1, 1) and the Bessel functions J ( tx),
J ( 2x),... on the interval [0, a] are both examples of complete orthogonal systems (they can easily
be made orthonormal), and the expansions of unit 1 to 5 are special cases of the more general
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Notes results of this chapter. For example, the Bessel functions vJ x  satisfy the Sturm-Liouville
equation, with p(x) = x, q(x) = v2/x and r(x) = x. They satisfy the orthogonality relation

0
0

a

v vxJ x J x dx

if  and  are distinct eigenvalues. Using the regular endpoint condition vJ a  = 0 and the
singular endpoint condition at x = 0, the eigenvalues, that is the zeros of Jv(x), can be written as

a = 1a1, 2a..., so that  = i for i = 1, 2, ..., and we can write

1

( ) ( ),i i
i

f x a J x

with

2 2 0

2 ( ) ( )
{ ( )}

a

i i
i

a xJ x f x dx
a J a

Example: Show that the functions gm = cos mx, m  = 0, 1, 2, ... form orthogonal set of
functions on the interval  < x >  and determine the corresponding orthonormal set of functions.

Solution: We have, for m  n

0

0

0

cos cos

2 cos cos

cos[( ) ] cos[( ) ]

sin[( ) ] sin[( ) ] 0
( )

mx nx dx

mx nx dx

m n x m n x dx

m n x m n x
m n m n

Hence the given functions gm = cos mx, m = 0, 1, 2, .... are orthogonal set of functions.

Now the norm of gm is

1 2
2

1 2
2

0

cos cos

2 cos

2 when 0

and when 1, 2, 3, ....

mg mx mx dx

mx dx

m

m

Hence the orthonormal set is

cos cos 2 cos 31 , , , ,...
2

x x x

Self Assessment

4. Show that the functions 1, cos x, sin x, cos 2x, sin 2x, ... form an orthogonal set on an interval
 x   and obtain the orthonormal set.
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Notes6.5 Summary

 The Sturm-Liouville’s boundary value problems leads us to eigenvalues and eigenfunctions
of certain second order differential equations.

 It is seen that the eigenfunctions form a set of orthonormal set and as so form a complete
set.

 This helps us in expanding a certain function in terms of eigenfunctions on an interval
(a, b).

6.6 Keywords

Bessel’s differential equations, Legendre differential equations and many more equations can be
written in the Sturm-Liouville equation.

Depending upon certain boundary conditions the solutions known as eigenfunctions can be
found that form orthogonal set.

6.7 Review Questions

1. Find all eigenvalues and eigenfunctions of the Sturm-Liouville problem

y  + y = 0, with y(0) = y 2  = 0

2. Find all the eigenvalues and eigenfunctions of the Sturm-Liouville problem

y  + y = 0, with y (0) = 3, y (c) = 0

Answers: Self Assessment

1.
4( )xy y xy
x

2. 2 2
( ) 2 0x xe y e y

3. ( ) 0x xx e y e y

4.
cos sin cos 2 sin 21 , , , , , ......

2
x x x x

6.8 Further Readings

Books K. Yosida, Lectures in Differential and Integral Equations

Sneddon L.N., Elements of Partial Differential Equations

King A.C, Billingham J. and S.R. Otto, Differential Equations
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Notes Unit 7: Sturm Comparison and Separation Theorems

CONTENTS

Objectives

Introduction

7.1 Linear Ordinary Second Order differential Equation

7.2 The Method of Reduction of Order

7.3 The Method of Variation of Parameters

7.4 The Wronskian

7.5 The Sturm Comparison Theorem

7.6 The Sturm Separation Theorem

7.7 Summary

7.8 Keywords

7.9 Review Questions

7.10 Further Readings

Objectives

After studying this unit, you should be able to:

 Deal with a linear second order differential equation with ease, there are a number of
important processes by which the solutions are found easily.

 Know that in certain important cases the method of reduction of order helps in solving the
differential equation.

 Discuss another method called the method of variation of parameters which helps in
solving non-homogeneous differentiation equation.

Introduction

Sturm comparison and separation theorems help us in understanding the nature of solutions of
certain differential equation where the solutions are periodic.

This process helps us in setting up the equation for Wronskian involving the solutions of the
differential equation.

7.1 Linear Ordinary Second Order Differential Equation

We here consider linear, second order ordinary differential equation of the form

2

2( ) ( ) ( ) ( )d y dyP x Q x R x y F x
dxdx

Richa Nandra, Lovely Professional University
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Noteswhere P(x), Q(x) and R(x) are finite polynomials that contain no common factor. This equation is
inhomogeneous and has variable coefficients. After dividing through P(x), we obtain the more
concurrent, equivalent form,

2

1 02 ( ) ( ) ( )d y dya x a x y f x
dxdx ...(1)

Provided p  0. If p(x) = 0 at some point x = x0, we call x = x0 a singular point of the equation. If P(x)
 0, x0 is a regular or ordinary point of the equation. If P(x)  0 for all points x in the interval

where we want to solve the equation, we say the equation is non-singular or regular in the
interval.

If a1(x), a0(x) and f(x) are continuous on some open interval a < x < b that contains the initial point,
then a unique solution of the form

y = Au1(x) + Bu2(x) + G(x)

where A, B are constants and are fixed by initial conditions. Before we try to construct the
general solution of equation (1), we will outline a series of sub-problems that are more tractable.

7.2 The Method of Reduction of Order

As a first simplification we discuss the solution of the homogeneous differential equation

2

1 02 ( ) ( ) 0d y dya x a x y
dxdx ...(2)

on the assumption that we know one solution, say y(x) = u1(x), and only need to find the second
solution. We will look for a solution of the form y(x) = U(x)u1(x). Differentiating y(x) using the
product rule gives

1
1 ,dy dU duu U

dx dx dx

2 2 2
1 1

12 2 22d y d U dU du d uu U
dx dxdx dx dx

If we substitute these expressions into (2) we obtain

2 2
1 1 1

1 1 1 0 12 22 ( ) ( ) 0d U dU du d u dU duu U a x u U a x Uu
dx dx dx dxdx dx

We can now collect terms to get

2 2
1 1 1

1 0 1 1 1 12 2( ) ( ) 2 0d u du d U dU duU a x a x u u a u
dx dx dxdx dx

Now, since u1(x) is a solution of (2), the term multiplying U is zero. We have therefore obtained
a differential equation for dU/dx, and, by defining Z = dU/dx, we have

1
1 1 12 0dZ duu Z a u

dx dx

Dividing through by Zu1 we have

1
1

1

1 2 0,dZ du a
Z dx u dx
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Notes which can be integrated directly to yield

log|Z| + 2log|u1| + 1( ) ,
x
a s ds C

where s is a dummy variable, for some constant C. Thus

12
1

exp ( )
xc dUZ a s ds

dxu

where c = eC. This can then be integrated to give

12
1

( ) exp ( ) ,
( )

z tcU x a s ds dt c
u t

for some constant c . The solution is therefore

1 1 12
1

( ) ( ) exp ( ) ( ).
( )

x tcy x u x a s ds dt u x
u t

We can recognize u1(x) as the part of the complementary function that we knew to start with,
and

2 1 12
1

1( ) ( ) exp ( )
( )

x t
u x u x a s ds dt

u t ...(3)

as the second part of the complementary function. This result is called the reduction of order
formula.

Example: Let us try to determine the full solution of the differential equation

2
2

2(1 ) 2 2 0d y dyx x y
dxdx

given that 1( )y u x x is a solution. We firstly write the equation in standard form as

2

2 2 2
2 2 0

1 1
d y dyx y

dxdx x x

Comparing this with (2), we have a1(x) = 2x/(1  x2). After noting that

2
1 2

2( ) log(1 ),
1

t t sa s ds ds t
s

the reduction of order formula gives

2
2 2 2 2

1( ) exp{ log(1 )}
(1 )

x x dtu x x t dt x
t t t

We can express the integrand in terms of its partial fractions as

2 2 2 2 2
1 1 1 1 1 1

2(1 ) 2(1 )(1 ) 1 t tt t t t t
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NotesThis gives the second solution of (2) as

2 2
1 1 1( )

2(1 ) 2(1 )
x

u x x dt
t tt

1 1 1 1log log 1,
2 1 2 1

xt x xx
t t x

and hence the general solution is

y = Ax + B 1log 1 .
2 1
x x

x

Self Assessment

1. Use the reduction of order method to find the second independent solution of the equation

2

2
2 0d y dy y
x dxdx

with the solution u1(x) = x 1 sin x

7.3 The Method of Variation of Parameters

Let’s now consider how to find the particular integral given the complementary function,
comprising u1(x) and u2(x). As the name of this technique suggests, we take the constants in the
complementary function to be variable, and assume that

y = c1(x)u1(x) + c2(x)u2(x)

Differentiating, we find that

1 1 2 2
1 1 2 2

dy du dc du dcc u c u
dx dx dx dx dx

We will choose to impose the condition

1 2
1 2 0,dc dcu u

dx dx ...(4)

and thus have

1 2
1 2 ,dy du duc c

dx dx dx

which, when differentiated again, yields

2 2 2
1 1 1 2 2 2

1 22 2 2
d y d u du dc d u du dcc c

dx dx dx dxdx dx dx

This form can then be substituted into the original differential equation to give

2 2
1 1 1 2 2 2 1 2

1 2 1 1 2 0 1 1 2 22 2 ( ) .d u du dc d u du dc du duc c a c c a c u c u f
dx dx dx dx dx dxdx dx
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Notes This can be rearranged to show that

2 2
1 1 2 2 1 1 2 2

1 1 0 1 2 1 0 22 2
d u du d u du du dc du dcc a a u c a a u f

dx dx dx dx dx dxdx dx

Since u1 and u2 are solutions of the homogeneous equation, the first two terms are zero, which
gives us

1 1 2 2du dc du dc f
dx dx dx dx ...(5)

We now have two simultaneous equations (4) and (5), for c1 = dc1/dx and 2 2 / ,c dc dx  which can
be written in matrix form as

'
1 2 1
' ' '
1 2 2

0u u c
fu u c

These can easily be solved to give

2 1
1 2, ,fu fuc c

W W

where

1 2
1 2 2 1

1 2

u u
W u u u u

u u

is called the Wronskian. These expansions can be integrated to give

2 1
1 2

( ) ( ) ( ) ( ), .
( ) ( )

x xf s u s f s u sc ds A c ds B
W s W s



We can now write down the solution of the entire problem as

2 1
1 2 1 2

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( )

x xf s u s f s u sy x u x ds u x ds Au x Bu x
W s W s



The particular integral is therefore

1 2 1 2( ) ( ) ( ) ( )( ) ( )
( )

x u s u x u x u sy x f s ds
W s ...(6)

This is called the variation of parameters formula.

Example: Consider the equation

2

2 sind y y x x
dx

The homogeneous form of this equation has constant coefficients, with solutions

u1(x) = cos x, u2(x) = sin x
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NotesThe variation of parameters formula then gives the particular integral as

cos sin cos sinsin ,
1

x s x x sy s s ds

since

2 2cos sin
cos sin 1

sin cos
x x

W x x
x x

We can split the particular integral into two integrals as

2( ) sin sin cos cos sin
x x

y x x s s s ds x s s ds

1 1sin sin 2 cos (1 cos2 )
2 2

x x
x s s ds x s s ds

Using integration by parts, we can evaluate this, and find that

21 1 1( ) cos sin cos
4 4 8

y x x x x x x

is the required particular integral. The general solution is therefore

2
1 2

1 1cos sin cos sin
4 4

y c x c x x x x x

Self Assessment

2. Find the general solution of the equation

2

2 4 2sec2d y y x
dx

7.4 The Wronskian

Before we carry on, let’s pause to discuss some further properties of the Wronskian. Recall that
if V is a vector space over , then two elements v1, v2  V are linearly dependent if  1, 2  ,
with 1 and 2 not both zero, such that 1v1 + 2v2 = 0.

Now let V = C1(a, b) be the set of once-differentiable functions over the interval a < x < b. If u1, u2
 C1(a, b) are linearly dependent,  1, 2   such that 1u1(x) + 2u2(x) = 0 x  (a, b). Notice

that, by direct differentiation, this also gives 1 1 2 2( ) ( ) 0u x u x or, in matrix form.

1 2 1
' '

21 2

( ) ( ) 0
0( ) ( )

u x u x

u x u x

These are homogeneous equations of the form

Ax = 0

which only have nontrivial solutions if det(A) = 0, that is

1 2 ' '
1 2 1 2' '

1 2

( ) ( )
0.

( ) ( )

u x u x
W u u u u

u x u x
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Notes In other words, the Wronskian of two linearly dependent functions is identically zero on ( a, b).
The contrapositive of this result is that if W  0 on (a, b), then u1 and u2 are linearly independent
on (a, b).

Example 1: The functions u1(x) = x2 and u2(x) = x3 are linearly independent on the interval

( 1, 1). To see this, note that, since u1(x) = x2, u2(x) = x3, 1( ) 2 ,u x x  and 2
2( ) 3 ,u x x  the Wronskian

of these two functions is

2 3
4 4 4

2
3 2

2 3

x x
W x x x

x x

This quantity is not identically zero, and hence x2 and x3 are linearly independent on ( 1, 1)

Example 2: The functions u1(x) = f(x) and u2(x) = kf(x), with k a constant, are linearly
dependent on any interval, since their Wronskian is

' ' 0
f kf

W
f kf

If the functions u1 and u2 are solutions of (2), we can show by differentiating 1 2 1 2W u u u u
directly that

1( ) 0.dW a x W
dx

This first order differential equation has solution

0
0 1( ) ( )exp ( )

x

x
W x W x a t dt ...(7)

which is known as Abel’s formula. This gives us an easy way of finding the Wronskian of the
solutions of any second order differential equation without having to construct the solutions
themselves.

Example 3: Consider the equation

2
1 11 0y y y
x x

Using Abel’s formula, this has Wronskian

0

0 0
0

( )( ) ( )exp
x

x

dt x W x AW x W x
t x x

for some constant A.

We end this section with a useful theorem.

Theorem. If u1 and u2 are linearly independent solutions of the homogeneous, non-singular
ordinary differential equation (2), then the Wronskian is either strictly positive or strictly negative.

Proof: From Abel’s formula, and since the exponential function does not change sign, the
Wronskian is identically positive, identically negative or identically zero. We just need to
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Notes

exclude the possibility that W is ever zero. Suppose that W(x1) = 0. The vectors 
1 1

1 1

( )

( )

u x

u x  and

2 1

2 1

( )

( )

u x

u x
 are then linearly dependent, and hence u1(x1) = ku2(x1) and 1 2( ) ( )u x ku x  for some

constant k. The function u(x) = u1(x)  ku2(x) is also a solution of (2) by linearity, and satisfies the
initial conditions u(x1) = 0, u’(x1) = 0. Since (2) has a unique solution, the obvious solution, u  0,
is the only solution. This means that u1  ku2. Hence u1 and u2 are linearly dependent  a
contradiction.

The non-singularity of the differential equation is crucial here. If we consider the equation
x2y  2xy  + 2y = 0, which has u1(x) = x2 and u2(x) = x as its linearly independent solutions, the
Wronskian is x2, which vanishes at x = 0. This is because the coefficient of y  also vanishes at
x = 0.

Self Assessment

3. Find the Wronskian of x, x2 on the interval ( 1, 1).

7.5 The Sturm Comparison Theorem

The theorem states that if f(x) and g(x) are nontrivial solutions of the differential equations

u  + p(x)u = 0 ...(1)

and  + q(x) = 0 ...(2)

and p(x)  q(x), f(x) vanishes at least once between any two zeros of g(x) unless p  q and f = g
where  is a real number.

Proof: As p(s)  q(x) for all values of x within the interval of interest. For example consider the
equation

w  + a2w = 0, a2 > 0 ...(3)

This equation has an oscillatory behaviour and the solution is of the form

w(x) = c1 sin ax + c2 cos ax ...(4)

since p(x) a2 > 0

then (1) will have an oscillatory solution and so will have zeros. As (1) is more oscillatory then
(2) it will have zeros also more frequently and hence in between zeros of (2) it have at least one
zero.

7.6 The Sturm Separation Theorem

If u1(x) and u2(x) are the linearly independent solutions of a non-singular homogeneous equation
(1), then the zeros of u1(x) and u2(x) occur alternately. In other words, successive zeros of u1(x) are
separated by successive zeros of u2(x) and vice versa.

Proof: Suppose that x1 and x2 are successive zeros of u2(x); as the Wronskian W is given by

1 2 ' '
1 2 2 1' '

1 2
( ) ( ) ( ) ( ) ( )

u u
W x u x u x u x u x

u u
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Notes so that

1 2( ) ( ) ( ) for 1,2i i iW x u x u x i

We also know from Abel’s formula that W(x) is of one sign on x1 < x < x2, since u1(x) and u2(x) are

linearly independent. This means that u1(xi) and 2 ( )iu x  are nonzero. Now if 2 1( )u x  is positive

then 2 2( )u x  is negative or vice versa, since u2(x2) = 0. Since the Wronskian cannot change sign
between x1 and x2, so u1(x) must change sign and hence u1 has a zero in between x1 and x2 as we
claimed.

Self Assessment

4. Consider the equation

2
2

2 0d y w y
dx

It has the solution

y = A sin wx + B cos wx

If we consider any two of the zeros of sin wx, it is immediately clear that cos wx has a zero
between them.

Compare its solutions with respect to those of

2
2

2 4 0d w w w
dx

7.7 Summary

 The comparison and separation theorems of Sturm are useful in the periodic solutions of
the second order linear equation.

 These theorems are understood in a better way once the reduction method of order is set
up.

 The variation of parameters help us in finding the particular integral of the non-
homogeneous differential equation.

7.8 Keywords

Sturm comparison theorem helps us in telling when the solution of a differential equation has at
least one zero in between the two zeros of the solution of another differential equation simply
by studying their coefficients in the equation.

Whereas, the Sturm separation theorem helps us in predicting that one independent solution of
the equation has at least one zero in between the two zeros of the other independent solution.
This happens in the case of periodic solutions.

7.9 Review Questions

1. Find the Wronskian of ex, e x

2. Find the general solution of 
2

2 6d y dy y x
dxdx
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Notes3. If u1, u2 are linearly independent solution of y  + p(x)y  + q(x)y = 0 and y is any other
solution, show that Wronskian of (y, u1, u2)

W(x) = 
1 2

1 2

1 2

y u u

y u u

y u u

is zero.

Answers: Self Assessment

1.
cosx

x

complete solution is (A sin x + B cos x)/x

2. y = A sin 2x + B cos 2x + x cos 2x  sin 2x log (cos 2x)

3. 3x2

7.10 Further Readings

Books Pipes, Louis A. & Lawrence R. Harvill, Applied Mathematics for Engineers &
Physicists

King A.C., Billingham, J. Otto S.R., Differential Equations.

Yosida, K., Lectures on Differential and Integral Equations

Sneddon, L.N., Elements of partial differential equations
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CONTENTS

Objectives

Introduction

8.1 Review of Some Basic Definitions

8.2 Review of Sturm Liouville Problem - Eigenvalues and Eigenfunctions

8.3 Review of Bessel’s Inequality and Completeness Relation

8.4 Orthogonality of Solutions of Some Equations

8.5 Summary

8.6 Keywords

8.7 Review Questions

8.8 Further Readings

Objectives

After studying this unit, you should be able to:

 Understand better the solutions of Bessel equations, Legendre equations, Hermite equations
and Laguerre differential equations.

 See that there are solutions which are obtained for some values of the parameters known
as eigenvalues. These solutions are known as eigenfunctions.

 Reduce these equations and many more differential equations of second order to Sturm-
Liouville boundary value problem. Hence the solutions can be shown to be orthogonal,
orthonormal and the set of various solutions of the equations form a complete set.

Introduction

Knowledge of Sturm Liouville problem and certain methods are prerequisite to the ideas of
orthogonality of the solutions of certain differential equations.

Also the solutions of these equations can be used to expand any function on an interval in terms
of them in a systematic manner.

8.1 Review of Some Basic Definitions

In the last four units we had studied the properties of linear second order differential equations.
By now you must have got enough inside into the solutions of the equations. It is seen that the
form of self-adjoint equations as well as Sturm Liouville’s boundary value problems led to the
kind of  solutions of certain linear second order differential equations the orthogonal set of
functions which are solutions of these equations. The most important of these solutions are the
Fourier sine and cosine series, the Legendre polynomials, the Bessel functions; the Hermite
polynomials and Laguerre’s polynomials. In the last four chapters we had already seen that the
solutions do resemble the eigenfunctions of a self-adjoint operator and also form an orthogonal
set with respect to a weight factor. So it is advisable to introduce the inner product of two
functions. The concept of an orthogonal set of functions arises in a natural way from an analogy
with vectors in a vector space. This is a natural generalization of the concept of an orthogonal set

Richa Nandra, Lovely Professional University
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Notesof vectors, i.e. a set of mutually perpendicular vectors. In fact, a function can be considered as a
generalized vector so that fundamental properties of the set of functions are suggested by an
analogous properties of the set of vectors.

Some Basic Definitions

Inner Product: The inner product of two functions f(x) and g(x) is a number defined by the
equation

(f, g) = ( ) ( )
b

a

f x g x dx

on the interval a x b.

Norm of the function: The norm of the function f(x) is defined as the non-negative number

f =
1/2

2( )
b

a

f x dx

Orthogonal functions: The condition that the two functions be orthogonal is written as

(f, g) = ( ) ( ) 0.
b

a

f x g x dx

Orthogonality with respect to a weight (or density) function: The concept of orthogonality can
be extended as follows. Let p(x) 0. Then the condition that the two functions f(x) and g(x) be
orthogonal with respect to the weight function p(x) is written as

( ) ( ) ( )
b

a

p x f x g x dx = 0

Further the norm of the function is defined as

pf =
1/2

2( ) ( )
b

a

p x f x dx

Again f(x) is said to be normalized when

2( ) ( )
b

a

p x f x dx = 1

The orthogonality with respect to weight function p(x) can be reduced to the ordinary type by
using the product ( ) ( )p x f x  and ( ) ( )p x g x  as two functions.

Orthogonal Set of Functions:

If we have a set { fn(x)}, (n = 1, 2, 3, ...) of real functions defined on an interval a x b, then the
{fn(x)} is said to be an orthogonal set of functions on the interval a x b if

( ) ( )
b

m n
a

f x f x dx = } 0 when m n
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Notes The set {fn(x)} is said to be orthonormal set if

( ) ( )
b

m n
a

f x f x dx = mn,

Where the Kronecker delta,

mn =
0 if
1 if

m n
m n

Orthonormal Set of Functions with Respect to a Weight Function

Let { n (x)} (n = 1, 2, 3, ...) be a set of real functions defined on the interval a x b and p(x) 0.
Then the set { n(x)} is said to be orthonormal set of functions on the interval a x b if

( ) ( ) ( )
b

m n
a

p x x x dx =
0 when
1 when

m n
m n

i.e., ( ) ( ) ( )
b

m n
a

p x x x dx = mn.

Self Assessment

1. Show that the function f1(x) = 1, f2(x) = x are orthogonal on the interval ( 1, 1) and determine
the constants A and B so that the function f3(x) = 1 + Ax + Bx2 is orthogonal to both f1(x) and
f2(x) on the interval ( 1, 1).

8.2 Review of Sturm-Liouville Problem - Eigenvalues and
Eigenfunctions

Various important orthogonal sets of functions arise in the solution of second-order differential
equation

( ) [ ( ) ( )]R x y Q x P x y = 0 ...(i)

on some interval 0 x b satisfying boundary conditions of the form

(a) 1 2a y a y = 0 at x = a
...(ii)

(b) 1 2b y b y = 0 at x = b

The boundary value problem given by (i), (ii) is called a Sturm Liouville problem. Here is a
parameter and a1, a2, b1, b2 are given real constants at least one in each of conditions (ii) being
different from zero. The equation (i) is known as the Sturm Liouville equation.

You may recall that Bessel’s differential equation, Legendre’s equation, Hermite equation and
other important equations can be written in the form (i).

The solution y = 0 is the trivial solution. The solution y 0 are called the characteristic functions
or eigenfunctions and are called characteristic values or eigenvalues of the problem.
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NotesThere are a few theorems about the eigenvalues and eigenfunctions as follows:

Theorem 1: Let the functions P, Q, R in the Sturm Liouville equation be real and continuous on
the interval a x b. Let ym(x) and yn(x) be given functions of the Sturm Liouville problem
corresponding to different eigenvalues m and n respectively, and let the derivatives ym(x),
y n(x) be also continuous on the interval. Then ym and yn are orthogonal on that interval with
respect to the weight function P i.e.,

( ) ( ) ( )
b

m n
a

P x y x y x dx = 0 for m n

Theorem 2: The eigenvalues of the Sturm Liouville problem are all real.

Theorem 3: If R(a) > 0 or R(b) > 0, the Sturm Liouville problem cannot have two linearly
independent eigen functions corresponding to the same eigenvalue.

Example: The simpler example of a Sturm Liouville equation is the Fourier’s equation

( , ) ( , )y x y x = 0 subject to (0) ( ) 0y y l

which has solutions cos ( )x  and sin ( ).x  Using the boundary conditions, we have for y (0)
= 0, only sin ( )x  term is present. From the second consideration we have

l = , 0,1,2,...n n

So the eigenfunctions are given by

yn(x) = An sin ,n x
l

 for n = 1, 2, 3,...

The eigenvalues are given by

n =
2 2

2 , 0,1,2,3,....n n
l

Self Assessment

2. Find the eigenvalues ad eigenfunctions of the equation

y (x) + k2 y(x) = 0

with the boundary conditions

y(0) = 0 and y (1) = 0

8.3 Review of Bessel’s Inequality and Completeness Relation

Let { n(x), [n = 1, 2, 3, ...]} be an orthonormal set of functions on an interval (a, b) and let an
arbitrary function on the same interval be a linear combination of these functions, in the form

f(x) =
1

( )n n
n

C x a x b

If the series converges and represents f(x), it is called a generalized Fourier series of f(x). The
coefficient C ,  = 1, 2, .... given by

C = , ( ) ( ) ( )
b

a

f x f x x dx ...(i)
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Notes are called the expansion coefficients of f(x) with respect to the given orthonormal system.

Obviously
2

1

n

f C dx 0 ...(ii)

By writing out the square and integrating term by term, we get

0 2 2

1 1

2 .
n n

f dx C f dx C

or 0 2 2 2

1 1

( ) 2
n n

Nf C C [Nf means norm of f]

or 0 2 2

1

( )
n

Nf C

or 2

1

n

C (Nf)2 ...(iii)

Since the number on right is Independent of n, it follows that

2

1

n

C < (Nf)2.

This fundamental inequality is known as Bessel’s inequality and is true for every orthonormal
system. It proves that the sum of the squares of the expansion coefficients always converges.

For systems of functions with complex values the corresponding relation is

2

1

n

C 2( ) ( , )Nf f f ...(iv)

holds, where C  is the expansion coefficient ( , )C f .

This relation may be obtained from the inequality

2

1

( )
n

f x C dx = 22

1

( ) 0
n

Nf C

The significance of the integral in (ii) is that it occurs in the problem of approximating the given

function f(x) by a linear combination 
1

n

 with  as constant coefficient and fixed n, in such

a way that the mean square error

M =
2

1

n

f dx

is as small as possible.

An approximation of this type is known as an approximation by the method of least squares, or
an approximation in the mean.
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NotesIf, for a given orthonormal system 1, 2..., any piecewise continuous function f, can be
approximated in the mean to any desired degree of accuracy by choosing n large enough, i.e.,  if
n may be so chosen that the mean square error.

2

1

n

f C dx

is less than a given arbitrary small positive number, then the system of functions 1, 2..., is said
to be complete.

For a complete or orthonormal system of functions Bessel’s inequality becomes an equality for
every function f

i.e. 2

1

n

C = (Nf)2

or 2

1

( , )
n

f = 2f

The relation is known as the completeness relation or Parseval’s equation.

Definitions

Closed Set: The set { n} is closed in the sense of mean convergence if for each function f of the
function space

2

1

( , )n
n

f = 2f

Complete Set: An orthonormal set { n} is complete in the function space if there is no function in
that space, with positive norm which is to orthogonal to each of the functions.

Theorem: If an orthonormal set { n (x)} is closed it is complete.

If an orthonormal set is closed then for each function f of the function space

2

1

( , )n
n

f = 2f ...(i)

Now, let us suppose a function (x) in the space which is orthogonal to each function { n(x)} of
the closed orthonormal set such that

0

(f, n) 0,

Therefore from (i), we have 0,f which is a contradiction.

Therefore there is no function in space, with positive norm which is orthogonal to each of the
functions n(x).

Hence the closed orthonormal set { n(x)} is complete also.
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Notes 8.4 Orthogonality of Solutions of Some Equations

(a) Orthogonality of Bessel’s Functions

We know that Jn(x ) is the solution of Bessel’s equation

2
2 2 2

2
( )( ) ( ) ( )nn

n
d J xd J xx x x n J x

dxdx
= 0

where n is a positive integer. Putting ,x x  we have

nd J
dx =

1 nd J
dx

and
2

2
nd J

dx =
2

2 2
1 ,nd J

dx

where  is a constant,

2
2 2 2 2

2
( )( ) ( ) ( )nn

n
d J xd J xx x x n J x

dxdx = 0 ...(i)

which may be rewritten as

2
2( ) ( )n

n
d J xd nx x J x

dx dx x
= 0

which is Sturm Liouville equation for each fixed n i.e.

1( ) ( ) [ ( ) ( )]n
d dp x J x q x r x y
dx dx = 0

with p(x) =
2

, ( ) nx q x
x

 and ( )r x x  and 2
1 .

Since p(x) = 0 for x = 0, it follows that the solution of (i) on an interval 0 x a satisfying the
boundary conditions

( )nJ a = 0 ...(ii)

form an orthogonal set with respect to the weight p(x) = x.

Let 1n < 2n < 3n ... denote the positive zeros of Jn(x1), therefore (ii) holds for

a = mn or = mn = mn

a (m = 1, 2, ... n fixed)

and since ( )n
d J x
dx  is continuous also at x = 0, therefore for each fixed n = 0, 1, 2, .... , the Bessel’s

function ( )n mnJ x  (m = 1, 2, ...) with ,mn
mn a  form a orthogonal set on an interval 0 x a

with respect to weight function p(x) = x,

0

a

n mn n pnx J x J x = 0 if p  m

108



LOVELY PROFESSIONAL UNIVERSITY

 Orthogonality of Solutions

NotesThus we have obtained infinity many orthogonal sets corresponding to each fixed value of n.

If a function is represented by generalized Fourier Bessel series

f(x) =
1

,m n mn
m

C J x   for n fixed ...(iii)

then Cm =
2

1 ( ) , 1,2...
b

n mn
an mn

x f x J x dx m
J x

Since p(x) = x, mn
mn a

where
2

n mnJ x = 2

0

a

n mnx J x dx ...(iv)

To bind
2

,n mnJ x

let us proceed as follows:

Multiplying (i) by 2 ( ),nx J x  we have

2
1 1 2 1

22 ( ) ( ) 2 ( ) ( )n n n n
nx J x x J x x x J x J x
x

= 0

or
21 2 2 2( ) ( )n nx J x x n J x = 0

Integrating over the limits 0 to a, we have

21

0
( )

a

nx J x = 2 2 2 2 ( )nx n J x dx

Integrating R.H.S. by parts, we have

21

0
( )

a

nx J x = 2 2 2 2 2 2
0

0

( ) 2 ( )
a

a
n nx n J x x J x dx ...(v)

From the following recurrence formulas for Jn( ), we have

( )n
n

d µ J µ
dµ

= 1( )n
nµ J µ

or 1( ) ( )n n
n n

dµ J µ n µ J µ
dµ

= 1( )n
nµ J µ

Multiplying both sides by n+1

( ) ( )n n
d J n J

d = 1( )nµ J µ
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Notes Putting  = x,

( ) ( )
( ) n n
dx J x n J x

d x = 1( )nx J x

or 1( ) ( )n nx J x n J x = 1( )nx J x

Substituting in (v), we have

2
1

0
( ) ( )

a

n nn J x x J x = 2 2 2 2 2 2
0

0

( ) 2 ( )
a

a
n nx n J x x J x dx

If ,mn  then ( ) 0,n n mnJ a J a  and

Since (0) 0,nJ  for n = 1, 2, ...,

then we have

2 2 2
1mn n mna J a =

2 2

0

2
a

mn n mxx J x dx

= 222 ( )mn n mnJ x {since weight = x}

Thus

2( )n mnJ x =
2

2
1 ( )

2 n mn
a J a

=
2

2
1 ( )

2 n mn
a J

where mn = mna

So Cn = 2 2
1 0

2 ( ) ( )
( )

a

n mn
n mn

x J x f x dx
a J ...(vi)

and mn = ,mn

a  for m = 1, 2, 3....

Thus generalized Fourier Bessel series is given by (iii) with the coefficient C n given by (vi).

(b) Orthogonality of Legendre Polynomials

The Legendre’s differential equation

2(1 ) 2 ( 1)x y xy n n y = 0

may be written as

2[(1 ) ]x y y = 0 ...(i)

where = n (n + 1),
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Notesand  is therefore a Sturm-Liouville equation with

( )R x = 21 , ( ) 1x P x  and ( ) 0Q x

Here no boundary conditions are needed to form a Sturm-Liouville problem on the internal (
1, 1) since R = 0 when x =  1.

Further we know that Legendre Polynomials

( ), ( 0,1,2,...)nP x n

are the solutions of the problem, hence they are the eigenfunctions and since they have continuous
derivatives, therefore it follows that {Pn (x)},  n = 0, 1, 2, ... are orthogonal on the interval 1,

x 1 with respect to the weight function

p = 1, i.e., 
1

1

( ) ( ) 0 if ( )m nP x P x dx m n

and 2
mP =

1
2

1

1( ) , 0,1,2,...
2 1mP x dx m

m

If g0(x), g1(x), ..... are eigenfunctions which are orthogonal on the interval a x c with respect to
the weight function p(x), and if a given function f(x) can be represented by a generalised Fourier
series

f(x) =
1

( )n n
n

C g x

then, cn = 2
1 ( ) ( ) ( ) ( 0,1,2,...)

b

m
n a

p x f x g x dx m
g

where 2
mg = 2( ) ( )

b

m
a

p x g x dx

(c) Orthogonality of Hermite Polynomials

The Hermite polynomials Hn(x), given by

Hn(x) =
2

2
( 1)

n x
n x

n
d ee

dx

are orthogonal with respect to the weight function 
2

( ) xp x e on the interval  x .

2
( ) ( ) x

m nH x H x e dx =
2

( 1) ( )
n x

n
m n

d eH x dx
dx

=

21

1( 1) ( )
n x

n
m n

d eH x
dx
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Notes
                                                                  

2
1

1( 1) ( )
n

n x
m n

dH x e dx
dx

=
21

1 1( 1) 2 ( )
n

x
m n

dmH x e dx
dx

[since 
2xe  and all its derivatives

vanish for infinite x and Hn = 2n Hn 1]

=
2

1
1

1 1( 1) 2 ( )
n

n x
m n

dm H x e dx n m
dx

proceeding similarly again and again

=
2

0( 1) 2 ! ( )
n m

n m m x
n m

dm H x e dx n m
dx

=
2

( 1) 2 !
n m

n m m x
n m

dm e dx
dx  0[ ( ) 1]H x

=
2

1

1( 1) 2 !
n m

n m m x
n m

dm e
dx

= 0

Now
22( ) x

nH x e dx =
2

( )
n

x
n n

dH x e dx
dx

integrating as above n times

=
2

02 ( )n xn H x e dx

=
2

2 !n xn e dx

=
2

0

2 !2n xn e dx

= 2 ! .n n

The functions of the orthogonal system are

n(x) =
2

( ) 2 , ( 0,1,2,...)
2 !

x
n

n

H x e n
n

(d) Orthogonality of Laguerre Polynomials

The Laguerre Polynomials Ln(x) given by

Ln(x) = ( )
n

x n x
n

de x e
dx
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Notesare orthogonal w.r.t. the weight function p(x) = e–x on the interval 0 x 

                                      
0

( ). ( ) x
m nL x L x e dx

=
0

( ) ( )
n

n x
m n

dL x x e dx
dx

=
1 1

1 1
0 0

( ) ( ) ( ) ( )
n n

n x n x
m mn n

d dL x x e L x x e dx
dx dx

=
1

1
0

( ) ( )
n

n x
m n

dL x x e dx
dx

proceeding similarly

=
0

( 1) ( ) ( )
n m

m m n x
m n m

dL x x e dx n m
dx

=
0

( 1) ( 1) ! ( )
n m

m m n x
n m

dm x e dx n m
dx

=
1

1
0

! ( ) 0
n m

n x
n m

dm x e
dx

Now,

                                     
2

0

( ). x
nL x e dx

=
0

( ) ( )
n

n x
n n

dL x x e dx
dx

= !

0

( 1) ( )( )n n n x
nL x x e dx

= 2

0

( 1) ( 1) ! ( !)n n n xn x e dx n

Thus the functions of the orthogonal system are

v(x) =
/2 ( )

!

x
ne L x

n
(n = 0, 1, 2,...)
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Notes Self Assessment

3. Find the eigenvalues and eigenfunctions of the equation
2

2
d y y
dx = 0

when y (0) = 0, y ( ) = 0

Show that the eigenfunctions are orthogonal to each other.

8.5 Summary

 In this unit we have review some of the properties of the solutions of equations like Bessel
equations, Legendre equations, Hermite equations and Laguerre equations which are of
Sturm-Liouville’s form.

 This way we can construct the eigenfunctions for certain eigenvalues of other equations
which resemble Sturm-Liouville problem with certain boundary conditions.

8.6 Keywords

Eigenfunctions are solutions of Sturm-Liouville problem corresponding to certain values of the
parameter called the eigenvalues.

Sturm-Liouville boundary value problem helps us to find eigenvalues  and eigenfunctions in a
systematic way and their properties are well understood.

8.7 Review Questions

1. Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem

0, (0) 0
2

y y y y

2. Show that the given set is orthogonal on the given interval and determine the corresponding
orthonormal set

1, cos x, cos 2x, cos 3x, ..., 0 x 

Answers: Self Assessment

1. A = 0, B =  3

2. 1 1, ( ) sin , 0,1,2,....
2 2n nK n y x A n x n

3. 2 , ( ) sin , 1,2,3,....nn y x nx n

8.8 Further Readings

Books Yosida, K., Lectures in Differential and Integral Equations

King A.C., Billingham, J. and Otto S.R., Differential Equations
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Classification of Partial Differential Equations

NotesUnit 9: Classification of Partial Differential Equations

CONTENTS

Objectives

Introduction

9.1 Types of Differential Equations

9.2 Derivation of Partial Differential Equations

9.3 Various Classes of Partial Differential Equations

9.4 Summary

9.5 Keyword

9.6 Review Questions

9.7 Further Readings

Objectives

After studying this unit, you should be able to:

 Know before hand the type of the equation to be solved.

 Know that there are various methods based on the structure of the partial differential
equations.

 See that the partial differential equations of the first order are generally solved by methods
to get either complete solution or general solution.

 See that in the case of second order partial differential equations there are three types of
equations, i.e. hyperbolic type, parabolic type or elliptic type.

 Deal with the methods of dealing with various partial differential equations.

Introduction

The classification of the partial differential equations is quite different than those of ordinary
differential equations.

Some of the most important partial differential equations fall into one of the three categories
i.e., the hyperbolic type, the parabolic type or elliptic type.

9.1 Types of Differential Equations

In dealing with any differential equation involving a number of variables, we first of all classify
the variables into two categories. A variable may be such that it depends upon a number of other
variables. Such a variable is called dependent variable and the other variables on which it is
dependent are termed as independent variables.

In the case of ordinary differential equations we have to deal with one dependent and one

independent variable. So the derivative of dependent variable is denoted as ,dy
dx  where y is a

dependent variable and x is an independent variable. So the differential equation may be of the
form

Sachin Kaushal, Lovely Professional University
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Notes 2

2, , , ,...,
n

n
dy d y d yF x y
dx dx dx

= 0 ...(1)

involving up to nth derivative of y.

In contrast to the above we may sometimes have to deal with a dependent variable and more
than one independent variables. Thus we may have partial derivatives of the dependent variable
u with respect to independent variable x, y, z,.... So we have partial derivatives of u in the

differential equation like , ,u u u
x y z

 etc. We may have a higher partial derivatives also present

in the differential equations i.e. 
2 2 2

2 2, , ,....u u u
x yx z

. Such  a differential equations involving one

dependent variable u and a number of independent variables x, y, z, ... along with the partial
derivatives of u with respect to x, y, z, .. is known as partial differential equation i.e.

2

2, , , ... , , , ,... ,....u u u uf x y z u
x y z x

= 0 ...(2)

We may have a situation in which the partial differential equation involves only first derivatives
only. Such an equation is known as first order partial differential equation i.e.

1 , , ,... , ,...
n

u uf x y z u
x x

= 0 ...(3)

Here the order of the equation is one and it is known as first order partial differential equation.
Let us denote independent variables, as x, y and z as dependent variable. Also let us put

p =
z
x

...(4)

q =
z
y

So the partial differential equation involving x, y, z, ,z z
x y

 will be of the form

2( , , , , )f x y z p q = 0 ...(4)

Example: The equation
2

2
z

x =
z
y

is a partial differential equation of second order. The equation

2z z
x y = 0

is a first order partial differential equation and of second degree involving two independent
variables x and y. The equation
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Notesu u ux y
x y z

= 0

is a first order partial differential equation involving three variables. So in these units involving
partial differential equations we may have to deal with first order, second order or higher order
partial differential equations.

9.2 Derivation of Partial Differential Equations

Example 1: Let us form the differential equation from the relation

lx + my + nz =  (x2 + y2 +z2) ...(5)

Differentiating equation partially with respect to x and y

zl n
x = 2 2 2( ) 2 2 dzx y z x z

dx
...(6)

and zm n
y

= 2 2 2( ) 2 2 zx y z y z
y

...(7)

Eliminating 

zl n
x
zm n
y

=

zx z
x
zy z
y

or ( ) z z z z zl np y m n x z l n z m n
y y x x y

= 0

or ( ) ( ) ( )l np y m nq x z lq mp = 0 ...(8)

Notes  When the relation like (6) contains more than one function partial differential
equations of the higher order will be obtained.

Example 2: Find the partial differential equation from the relation

x
z =

y
z ...(9)

by treating z as dependent variable and x, y as independent variables.

Solution: Differentiating (9) with respect to x, we have

2
1 x p
z z = 2

y p
z ...(10)
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Notes Again differentiating with respect to y, we obtain

2
x q
z

= 2(1/ / )z yq z ...(11)

Eliminating from (10) and (11) we have

( )
z xp

xq
= ( )yp

z yq

or z2  zxp  zyq xypq = xypq

or z2  z (px + qy) = 0

or z = px + qy ...(12)

Example 3: Find the partial differential equation from the relation

x2  z2 = (x2  y2) ...(13)

Solution: Differentiate (13) partially with respect to x keeping y fixed we have

2 2 zx z
x = 2x ...(14)

Again differentiate (13) partially with respect to y keeping x fixed.

2 zz
y = 2y ...(15)

Eliminating from (14) and (15) we have

2( )
( 2 )
x zp

zq =
2

( 2 )
x
y

or xy zpy = xzq

or xzy + zpy = xy                Ans ...(16)

Example 4: Find the partial differential equation from the relation

z = 1 2( 2 ) (2 )y x y x ...(17)

Solution:

Differentiating (17) partially with respect to x keeping y fixed and z a dependent variable.

z
x = 1 2( 2) ( 1) ...(18)

Now differentiate (17) with respect to y,

z
y = 1 22 ...(19)

Eliminating 2  from (18) and (19) we have
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Notes
2 z z

x y = 13 ...(20)

Now differentiating (20) by x

2 2

22 z z
x yx = 1 13 ( 2) 6 ...(21)

And differentiating (20) by y

2 2

22 z z
x y y = 13  (1) ...(22)

Now eliminating 1  from (21) and (22) we have

2 2 2 2

2 22 4 2z z z z
x y x yx y = 0

or
2 2 2

2 22 5 2z z z
x yx y = 0 ...(23)

Notes  One can see that if there are two unknown functions in the relation between x, y and
z then we obtain second order partial differential equation.

Self Assessment

1. Set up the partial differential equation by treating z as dependent variable and x, y as
independent variables from the following relation

1 2( ) ( )z f y x f y x

2. Set up the partial differential equation from the following relation by treating z as
dependent variable and x, y as independent variable

5 5 tan( 3 ) ,( 3 ) 0xe z y x y x

9.3 Various Classes of Partial Differential Equations

In this section we shall discuss some partial differential equations that occur in problems or
propagation of waves in metals or strings, in electrostatics and gravitation, conduction of heat
and diffusion of things in certain media. The partial differential equations discussed in the last
two sections are generally partial differential equations. There are certain partial differential
equations which are of second order in nature or of higher order. Let us define the partial
derivatives of the dependent variable z of two independent variables x and y as

2 2

2, , ,z z z zp q r s
x y x yx

 and 
2

2 .z t
y
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Notes up to second order partial differential equations i.e.

2 2 2

1 2 3 4 52 2
z z z z za a a a a z

x y x yx y
= ( , )f x y

or 1 2 3 4 5a r a s a t a p a q z = ( , )f x y

(a) Depending upon the values of a1, a2 and a3 we can have:

1. Hyperbolic type of partial differential equations in which 2
1 3 24 .a a a

Such equations are found in wave motion as well as in vibration of strings etc.

The example is wave motion

2 2

2 2 2
1 ,V V

x c t
 here y is replaced by time variable

2. Parabolic type: Partial differential equations in which

2
2 1 34 0a a a

Examples of such type of equations are diffusion problems as well as conduction of heat
problems i.e.

2

2 ,V VK
tx

 here y is replaced by time t.

3. Elliptic type partial differential equation in which

2
2 1 34 0.a a a

We come across such differential equations in electrostatics or gravitational potential
problems. Such equations are Laplace equations i.e.

2 2

2 2 0V V
x y

The signification of these equations is that if we transform from x, y co-ordinate to another
co-ordinate system by canonical transformation these three properties do not change.

(b) Homogeneous Partial Differential Equations

In these equations the coefficients of differential equations of any order is a constant multiple of
the variables of the same degree i.e.

2 2
2 2

2 2 0z z z zx y x y
x y x y

(c) Linear Partial Differential Equations with Constant Coefficients

In these equations the coefficients of the partial derivatives are constant i.e.

1 2 3 4 5 6 ( , )c r c s c t c p c q c z f x y
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Noteswhere c1, c2, ... c6 are constant of x and y.

By means of transformations we can reduce the homogeneous partial differential equations into
those with constant coefficients.

Self Assessment

3. Classify the equation

2 2 2

2 23 0z z z
x yx y

into one of the categories i.e. elliptical, hyperbolic or parabolic type.

4. Reduce the equation

2 2 2
2 2

2 22 0z z zx xy y
x yx y

to equation with constant coefficients.

9.4 Summary

 Like ordinary differential equations partial differential equations play an important part
in understanding certain processes.

 There are various types of partial equations like partial differential equations of first
order. It involves only first partial derivatives of the dependent variable.

 Then there are partial differential equations of second or higher order and involve higher
order than the first one, derivatives of the dependent variables.

 The most important second order partial differential equations can be either elliptic or
parabolic or hyperbolic and play important role in most physical problems.

 In the subsequent units various methods will be given to tackle these types of equations.

9.5 Keyword

The classification of partial differential equations help us to choose appropriate method for
solving these partial differential equations.

9.6 Review Questions

1. Set up partial differential equations by eliminating the constants a and b:

2 2 2( ) 2y x a y z b

2. Set up partial differential equation by eliminating b and a from the following equation

23z ax a y b

3. Reduce the following equation to an equation having constant coefficients of its derivatives
2 2 2

2 2 3 4
2 24 4 6z z z zx xy y y x y

x y yx y
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Notes Answers: Self Assessment

1.
2 2

2 2 0z z
x y

2. 3 5 tan( 3 )p q z y x

3. Hyperbola

4.
2 2 2

2 2 0z z z z z
u v u vu v

where u = log x, v = log v

9.7 Further Readings

Books Piaggio, H.T.H., Differential Equations

Sneddon, L.N., Elements of Partial Differential Equations

Yosida, K., Lectures in Differential and Integral Equations
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NotesUnit 10: Cauchy ’s Problem and Characteristics for
First Order Equations

CONTENTS

Objectives

Introduction

10.1 Cauchy’s Problem for First Order Equations

10.2 Cauchy’s Method of Characteristics

10.3 Summary

10.4 Keywords

10.5 Review Questions

10.6 Further Readings

Objectives

After studying this unit, you should be able to:

 See that in the differential equation p and q may be of any degree also.

 Understand whether the solution exists for certain types of conditions or not.

 Understand that the partial differential equations can be solved by introducing certain
characteristic curves.

Introduction

The method of solution involves the ideas of integral surfaces or curves through which the
solution passes.

Thus one can introduce certain parameters and set up the characteristic equations for x, y, z, p and
q in terms of these parameters. After solving these equations and eliminating the parameters we
can get the solutions.

10.1 Cauchy’s Problem for First Order Equations

We know that z is a dependent variable and x, y being independent variables. So the first order
partial differential equation can be put into the form

(x, y, z, p, q) = 0 ...(1)

Here p = 
z
x  and q = 

z
y  are partial derivatives. We are interested in seeking the solution of the

partial differential equation (1). Before we attempt to find a solution we want to understand
whether the solution exists or not. What is meant by the existence theorem which establishes
conditions under which we can assert whether or not a given partial differential equation has
a solution at all. Also further whether the solution if it exists is unique or not. The conditions
to be satisfied in the case of first order partial differential equation are boiled down to the

Sachin Kaushal, Lovely Professional University
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Notes classic problem of Cauchy, which in the case of two independent variables may be stated as
follows:

Cauchy’s Problem

Cauchy’s problem is stated as follows:

(a) x(t), y(t), and z(t) are functions which together with their first derivatives ,z z
x y

 are

continuous in the interval M defined by t1 < t < t2,

(b) And if (x, y, z, ,z z
x y

) is continuous function of x, y, z, p = ,z zq
x y

 in a certain region

U of the xyz pq space, then it is required to establish the existence of the function z = f(x, y)
with the following properties:

(1) f(x, y) and its partial derivatives with respect to x and y are continuous functions of x
and y in a region R of the xy space.

(2) For all values of x and y lying in R the point {x, y, f(x, y), fx(x, y), fy(x, y)} lies in U and

[x, y, f(x, y), fx(x, y), fy(x, y)] = 0

(3) For all t belonging to the interval M, the point {x0(t), y0(t)} belongs to the region R
and

f{x0(t), y0(t)} = z0

Geometrically stated, what we wish to prove is that there exists a surface z = f(x, y) which
passes through the curve  whose parametric equations are

x = x0(t), y = y0(t) and z = z0(t) ...(1)

and at every point of which the direction (p, q, 1) of the normal is such that

{x, y, z, p, q} = 0 ...(2)

The Cauchy’s problem stated above can be formulated in seven other ways. For details you are
referred to D. Berstein. To prove the existence of a solution it is necessary to make some more
assumptions about the form of the functions and the curve. There are a whole class of existence
theorems depending on the nature of these assumptions. However we shall be contented our-
selves by quoting  one of them as follows.

Theorem: If g(y) and all its derivatives are continuous for |y  y0| < , if x0 is a given number and
z0 = g(y0), q0 = g (y0) and if (x, y, z, q) and all its partial derivatives are continuous in a region S
defined by

|x  x0|< , |y  y0|< , |q  q0|< 

then there exists a unique function (x, y) such that:

(a)  (x, y) and all its partial derivatives are continuous in a region R defined by |x  x0|< 1,
|y  y0| < 2.

(b) For all (x, y) in R, z = (x, y) is a solution of the equation

z
x  = f(x, y, z, 

z
y )

(c) For all values of y in the interval |y  y0| < 1, (x0, y) = g(y).
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NotesAt this point we want to say a few words about different kinds of solutions. We may get a
relation of the type

F(x, y, z, a, b) = 0

for the solution of the first order partial differential equation.

Any such relation containing two arbitrary constants a and b and a solution of the partial
differential equation of the first order is said to be a complete solution or a complete integral of
that equation.

On the other hand any relation of the type

F(u, v) = 0

involving an arbitrary function F connecting two known functions u and v of x, y and z and
providing a solution of the first order partial differential equation is called a general solution or
a general integral of that equation.

We shall be dealing with the classifications of the integrals of the first order partial differential
equations in the unit 16 in more details.

Self Assessment

1. Eliminate constants a and b from the equation

z = (x + a) (y + b)

2. Eliminate the arbitrary function f from the equation

z = xy + f (x2 + y2)

10.2 Cauchy’s Method of Characteristics

We should now consider a method due to Cauchy for solving the non-linear partial differential
equation

F(x, y, z, ,z z
x y

) = 0 ...(1)

The method is based on geometrical ideas. Equation (1) can be theoretically solved to obtain an
expression.

q = G (x, y, z, p) ...(2)

from which q is calculated in terms of x, y, z and p. Before proceeding further let us consider a
plane passing through a point P(x0, y0, z0) with its normal parallel to the direction n defined by
the direction cosines (p0, q0, 1). This plane is uniquely specified by the set of numbers D(x0, y0,
z0, p0, q0). Conversely any such set of five numbers defines a plane in three dimensional space.
We now define

A plane element: A set of five numbers D(x, y, z, p, q) is called a plane element of the space.

An integral element: If the plane element (x, y, z, p, q) satisfies an equation

F(x, y, z, p, q) = 0 ...(3)

it is called an integral element of the equation (3) at the point (x0, y0, z0).

Thus keeping x0, y0 and z0 fixed and varying p, we obtain a set of plane elements {x0, y0, z0, p,
G(x0, y0, z0, p)} which depend on the single parameter p. As p varies we obtain a set of plane
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Notes elements, all of which pass through the point P and which therefore envelope a Cone with
vertex P; the cone so generated is called elementary Cone of equation (3) at the point P (Figure
15.1). Consider now a surface S whose equation is

z = g(x, y) ...(4)

If the function g(x, y) and its first partial derivatives gx(x, y), gy(x, y) are continuous in a certain
region R of the xy plane, then the tangent plane at each point of S determines a plane element of
the type

{x0, y0, g(x0, y0), gx(x0, y0), gy(x0, y0)} ...(5)

which we shall call the tangent element of the surface S at the point (x0, y0, g(x0, y0)).

We now state the following theorem on geometrical ground.

Theorem 1: A necessary and sufficient condition that a surface be an integral surface of a partial
differential equation is that at each point its tangent element should touch the elementary cone
of the equation.

A curve C with parametric equation

x = x(t), y = y(t), z = z(t) ...(6)

lies on the surface (4) if

z(t) = g(x(t), y(t));

for all values of t in the appropriate interval l. If P0 is a point on this curve determined by the
parameter t0, then the direction ratios of the tangent line P0 P1 (See Figure 15.2) are (x (t0), y (t0),

z (t0)), where x (t0) denotes the values of 
dx
dt  when t = t0, etc. This direction will be perpendicular

to the direction (p0, q0, 1) if

z (t0) = p0 x 0(t0) + q0 y 0(t0).

For this reason we say that any set

{x(t), y(t), z(t), p(t), q(t)} ...(7)

of five real functions satisfying the conditions

z (t) = p(t) x (t) + q(t) y (t) ...(8)

Figure 10.1

126



LOVELY PROFESSIONAL UNIVERSITY

Cauchy’s Problem and Characteristics for First Order Equations

Notesdefines a strip at the point (x, y, z) of the curve C. If such a strip is also an integral element of
equation (3), we say that it is an integral strip of equation (3) i.e., the set of functions (7) is an
integral strip of equation (3) provided they satisfy condition (8) and the condition

F(x(t), y(t), z(t), p(t), q(t)) = 0 ...(9)

for all t in l.

If at each point, the curve (6) touches a generator of the elementary cone, we say that the
corresponding strip is a characteristic strip. We shall now derive the equations determining a
characteristic strip for the point (x + dx, y + dy, z + dz) that lies in the tangent plane to the
elementary cone at P.

If dz = p dx + q dy ...(10)

where p and q satisfy (3). Differentiating (10) with respect to p we obtain

0 = dx + dq
dp

 dy. ...(11)

Also from (3)

F
p

 + 0dqF
q dp

...(12)

solving the equations (10), (11) and (12) for the ratios of dx, dy, dz and by putting the values of dq
p

from (10) into (11), we have

dq
dp

 =

F
pdx
Fdy
q

or dx
F
p

=
dy
F
q

Figure 10.2
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Notes
Also

pdx
Fp
p

 =
q dq pdx q dy dz

F F F F Fq p q p q
p p p p p

Hence dx
F
p

=
dy dz
F F Fp q
p p p

...(13)

that means that along a characteristic strip, x (t), y (t), z (t) must be proportional to Fp, Fq, p Fp + q
Fq respectively. If we choose the parameter t in such a way that

x (t) = Fp , y (t) = Fq ...(14)

then z (t) = p Fp + q Fq

along a characteristic strip p is a function of t so that

p (t) = ( ) ( )p px t y t
x y

= p pF F
x p y q

= .p qF F
x p x q

Since p q
y x

Differentiating equation (3) with respect to x, we find that

F F
x z p + p qF F

p x q x
 = 0

so that on a characteristic strip

p (t) = (Fx + p Fz) ...(16)

and it can be shown similarly that

q (t) = (Fy + q Fz) ...(17)

Collecting equations (14) to (17), we see that we have the following system of five ordinary
differential equations for the determination of the characteristic strip

x (t) = Fp, y (t) = Fq, z (t) = p Fp + q F q

p (t) = (Fx + p Fz), q (t) = (Fy + q Fz) ...(18)

These equations are known as the characteristic equations of the differential equation (3).

The main theorem about characteristic strip is:

Theorem 2: Along every characteristic strip of the equation F(x, y, z, p, q) = 0, the function F(x,
y, z, p, q) is a constant.

The proof is a matter simply of calculation. Along a characteristic strip we have

( ( ), ( ), ( ), ( ), ( )) x y z p q
d F x t y t z t p t q t F x F y F z F p F q
dt

( ) ( ) ( ) 0x p y q z p q p x z q y zF F F F F pF qF F F pF F F qF

128



LOVELY PROFESSIONAL UNIVERSITY

Cauchy’s Problem and Characteristics for First Order Equations

NotesSo that F(x, y, z, p, q) = k, is a constant along the strip.

Theorem 3: If a characteristic strip contains at least one integral element of F(x, y, z, p, q) = 0, it is
an integral strip of the equation F(x, y, z, p, q) = 0.

We are now in a position to solve Cauchy’s problem. Suppose we want to find the solution of the
partial differential equation (1) which passes through a curve  whose freedom equations are

x = ( ), y = ( ), z = ( ) ...(19)

then in the solution

x = x(p0, q0, x0, y0, z0, t0, t) etc., ...(20)

and in the characteristic equations (18) we may take

x0 = ( ), y0 = ( ), z0 = ( )

as the initial values of x, y, z. The corresponding initial values of , ,  are determined by the
relations

= p0 ( ) + q0 ( )

F( ( ), ( ), ( ), p0, q0) = 0

We substitute these values of x0, y0, z0, p0, q0 and the appropriate value of to in equation (20), and
find that x, y, z can be expressed in terms of two parameters t,  to give

x = X( , t), y = Y( , t), z = Z( , t) ...(21)

Eliminating , t from these equations, we get a relation

( , , )x y z = 0

which is the equation of the integral surface of equation (1) through the curve . We shall
illustrate this procedure by an example.

Example: Find the solution of the equation

F =
1
2 (p2  q2) + (p  x) (q  y) z ...(1)

that passes through the x-axis.

It is readily shown that the initial values are

x0 = , y0 = 0, z0 = 0, p0 = 0, q0 = 2 , t0 = 0, ...(2)

The characteristic equations of this partial differential equations are

x (t) = Fp, y (t) Fq, z (t) = p Fp + q Fq

p (t) =  Fx  p Fz, q (t) =  Fy  q Fz ...(3)

Fp =
F
p

 = p + q  y, Fq = 
F
q  =  q + p  x

Fx =
F
x  =  q + y, Fy = 

F
y  =  p + x, Fz = 1 ...(4)

Substituting these values of partial derivatives of F in equations (3) we have
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Notes x (t) = p + q  y, y (t) = p  q  x, z (t) = p(p + q  y) + q(p  q  x)

p (t) = q  y + p, q (t) = p  x + q ...(5)

Now x (t) = p (t), which gives x = p + , so that t = 0

x = , p = 0, so x =  + p ...(6)

similarly y = q  2 ...(7)

Also, it is readily shown that

d
dt (p + q  x) = q  y + p + p  x + q  p  q + y

= p + q  x

So
( )d p q x
p q x  = dt

On integrating we get

log(p + q  x) = t + log c1

or p + q  x = c1 e
t ...(8)

At t = 0, p = 0, q = 0, x =  we get c1 = +

therefore p + q  x = + et ...(9)

Similarly

( )d p q y
dt  = p + q  y + p + q  p  x  p  q + x = p + q  y

or ( )d p q y
dt  = p + q  y ...(10)

On integrating (10) we get

p + q  y = 2 et ...(11)

the constant of integration being 2 .

From (6) and (9) we have

q =  et  p + x

or q =  et +  =  (et + 1) ...(12)

From (7) we have

y = q  2  = (et  1) ...(13)

From (11) we have

p = 2  et  q + y

= 2  et   (et + 1) + (et  1)

or p = 2  (et  1) ...(14)

130



LOVELY PROFESSIONAL UNIVERSITY

 Cauchy’s Problem and Characteristics for First Order Equations

NotesFinally from (6)

x = p +  = 2  (et  1) + 

or x =  (2et  1) ...(15)

Substituting these values of x, y, p, q in the equation for z (t), we have

dz
dt  = 2 (et  1) (2  et) +  (et + 1) (vet)

or
dz
dt  = 5 2 e2t  3 2 et ...(16)

on Integration of (16) we have

z =
25

2
(e2t  1)  3 2 (et  1) ...(17)

From (13) and (15)

x  2y =  (2et  1)  2  (et  1)

or x  2y = , ...(18)

and y  x =  (et  1)   (2et  1)

y  x =  et

so using (18) we have by eliminating , we get

et =
2
y x
y x

...(19)

Substituting these values of et and  into equation (17) we have

z =
2

2 25 2 1 3 2 1
2 2 2

y x y xx y x y
y x y x

= 2 2 25 5( ) ( 2 ) 3( )( 2 ) 3( 2 )
2 2

y x x y y x x y x y

= 2 2 25 1( ) ( 2 ) 3( ) 3 ( )
2 2

y x x y y x y y x

= 2 2 2 2 21 1( 2 ) ( 4 4 ) 3 3
2 2

y yx x x xy y y xy

= 23 12 (4 3 )
2 2

y xy y x y

or z = (4 3 )
2
y x y ...(20)

is the solution of the equation (1).
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Notes Self Assessment

3. Find the characteristics of the equation

pq = z,

and determine the integral surface which passes through the parabola x = 0, y2 = z.

10.3 Summary

 Cauchy’s problem is the question to be asked, if the given differential equation solution
exists.

 The conditions are given in which the solution does exist.

 Cauchy’s characteristics equations are set up which help in the solution of the partial
differential equations.

10.4 Keywords

Depending upon the values of the parameters the solution of a particular partial differential
equation represents various integral surfaces as well as certain curves.

The characteristic method of Cauchy helps in finding a particular solution passing through
certain curves or surfaces.

10.5 Review Questions

1. Eliminate b and c from the equation

z = b2(x + y) + b xy + c

2. Eliminate the function  from the equation

(x2  y2, x2  z2) = 0

Answers: Self Assessment

1. pq = z

2. yp  xq + x2  y2 = 0

3. x = 2  (et  1), y = 1/2  (et + 1), z = 2 e2t, 16z = (4y +x)2

10.6 Further Readings

Books Piaggio H.T.H., Differential Equations

Sneddon L.N., Elements of Partial Differential Equations
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NotesUnit 11: Classifications of Integrals of the First Order
Partial Differential Equations

CONTENTS

Objectives

Introduction

11.1 Geometrical Theorems

11.2 Classes of Integrals of a Partial Differential Equation

11.3 General Integrals

11.4 Singular Integrals

11.5 Summary

11.6 Keyword

11.7 Review Questions

11.8 Further Readings

Objectives

After studying this unit, you should be able to:

 Know various methods of finding the solution of the first order partial differential equation.

 See that the solution may consists of two arbitrary constants and this type of solution is
called complete integral of the solution.

 Come to know that there are solutions which can be written in terms of an arbitrary
function. Such a solution is called a general integral. There is a typical solution also that is
called a singular solution.

Introduction

The types of integrals can be complete integrals that depend upon two arbitrary constants.

There is a general integral of the solution of partial differential equation that is expressed in
terms of one arbitrary constant or function.

Then there is a singular integral which is an other solution of the partial differential equation.

11.1 Geometrical Theorems

In this unit we shall be concerned mainly with equations of geometrical interest and seek the
solutions of various partial differential equations as integrals of various forms, general integrals,
complete integrals, particular integrals and singular integrals and their geometrical
interpretation.

For this purpose it is advisable to revise the following two geometrical theorems.

Theorem 1: The direction-cosines of the normal to the surface f(x, y, z) = 0 at the point (x, y, z) are
in the ratio

Sachin Kaushal, LPU

133



LOVELY PROFESSIONAL UNIVERSITY

Notes
: :f f f

x y z

Also f f z p
x z x

and
f f z q
y z y

The symbols p, q are to be understood as here defined.

Theorem 2: The envelope of the system of surfaces

f(x, y, z, a, b) = 0,

where a, b are variable parameters, is found by eliminating a and b by using the given relation

and 0, 0.f f
a b

Example 1: Let us consider the equation

x2 + y2 + (z  c)2 = a2 ...(1)

which contains two constants a and c. This equation represents the set of all spheres whose
centers lie along the z-axis. If we differentiate the equation (1) with respect to x, we obtain the
relation

2 2( ) zx z c
x = 0 ...(2)

And if we differentiate the equation (1) with respect to y. We obtain the relation

2 2( ) zy z c
y = 0 ...(3)

Eliminating (c) from equations (2) and (3) we have

2 2z zx y
y x = 0

or xq  yp = 0 ...(4)

where 
zp
x  and .zq

y
 The equation (4) is a first order partial differential equation and is

linear.

We can show that there are other geometrical entities other than the set of all spheres with
centers along the z-axis which can be described by the equation (4).

Let us consider the equation

x2 + y2 = (z  c)2 tan2 ...(5)

in which the constants c and  are arbitrary. Differentiating  (5) with respect to x and y, we get the
relations

p(z  c)tan2 = x, q(z  c)tan2  = y ...(6)
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We see that the common things among these two surfaces of revolution (1) and (5) is that they
have the line OZ as the axis of symmetry. So if we simply take the equation

z = f(x2 + y2) ...(7)

where the function f is arbitrary and again differentiate (7) with respect to x and y separately we
get

2 , 2z zp xf yf
x y ...(8)

where 
ff
u  and u = x2 + y2. So after eliminating f from (8)

we get py  qx = 0 ...(4)

Thus we see that the function z defined by each of the equations (1), (5) and (7), is in some sense
a solution of the equation.

We now interpret the argument slightly. The relation (1) and (5) are both of the type

F(x, y, z, a, b) = 0 ...(9)

where a and b denote arbitrary constants. If we differentiate this equation with respect to x and
y respectively. We obtain the relations

0, 0F F F Fp q
x z y z ...(10)

The set of equations (9) and (10) constitute three equations involving two arbitrary constants
a and b. It will be possible to eliminate a and b from these equations to obtain a relation of the
kind

f(x, y, z, p, q) = 0 ...(11)

showing that the system of surfaces gives rise to a partial differential equation (11) of the first
order.

The obvious generalization of the equation (7) is a relation between x, y, z of the type

F(u, v) = 0 ...(12)

where u and v are functions of x, y and z and F is an arbitrary function of u and v. If we
differentiate (12) with respect to x and y respectively, we obtain the relations

0F u u F vp p
u x z dv x z

0F u u F v vq q
u y z dv y z

and if we eliminate 
F
u  and 

F
dv


 from these equations, we obtain the equation

0F u u v v v v u up q p q
u x z y z x z y y

135



LOVELY PROFESSIONAL UNIVERSITY

Notes

or 0u v v u u v v u u v v up q
z y z y x z x z x y x y

( , ) ( , ) ( , )
( , ) ( , ) ( , )
u v u v u vp q
y z z x x y ...(13)

which is partial differential equation of the type (11). It should be noted that equation (13) is a
linear partial differential equation i.e. the powers of p and q are both unity. Whereas the partial
differentiation equation (11) need not be linear. To see that consider the equation

(x  a)2 + (y  b)2 + z2 = 1 ...(14)

Differentiating (14) with respect to x and y separately, we have

2(x  a) + 2zp = 0, 2(y  b) + 2zq = 0

Substituting the values of (x  a) and (y  b) in equation (14) we have

z2p2 + z2q2 + z2 = 1 or z2(p2 + q2 + 1) = 1. ...(15)

So powers of p and q are not one.

Example 2: Eliminate the constants a and b from

2z = (ax + y)2 + b ...(1)

Solution: Differentiate with respect to x we have

2 z
x = 2 2 ( )p a ax y

Differentiating (1) with respect to y we have

2 z
y

= 2 2( )q ax y

or p = a(ax + y) ...(2)

q = (ax + y) ...(3)

px + qy = ax(ax + y) + y(ax + y)

= (ax + y)2 = q2

or px + qy = q2

is the answer.

Example 3: Eliminate the arbitrary function f from the equation

z = xyf
z

...(4)

Differentiating with respect to x and y respectively we have

z p
x = 2

y xyf p
z z

...(15)
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and

dzq
dy = 2

xyxf q
z z ...(16)

so p
q

= yz xyp
xz xyq

or pxz  xypq = yzq  xypq

or z(px  qy) = 0

is the answer.

Self Assessment

1. Eliminate the constants a and b from the equation

ax2 + by2 + z2 = 1

2. Eliminate the arbitrary function from the equation

F(x2 + y2 + z2, z2  2xy) = 0

11.2 Classes of Integrals of a Partial Differential Equation

Let us consider the partial differential equation of the form

F(x, y, z, p, q) = 0 ...(1)

in which the function F is not necessarily linear in p and q. We saw earlier that the solution
involving two parameter system of equation can be of the form

f(x, y, z, a, b) = 0 ...(2)

Any envelope of the system (2) must also be a solution of the differential equation (1). In this
way we are led to three classes of integrals of a partial differential equation of type (1):

(a) Two parameter systems of surfaces f(x, y, z, a, b) = 0.

Such an integral is called complete integral.

(b) If we take any one parameter subsystem

f(x, y, z, a, (a)) = 0

of the system (2) and form its envelope, we obtain a solution of equation (1). When the
function (a) which defines the subsystem is arbitrary, the solution obtained is called
general integral of (1) corresponding to the complete integral (2).

When a definite function (a) is used we obtain a particular case of the general integral.

(c) If the envelope of the two parameter system (2) exists, it is also a solution of the equation
(1), it is called the singular integral of the equation.

Example 1: Show that

z = ax + by + a2 + b2 ...(1)

is the complete integral of partial differential equation

z = px + qy + p2 + q2 ...(2)
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p = a ...(3)

Also differentiate (1) with respect to y we have

z
y

= q = b ...(4)

Substituting the values of a and b from (3) and (4) into the equation (1) we have

z = px + qy + p2 + q2 ...(2)

so equation (1) having two arbitrary constants a and b is the complete integral of partial
differential equation (2).

Differentiating (1) with respect to a and b respectively,

we get

and
0 2
0 2

x a
y b ...(5)

Substituting the values of a and b in (1) we have

Z =  
2 22 2

2 2 4 4
y yx x

4Z = (x2 + y2) ...(6)

To see whether equation (6) satisfies (2) we have

4 2
4 2

p x
q y

Substituting in R.H.S. of (2) we have

2 22 2

2 2 4 4
y yx x =

2 2( ) L.H.S.
4

x y z

So equation (6) satisfies equation (2).

Equation (6) represents a paraboloid of revolution, the envelops of all the planes represented by
the complete integral. Equation (6) represents singular integral.

Example 2: Show that

Z = beax + a2y ...(1)

is the complete integral of partial differential equation

p2 = zy ...(2)

Differentiating (1) w.r.t. x, y respectively

z p
x =

2ax+a ybae ...(3)

z q
y =

2ax+a y2ba e ...(4)
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p2 =

22 22 2 ax a yb a e

qz =
22 22 2 ax a yb a e

Thus p2 = qz ...(2)

So (1) is the complete integral of partial differential equation (2) since it has two arbitrary
constants.

Differentiating (2) w.r.t. p and q, we get

2p = 0 ...(5)

and z = 0 ...(6)

Eliminating p, q from (2), (5) and (6) we have

z = 0

It satisfies equation (2). So it is a singular integral. Also if we put b = 0 in (1) we get

z = 0

So z = 0 is both a singular as well as a particular solution.

Self Assessment

3. Show that F = ax + by + a2 + ab + b2  z = 0

is the complete integral of the partial differential equation

Z = px + qy + p2 + pq + q2

and find the singular integral

4. Show that

F = ax + by + 2 21
2

a b Z  = 0

is the complete integral of the partial differential equation

Z = px + qy + 2 21
2

p q

Find the singular integral of this partial differential equation.

11.3 General Integrals

Consider the partial differential equation of the first order

F(x, y, z, p, q) = 0 ...(1)

If on integration we get a solution of the form

f(u, v) = 0 ...(2)

where u and v are functions of x, y, z we call it a general integral. This will be illustrated by
means of the following example.
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Example: Find the partial differential equation for the general integral

f(x2 + y2, z) = 0 ...(3)

Let u = x2 + y2 = constant

v = z = constant

Now differentiating (3) with respect to x

We have
f
x = . .f fu v

u x v x

= .(2 )f f zx
u v x

or
f
x = 2 0f fx p

u v (where 
zp
x ) ...(4)

Again differentiating (3) with respect to y, we have

f
y

= . . 0f fu v
u y v y

or f
y

= 2 0f fy q
u v (where zq

y
) ...(5)

To solve (4) and (5) we get a condition on the coefficients of the partial derivatives , ,f f
u v  as

2xq  2yp = 0

or xq  yp = 0 ...(6)

which is the required partial differential equation.

Now from (3) we can write the

z = (x2 + y2 + ) ...(7)

We now show that (7) is also the solution of (3). To show this let us eliminate  and  from (7).
Now

z
x = p = 2 x

z
y = q = 2 y

p
q

= x
y

or xq  yp = 0

The solution (7) of (6) has two unknown constants and so (7) is the complete solution of the
equation (6).

Equation (7) denotes the surfaces all of whose normals intersect the axis of z.

To find singular solution let us put  = 2 in equation (7) and put

Z = a(x2 + y2) + 2 ...(8)
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NotesTo find  differentiate (8) with respect to , i.e.

0 = (x2 + y2) + 2

or =
2 2( )

2
x y

...(9)

Eliminating  from (8) we have

4Z = (x2 + y2)2 ...(10)

Self Assessment

5. Eliminate the arbitrary function  from the equation

2 2 2,( )/ 0
2
y x y z z

11.4 Singular Integrals

The complete integral of a partial differential equation represents a family of surfaces. If these
surfaces have an envelope, its equation is called a singular integral. To see that this is really an
integral we have merely to notice that at any point of the envelope there is a surface of the
family touching it. Therefore the normals to the envelope and this surface coincide, so the values
of p and q at any point of the envelope are the same as that of some surface of the family and
therefore it satisfies the same equation.

The working rule for finding out the singular integral is to start with the complete integral of
the form

f(x, y, z, p, q, a, b) = 0 ...(1)

Differentiate (1) with respect to a and b i.e.

f
a = 0 ...(2)

f
b = 0 ...(3)

and eliminate a, b, from (1), (2) and (3) to get the envelope.

or by eliminating p and q from the differential equation.

F(x, y, z, p, q) = 0 ...(4)

And two derived equations

F
p

= 0 ...(5)

F
q

= 0 ...(6)

One should test whether the singular integral obtained really satisfies the differential equation.

Example: Verify that

Z = ax + by + a  b  ab ...(7)
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Z = px + qy + p  q  pq ...(8)

Also find the singular integral.

Solution: Differentiate (7) with respect to a and b respectively, i.e.,

0 = x + 1  b ...(9)

0 = y  1  a ...(10)

So a = y  1, b = x + 1

Substituting values of a and b in (7) we have

z = x(y  1) + y(x + 1) + y  1  x  1  (y  1)(x + 1)

Simplifying, we have

z = xy  x + y  1

as singular integral. Differentiating (7) with respect to x and y separately we have

, ,Z Zp a q b
x y

 substituting in (7)

we have

z = px + qy + p  q  pq

which is just equation (8). So (7) is the complete integral of (8).

Self Assessment

6. Find the singular integral for the differential equation

Z = px + qy + p/q

11.5 Summary

 The partial differential equation of the first order can be a function of x, y, z and the partial

derivatives of z i.e., and .z zp q
x y

 The differential equation can have a solution depending upon two unknown constants.
Such a solution is called complete integral.

 If we substitute some fixed values for the constants we get particular integral.

 On the other hand if we get the solution of the equation in the form

(u, v) = 0

where u, v are known functions of x, y, z then we get a general solution.

11.6 Keyword

By varying the two arbitrary constants we can get various integrals or solutions of the partial
differential equations. It is advisable to visualize geometrically the integral surfaces or integral
curves.
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1. Eliminate the arbitrary constants a, b from the equation

zx = ax + by  a2b

2. Show that

z2 = ax2 + by2  3a2 + b2

is the complete integral of the equation

(z  px  qy)x3y2 = q2zx3  3p2z2y2

Find the singular integral.

Answers: Self Assessment

1. 2( ) 1 0z px qy z

2. ( ) 0z q p y x

5. 2 2 2( ) 2 2 0y z x p xyq xz

6. zx y

11.8 Further Readings

Books Piaggio, H.T.H., Differential Equations

Sneddon, L.N., Elements of Partial Differential Equations

Yosida, K., Lectures in Differential and Integral Equations
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CONTENTS

Objectives

Introduction

12.1 Linear Partial Differential Equations of the First Order

12.2 Lagrange’s Method of Solutions

12.3 Illustrative Examples

12.4 Some Special Types of Equations

12.5 Summary

12.6 Keywords

12.7 Review Questions

12.8 Further Readings

Objectives

After studying this unit, you should be able to:

 Understand that Lagrange’s method involves one dependent variable and two or more
independent variables in the differential equation.

 See that in the method the technique involved is similar to that which occurs in total
differential equation.

 Know how to study some special methods of solving non-linear partial differential
equations.

Introduction

Lagrange’s method is quite suitable to linear differential equations involving more than two
independent variables.

Four different methods are also listed to deal with special types of differential equations.

12.1 Linear Partial Differential Equations of the First Order

Let 
zp
x  and zq

y
.

Then the linear partial differential equations involving z as dependent and x, y as independent
variables are of the form

Pp + Qq = R ... (1)

where P, Q and R are given functions of x, y and z and they do not involve p and q. The first
systematic theory of equations of this type was given by Lagrange. Equation (1) is frequently
referred to as Lagrange’s equation.

Richa Nandra, Lovely Professional University
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Note:  If generalised to n independent variables, obviously the equation is

P1p2 + P2p2 + P3p3 + ... + Pnpn = R ... (2)

where P1, P2, ... Pn, R are functions of n independent variables x1, x2, ... xn and a dependent variable

f; pi = 
i

f
x

, (i = 1, 2, ... n).

It should be noted that the term ‘linear’ in the section means that p and q (or, in general case p1,
... pn) appear to the first degree only, but P, Q and R may be any functions of x, y and z.

12.2 Lagrange’s Method of Solutions

The Lagrange’s equation is

Pp + Qq = R ... (1)

where P, Q, R are functions of x, y, z. Suppose

u = f(x, y, z) = a ... (2)

is a relation that satisfies (1). Differentiating (2) with respect to x, y,

u u z
x z x = 0,

And
u u z
y z y = 0

or
u u p
x z = 0

and
u u q
y z = 0

Hence p = and

uu
yx qu u

z z

Substituting these values of p and q in (1) changes it to

u u uP Q R
x y z = 0 ... (2)

Therefore, if u = a be an integral of (1), u = a also satisfies (2). Conversely if u = a be an integral

of (2), it is also an integral of (1). This can be seen by dividing by 
u
z  and substituting p and q for

the values above. Therefore equation (2) can be taken as equivalent to equation (1).

We have shown in unit (8) that u = a and v = b are independent solution of the system of equations

dydx dz
P Q R ... (3)
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Hence we have the following rule:

To obtain an integral of the linear equation of the form (1), find two independent integrals of
equation (3). Let they be denoted by u = a and v = b, then (u, v) = 0, where  is an arbitrary
function, is an integral of the partial differential equation. Equations (3) are called subsidiary
equations.

The solution may also be written in the form

u = f ( ) ... (4)

where f denotes an arbitrary function of v.

This is known as Lagrange’s solution of the linear equation.

The method given above can be extended to the general equation of the form

1 2
1 2

z
n

n

z zP P P
x x x = R ... (5)

where P1, P2, ... Pn, R are functions of (x1, x2, ... xn, z). To solve equation (5) we write the subsidiary
equations

1 2

1 2

dx dx
P P =

n

n

dx
P ... (6)

and find n independent integrals of this system of these subsidiary equations, in the form

u1 = c1, u2 = c2, u3 = c3, ... un = cn ... (7)

then the integral of the given equation (5) is

 (u1, u2, ... un) = 0 ... (8)

12.3 Illustrative Examples

Example 1: Solve

(mz  ny) p + (nx  lz) q = ly  mx ... (1)

Solution:

Here P = mz  ny

Q = nx  lz

R = ly  mx

The subsidiary equations are

dydx dz
mz ny nx lz ly mx ... (2)

or ( ) ( ) ( )
dx mdy ndz

mz ny m nx z n y mx


  

or
dx mdy ndz dx mdy ndz

mz ny mnx m z n y nmx O
 

   
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NotesSo dx + m dy + n dz = 0 ... (3)

On integrating (3) we have

x + my + nz = a = u (say) ... (4)

Again from (2)

( ) ( ) ( )
ydyxdx zdz

x mz ny y nx z z y mx 

or
xdx ydy zdz xdx ydy zdz

mxz nxy nxy yz zy mxz O 

So xdx + ydy + zdz = 0

or x2 + y2 + z2 = b =  (say) ... (5)

Hence the integral of (1) is

 (u, ) = 0 ... (6)

Example 2: Solve

2 2
1p q
zxx y

Solution:

The subsidiary equations are

2 2 11 1
dydx dz

zxx y

or x2dx = y2dy = zxdz

From the first two equations we have on integration

x3 = y3 + a

or x3  y3 = a (say u)

From the first and third equations

x2dx = xzdz

or xdx = zdz

On integrating it

x2 = z2 + b

or x2  z2 = b =  (say b = )

So the solution of the above equation is

 (u, ) = 0

 (x3  y3, x2  z2) = 0
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Example 3: Solve: (z2  2yz  y2) p + (xy + zx) q = xy  zx.

Solution:

The auxiliary equations are

2 22
dydx dz

xy zx xy zxz yz y

or 2 2 2 22
ydyxdx zdz

xz xyz xy xy xyz xyz z x

x dx + y dy + z dz = 0.

x2 + y2 + z2 = c1.

Also from second and third terms,

dy dz
y z y z

or y dy  z dy  y dz  z dz = 0

or y dy  z dz  (z dy + y dz) = 0

or y2/2  z2/2  yz = c2.

The general solution is

(x2 + y2 + z2, y2  z2  2yz) = 0.

Example 4: Solve: (y2  z2  x2) p  2xyq + 2zx = 0.

Solution:

The auxiliary equations are

2 2 2 2 2
dydx dz

xy zxy z x
.

From second and third terms,

1, . ., .dy ydz i e c
y z z

Also 2 2 3 2 2
2 2 2 .

2 2 2 4 4
x dx y dy z dz

xy xz x xy xz

2 2 2
2 2 2 .

22 ( )
x dx y dy z dz dz

zxx x y z

2 2 2

2 2 2 .x dx y dy z dz dz
x y z z
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Noteslog (x2 + y2 + z2) = log z + log c2

(x2 + y2 + z2) = c2z.

The solution is

2 2 2 .yx y z z
z

Example 5: Solve: (y + z) p + (z + x) q = (x + y).

Solution:

The auxiliary equations are

.dydx dz
y z z x x y

2( ) ( ) ( )
dx dy dz dx dy dy dz

x y z x y y z

or
1
2 log(x + y + z) =  log c1 (x  y)

and log (x  y) = log c2 (y  z)

Hence the solution is

(x  y) (x + y + z) = x yf
y z

.

Example 6: Solve: (y3x  2x4) p + (2y4  x3y)q = 9z(x3  y3).

Solution:

The auxiliary equations are

3 4 4 3 3 3 .
2 2 9

dydx dz
y x x y x y z x y

4 3

3 4
2 .

2
dy y x y
dx y x x

Put 
4

3
2, , .

2
dy dv dv v vy x x v x
dx dx dx v

4 4

3
2 2

2
dv v v v vx
dx v

or
2

4
2v dx

xv v
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or
3

2
2

( 1)( 1)
v dxdv

xv v v v

or 2
2 1 2 1 log

1 1
v dv cx

v v v v

or
2

2
( 1)( 1)log logv v v cx

v

or
2 2

2
3

2

( )y x y xy x
cx

yx
x

or
2 2

3 3 .x y k
x y

Also 3 3 3 3 3 3
// .

2 2 9
dy ydx x dz

y x y x z x y

/ / .
1 3

dx x dy y dz
z

3 log x + 3 log y =  log cz

or x3y3 = 1/cz.

3 3 2 2
1 .yxz

x y y x

Example 7: Solve: ( ) ( ) .y z p z x q x y
yz zx xy

Solution:

(xy  zx) p + (yz  yx) q = zx  zy.

.dydx dz
y zx yz yx zx zy

dx + dy + dz = 0

or x + y + z = c1.

Also yz dx + zx dy + xy dz = 0.

or 0.dydx dz
x y z

log x + log y + log z = log c2.

xyz = c2.
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(x + y + z) = f (xyz)

Example 8: Solve: p cos (x + y) + q sin (x + y) = z.

Solution:

The auxiliary equations are

cos( ) sin( )
dydx dz

x y x y z
.

From first two terms,

sin( )
cos( )

dy x y
dx x y .

Put x + y = t,

1 dy dt
dx dx

,

1dt
dx  = tan t

or 1 tan
dt dx

t

or
cos

sin cos
t dt dx

t t

or
1 (cos sin ) (cos sin )
2 sin cos

t t t t dt dx
t t

or 1
1 cos sin 1 cos sin
2 cos sin 2 sin cos

t t t tdt dt x c
t t t t

or 1
1/2 log (sin cos )
2

t t t x c

or (x + y) + log [sin (x + y) + cos (x + y)] = 2x + log k1.

[sin (x + y) + cos (x + y)] = aex  y

Again .
sin( ) cos( )

dx dy dz
x y x y z

or .
sin cos

dt dz
t t z

or
32 sin
4

dt dz
zt
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or 2

3log tan 2 log .
8 2

t c z

2 3tan .
8 2

x yz b

Hence the general solution is

2 3[sin( ) cos( )] tan
8 2

x y x yx y x y e z

Example 9: Solve:

( ) ( ) ( ) .t t tt y z t z x t x y x y z
x y z

Solution:

The auxiliary equations are

dydx dz dt
t y z t z x t x y x y z

or
( )

3( ) ( ) ( ) ( )
dx dy dz dt dx dt dt dt dz dt

x y z t x t y t z t

log (x + y + z + t)1/3 =  log c1 (x  t)

log (x + y + z + t)1/3 =  log c2 (y  t)

and log (x + y + z + t)1/3 =  log c3 (z  t)

Hence the solution is

 [x + y + z + t]1/3 (x  t), (x + y + z + t)1/3 (y  t), (x + y + z + t)1/3 (z  t)] = 0

Example 10: Solve:

.xyz z zx y t az
x y t t

Solution:

The auxiliary equations are

.dydx dt dz
xyx y t az
t

From (1) and (2),

log c1x = log y, i.e., y = c1x.

From (1) and (3), t = c2x
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NotesNow from (1) and (4),

1 1

2 2

.
dx dz dz

x c x cx az az x
c x c

or

1

12

2

caz x
dz dz az cc or

x dx dx x c

which is linear in z.

I.F. = 
1exp. exp.( log ) .a

a dx a x
x x

The solution is

1
1 1

3
2 2

1
(1 )

a

a a
c dx c xz c
c c ax x

or
1

1
3

2
since

(1 )

a

a
y yz x cc
t a c tx

Thus the solution is

1

3 ,
(1 )

a

a
y yz x tc

a t t xx

Self Assessment

1. Solve

x (y  z) p + (y) (z  x) q = z(x  y)

2. x2p + y2q = z2

3. p + q = z/a

4. zp  zq = z2 + (x + y)2

5. u u ux y z xyz
x y z

6. tan x p + tan y q = tan z

12.4 Some Special Types of Equations

We have so far studied the method of solving the equations of the type

Pp + Qq = R.

Now, before we take up the general method of Charpit to solve the partial differential equations
of the first order but of any degree, we will deal with some special types of equations which can
be solved by methods other than the general method. We give here four simple standard forms
for which ,,complete Integral,, can be obtained.
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Notes Standard I

In this form of the equation only p and q are present. The partial differential equation will be of
the form

f (p, q) = 0 ... (1)

in which x, y, z do not appear. The complete integral is

z = ax + by + c ... (2)

where a and b are connected by the relation

f (a, b) = 0 ... (3)

Since zp a
x

 and zq b
y

, which on substitution becomes the given equation (1).

To find the general solution, let from (3) put b = (a) and replacing c by  (a), we have

z = ax +  (a)y + (a) ... (4)

Differentiating (4) with respect to a,

0 = x + y (a) + (a) ... (5)

The general solution is obtained by eliminating a between (4) and (5).

Suppose from (2), b =  (a) and replacing c by (a) the general solution is obtained by eliminating
‘a’ between the following equations:

z = ax + (a) y + (a). ... (6)

Differentiating (3) with respect to a,

0 = x + y  (a) + (a) ... (7)

Now to find the singular integral, differentiate

z = ax + (a) y + c

with respect to a and c,

0 = x + y  (a)

and 0 = 1.

Now the last equation shows that there is no singular integral.

Illustrative Examples

Example 1: Solve: q = exp. (  p/a).

Solution:

The complete integral is

z = x + y + 

where  = exp. (  /a)

i.e., the complete integral is

z =  x + {exp. (  /a} y + 
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NotesThe general integral is obtained by eliminating  between

z = x + {exp. ( /a)} y + f ( )

and 0 = x  {exp. (  /a)} 
y
a + f (a)

Example 2: Find the complete integral of

x2p2 + y2q2 = z2

Solution:

Now put z = eZ, x = eX, y = eY

1. . .z z X z Y zp
x X x Y x x X

xp = 
z
X .

and now 
1. .Z Z z z

X z X z X

xp = 
Zz
X .

Similarly,

yq = 
Zz
Y

The equation becomes

2 2
2 2 2Z Zz z z

X Y

or
2 2

1.Z Z
X Y

The complete integral is

Z = aX + bY + c

where a2 + b2 = 1

i.e., log z = a log x  2(1 ) loga y c .

Example 3: pm sec2m x + zl qn cosec2n y = zlm/(m  n).

Solution:

Put cos2x dx = dX, sin2 y dy = dY and z 1/(m  n) dz = dZ.

Write the given equation as

1/( ) 1/( )

2 . . 1
sincos

m nm n m nz dz z z
dx x yx
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Notes which on substitution becomes

1.
m nZ Z

X X

The complete integral is

Z = aX + bY + c

where

am + bn = 1

and ( )/( ). m n l m nm nZ z
m n a

1 1( sin 2 ).
2 2

X x x

1 1( sin 2 ).
2 2

Y y y

Example 4: Solve: (y  x) (qy  px) = (p  q)2.

Solution:

Put x + y = X, xy = Y

. .z z X z Yp
x X x Y x

.1 . ;z z y
X Y

. .z z X z Yq
y X y Y y

.1 . .z z x
X Y

The given equation by this substitution becomes

( ) z z z zy x x y y x
X Y X Y

2

.z z z zy x
X Y X Y

2 2
2 2( ) ( )z zy x y x

X Y

or
2z z

X Y
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Noteswhich is of the form F (p, q) = 0, [Standard I]

Solution is z + aX + bY + c

where a = b2.

z = b2 (x + y) + bxy + c.

Self Assessment

Find the complete integrals of:

7. p2 + q2 = m2.

8. pq = k.

9. p2 + q2 = npq.

10. 1.p q

Standard II

The equation

z = px + qy + f (p, q),

which is analogous to Clairaut’s form, has for its complete integral

z = ax + by + f (a, b) ... (1)

for 
z
x  = p = a and 

z
y  = q = b

In order to obtain the general integral put b =  (a).

z = ax + y  (a) + f {a,  (a)}.

Differentiating with respect to a,

0 = x + y  (a) + f  (a)

and eliminate a between these equations.

In order to obtain the singular integral, differentiate (1) with respect to a and b, i.e.,

0 = x + f/ a, ... (2)

0 = y + f/ b ... (3)

and eliminate a and b between the equations (1), (2) and (3).

Illustrative Examples

Example 1: Solve z = px + qy  2 (pq).

Solution:

The complete integral is

z  = ax + by  2 (ab) ... (1)
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Notes Differentiating with respect to a and b,

0 =
1. ,

2
x b

a

0 = ,
2

ay
b

           andb ax y
ba

Eliminating a and b, the singular integral is

xy = 1.

Example 2: Solve z  px  qy = c (1 + p2 + q2).

Solution:

The complete integral is

z = ax + by + c (1 + a2 + b2) ... (1)

Differentiating with respect to a and b,

0 = 2 2
,

(1 )
cax
a b

... (2)

0 =
2 2

.
(1 )

bcy
a b

... (3)

x2 + y2 =
2 2 2

2 2
( ) .

1
c a b

a b

c2  x2  y2 =
2 2 2

2
2 2

( )
1
c a bc

a b

=
2

2 2 .
1

c
a b

1 + a2 + b2 =
2

2 2 2 .c
c x y

Putting in (2), (3),

a =
2 2

2 2 2
(1 )

( )
x a b x

c c x y

and b = 2 2 2 .
( )

y
c x y
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NotesPut the values of a and b, the singular integral is

z =
22 2

2 2 2 2 2 2 2 2 2 ,
( ) ( ) ( )

yx c
c x y c x y c x y

or z2 (c2  x2  y2) = (c2  x2  y2)2

or x2 + y2 + z2 = c2.

Self Assessment

Find a complete integral of following equations:

11. z = px + qy + pq.

12. z = px + qy + p2 + q2.

13. z = px + qy + ( p2 + q2 + ).

Standard III

The equations which do not contain x and y, i.e., which are of the form

F (z, p, q) = 0 ... (1)

can be solved in the following way.

Write x + ay = X where ,a, is an arbitrary constant and assume z to be a function of (x + ay) i.e. of
X alone.

z = f (X)    when X = (x + ay);

p = .1,z dz X dz
x dX x dX

q = . . .z dz X dza
y dX y dX

Now the equation (1) becomes

, , 0dz dxF z a
dX dX

which is an ordinary differential equation of the first order and can be integrated. So the complete
integral will be known.

The general and singular integrals can be found as in first two cases.

Illustrative Examples

Example 1: Find a complete integral of: 9(p2z + q2) = 4.

Solution:

Put z = f (x + ay) = f (X)

p = .z dz X dz
x dX x dX
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Notes
q = . .z dz X dz a

y dX y dX

Therefore the equation becomes

2 2
29 4dz dzz a

dX dX

2
2{9 9 } 4dz z a

dX

2
2

3 ( )
dz
dX z a

or 2 2( )
3

z a dz dY

or
2 3/2( ) 2

(3/2) 3
z a X C

or (z + a2)3 = (X + k)2

or (z + a2)3 = (x + ay + k)2.

Example 2: Find a complete integral of: p3 + q3  3pqz = 0.

Solution:

Put z = f (x + ay) = f (X)

2 3
3 3 0dz dz dz dza a z

dX dX dX dX

3(1 )dz a az
dX

or 33 1
dz dx
az a

3
1 log
3 1

Xz c
a a

or 3a (x + ay) + k = (1 + a3) log z.

Example 3: Find a complete integral of: q2y2 = z(z  px).

Solution:

Put dY = 
dy
y , i.e. y = eY
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Notes
and dX = 

dx
x , i.e. x = eX,

The equation becomes

2

,z zz z
Y X

z = f (X + aY) = f ( ).

2
2 dz dza z z

d d

2
2 2 0.dz dza z z

d d

2 2 2

2
( 4 )
2

dz z z a z
d a

or 2 2
1 .

[1 (1 4 )] 2
dz d

z a a

2

12
[1 (1 4 ) 1]log

2
az c

a

2a2 log z = [  (1 + 4a2)  1] [X + aY] + k

= [  (1 + 4a2)  1] (log x + a log y) + k.

Example 4: Find complete integral of: pq = xmynzl.

Solution:

Put
11

, ,
1 1

nm yx X Y
m n

. , . ,z z X z z Y
x X x y Y y

, .m nz z zp x q y
x X Y

The given equation becomes . ,lz z z
X Y

which is of the form f (p, q, z) = 0.

Putting , ,z dz dz za
X d dy d

;ldz dza z
d d
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Notes 2

.
ldz z

d a

( /2 1)
,

1 ( /2)

lz c
l a

11
1 ( /2)1 .

2 1( 1)

nm
l yaY X xz c a c

l na a m

Example 5: Solve: z2 (p2 + q2 + 1) = c2

Solution:

Put z dz = dZ i.e. Z = 
2

2
z

.Z dZ Z
x dz x  = zp = P (say)

z dZ z
Y z Y  = zq = Q (say)

The given equation becomes

2Z + P2 + Q2 = c2

now let Z = f (x + ay) + f (X)

P = .Z dZ X dP
x X x dx

Q = .Z dZ X dZa
Y X y dX

2dZ
dx (1 + a2) = c2  2Z

or
2

2 2
(1 )

( )
dZ a dx

c a z

or  [(1 + a2)] [(c2  2Z)] = X + c

or  (1 + a2) (c2  z2) = (x + ay) + c

or (1 + a2) (c2  z2) = (x + ay + c)2.

Self Assessment

Solve

14. p (1 + q2) = q(z  a)

15. p2 = z2 (1  pq)
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Notes16. p2  q2 = pz.

17. pz = 1 + q2

18. p (1 + q) = qz.

Standard IV

If the equation is of the type

f1 (x, p) = f2 (y, q), ... (1)

write f1 (x, p) = f2 (y, q) = c1 ... (2)

Solving equations (2) for q and p, we have

z/ x = p = 1 (x, c1)

and z/ y = q = 2 (y, c1).

Now dz = p dx + q dy

= 1 (x, c1) dx + 2 (y, c1) dy,

z = 1 1 1( , ) ( , ) .x c dx y c dy b

The general integral may be obtained from the above complete integral and as in Standard I,
there is no singular integral.

Illustrative Examples

Example 1: Find complete integral of:

2 .p q x

Solution:

2p x q a  (say),

p = (2x + a)2 and q = a2,

dz = p dx + q dy

     = (2x + a)2 dx + a2 dy

z = 
3(2 )

3.2
x a

+ a2y + b

the complete integral is

6z  6b = (2x + a)3 + 6a2y.

Example 2: Solve: z2 (p2 + q2) = x2 + y2.

Solution:

Put z dz = dZ; i.e. Z = z2/2.
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Notes
.Z Z z

x z x = zp = P (say)

.Z Z z
y z y = zq = Q (say)

The given equation becomes

P2 + Q2 = x2 + y2.

P2  x2 = y2  Q2.

Let P2  x2 = y2  Q2 = a2

or P = (a2 + x2) and Q = (y2  a2).

dZ = P dx + Q dy = (x2 + a2) dx + (y2  a2) dy

Z = 
2 2

2 2 2 2 2 2 2 2( ) log[ ( )] ( ) log[ ( )] .
2 2 2 2

yx a ax a x x a y a y y a c

Complete integral is

z2 = x (x2 + a2) + a2 log [x + (x2 + a2)] + y (y2  a2)  a2 log [y + (y2  a2)] + k.

Example 3: Solve: (x2 + y2) (p2 + q2) = 1.

Solution:

Put x = r cos , y = r sin ,

i.e. r2 = x2 + y2,  = tan 1 y
x .

sin. . cos . ,z z r z z zp
x r x x r r

cos. . sin . .z z r z z zq
y r y y r r

On substitution the equation becomes

2 2
2

2
1 1z zr

r r

or
2 2

2 1z zr
r

which is of the form f1 (q, x) = f2 (p, y).

Putting

2 2
2 2 1 ,z zr a

r
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Notes
2, (1 ).z a z a

r r

z = a log r + a quantity independent of r

and z = (1  a2)  + a quantity independent of .

General solution is

z = a log r + (1  a2)  + c

   = a log (x2 + y2) + 2(1 )a  tan 1 
y
x + c.

Example 4: Solve: (x + y) (p + q)2 + (x  y) (p  q)2 = 1.

Solution:

Put (x + y) = X, (x  y) = Y,

. . .z z X z Y z zp
x X x Y x X Y

. . ( 1).z z X z Y z zq
y X y Y y X Y

On substitution the given equation becomes

2 2 1
4

z zX Y
X Y

or
2 21 ,

4
z zX Y
X Y

which is of the form f1 (x, p) = f2 (q, y).

Putting 
2zX

X
= a and 

21
4

zY
Y

= a, we get

z/ X = (a/X)

and ( z/ Y) = 1 /
4

a X .

z = 2 (aX) + a quantity independent of x

and z = 2 
1
4

a Y + a quantity independent of y.

Complete integral is

z = 2 (aX) + 2  1
4

a Y + b
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Notes
   = 2 

1( )] 2 ( ) .
4

a x y a x y b

Example 5: Solve: z (p2  q2) = x  y.

Solution:

Putting Z = 3/22
3

z

1/22 3 .
3 2

Z zz
x x

2 2z Zz
x x  = P2   (say)

Similarly,

2 2
z Zz
y y

= Q2   (say)

P2  Q2 = x  y.

Let P  x = Q2  y = c.

P = (c + x) and Q = (c + y).

dZ = P dx + Q dy

= (c + x) dx + (c + y) dy.

3/23/2

1
( )( )

3 3
2 2

c yc xZ k

or z3/2 = (c + x)3/2 + (c + y)3/2 + k.

is the required solution.

Self Assessment

Solve the following:

19. q = 2yp2.

20. x2p2 = yq2.

12.5 Summary

 Lagrange method is quite famous. It is used also in the theory of total differential equations
as well as simultaneous differential equations.

 It can be easily extended to the theory of partial differential equations involving more
than two independent variables.
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Notes12.6 Keywords

The geometrical interpretation of the Lagrange’s equation

Pp + Qq = R

where P, Q and R are functions of Z, is that the normal to a certain surface is perpendicular to a
line whose direction cosines are in the ratio P : Q : R.

The subsidiary equations help us in finding the solution of Lagrange’s equation. If u = a, v = b
where u, v are functions of x, y, z and a, b being arbitrary constants but the statement that  (u, v)
are solutions of the Lagrange equations.

12.7 Review Questions

1. Solve the following x (y  z) p + y (z  x) q  (x  y) z = 0

2. Solve the following p + q = z/a

3. Solve the following by Lagrange’s method xzp  yzq = xy

4. p2 + q2 = x + y

5. zp = x

6. p2q3 = 1

Answers: Self Assessment

1. (x + y + z) =   (xyz)

2.
1 1 1 1
x y x z

3. z = ey/a f (x  y)

4.  [y + x, log (x2 + y2 + 2xy + z2)  2x] = 0

5. xyz  3u =  ,y x
x z

6.
sin sin
sin sin

z xf
y y

7. z = ax + 2 2( )m a y + c

8. z = ax + 
k
a y + c

9. z = ax + 2 4
2
a n n y + c

10. z = ax + 
2

1 a y  + c

11. z = ax + by + ab
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Notes 12. z = ax + by + a2 + b2

13. z = ax + by + 2 2a b Y

14. 4c (z  a) = (x + cy + b)2 + 4

15. 2 1/2 2 1/21 log (1 ) (1 )z a az az z ay b
a

16. (z  c) [z  c exp {x + ay/(1  a2)}]= 0

17. 2 2 2 2 2 2 1/2( 4 ) 4 log ( 4 ) 4 4z z z a a z z a x ay k

18. log (az  1) = x + ay + c

19. z = ax + a2y2 + b

20. (z  a log x  b)2 = 4a2y

12.8 Further Readings

Books Piaggio H.T.H., Differential Equations

Sneddon L.N., Elements of Partial Differential Equations
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NotesUnit 13: Charpit s Method for Solving Partial
Differential Equations

CONTENTS

Objectives

Introduction

13.1 General Method of Solution

13.2 Illustrative Examples

13.3 Special Types of First Order Equations

13.4 Summary

13.5 Keywords

13.6 Review Questions

13.7 Further Readings

Objectives

After studying this unit, you should be able to see that:

 Charpit s method is used to find the general integral of the partial differential equation.

 This method introduces a second partial differential equation of the first order that contains
an arbitrary constant.

 With the help of this second equation and the original equation the partial derivatives

z p
x and ,z q

y
 can be found.

 After finding these p and q, the solution can be found involving two arbitrary constants.

Introduction

With the help of the second equation and the original equation Charpit s subsidiary equations
are setup. Only those equations are to be solved that involve p or q.

Charpit s method helps in finding the general solution of the partial differential equations with
two arbitrary constants.

13.1 General Method of Solution

After discussing Lagrange s method and some special methods of solving partial differential
equation we now turn to an other general method due to Charpit in dealing with non-linear
partial differential equations involving two independent variables x and y. Here again we

denote 
zp
x  and 

zq
y

. Let the given equation be of the first order only. So the equation to

be sold will be of the form
F (x, y, z, p, q) = 0 ... (1)

Richa Nandra, Lovely Professional University
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Notes The Charpit method of solving this equation is as follows:

Charpit s Method

Here in addition to equation (1), another equation involving the same variables, is sought i.e.

f (x, y, z, p, q) = 0 ... (2)

With the help of equations (2) and (1), we solve for p and q and then substitute p and q in the
equation

dz = p dx + q dy ... (3)

Clearly the integral of (3) will satisfy the given equation for the values of p and q derived from
it are the same as the values of p and q in (1). Now differentiating (1) and (2) w.r.t. x and y, we get

p qF F z F F
x z x p x q x

= 0

f f f p f qz
x z x p x q x = 0

. . .p qF F z F F
y z y p y q y = 0

. . .f f f p f qz
y z y p y q y = 0

Eliminating p/ x from the first pair and q/ y from the second pair, we have

. . . . . .f f f f q f fF F z F F F F
x p p x x z p p z x q p p q

= 0 ... (4)

. . . . . .f f f f p f fF F z F F F F
y q q y y z q q p y p q q p

= 0 ... (5)

Now since 
2q pz

x x y y

and z/ x = p, z/ y = q,

adding (4) and (5) and rearranging,

f f f f fF F F F F F F Fp q p q
p x z y q z z p q p x q y

 = 0 ... (6)

The terms involving 
p
y

 and 
q
x

 cancel.

Now (6) is a linear equation of the first order, which the function f must satisfy and its integrals
are integrals of

/ /
dp dq dydz dx

F F F F F F F p F qp q p q
x z y z p q

= 0
df

. ... (7)
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NotesAny of the integrals of (7) will satisfy (6). The simplest relation involving p or q or both should
be taken and that will be the required relation.

13.2 Illustrative Examples

Example 1: Solve by Charpit s method z = pq.

Solution:

Applying Charpit s method,

. 1 ( )( ) ( )( )
dp dp dydz dx

p q p q q p q p = 0
df

From first two terms,

p
q = c.

z = cq2  or  q = (z/c) and p =  (cz).

Now dz = p dx + q dy

= (cz) dx + (z/c) dy

z 1/2dz = c dx + (1/ c) dy, on integration, we have

2z1/2  cx + (y/ c) + b

Example 2: Solve by Charpit s method (p2 + q2) y = qz.

Solution:

2 20 ( ) (2 ) (2 ) 2 2 0( ) ( )
dp dq dy dfdz dx
p q p py q qy z py py zp q q q

From first two terms,

2
dp dq
qp p

or p dp =  q dq i.e. p2 + q2 = c

 q  cy/z and p = (c  c2y2/z2)

dz = pd x + q dy

    = (c  c2y2/z2) dx + cy/z dy

or z dz = (cz2  c2y2)1/2 dx + cy dy

or 2 2
2( )

( )
z dz cy dy

z cy
 = 2 c . dx,

(z2  cy2)1/2 = .c x b
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Notes The complete integral is

2 2 2( ) ( )z cy cx b

Example 3: Solve by Charpit s method:

q = xp + p2.

Solution:

Charpit s auxiliary equations are

0 0 ( 2 ) ( 1) ( 2 ) 1 0
dp dq dy fdz dx

p p x p q x p

i.e. q = c from second term.

px + p2 = c

p = 
2( 4 )

2
x x c

.

dz = 
2( 4 )

2
x x c

dx + c dy.

z = 
2

2 21 4. ( 4 ) log{ ( 4 )}
4 2 2 4

x x cx c x x c cy b .

Aliter. Also 
1

dp dy
p

, i.e., p = aey

q = axey + a2e2y

dz = aey dx + axey dy + a2e2y dy.

z = axey + 
2

2
a

e2y + b.

Example 4: Solve by Charpit s method:

(p + q) (px + qy)  1 = 0.

Solution:

By Charpit s method, auxiliary equations are

( ) 0 ( )
dp dq

p p q p q q
 = ...

dp dq
p q

 or 
p c
q

q2 (1 + c) (cx + y)  1 = 0

or q = 
1

(1 )( )c cx y
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Charpit s Method for Solving Partial Differential Equations

Notesdz = p dx + q dy

= 
[(1 )( )]

c dx dy
c cx y

z (1 + c) = 2 (cx + y)1/2 + b.

Example 5: Solve by Charpit s method:

pq = px + qy.

Solution:

The auxiliary equations are

.
( ) ( ) ( ) ( )

dp dq dydz dx
p q p x q q y p x q y q

From first two ratios,

p/q = a i.e., p = aq.

Putting the value of p in the given equation,

aq2 = aqx + qy

or q = (y + ax)/a.

Therefore

p = (y + ax).

Now dz = p dx + q dy

= (y + ax) dx + 
y ax

a
dy.

adz = (y + ax) (dy + a dx).

az = (y + ax)2/2 + c.

Writing c as f (a),

az = (y + ax)2/2 + f (a). ... (1)

Differentiating with respect to a,

z = x (y + ax) + f  (a). ... (2)

Eliminating a between (1) and (2) the general integral will be obtained.

Example 6: Solve by Charpit s method:

2zx  px2  2qxy + pq = 0.

Solution:

Applying Charpit s method,

2 2 .
2 2 2 0 02

dy dp dq dfdx dz
xy p z qyx q px xyq

q = a.
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Notes Putting this value in the given equation,

2zx  px2  2axy + ap = 0.

p = 2x (z  ay) / (x2  a).

Also dz = p dx + q dy

= 2
2 ( )
( )
x z ay
x a

dx + a dy

or
dz a dy

z ay
= 2

2x
x a dx

or log (z  ay) = log c(x2  a).

(z  ay) = c (x2  a).

z = ay + c(x2  a) is the general solution.

Example 7: Solve by Charpit s method:

p2 + q2  2px  2qy + 1 = 0.

Solution:

Applying Charpit s method,

dp dq
F F F Fp q
x z y z

i.e.
2 2
dp dq

p q
i.e. p = qa.

Substituting in the given equation,

q2 (a2 + 1)  2q (ax + y) + 1 = 0.

q = 
2 2

2
2( ) [4( ) 4( 1)]

2( 1)
ax y ax y a

a
[taking +ve sign with the radical].

q = 
2 2

2
( ) ( ) ( 1)]

( 1)
ax y ax y a

a

Now dz = p dx + q dy

= 
1

( 1)a (ax + y) (a dx + dy) + 
1

( 1)a [(ax + y)2  (a2 + 1)] (a dx + dy).

Now putting ax + y = t

a dx + dy = dt

(a2 + 1) dz = dt + [t2  (a2 + 1)] dt.
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Notes
(a2 + 1) z = t +

1
2  2 2[ ( 1)]t a  

2 1
2

a
 log [t + (t2  (a2 + 1)}] + b

which is the required solution where t = ax + y.

Example 8: Solve by Charpit s method:

q = (z + px)2.

Solution:

Applying Charpit s method,

dp
F Fp
x y

 = 
dq dz

F F F Fq q
y z p q

   = 0
dy dfdx

F F
p q

.

We have

2 ( ) 2( ) 2 ( ) 2 ( )
dp dq dx

p z px p z px q z px x z px

or
dq dx
q x

or qx = a

Putting this value of q in the given equation 2( )a z px
x

or
1 ap z
x x .

Now dz = p dx + q dy

= 
1 a az dx dy
x x x

or (x dz + z dx) = a dx
x

+ a dy

or zx = 2 (ax) + ay + b.

Example 9: Solve p2 + q2  2px  2qy + 2xy = 0.

Solution:

Applying Charpit s method,

dp
F Fp
x z

 = 
dq dydz dx

F F F F F Fq p q
y z p q p q
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Notes
or 2 2 2 2 2 2 2 2

dp dq dydx
p y q x x p y q

or 2( ) 2( )
dp dq dx dy

p q x y p q x y

or p + q = x + y + c

or (p  x) + (q  y) = c ...(1)

Also the given equation can be written as

(p  x)2 + (q  y)2 = (x  y)2 ...(2)

Putting the value of (p  x) from (1) in (2)

{c  (q  y)}2 + (q  y)2 = (x  y)2

or 2(q  y)2  2c (q  y) + c2  (x  y)2 = 0

q  y =
2 2 22 [4 8{ ( ) }]

2 2
c c c x y

= 2 21 ) },
2 2
c x y c

q = 2 21[ ) }]
2

y c x y c

p  x = c  (q  y)

= 2 21[ ) }]
2

c c x y c

p = 2 21 { ) }]
2

x c x y c

Also we know that dz = p dx + q dy.

= 2 2 2 21 1[ { ) }] [ { ) ]}]
2 2

x c x y c dx y c x y c dy

= 2 21[ 2( ) } { }
2 2 2

c dx c dyx dx y dy x y c dx dy

Z =
22

2 2 2 21 ( ) if 2( )
2 2 2 2 2 2

y cyx cx dtt c x y t

or 2Z =
2

2 2 2 2 2 21 ( ) log{ ( )}
2 22
t cx y cx cy t c t t t c k

Example 10: Solve by Charpit s method:

pxy + pq + qy = yz.
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NotesSolution:

Here f = pxy + pq + qy  yz = 0 ... (1)

Charpit s auxiliary equations are

( ) ( )
dp dq

py p y px q qy = ...

or dp = 0    or    p = a ... (2)

From (1) and (2), we get

p = a, q = 
( )y z ax
a y

Putting these values of p and q in dz = p dx + q dy, we get

dz = a dx +  
( )y z ax
a y dy

or
dz a dx

z ax = 1y dy a
a y a y

 dy

Integrating, log (z  ax) = y  a log (a + y) + log b

or (z  ax) (y + a)a = bey.

Example 11: Solve by Charpit s method:

px + qy = z(1 + pq)1/2.

Solution:

f = px + qy  z (1 + pq)1/2 = 0 ... (1)

Charpit s auxiliary equations are

1/2 1/2(1 ) (1 )
dp dq

p p pq q q pq
= ...

or dp dq
p q

   p = aq ... (2)

Putting in (1), we get

q (ax + y) = z (1 + aq2)1/2

or q2 [(ax + y2) az2] = z2

q = 2 2 1/2[( ) )]
z

ax y az
 and p = aq = 2 2 1/2[( ) ]

az
ax y az

putting these values of p and q in dz = p dx + q dy,

dz = 2 2
( )

{( ) }
z a dx dy
ax y az

 or 2 2{( ) }
a dx dydz

z ax y az
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Notes Let ax + y = (a)u  a dx + dy = (a) . du

2 2( )
a dudz

z au az  or 
2 2 )du u z

dz z

This is homogeneous equation. To solve it put u = vz, then

2 2 21 ( )dvv z v z z
dz z

or 2{ ( 1) }dvz v v
dz

or 2( 1)
dz dv
z v v

or 2{ ( 1) }dz v v dv
z

2
2 21log [( 1)] log { ( 1)}

2 2 2
v vz v v v b

or
2

2 21log ( 1) log{ ( 1)} .
2 2 2
v vz v v v b

This is a complete integral, where 
ax yuv

z z a

Example 12: Solve by Charpit s method:

(x2  y2) pq  xy (p2  q2)  1 = 0. ... (1)

Solution:

f = (x2  y2) pq  xy (p2  q2)  1 = 0

Charpit s auxiliary equations are

2 2 2 2 2 2 2 22 ( ) 2 ( ) ( ) 2 ( ) 2
dp dq dydx

pqx z p q ypq x p q x y y pxy x y p pxy

from which it follows that each fraction

= 0
x dp y dq p dx q dy

(x dp + p dx) + (q dy + y dq) = 0

Integrating, px + qy = a

p =
a qy

x ... (2)
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Charpit s Method for Solving Partial Differential Equations

NotesPutting this value of p in (1),

2
2 2 2

2
( )( ) 1a qy a qyx y q xy q

x x
 = 0

or 2 2 2{( ) ( ) } 1a qy x y q a qy y xyq
x

= 0

or 2 2( ) 1a qy x q ay xyq
x = 0

or (a  qy) (x2q  ay) + x2yq2  x = 0

or aq (x2 + y2) = a2y + x.

q =
2

2 2( )
a y x

a x y

and
2 2

2 2 2 2
( )1
( ) ( )
a y x y a x yp a

x a x y a x y

Putting values of p and q in dz = p dx + q dy, we get

dz = 
2 2

2 2
( ) ( ).

( )
a x y dx a y x dy

a x y

or dz = 2 2 2 2
( )

( )
x dx y dy x dy y dxa

x y a x y

Integrating,

2 2 11log( ) tan .
2

yaz x y b
a x

Self Assessment

Apply Charpit s method to find the complete integrals of:

1. pxy + qp + qy = y2.

2. q = 3p2.

3. p  3x2 =  q2  y.

4. z = px + qy + p2 + q2.

5. 2 (pq + py + qx) + x2 + y2 = 0.

6. Zxp2  q = 0

13.3 Special Types of First Order Equations

In the section we shall consider some special types of first-order partial differential equations
whose solutions may be obtained easily by Charpit s Method.
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Notes
(a) The equations involving only 

zp
x

 and 
zq
y . In this case the equation to be solved

will be of the type

f (p, q) = 0 ... (1)

From the subsidiary equations

dp dq
f f f fp q
x z z z

=
0

dy dfdz dx
f f f fp p
p q p q

... (2)

or
0 0
dp dq dz

f fp q
p q

=
dydx

f f
q q

... (3)

Now from first equation

dp = 0

or p = a = constant ... (4)

Substituting this value of p in (1) we have

f (a, q) = 0 ... (5)

Solving for q from (5) we have

q =  (a) ... (6)

So from the equation

dz = p dx + q dy = a dx +  (a) dy ... (7)

We have on integration

z = ax +  (a) y + b

which is the general solution.

Example 1: Solve:

pq = 1

Solution:

Here again p = a so q = 
1
a

Thus on integrating

dz = pdx + q dy

= a dx + 
1
a  dy

z = ax + 
1
a y + b where a, b are constants
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Charpit s Method for Solving Partial Differential Equations

Notes
Example 2: Solve:

p + q = pq ... (1)

Solution:

p = a (constant)

so from (1)

a + q = aq

or q =
1

a
a

Thus dz = a dx + 1
a

a dy

given z = ax + 1
a

a y + b

which is the general solution.

(b) Equations not involving independent variables consider the partial equation of the
following type

f (z, p, q) = 0 ... (1)

which does not involve independent variables x, y.

From the subsidiary equations:

x z y z p q

dp dq dz
f pf f q f pf qf

=
0p q

dy dfdx
f f

... (2)

Here the symbols used are

, , , ,x p z q y
f f f f ff f f f f
x p z q y ... (3)

So from the first two fractions of (2) we have

z z

dp dq
pf qf

Integrating, we have

p = aq ... (4)

From equations (1) and (4) we can find p and q and the complete integral follows from the
relation.

dz = pdx + q dy ... (5)

Example 3: Find the complete integral of the equation

p2z2 + q2 = 1 ... (6)

As (6) does not involve x, y. So from the above method

q = pa1 ... (7)
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Notes Substituting in (6) we have

p2z2 + a2, q2 = 1

p2 = 2 2
1

1
z a

or p =  
1/22 2

1z a ... (8)

Substituting in

dz = p dx + q dy

dz = 1
1/2 1/22 2 2 2

1 1

a dydx

z a z a

we have

1/22 2
1z a dz = dx + a1 dy

so
1/22 2

1z a dz = x + a1y + a2 ... (9)

It can be shown that

2 221/2 1/2 1 12 2 2 2 1
1 1

1
log

2 2
z z az az a dz z a

a ... (10)

So the solution is (9) with integral (10).

(c) Separable equation

Let the equation be of the form

f (x, p) = g (y, q) ... (11)

instead of

F (x, y, z, p, q) = 0 ... (12)

Then from the subsidiary equations, we have

( )x y p q p q

dp dq dydx dz
f g f g pf qg

So
x

p

dp f
dx f = 0

or fp dp  fx dx = 0 ... (13)

which can be solved for p. Similarly we can solve for q and the complete integral is obtained.

Example 4: Solve

p2y (1 + x2) = q x2 ... (14)
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NotesOn rearranging we have

2 2

2
(1 )p x q

yx = a2 (say) ... (15)

Then q = a2y and p = 2 1/2(1 )
ax
x

Thus dz = pdx + qdy,

On integration gives

z =
2

2
2 1/2 .

2(1 )
ax dx ya b

x

z =
2

2 1/2 2(1 )
2
aa x y b ... (16)

is the complete integral.

(d) Clairaut s Equations

A first order partial differential equation of the form

z = px + qy + f (p, q) ... (17)

is of Clairaut type of the equation. Here

F = px + qy + f (p, q)  z = 0 ... (18)

So from the corresponding Charpit s equations, we have

,
( ) ( )p q p q

dp dq dydz dx
p p q q p x f q y f x f y f ... (19)

We have

p = a (say a constant)

q = b (a constant).

So from (17)

z = ax + by + f (a, b) ... (20)

is the complete solution of (17).

Example 5: Solve:

pqz = p2 (xq + p2) + q2 (yp + q2) ... (21)

Solution:

From (21)

z = px + qy + 
3 3p q

q p
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Notes So we have Clairaut equation type

p = a, q = b,

so z = ax + by + 
4 4a b
ab

... (22)

is the complete solution.

Self Assessment

7. Find the complete integral of

z = px + qy + p4 + q4 + p2q2

8. Find the solution of

p (q2 + 1) = q (z  b)

13.4 Summary

 Charpit method is quite useful in finding the complete integral of the first order partial
differential equation.

 Here we are interested in setting up auxiliary equations with the help of which the values
of p and q are obtained.

 Knowledge of the first derivatives ,z z
x y  or p and q respectively help in finding the

complete integral involving two arbitrary constants.

13.5 Keywords

Charpit s method helps in finding the complete integral of the first order partial differential
equation.

Jacobi s method: It deals with two independent variables and so to solve partial differential
equation having more than two independent variables we have to take the help of Jacobi s
method.

13.6 Review Questions

Solve by Charpit s method:

1. p2x + q2y = z

2. p2  y2q = y2  x2

3. yp = 2yx + log q

4. z2 (p2z2 + q2) = 1

Answers: Self Assessment

1. z = c1x + c2e
y (y + c1)  c1

2. z = ax + 3a2y + b
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Notes
3. z = x3 + ax + 3/22 ( )

3
y a b

4. z = ax + by + a2 + b2

5. 2z = ax  x2 + ay  y2 + 2 21 ( ) 2( )
2

x y x y a

6. z2 = 2ax + a2y2 + b

7. z = ax + by + a4 + b4 + a2b2

8. 2 ( )a z b a  = ax + y + c

13.7 Further Readings

Books Piaggio H.T.H., Differential Equations

Sneddon L.N., Elements of Partial Differential Equations
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Notes Unit 14: Jacobi’s Method for Solving
Partial Differential Equations

CONTENTS

Objectives

Introduction

14.1 Jacobi’s Method of Solution of Partial Differential Equations

14.2 Simultaneous Partial Differential Equations

14.3 Summary

14.4 Keywords

14.5 Review Questions

14.6 Further Readings

Objectives

After studying this unit, you should be able to:

 Know that Jacobi’s method for solving partial differential equation is similar to that of
Charpit’s method.

 See that two additional equations are to be found through which the first order derivatives

1 2 3
, ,z z z

x x x
 can be found that help in finding the solution of the first order partial

differential equations.

Introduction

Jacobi’s method consists of setting up the subsidiary equations.

Through the solution of subsidiary equations two independent integrals will be found and the
method uses techniques to solve the first order partial differential equation.

14.1 Jacobi’s Method of Solution of Partial Differential Equations

In Jacobi’s method we have to deal with three or more independent variables and one dependent
variable. Consider the equation

1 2 3 1 2 3, , , , ,F x x x p p p = 0 (1)

Where the dependent variable z does not occur except by its partial differential coefficients p1, p2,
p3 with respect to the three independent variables x1, x2, x3. The basic idea of Jacobi’s method is
very similar to that of Charpit’s.

So we try to find two additional equations

1 1 2 3 1 2 3, , , , ,F x x x p p p = 1 ...(2)

Richa Nandra, Lovely Professional University
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Notes
2 1 2 3 1 2 3, , , , ,F x x x p p p = 2 ...(3)

Here 1 and 2 are arbitrary constants. These equations are such that p1, p2, p3 can be found from
(1), (2), (3) as functions of x1, x2, x3 that make the equation

dz = 1 1 2 2 3 3p dx p dx p dx ...(4)

integrable, for which the conditions are

2

1

p
x

=
2 2

1 3 1 3 2

1 2 2 1 1 3 1 2 3
, ,p p p p pz z

x x x x x x x x x
...(5)

Now by differentiating (1) partially with respect to x1, keeping x2, x3 constant, but regarding p1,
p2, p3, as dependent functions of x1, x2, x3, we get

1 2 3

1 1 1 2 1 3 1

p p pF F F F
x p x p x p x

= 0 ...(6)

Similarly

1 31 1 1 2 1

1 1 1 2 1 3 1

pp pF F F F
x p x p x p x

= 0 ...(7)

Multiplying equation (6) by 1

1

F
p

 and equation (7) by 
1

,F
p

 and subtracting we get

1 1 12 3

1 1 2 1 1 3 1 1

, , ,
, , ,

F F F F F Fp p
x p p p x p p x = 0 ...(8)

where

1 1 1

1 1 1 1 1 1

,
 denotes "Jacobian" .

,
F F F F F F
x p x p p x

Similarly, like (8) we get

1 1 11 3

2 2 1 2 2 3 2 2

, , ,
, , ,

F F F F F Fp p
x p p p x p p x = 0 ...(9)

and

1 1 11 2

3 3 1 3 3 2 3 3

, , ,
, , ,

F F F F F Fp p
x p p p x p p x = 0 ...(10)

Add equation (8), (9) and (10) and noting that two pairs of terms are:

2
1 1 1 12 1

2 1 1 1 2 2 1 2 2 1 1 2

, , , ,
0

, , , ,
F F F F F F F Fp p z
p p x p p x x x p p p p

Similarly two other pairs of terms also vanish, leaving

1 1 1

1 1 2 2 3 3

, , ,
, , ,

F F F F F F
x p x p x p

= 0 ...(11)
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Notes i.e. on expansion

1 1 1 1 1 1

1 1 1 1 2 2 2 2 3 3 3 3

F F F F F F F F F F F F
x p p x x p p x x p p x = 0 ...(12)

The equation (12) is generally written as 1, 0.F F

Similarly

2 1 2, 0 and , 0.F F F F

But these are linear equations having more than two independent variables. Here we have the
following rule.

Try to find two independent integrals, F1 = a1  and F2 = a2, of the subsidiary equations

1 21 2 3

1 1 2 2 3

dp dpdx dx x
F F F F F
p x p x p

= 3

3

dp
F
x

...(13)

If F1, F2 satisfy the conditions

1 2 1 2
1 2

1,2 ,3

, 0,
r r r rr

F F F FF F
x p p x

and if the p’s can be found as functions of the x’s from

F = F1  a1 = F2  a2 = 0,

then integrate the equation formed by substituting these functions in

dz = p1dx1 + p2dx2 + p3dx3.

Examples of Jacobi Method

1. Solve

2 2
1 1 3 2 3 2 32 3 0p x x p x p p

Solution:

Let 2 2
1 1 3 2 3 2 32 3 0F p x x p x p p ...(1)

The subsidiary equations are

1 2 31 2 3

1 1 2 2 3 3

dp dp dpdx dx dx
F F F F F F
p x p x p x

(2)

Now

2
1 3 1 3 3 2 3

1 1 2 2
2 , 2 , 3 2 , 0,F F F Fx x p x x p p

p x p x

2
2 1 1 2 3

3 3
, 2 6F Fp p x p x

p x
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NotesSo the auxiliary equations are

1 2 31 2 3
2 2 2

1 3 1 3 2 2 3 2 1 1 2 32 2 03 2 2 6
dp dp dpdx dx dx

x x p x x p p p p x p x ...(3)

of which integrals are obtained by integrating the equations

1

1

dx
x =

1

1

dp
p

dp2 = 0

or

F1 = x1p1 = a1 ...(4)

F2 = p2 = a2 ...(5)

Now consider

1 2,F F =
1 2 1 2 1 2 1 2 1 2 1 2

1 1 1 1 2 2 2 2 3 3 3 3x
F F F F F F F F F F F F
x p p x p p x x p p x

= p1(0)  x1(0) + 0 + 0 + 0 +0 = 0

So equations (4) and (5) can be taken as the two additional equations required. So

p1 = 1
2 2

1
,a p a

x

And from equation (1) we have

p3 = 3
2 2 2 2

3 1 2 3 2 1 3 2 22 3 2 3x a a x a a x a x a

Hence

dz = p1dx1 + p2dx2 + p3dx3

= 21 1 3
2 2 1 3 2 3 2

1 2
2 3a dx dxa dx a x a x

x a

So on integration we get

z = 2 3
1 1 2 2 1 3 2 3 32

2

1loga x a x a x a x a
a

as the complete integral.

2. Solve

2
2 3 2 3 1 0x x p p zp ...(1)

Solution:

This equation is not of Jacobi’s type as it involves z. But put

z = x4

so p1 = 4
1 4

1 1 1 4
/  …(say)z x u u p p

x x x x
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Similarly

p2 = 4
2 4

2 2 2 4
/z x u u P P

x x x x

p3 = 4
3 4

3 3 3 4
/z x u u P P

x x x x

So equation (1) becomes

2
2 3 2 3 4 1 4 0F x x P P x p p ...(2)

So equation (2) involves four variables, but not involving the dependent variable u. Now

1

F
P = 4 4 2 3 2 3

1 2
, 0, 2F Fx P x x P P

x P

2

F
x = 2 2

2 3 2 3 2 3 2 3
3 3

, 2 ,F FP P x x P P P P
P x

4

F
P = 4 1 1 4

4
; .Fx P P P

x

The subsidiary equations are

1 1 2 2 3
2

4 4 2 3 2 3 2 3 2 32 30 2 2 ( )
dx dP dx dP dx
x P x x P P x x P PP P

3 4 4
2

4 1 1 42 3

dP dx dP
x P P PP P

of which integrals are

F1 = P1 = a1, dp2 = dp3, so P2  P3 = a2 = F2

4

4 1

dx
x P =

4
4 4 3 3

1 4
,  so dP x P a F

P P

so

F1 = P1 = a1 ...(3)

F2 = P2  P3 = a2 ...(4)

P3 = x4P4 = a3 ...(5)

We have to ensure that , 0,r sF F  where r and s are any two of the indices 1, 2, 3. To see

1 2, 0,F F  we have

1 2 1 2 1 2 1 2 1 2 1 2

1 1 1 2 2 2 2 3 3 3 3

F F F F F F F F F F F F
x P P x x P P x x P P x

1 2 1 2

4 4 4 4
0F F F F

x P P x ...(6)
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Notesas F1, F2 do not contain x1, x2, x3 and x4.

From (3) and (5) we have

3
1 1 4

4
, aP a P

x

From (4) we have

P2 = P3 + a2 ...(7)

Substituting in (2) we have

2
2 3 3 2 1 32x x P a a a = 0

2 3 3 22P P P a = 1 3

2 3

a a
x x

...(8)

 2P2 = 1 3
2

2 3

a aa
x x

...(9)

2P3 = 1 3
2

2 3

a aa
x x

...(10)

du = P1dx1 + P2dx2 + P3dx3 + P4dx4

= 3 4 2 1 3
1 1 2 3 2 3

4 2 3

1
2 2

a dx a a aa dx dx dx dx dx
x x x

on integration we get

1/22
1 1 3 4 2 3 1 3 2 3 4

1log
2 2
au a x a x x x a a x x a

so u = 0 gives, replacing x4 by z, and dividing by a3 we have

1/21 2 1 4
1 2 3 2 3

3 3 3 3
log 0

2
a a a ax z x x x x
a a a a

Let 1 2 4
1 2 3

3 3 3
, ,

2
a a aA A A
a a a

 we have the required equation:

1/2
1 2 2 3 1 2 3 3log 0z A x A x x A x a A ...(11)

3. Solve

p2x1 + q2x2 = z ...(1)

Solution:

Let z = x3; let 1 2 3, , 0u x x x  be the solution.

13
1 3

1 1 3 1 3
, where ,pz x u up P P

x x P x x

3 2
2

2 2 3 2
where z x P uq P

x x P x
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F = 2 2 2
1 1 2 2 3 3 0P x P x P x ...(2)

The subsidiary equations are

1

1

dx
F
P

= 1 2 2 3 3

1 2 2 3 3

dP dx dP dx dP
F F F F F
x P x P x

...(3)

or

1

1 12
dx
P x

= 1 2 2 3 3
2 2 2

2 2 3 31 2 32 2
dP dx dP dx dP

P x P xP P P
...(4)

From first two terms

2 2
1 1 1 2 2 2, ,P x c P x c

2 1 2
3

3

From (2) c cP
x

Thus du = P1dx1 + P2dx2 + P3dx3 ...(5)

Substituting the values of P1, P2 and P3 we have

du = 1 2 1 2
1 2 3

1 2 3

c c c cdx dx dx
x x x

On integrating we have

1/21/2 1/2
1 1 2 2 1 2 32 2 2 ( )  Q.E.D.u c x c x c c z c

4. Solve

F = 2 2
1 2 3 1 0p p p

F
p = 1 2

1 2 3 2 3
2 , 0, 0, 0, 2 , 1F F F F Fp p

x x x p p

Solution:

The subsidiary equations are

1

12
dx

p = 1 2 32 3

20 2 0 1 0
dp dp dpdx dx

p

p1 = a, p2 = b, p3 = 1  a2  b2

F1 = p1 = a, F2 = p2 = b

1 2,F F = 0

dz = 2 2
1 2 31a dx b dx a b dx

z = 2 2
1 2 3 31  Q.E.D.a x b x a b x a

Self Assessment

1. Apply Jacobi’s method to find complete integral of the following:

2 2 2 2 2 2 2
3 1 2 3 1 2 3 0x p p p p p p
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Notes2. Find the complete integral for

3 3 1 2 1 2 0p x p p x x

14.2 Simultaneous Partial Differential Equations

In Jacobi’s method two additional equations are needed to solve the partial differential equation
by Jacobi’s method.

In this section the problem of finding the solution of the partial differential equation F = 0 with
some work of finding F1 is already done. The method can be illustrated by the following
examples:

Example 1: Find the complete integral for the partial differential equations.

F = 2
1 1 2 2 3 0p x p x p ...(1)

F1 = p1  p2 + p3  1 = 0 ...(2)

Here

1,F F =
1 1 1 1 1 1

1 1 1 1 2 2 2 2 3 3 3 3

F F F F F F F F F F F F
x p p x x p p x x p p x

= 1 1 2 2 3 1 21 (0) ( 1) (0) 0 (1) 2 (0)p x p x p p p ...(3)

Now 1, 0,F F  now to make

1,F F = 0, we have p1 = p2 ...(4)

From equation (2) p3 = 1 ...(5)

So From (1), 1 1 2 1p x x = 0, so 1
1 2

1p
x x

...(6)

dz = p1dx1 + p2dx2 + p3dx3

= 1 2
3

1 2 1 2
1dx dx dx

x x x x

or

dz = 1 2
3

1 2

dx dx dx
x x

...(7)

on integrating (7) we have

z = 1 2 3log x x x a ...(8)

which is the complete integral of (1).

Example 2: Find the complete integral for
F = 2x3 p1 p3  x4 p4 = 0 ...(1)

F1 = 2p1  p2 = 0 ...(2)
Now

1,F F = 1 1 1 1

1 1 1 1 2 2 2 2

F F F F F F F F
x p p x x p p x
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1 1 1 1

3 3 3 3 4 4 4 4

F F F F F F F F
x p p x x p p x

= 1 3 3 1 42 0 2 (0) (0) 0 0p p x p p ...(3)

The next step is to find F2 and F3 such that

2,F F = 0 = 1 2,F F ...(4)

Now

1

F
p = 3 3 3 1 4

2 3 4
2 , 0, 2 ,F F Fx p x p x

p p p

1

F
x = 1 3 4

2 3 4
0, 0, 2 ,F F Fp p p

x x x

1

3 32
dx
x p =

1 2 3 42 3 4

3 1 4 1 3 40 2 0 0 2
dp dp dp dpdx dx dx

x p p p p p

p2 = a2 ...(4)

so F2 = p2 = a2, so 2 1 2, 0 ,F F F F

Also from 3

3 12
dx
x p

= 3

1 3
,  on integration

2
dp
p p

F3 = x3p3 = a3 ...(5)

Again 1 3,F F = 3 2 30 , 0 , 0F F F F

p1 = 3 3 12 3 3 2
2 2 3 4

3 4 4

2, , ,
2 2

x p pa a a ap a p p
x x x

so from the relation

du = p1dx1 + p2dx2 + p3dx3 + p4dx4

= 2 3 3 3 2 4
1 2 2

3 42 2
a dx a a a dxdx a dx

x x
...(6)

On integrating (6) we have the complete integral

u = 2 2 3
1 2 2 3 3 4 4log log

2 2
a a ax a x a x x a ...(7)

Self Assessment

3. Solve for complete integral of

F = 2 2
1 2 3 2 3 0p p p x x

F1 = p1 + p2x2 = 0

4. Find the complete integral of

F = x1p1  x2p2 + p3  p4 = 0

F1 = p1 + p2  x1  x2 = 0
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Notes14.3 Summary

 Jacobi’s method of solution of the partial differential equation of the first order is very
similar to that of Charpit’s method.

 The method consists in setting up subsidiary equations through which two integrals are
found that help in finding the solution.

14.4 Keywords

The subsidiary equations help us in finding the two independent integrals.

Independent integrals help in finding the partial derivatives 
1 2 3

, ,u u u
x x x  and so the solution

can be found.

14.5 Review Questions

1. Find the solution of

F = 2 2
1 2 2 1 2 33 3 4 0p p p x x x

with additional equations

F1 = 2 2
1 1 2 2 1 22 2 0x p x p x x

F2 = p3  2x3 = 0

2. Find complete integral of

2
1 3 3p x p+ = 0

2 2
2 3 3 2p x p x = 0

3. Find the complete integral of

2x1x3p1p3z + x2p2 = 0

Answers: Self Assessment

1. 1
1 1 2 2 1 2 3 3sin ( )z a x a x a a x a

2. 2 2
1 1 3 1 2 1 2 1 2 1 34 4 log 2 ( ) ( ) 4a z a x a a x x x x a a

3. 1 2 3( log 1/ )z a x x x b

4. 1 2 3 4( )z x x a x x b

14.6 Further Readings

Books Piaggio H.T.H., Differential Equations

Sneddon L.W., Elements of Partial Differential equations
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Notes Unit 15: Higher Order Equations with Constant
Coefficients and Monge’s Method

CONTENTS

Objectives

Introduction

15.1 Linear Partial differential equations of order n with constant coefficients;
complementary functions

15.2 Case when the auxiliary equation has equal roots

15.3 The Particular Integral (P.I.)

15.4 Shorter Method for Finding Particular Integral

15.5 General Method for Finding Particular Integral (P.I.)

15.6 The Non-homogeneous Equation with Constant Coefficients

15.7 Equation Reducible to Homogeneous Linear Form

15.8 Monge’s Method

15.9 Monge’s Method of integrating Rr + Ss + Tt + U (rt  s2) = V

15.10 Summary

15.11 Keywords

15.12 Review Questions

15.13 Further Readings

Objectives

After studying this unit, you should be able to:

 Set up partial differential equations having higher order than that of first order.

 Know that various methods are employed depending upon the structure of the partial
differential equation.

 See that each section is followed by a set of self assessment problems related to that
section. By solving these problems the method can be understood.

Introduction

This section of the unit needs more practise for solving the various types of partial differential
equations.

The problems are classified according to the method used in solving them. It is therefore essential
to understand the method and its subsequent steps of solving the problem.

Sachin Kaushal, Lovely Professional University
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Notes15.1 Linear Partial Differential Equations of Order n with Constant
Coefficients; Complementary Functions

So far we have been dealing with partial differential equations of first order with first degree as
well as with any degree. In this unit we shall introduce higher derivatives than the usual first

order derivatives , .yz
x z  So we may have 

2 2 2

2 2, ,z z z
x yx y

 and so on and so forth. If we are

dealing with only second order equations we denote 
2 2

2 ,z zr s
x yx

 and 
2

2 .zt
y

 In dealing

with higher derivatives let us denote x  by D and 
y

 by D , then

2 2
2 2

2 2, , ,...D DD D D D
x yx y

1
1

1... ,
n n

n n
n nD D D

yx x
 and so on. So we have to deal with a general equation of the form

2 2 2

2 2, , , , , , , ,... ,...
n

n
z z z z z zF x y z
x y x yx y x

= ( , )f x y ...(1)

or 1 2 2
0 1 2 ...n n n n

nA D z A D D z A D D A D z

1 2 3 2 1
0 1 2 1...n n n n

nB D z B D D Z B D D z B D z

0 1 0... M Dz M D z N z = ( , )f x y ...(2)

Thus equation (1) may be written as

( , )F D D z = ( , )f x y ...(3)

Just as in the case of ordinary differential equations it can be shown that the complete solution
of linear partial differential equation will consist of two parts, namely:

(i) The complementary function (C.F.), and

(ii) The particular integral (P.I.)

The complementary function is the general solution of the equation

( , )F D D z = 0 ...(4)

The particular integral is that value of z in terms of x, y which satisfies the equation (3) that
contains no arbitrary constants.

A Linear Homogeneous partial differential equation of order n with constant coefficients is that
in which ( , )F D D  is a homogeneous function i.e. ( , )f D D  and is of the form

( , )f D D z = 1
0 1( ... ) ( , )n n n

nA D A D D A D z f x y ...(5)

Non-homogeneous differential equation is not homogeneous i.e. if all terms of D, D  in the
function F(D, D ) are not of the same degree.

197



LOVELY PROFESSIONAL UNIVERSITY

Notes Just as we deal with ordinary differential equation

1 2
1 2( ... )n n n

nD a D a D a y = ( )f x

Where 
dD
dx , we shall deal briefly with the corresponding equation in two independent

variables,

1 2 2
1 2( ... )n n n n

nD a D D a D D a D z = ( , )f x y ...(6)

where D
x

 and D
y

.

The simplest case is

( )D mD z = 0

i.e m z
x y

= 0

or ( )p mq = 0

where p = andz zq
x x

or z = ( )y mx

This suggests what is easily verified, that the solution of (6) if ( , ) 0f x y  is

Z = 1 1 2 2( ) ( ) ... ( )n ny m x y m x y m x ...(7)

where the constants 1 2 3, , ,..., nm m m m  are the roots (supposed all different)

1 2
1 2 ....n n n

nm a m a m a = 0 ...(8)

Example: Solve

3 3 3

3 2 23 2z z z
x x y x y

= 0

or 3 2 2( 3 2 )D D D DD z = 0

Now the roots of

3 23 2m m m = 0

or 0, 1 and 2. So the solution is

z = 1 2 3( ) ( ) ( 2 )F y F y x F y x
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NotesSelf Assessment

1. Solve

3 2 2 3( 6 11 6 ) 0D D D D D D z

2. Solve

2 5 2 0r s t

where 
2 2 2

2 2, ,z z zr s t
x yx y

15.2 Case when the Auxiliary Equation has Equal Roots

Consider the equation

2( )D mD z = 0 ...(9)

Put ( )D mD z = u.

Equation (9) becomes

( )D mD u = 0

The solution is

u = ( )F y mx

Therefore

( )D mD z = ( )F y mx

or z zm
x y

= ( )F y mx

The subsidiary equations are

1
dx

=
( )

dy dz
m F y mx

From the first two terms we get

y mx = a

and from first and last term we have

( )dz F y mx dx = 0

or ( )dz F a dx = 0

So the solution is

z = ( )xF a b
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Notes Hence the solution is

( ( ), )z x F y mx y mx = 0

or z 1( ) ( )xF y mx F y mx

so z = 1( ) ( )xF y mx F y mx ...(10)

In general, the solution of

( )rD mD z = 0

is z = 1
1 2( ) ( ) ... ( )r

rF y mx x F y mx x F y mx ...(11)

Example 1: Solve

4 4 4 4

4 3 3 22 2z z z z
x x y x y y = 0

The auxiliary equation is

4 32 2 1m m m = 0

4 21 2 ( 1)m m m = 0

2 2 2( 1)( 1) 2 ( 1)m m m m = 0

2 2( 1)( 1)m m = 30 ( 1)( 1)m m

So the roots are 1, 1, 1, 1

Hence the solution is

z = 2
1 2 3 4( ) ( ) ( ) ( )F y x xF y x x F y x F y x

Example 2: Solve

2(25 40 16 )D DD D z = 0

The auxiliary equation is

225 40 16m m = 0

2(5 4)m = 0

The roots are 
4 , 4 5
5

m  are repeated roots so the solution is

z = 1 2(5 4 ) (5 4 )F y x x F y x

Self Assessment

3. Solve
3 3 3

3 2 24 4 0z z z
x x y x y
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Notes4. Solve

2 2

2 6 9 0z z z
x yx

15.3 The Particular Integral (P.I.)

We now return to the equation (3) i.e.

( , )F D D z = ( , )f x y ...(1)

Now the most general solution of equation (1) can be written as

z = complementary function + Particular function

or z = C.F + P.I ...(2)

In the above we have found C.F. for the homogeneous equation and now in the following find
the P.I. We can write

The particular integral =
1 ( , )

( , )
f x y

F D D ...(12)

Here we treat the symbolic function of D and D  as we do D alone. We can factor. ( , )F D D ,

resolve 
1

( , )F D D  into partial fractions on expanding in power series.

(a) On Expansion

Example 1: Solve

2 2( 4 4 )D DD D z = 0

The complementary function is given by

2 2( 4 4 )D DD D z = 0

C.F. = 1 2( 2 ) ( 2 )F y x x F y x

The particular integral is

P.I. =
2

2 2
1 ( )

4 (4)
x xy

D DD D

or P.I. = 2 1 2( 4 4 ) ( )D DD D x xy

=
12

2
2 2

1 41 4 ( )D D x xy
DD D

=
2 2

2
2 2 2

1 4 4 161 ... ( )D D D x xy
DD D D
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= 2

2
1 4 ( ) 0x xy x

DD

=
34

3
4 ( )

12 6
x yx x

D

=
3 34 4 4

12 6 24 8 6
x y x yx x x

Thus the complete solution is

z =
34

1 2( 2 ) ( 2 )
8 6

x yxF y x x F y x

Example 2: Solve

2 2 2( )D a D z = x2

Solution: The complementary function is given by the equation

2 2( )D a D z = 0

The auxiliary equation is

2 2m a = 0

with roots m = a and m =  a.

So C.F. = 1 2( ) ( )F y ax F y ax

The particular integral is given by

P.I. = 2
2 2 2

1 ( )
( )

x
D a D

=
12 2

2
2 2

1 1 ( )a D x
D D

=
2 2 4

2 2
2 2

1 11 ... ( )
12

a D xx x
DD D

So the complete solution is

z =
4

1 2( ) ( ) .
12
xF y ax F y ax

Self Assessment

5. Solve 
2 2 2

2 26z z z xy
x yx y

6. Solve 
2 2 2

2 23 2z z z x y
x yx y
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Notes15.4 Shorter Method for Finding Particular Integral

When dealing with the equation

( , )F D D z = ( , )f x y

We consider a special function of the form

( , )f x y = ( ),ax by

then a shorter method may be used. Now

( )D ax by = ( ); ( ) ( )a ax by D ax by b ax by

So ( )rD ax by = ( )r ra ax bx

( )rD ax by = ( )r rb ax bx

and ( )pD D q ax by = ( )p q p qa b ax by

Here n  is the nth derivative of  with respect to ‘ax + by’ as a whole and n is the degree of

( , ).F D D

Hence we will have

( , ) ( )F D D ax by = ( , ) ( )nF a b ax by ...(13)

when n is the nth derivative of  with respect to ‘ax + by’ as a whole and n is the degree of

( , ).F D D

Operating by 
1

( , )F D D  on both sides of (13) and dividing by ( , ),F a b  we get

1 ( )
( , )

n ax by
F D D =

1 ( )
( , )

ax by
F a b ...(14)

provided

( , )F a b  0.

Therefore 1
1 ( )

( , )
ax b

F D D = 1
1 ( ) ...

( , )
u du du

F a b

=
1

( , )F a b  nth integral of 1 where u = ax + by ...(15)

Example 1: Solve

( 2 )r s t = sin(2 3 )x y

Solution:

Here r =
2 2 2

2 2, ,z zs t
x yx y

203



LOVELY PROFESSIONAL UNIVERSITY

Notes So 2 2( 2 )D DD D z = sin(2 3 )x y

The auxiliary equation is

2 2 1m m = 0

having roots m = 1, 1, so that

C.F. = 1 2( ) ( )F y x x F y x

and P.I. = 2
1 sin(2 3 )

( )
x y

D D

Putting 2 3 ,x y u  so we have

P.I. = 2
1 sin ,

(2 3)
u du du (integrating twice)

= 1 ( cos )u du

= sin sin(2 3 )u x y

Thus the solution is

z = C.F. + P.I.

= 1 2( ) ( ) sin(2 3 )F y x xF y x x y

Example 2: Solve

2 2( )D D z = 30(2 )x y

The auxiliary equation is

2 1m = 0

so, m = +1,  1

and C.F. = 1 2( ) ( )F y x F y x

P.I. = 2 2
1 30(2 )

( )
x y

D D

Let 2 ,u x y

P.I. =
1 (30) ( )

(4 1)
u du du

=
21 (30)

3 2
u du

=
3

3510 (2 )
6 6
u x y
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NotesSo the solution is

z = 3
1 2

5( ) ( ) (2 )
6

F y x F y x x y

Self Assessment

7. Solve

2 2( 3 ) ( )D DD D z x y

8. Solve

2 2( ) cos( )D D z mx ny

Particular case when  F(a, b) = 0

As
1 ( )

( , )
n ax by

F D D =
1 ( )

( , )
ax by

F a b

but if ( , ) 0F a b then R.H.S. becomes infinite and the above method fails.

Now consider the case

( )bD aD z = ( )rx ax by

or bp aq = ( ),rx ax by  where ...(16)

p = , .z zq
x y

Applying Lagrange’s method to (1) we get

dx
b =

( )r
dy dz

a x ax by

So one solution is

ax by = c, and the other solution is given by

dx
b =

( )r
dz

x c

z =
1

( )
( 1)

rx ax by
r b

This is the solution of the given differential equation (16).

Thus
1 ( )

( )
rx ax by

bD aD =
1

( )
( 1)

rx ax by
b r ...(17)

Next consider

z = 1 ( )
( )n ax by
bD aD
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= 1

1 1, ( )
( )( )n ax by
bD aDbD aD

= 1
1 . ( )

( )n
x ax by
bbD aD

= 2
1 1 ( )

( )( )n
x ax by

bD aD bbD aD

= 2 2
1 . ( )

(6 ) 2n
x ax by

D aD b

= 2
2 3

1 1 1 ( )
( )2 ( )n x ax b
bD aDb bD aD

= 3
3 3

1 1. . ( )
3 ( )n x ax b

b bD aD

.......................................................................

.......................................................................

.......................................................................

= 1
1 1 . ( )

( 1)! ( )

n

n n x
x ax b
nbb n bD aD

= ( )
n

n
x ax by

b n

Thus 1 ( )
( )n ax by
bD aD

= ( )
n

n
x ax b

b n ...(18)

When ( , )F a b = 0

Example 1: Solve

2 2 2( 2 )D aDD a D z = ( )f y ax

Solution: The auxiliary equation is

2 22m am a = 0

2( )m a = 0

m = a, a

The complimentary function is

C.F. = 1 2( ) ( )F y ax x F y ax

P.I. = 2 2 2
1 ( )

2
f y ax

D aDD a D

=
2

2
1 ( ) ( )

2( )
xf y ax f y ax

D aD
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NotesSo the complete solution is

z =
2

1 2( ) ( ) ( )
2

xF y ax x F y ax f y ax

Example 2: Solve

2 2(4 4 )D DD D z = 2 3x ye x

Solution: The auxiliary equation is

24 4 1m m = 0

m = 1/2, 1/2

C.F. = 1 1(2 ) (2 )F y x x F y x

P.I. = 2 3
2

1
(2 )

x ye x
D D

= 2 3
2 2

1 1
(2 ) (2 )

x ye x
D D D D

=
22

2 3
2

1 1
2.4 24

x yx De x
DD

=
2

2 3
2

1 1 ...
8 4

x yx De x
DD

So P.I. =
2 5 5

2 21 .
8 4 4.5 8 80

x y x yx x x xe e

Thus the solution is

z =
2 5

2
1 1(2 ) (2 )

8 80
x yx xF y x x F y x e

Self Assessment

9. Solve

2( ) ( )D D x x y

10. Solve

3 2 2( 4 4 ) cos( 2 )D D D DD z y x

15.5 General Method for Finding Particular Integral (P.I.)

Consider the equation

( )D mD z = ( , )f x y
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Notes
i.e

z zm
x y = ( , )f x y

or p mq = ( , )f x y ...(1)

where p = andz zq
x y

.

So Lagrange’s auxiliary equations (A.E.) are

1
dx

= ( , )
dy dz
m f x y

From the first two fractions, we have

y = mx c ...(2)

From the first and last fractions

dz = ( , ) ( , )f x y dx f x c mx dx

z = ( , )f x c mx dx

and after integration (c  mx) is replaced by y because the P.I. does not contain any arbitrary
constant.

Now, the particular integral of

1 ( , )
( , )

f x y
f D D

=
1 2

1 1 1. ... ( , )
( ) n

f x y
D m D D m D D m D

can be determined by the repeated application of the method given above.

Illustrative Examples

Example 1: Solve: 6 cosr s t y x

Solution: The given equation can be written as

2 2( 6 )D DD D z = cosy x

A.E. is 2 6 0,m m  i.e., 2, 3m

C.F. = 1 2( 2 ) ( 3 )y x y x

Now, P.I. =
1 cos

( 2 )( 3 )
y x

D D D D

=
1 . ( 3 )cos

( 2 )
c x xdx

D D
[ 3 ]y c x

=
1 [ sin 3 sin 3cos ]

( 2 )
c x x x x

D D
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Notes
=

1 [( 3 )sin 3 sin 3cos ]
( 2 )

y x x x x x
D D

[putting back 3c x y ]

=
1 [ sin 3cos ]

( 2 )
y x x

D D

= {( 2 )sin 3cos }k x x x dx [ 2 ]x k y

= cos 2( cos sin ) 3sink x x x x x

= ( 2 )cos 2 cos siny x x x x x [ 2 ]y k x

= cos sin .y x x

Hence the complete solution is

z = 1 2. . . . ( 2 ) ( 3 ) cos sin .C F P I y x y x y x x

Example 2: Solve: 2 2
2 2

4( 4 ) yxD D z
y x

Solution: The C.F. = 1( 2 ) ( 2 )y x y x

Now, P.I. = 2 2
1 4

( 2 )( 2 )
yx

D D D D y x

= 2 2
1 4 2
2 ( 2 )

x c x dx
D D c x x

( 2 )c x y

= 2 2
1 2 22
2 ( 2 )

x c c c dx
D D xc x x

= 2 2
1 1 2 2
2 2 ( 2 )

c c dx
D D c x xc x x

= 1 log( 2 ) 2log
2 2

c cc x x
D D c x x

= 2 21 log 2log
2

y x y xy x
D D y x

[putting c = y + 2x]

= 4 4log( 2 ) 2log
2

k x k xk x x dx
k x x

where y = k + 2x

= 2log( 2 ) 1 4 2log
2

x k k kk x x dx
k x x
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Notes
= log( 2 ) 1 1 4 2log

2
k kk x x dx

k x x

= log( 2 ) 6 2log
2

k kk x x dx
k x x

= 2log( 2 ). . 6
2

k x x xdx x
k x

1log( 2 ) log 2 log . .
2
k k x k x x x xdx

x

=
2log( 2 ) 6

2
k x kx k x dx x

k x
log( 2 ) log 2 log 2

2
k k x k x x x x

= log( 2 ) log( 2 ) 6 log( 2 ) log 2 log 2
2 2
k kx k x x k x x k x k x x x x

= log log 6 log log 2 log 2
2 2
k kx y x y x y k x x x x (putting back y =k + 2x)

= log 6 log 2 log 2x y x x k x x x x

= log 3 ( 2 )log 2 logx y x y x x x x

= log 3 log .x y x y x

Hence the complete solution is

z = 1( 2 ) ( 2 ) log 3 log .y x y x x y x y x

Example 3: Solve: 3 3tan tan tan tanr t x y x y

Solution: The given equation is

2 2( )D D z = 2 2tan tan (tan tan ).x y x y

= 2 2tan tan (sec sec )x y x y

C.F. = ( ) ( ).y x y x

P.I. =
2 21 tan tan (sec sec )

( )( )
x y x y

D D D D

= 2 21 tan tan( ){sec sec ( )}x c x x c x dx
D D [where c  x = y]

= 2 21 tan tan( )sec tan tan( )sec ( )x c x x dx x c x c x dx
D D

=
2 2 21 1 1tan tan( ) tan sec ( )

2 2
x c x x c x dx

D D

2 2 21 1tan tan ( ) tan ( )sec
2 2

x c x c x x dx
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Notes
= 2 2 2 21 tan tan( ) tan tan ( ) {sec sec ( )}

2( )
x c x x c x x c x dx

D D

= 2 21 tan tan( ) tan tan ( ) tan tan( )
2( )

x c x x c x x c x
D D

= 2 21 tan tan tan tan tan tan
2( )

x y x y x y
D D [By putting back y = c  x]

=
2 21 [tan sec tan sec ]

2( )
y x x y

D D

= 2 21 [tan( )sec tan sec ( )]
2

k x x x k x dx where k + x = y

= 1 {tan tan( )}
2

d x k x dx
dx

=
1 1tan tan( ) tan tan
2 2

x k x x y [putting k + x = y]

Hence the complete solution is

z = 2
1( ) tan tan
2

y x y x x y

Example 4: Find the particular integral with the help of general method for

2 2( 2 15 ) 12D DD D z xy

Solution: We have

P.I. = 2 2
1 12

( 2 15 )
xy

D DD D

=
1 12

( 3 )( 5 )
xy

D D D D

=
12 ( 5 ) ,

( 3 )
x c x dx

D D where y = c  5x

=
2 312 5

3 2 3
cx x

D D

= 2 32 (3 10 )
3

cx x
D D

= 22 (3 15 10 ),
3

x y x x
D D (putting back c = y + 5x)
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= 22 (3 5 )

( 3 )
x y x

D D

= 22 {3( 3 ) 5 } ,x k x x dx where k + 3x = y

= 22 (3 14 )x k x dx

= 3 4 3 42 7 2 ( 3 ) 7kx x x y x x

= 3(2 ).x y x

Self Assessment

11. Solve

2( ) 2 cos sinD D z y x y

12. Solve

2 2( 2 ) ( 1) xD DD D z y e

15.6 The Non-homogeneous Equation with Constant Coefficients

The simplest case is

( )D mD z = 0

or z = ( ) ( )mD a xe y

where D  has been considered algebraic and  is arbitrary.

= ( ).axe y mx

Note. Also

( )D mD z = 0.

or p mq = z.

 The subsidiary equations are

1
dx

= .dy dz
m z

z = ( ).xe y mx

Similarly the integral of

1 1 2 2 3 3( )( )( )...D m D D m D D m D = 0

is 31 2
1 1 2 2 3 2( ) ( ) ( ) ...nn nz e y m x e y m x e y m x
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NotesIn case of repeated factors

2( )D mD z = 0 ...(1)

or ( )( )D mD D mD z = 0

let ( ) ,D mD z

Then, ( )D mD [from (1)]

or = ( )axe y mx

or ( )D mD z = 1( );axe y mx

z = ( ) ( )
1{ ( )} ( )mD x mD x axe e e y mx dx y

= ( ) ( )
2( ) ( )mD mxDaxe x y dx e e y

= 1 2. ( ) ( )x xe x y mx e y mx

Similarly proceeding in the case of ( ) 0,rD mD z  we have

z = 2 1
1 3( ) ( ) ( ) ... ( )x x x x r

re y mx e x y mx e x y mx e x y mx

The Particular Integral

The methods for obtaining particular integrals of non-homogeneous partial differential
equations are very similar to those used in solving linear equation with constant coefficients.

Note: It can be easily shown that

I.
1

( , ) ( , )

ax by
ax by ee

F D D F a b

provided ( , ) 0.F a b

II.
1 sin( ) or cos( )

( , )
ax by ax by

F D D

is obtained by putting 2 2 ,D a DD ab  and 2 2 ,D b  provided the denominator is
not zero.

III.
11 [ ( , )]

( , )
m n m nx y F D D x y

F D D

which can be evaluated after expanding 1[ ( , )]F D D  in ascending powers of D or D .

IV.
1 ( . )

( , )
ax bye V

F D D

1 .
{( ).( )}

ax bye V
F D a D b
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Notes Illustrative Examples

Example 1: Solve: 
2 2

2
2 2 3 3 .x yz z z z xy e

x yx y

Solution: Here, 22 2( 3 3 ) x yD D D D z xy e

or, 2( )( 3) x yD D D D z xy e

The complementary function is

3( ) ( ).xx y e y x

Now P.I. =
2

( )( 3) ( )( 3)

x yxy e
D D D D D D D D

=
21

(1 )(1 3)3( ) 1
3

x yexy
D D D DD D

=
221 ( ) ( ) .1 ...

3( ) 3 9 ( 1)( 2)

yxD D D D e exy
D D D

=
21 2 1. .1

3( ) 3 3 9
yxyxxy e e

D D D

= 21 2
3 3 93 1

x yyxxy yeDD
D

=
2

2
2

1 21 ...
3 3 3 9

x yyD D xxy ye
D D D

=
2

21 2
3 3 3 9 2 3

x yyx x xxy ye
D

=
2 2 3 2

21 2
3.2 9 2 9 27 18 18

x yx y x x x x x ye

The solution is

z =
2 2 2

23 2( ) ( )
6 9 9 27 18

x yx x y xyx x xx y e y x ye

Example 2: Solve: 2( 1)( 2) .x yD D D D z e x

Solution: The complementary function is

2( ) ( )x xe y x e y x
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Notes
P.I. =

1 [ ]
( 1)( 2)

x ye x
D D D D

=
21 1

( 1)( 2) ( 1)( 2)
x ye x

D D D D D D D D

Now, 
21

( 1)( 2)
x ye

D D D D

= 2 1
( 2 1)( 2 2)

yxe e
D D D D

=
2 1

( 1)( )
yxe e

D D D D

=
2 1

[0 ( 1) 1][0 ( 1)]
yxe e

= 22 1 1.
2 2

y x yxe e e

Also, 
1

( 1)( 2)
x

D D D D

=
1

11 1[1 ( )] 1 ( )
2 2

D D D D x

= 1 1[1 ...] 1 ( ) ...
2 2

D D D D x

=
1 3 31
2 2 2

D D x

=
1 3 3 1 30
2 2 2 2 4

x x

 The solution is

z = 22
2

1 1 3( ) ( ) .
2 2 4

x yx xe y x e y x e x

Example 3: Solve: 
2 2

2
2 2 3 2 .x yz z z z z e x y

x yx y

Solution: 2[( )( ) 2( ) ( ) 2] x yD D D D D D D D z e x y

or 2[( 2)( 1)] x yD D D D z e x y

The complementary function is

z = 2 ( ) ( )x xe y x e y x
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Now, P.I. =
2

2 2( 2)( 1) 3 2

x y x ye
D D D D D D D

=
2

2(1 2) 3 22 1
2 2 2 2

x y x ye
D D D D D D

=
22 2 2 21 3 31 0

4 2 2 2 2 2 2 2 2 2

x ye D D D D D D D D

32 2
23 ...

2 2 2 2
D D D D x

=
2 2 2 2 2

21 3 3 3 3 31 ... .
4 2 2 2 2 4 2 2 4 8

x ye D D D D DD D D D D D D x

=
2

21 3 3 33 3
4 2 2 2 2 4

x y ye xx y xy y x

=
2 2 33 3 21

4 2 4 4 2 2 8

x y x y y xye x x

The solution is

z =
2 2

2 33 3 21( ) ( )
4 2 4 4 2 2 8

x y
x x x y y xye x xe y x e y x

Example 4: Solve the equation:

3 2 2( 4 4 )D D D DD u = cos( 2 )y x

or 2( 2 )D D D u = cos ( 2 )x

Solution: C.F. is ( ) ( 2 ) ( 2 )y y x x y x

P.I. = 2 2
( 2 )1 1cos ( 2 ) sin ,

2( 2 ) ( 2 )
y xy x

D D D D D

Now since
1

( )
ax by

bD aD = ( ),x ax by
b

P.I. =
sin( 2 ) sin( 2 )1 1 1

( 2 ) 2 2 ( 2 ) 2
y x x y x

D D D D D D

=
2

sin( 2 )
4
x y x
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NotesThe solution is

u =
2

1( ) ( 2 ) ( 2 ) sin( 2 ).
4
xy y x x y x y x

Self Assessment

13. Solve 
2 2

2
2 2 2 2 0z z z za ab a b

x yx y

14. Solve 
2 2

2 cos ( 2 )z z z z x y
x y yx

15.7 Equation Reducible to Homogeneous Linear Form

An equation in which the coefficient of a differential coefficient of any order is a constant
multiple of the variables of the same degree may be transformed into one having constant
coefficients. The method is explained with the help of the following equations.

Example 1: Solve

2 2 2
2 2

2 22z z zx xy y
x xx y = 0

Solution: Assume, log , log ,u x v y  also denoting u  by D and V  by D , the given equation

reduces to

[ ( 1) 2 ( 1)]D D DD D D z = 0

or ( )( 1)D D D D z = 0

Hence the solution is

z = 1 2( ) ( )uu e u

= 1 2(log log ) (log log )y x y x

= 1 2log logy yx
x x

= 1 2
y yx
x x

Example 2: Solve: .yt q xy

Solution: The equation can be written as

2
2

2
z zy y

yy = 2xy ...(1)
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Notes Put ,ux e y e

z
x = 1 1,z z z

u x y y

x x z
x x =

2

2
z

x

or
2

2
2
z zx x

xx
=

2

2
z

u

and
2

2
2
z zy y

yy =
2

2
z

The equation (1) becomes

2

2 2z z
= 2ue

The complementary function is

= 2
1 2( ) ( )u e u

= 2
1 2(log ) (log )x y x

= 2
1 2( ) ( )x y x

P.I. =
21

( 2)
ue

D D

=
21

( 2)
ue

D D

=
2 21 (1) .

2 ( 2 2) 2

u ue e
D

= 21 log
2

xy y

The solution is z =
2

2
1 2( ) ( ) log

2
xyx y x y

Aliter. yt q xy

The equation can be written as

1q q
y y

= x

Solving,
1

.
dy

yq e =
1

1( )
dy

yxe dy y
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Notesq
y = 1( )xdy x

y

q = 1log ( )xy y y x

or
z
y = 1log ( )xy y y x

z =
2

1 2log ( ). ( )
2
yx y y dy x x

=
2 2

21log ( ) ( )
2 2
y yx y dy y f x F x

y

z =
2 2

2log ( ) ( )
2 4

xy xyy y f x F x

is the required solution.

Example 3: Solve: 
2

2 2
2 2 0z z z zx y y x

x xx y

Solution: Assume log , log .u x y  Then

z
x =

1z
u x

or
zx
x = ,z

x  so that x
x x ...(1)

zx x
x x =

2 2
2

2 2
z z zx x

xx u
[from (1)]

Similarly

2
2

2
z zy y

yy = 2 .z
y

The given equation reduces to

2 2

2 2
z z

u = 0,

for which

z = ( ) ( )u u

= [log log ] [log log ]x y y x

= (log ) log yxy
x

= 1 2( ) yf xy f
x
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Example 4: Solve: 

2 2 2
2 3 3 4

2 24 4 6 .z z z zx xy y y x y
x y yx y

Solution: As shown in the last example, if log , log ,u x y

zx
x = ,z z zy

u y

2
2

2
z zx x

xx
=

2

2
z

u  and 
2 2

2
2 2
z z zy

yy y

Now zy x
t x

=
u

or
3zyx

x y
=

2
.z

u

With these substitution the equation takes the form

2 2 2

2 24 4 4 6z z z z z
u uu = 3 4.ue e

or
2 2 2

2 24 4 2z z z z z
u uu

= 3 4ue ...(1)

Denoting 
u

 by D and  by D  in (1).

2 2( 4 4 2 )D DD D D D z = 2 4ue .

[( 2 )( 2 1)]D D D D z = 2 4ue

The complementary function is

= 1 2( 2 ( 2 ).uu e u

= 2 2
1 2(log ) (log )x y x x y

= 2 2( ) ( )x y x x y

P.I. =
3 41

( 2 )( 2 1)
ue

D D D D

=
3 4

3 41
( 5)( 6) 30

u x ye

The solution is

z =
3 4

2 2( ) ( ) .
30

x yx y x x y
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NotesSelf Assessment

15. Solve

2 2

2 2 3 2 2 3
1 1 1 1 0z z z z

x yx x x y y y

16. Solve

2 2
2 2

2 2
z zx y xy

x y

15.8 Monge’s Method

We shall usually take z as dependent and x, y as independent variables and throughout this
chapter we shall denote

z
x  by , zp

y
 by 

2

2, zq
x  by 

2
, zr

x y
 by s, and 

2

2
z

y
 by t.

Monge’s Method of Solving  the Equation

Rr Ss Tt = V ...(1)

where r, s, t have their usual meanings and R, S, T and V are functions of x, y, z, p and q.

We  know

dp = p pdx dy
x y

= r dx s dy

and dq = q qdx dy
x y

= s dx + t dy.

Putting the values of r and t in (1),

. .dp s dy dq s dxR S s T
dx dy

= V

or 2 2R dp dy T dq dx Ss dx dy Rs dy Ts dx = V dx dy

or ( )R dp dy T dq dx V dx dy = 2 2( )s R dy S dx dy T dx ...(2)

If some relation between x, y, z, p, q makes each of the bracketed expressions vanish, the relation
will satisfy (2); therefore

2 2R dy S dx dy T dx = 0 ...(3)

Rdp dy T dq dx V dx dy = 0 ...(4)
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Notes Now it may be possible to get one or two relations between x, y, z, p, q called intermediate
integrals, and then to find the general solution of (1).

If (3) resolves into two linear equations in dx and dy such as

1dy m dx = 0, and 2 0,dy m dx ...(5)

from one of the equations (5) combined with (4) and if necessary with ,dz pdx q dy  we may
obtain two integrals 1u a  and 1 ;b  then 1 1 1( ),u f

where f1 is an arbitrary function, is an intermediate integral.

Proceeding similarly from the second equation, we may get another intermediate integral u2 =
f2 ( 2).

From these two integrals we may find the values of p and q and putting these values in dz = p dx
+ q dy and  integrating it we get the complete integral of the original equation.

Illustrative Examples

Example 1: Solve by Monge’s method 2 .r a t

Solution: (This can be easily solved by the method discussed in the last section. Here we solve it
by Monge’s Method).

Putting dp s dyr
dx

 and dq s dxt
dy

 in the given equation, 2 2 2 2( ).dp dy a dx dq s dy a dx

So the subsidiary equations are

2 2 2dy a dx = 0 ...(1)

and 2dp dy a dx dq = 0. ...(2)

From (1)

dy a dx = 0 ...(3)

dy a dx = 0. ...(4)

Taking (3) and combining with (2), we get

dp adq = 0.

p qa = A.

Also y + ax = B.

( )p aq y ax  is an intermediate integral.

Similarly ( )p aq y ax  is the second intermediate integral.

From these,

p = 1[ ( ) ( )]
2

y ax y ax
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Notes
and q = 1

1 [ ( ) ( )]
2

y ax y ax
a

Substituting these values in ,dz pdx q dy  we have

dz = 1 2 1 2
1 1[ ( ) ( )] [ ( ) ( )]
2 2

y ax y ax dx y ax y dx dy
a

or dz = 1 2
1 ( ) ( ) ( ),

2 2
dy a dxdy a dx y ax y ax

a a

or z = 1 2( ) ( ).f y ax f y ax

Example 2: Solve by Monge’s method:

2 2( ) 2( )( ) ( )b cq r b cq a cp s a cp t = 0.

Solution. Putting

r = , ,dp s dy dq s dxt
dx dy

2 2( ) 2( )( ) ( )dp s dyb cq b cq a cp s a cp
dx

dq sdx
dy = 0.

The subsidiary equations are,

2 2 2 2( ) 2( )( ) ( )b cq dy b cq a cp dx dy a cp dx = 0, ...(1)

2 2( ) ( )b cq dp dy a cp dx = 0, ...(2)

From (1),

( ) ( )p cq dy a cp dx = 0 ...(3)

Combining it with (2),

( ) ( )b cq dp a cp dq = 0

From which dp
a cp

= dq
b cq

and therefore, ( )a cp = ( ).A b cq ...(4)

Also from (3) and ,dz pdx q dy  we get

a dx b dy c dz = 0

or ax by az = B. ...(5)

From (4) and (5),

a + cp = ( ) ( )b cq ax by cz
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Notes dx
c =

0
dy adx bdy c dzdz
c a b

...(6)

where  stands for ( ),ax by cz

so that

ax by dz = K1

and
dx
c =

1( )
dy

c K

Integrating

1( )x K = y + K2.

( )y x ax by cz = ( ).ax by cz [as K2 =  (K1)]

Example 3: Solve by Monge’s method ( ) .r a b s abt xy

Solution: Putting

r = ,dp s dy
dx

 and ,dq s dxr
dy

( )dp s dy dq s dxa b s ab
dx dy

= xy

or 2 2[ ( ) ]dp dy ab dq dx xy dx dy s dy a b dx dy ab dx

The subsidiary equations are

2 2( )dy a b dx dy ab dx = 0 ...(1)

and dp dy ab dq dx xy dx dy = 0. ...(2)

From (1)

dy a dx = 0, ...(3)

dy  b dx = 0, ...(4)

Whence y  ax = c1, and y  bx = c2.

Combining these with (2), we get

1( )adp ab dq ax c ax dx = 0

and 2( )bdp abq bx c bx dx = 0

or
2 3

1 2 3
x axp bq c = A,

2 3

2 2 3
x bxp aq c = B
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 Higher Order Equations with Constant Coefficients and Monge’s Method

Notes
or

2 3
( )

2 3
x axp bq y ax = 1 1( ) ( )c y ax

2 3
( )

2 3
x bxp aq y bx = 2 2 2( ) ( ).c y bx

Solving,

p =
2 2

2 2
1 2

1 ( ) ( ) ( ) ( ) ,
2 6

yx xa b a b a y ax b y bx
a b

q =
3

1 2
1 ( ) ( ) ( )

6
x a b y ax y bx

b a

Putting these values in dz = p dx + q dy,

dz =
2 3 3

1 2 1 2( ) ( ) ( ) ( )( )
2 6 6

yx a y ax a y bx y ax y bxx xa b dx dy
a b a b a b a b

=
2 33

1 2
3( ) 1 1[ ( )( )] [ ( )( )]

6 6
x y dx x dya b x dx y ax dy a dx y bx dy b dx

a b a b

z =
33

1 2
( ) ( ) ( ).

24 6
yxa b x y ax y bx

Note: This question could be solved by the method of Ist chapter also.

Example 4: Solve by Monge’s method

(1 ) ( 2 ) (1 )q q r p q pq s p p t = 0.

Solution: Putting

r = ,dp s dy dq s dxt
dx dy

.

2( ) ( 2 ) (1 )dp sdy dq sdxq q p q pq s p p
dx dy

= 0

or 2 2[( ) ( ) ]q q dp dy p p dq dx

= 2 2 2 2[( ) ( 2 ) ( ) ]s q q dy q q pq dx dy p p dx

The subsidiary equations are

2( ) (1 )q q dp dy p p dq dx = 0 ...(1)

and 2 2 2 2[( ) ( 2 ) ( ) ]q q dy p q pq dx dy p p dx = 0 ...(2)

From (2), q dy + p dx = 0 ...(3)
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Notes and (1 ) (1 )q dy p dx = 0 ...(4)

From (3), and

dz = p dx q dy , we have

dz = 0, or z = C1 ...(5)

and from (4), and

dz = p dx + q dy, we have

dx + dy + dz = 0,

or, x + y + z = C2 ...(6)

Now combining (3) with (1)

( 1) ( 1)q dp p dq = 0 ...(7)

and combining (4) with (1),

q dp  p dq = 0 ...(8)

i.e., dp  dq = 0 [from (7) and (8)]

or p  q = 1 1 1 1( ) ( )k C z

1
dx

=
11 ( )

dy dz
z

or x = 1 2 1 2 2( ) ( ) ( )F z k F z F C

= 1 2( ) ( )F z F x y z

Example 5: Solve : 2 22 0q r pqs p t and show that the integral represents a surface
generated by straight lines which are parallel to a fixed plane.

Solution: Putting

r = ,dp s dy
dx  and ,dq s dxt

dy

2 2( )q dp dy p dq dx = 2 2 2 2( 2 )s q dy pq dx dy p dx

The subsidiary equations are

2 2q dp dy p dq dy = 0 ...(1)

q dy p dx = 0 ...(2)

Also dz = 0.p dx q dy

z = c.

From (1) and (2),

or q dp  p dq = 0
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Higher Order Equations with Constant Coefficients and Monge’s Method

Notesor p/q = k = f(c)

p  qf(c) = 0.

1
dx = ,

( ) 0
dy dz
f c

( )y xf c = ( )K F c

( )y xf z = ( ).F z ...(3)

The integral of the differential equation is the surface (3) which is the locus of the straight lines
given by the intersections of planes ( ) ( ),y xf c F c  and z = c. These lines are all parallel to the
plane z = 0 as they lie on the plane z = c for varying values of c.

Example 6: Solve by Monge’s method

2 2 ( )r a t ab p qa = 0.

Solution: Putting

r =
dp s dy

dx  and ,dq s dxt
dy

  we get

2 2 ( )dp dy a dq dx ab p aq dx dy = 2 2 2( )s dy a dx

The subsidiary equations are

2 2 2dy a dx = 0 ...(1)

2 2 ( )dp dy a dq dx ab p qa dx dy = 0 ...(2)

From (1),

y + ax = , ...(3)

y  ax = . ...(4)

From (3) and (2)

2 ( )dp a dq ab p qa dx = 0

or dp a dq
p aq

= 2ab dx

log( )p qa = 2 log ,abx c

p aq
c

= 2( )
( )

abxp aq e
f

or p + qa = 2( ) abxf e ...(5)

1
dx = 2( ) abx

dy dz
a f e
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Notes Integrating,

2( )
2

abxf e
ab

= ( )z k z

z = 2
1 2( ) ( )abxf y ax e f y ax

Example 7: Solve by Monge’s method

2cos tanr t x p x = 0.

Solution: Putting

r = , ,dp s dy dq s dxt
dx dy  we get

2cos tandp dy x dx dq q x dx dy =
2 2 2( cos ).s dy x dx

The subsidiary equations are

2 2 2cosdy x dx = 0, ...(1)

2cos tandp dy x dx pq p x dx dy = 0. ...(2)

From (1), y = sin x + , ...(3)

y = sin .x ...(4)

From (2) and (3),

2cos cos sinx dp x dq p x dx = 0

or sec tan secx dp dq p x x dx = 0

or secp x q = 1 ( ) ( sin ).c f a f y x

sec
dx

x =
1 ( sin )

dy dz
y x

and hence,

( cos )( sin )
2

dy x dxf y x = dz.

( sin ) 2F y x z = 2 ( ).c G

( sin ) 2F y x z = ( sin ).G y x [From (4)]

Example 8: Solve the equation by Monge’s method:

4sect r y = 2q tan y.

Solution: Putting

r = ,dp s dy dq s dxt
dx dy
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Higher Order Equations with Constant Coefficients and Monge’s Method

Notes
4secdq s dx dp s dy y

dy dx
= 2q tan y

or 4sec 2 tandq dx y dp dy q y dx dy = 2 4 2( sec )s dx y dy

Subsidiary equations are

2 4 2secdx y dy = 0 ...(1)

4sin 2 tandq dx y dp dy q y dx dy = 0 ...(2)

From (1) x = tan y + . ...(3)

x =  tan y + . ...(4)

From (2) and (3)

2 4 2 2sec sec 2 tan secy dq dy y dp dy q y y dy = 0

or 2sec 2 tandq y dp q y dy = 0

or 2cos 2 sin cosy dq dp q y y dy = 0

or 2cosq y p = ( tan )C f x y

1
dx = 2 ( tan )cos

dy dz
f x yy

or
2sec

2
dx y dy

= ( tan )
dz

f x y

21 ( tan )( sec )
2

f x y dx y dy = dz

( tan ) 2F x y z = K.

or ( tan ) 2F x y z = ( tan )x y from (4)

The solution is

z = 1 2( tan ) ( tan ).x y x y

Self Assessment

Solve the following differential equations by Monge’s method

17. 2 22 5 2 2( ) 0x r xys y t px qy

18. 3pt qs q
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Notes 15.9 M o n g e’s Method of Integrating Rr + Ss + Tt + U (rt - s2) = V

R, S, T, U are functions of x, y, z, p, q.

As before put

r = ( )/dp s dy dx

and t = ( )/ .dq s dx dy

The equation reduces to

2 2( )R dp dy T dq dx U dp dq V dx dy s R dy S dx dy T dx U dp dx V dp dy  = 0

or N  Ms = 0.

So far, we used to factorise M,  but on account of the presence of U dx dp + V dq dy, the factors are
not possible; so let us try to factorise M + N, where  is some multiplier to be determined later.

Now N + M = ( )Rdpdy T dq dx U dpdq V dxdy

2 2( )R dy S dx dy T dx U dp dx V dq dy

= 2 2 ( )R dy T dx S V dx dy U dp dx .U dq dy Rdpdy T dq dx U dpdq

Let the factors of the above be

dy dx dp  and .dy dx dq

Equating coefficient of dy2, dx2, dp dq in the product,

= , , .R T U

Now if we take

= , 1, , (1/ ), , /R kT k mU m

equating the coefficients of the other five terms.

/kT R k = ( ).S V ...(1)

/R m = U, ...(2)

kT /m = T, ...(3)

mU = R, ...(4)

mU/k = U. ...(5)

From (5), m = k and this satisfies (3).

From (2) and (3), / . on putting Rm R U k k
U

From (1),

2 2( )RT UV US U = 0 ...(6)

The first step in practical working is to form the equation (6) in  and to determine the two roots

1 and 2 of this equation.

So if 1 is a root of (6), factorised M + N is

1 1
1

RT U UR dy dx R dp dy dx dq
U R R
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 Higher Order Equations with Constant Coefficients and Monge’s Method

Notes
Or 1 1 1 1

1

1( ) ( ).R U dy T dx U dp Rdy U dp U dq
U R

Similarly if 2 is a root of (6), the same is,

2 2 2 2
2

1( ) ( ).R U dy T dx U dp Rdy U dx U dq
U R

Now we may obtain two integrals 1 1 1 1,u a b  of the equations

and 1 1

2 2

0
0

U dy T dx U dp
U dx Rdy U dq

...(7)

or we may obtain two integrals 2 2 2 2,u a b  of the equations

2 2

1 1

0
0

U dy T dx U dp
U dx Rdy U dq ...(8)

Sets of equations (7) and (8), when written down, constitute the second important step in the
solution of the given equation.

Thus we get two intermediate integrals 1 1 1( )u f  and 2 2 2( )u f  and substituting in dz = p dz
+ q dy, the values of p and q obtained from the two intermediate integrals, and we get the
solution after integrating.

In case the two roots of the equation (6) are equal, we shall get only intermediate integral
1 1 1( )u f  which together with one of the integrals u1 = a1 and 1 1b  will give values of p and

q suitable to solve .dz p dx q dy

If it is not possible to obtain the values of p and q from the two intermediate integrals 1 1 1( )u f

and 2 2 2( )u f , suitable for integration in ,dz pdx q dy we may take one of the intermediate
integrals say 1 1 1( )u f  and one of the integrals from u2 = a2 and 2 = b2.

The values of p and q obtained from these and substituted in dz p dx q dy  will give the
solution of the given equation.

Illustrative Examples

Example 1: Solve:

2( )ar bs ct e rt s h  where , , ,a b c e  and h are constants.

Solution: Here , , , ,R a S b T c U e V h

The equation in  is

2 2( )ac eh be e = 0. ...(1)

Putting = e/m, ...(2)

(1) becomes

2 2
2

2 ( )e e bac eh e
mm

= 0
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Notes or 2 ( )m bm ac eh = 0 ...(3)

If m1, m2 are the roots of (3), the first system of intermediate integrals is given by

1 1U dy T dx U dp = 0,

2 2U dx R dy U dq = 0,

i.e., by
1 1

e eedy c dx e dp
m m

= 0.

2 2

e eedx ady e dq
m m = 0.

or by 1c dx e dp m dy = 0,

2a dy e dq m dx = 0;

so one of the intermediate integrals is

1cx ep m y = 2( ).f ay eq m x ...(4)

Similarly the second intermediate integral is

1( )cx ep m y = 1( ),F ay ap m x ...(5)

It is not possible to get the values of p and q from (4), (5); so we combine (4) with 2 ,cx ep m y A

Thus we have

2 1( )m m y A = 2( )f ay eq m x

or ay eq = 2 2 1[( ) ]m x m m y A

where  is inverse function of f.

This gives q, and  2cx ep m y A  gives p.

Substituting these values in ,dz p dx q dy

e dz = 2 2 2 1( ) [ {( ) }] .A cx m y dx ay m x m m y A dy

Integrating,

22

2 2
aycxez = 2 2 1{ ( ) }m xy Ax m m y A B

where ( )t =
2 3

( )f t dt
m m

Example 2: Solve:

2 2 2 2 2 2(1 ) 2 (1 ) ( ) 1z q r pqzs z p t z s rt p q = 0.
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Higher Order Equations with Constant Coefficients and Mong e’s Method

NotesSolution: Here R = 2 2(1 ), 2 , (1 )z q S pqz T p z

U = 2 2 2, (1 ).z V p q

The equation in  is

2 2( )RT UV US U = 0

or 2 2 2 2 3 42z p q z pq z = 0

or 2 2 2 22p q z pq z = 0

or = / .z pq (roots are equal).

The system of intermediate integrals is given by

U dy T dx U dp = 0

U dx Rdy U dq = 0.

i.e., by 2(1 )pq dy p dx zdp = 0

2(1 )pq dx q dy zdq = 0.

Also dz = .p dx q dy

We write (1) as

( )dx p pdx q dy zdp = 0,

With the help of (3), it reduces to

dx p dz z dp = 0

or x + pz = .

Similarly from (2) and (3), .y zq

Putting the values of p and q in ,dz p dx q dy

dz =
yx dx dy

z z

or - z dz = ( )( ) ( )( )x dx y dy

or
2

2
z

=
22 ( )( )

2 2
yx k

or 2 2 2( ) ( )z x y = 2

Where , ,  are constants.

Example 3: Solve: 2 2(1 ) 2 (1 )q r pqs p t

2 2 1/2 2(1 ) ( )p q rt s = 2 2 3/2(1 ) .p q
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Notes Solution: Here R = 2 2(1 ), 2 , (1 ),q S pq T p

U = 2 2 1/2 2 2 3/2(1 ) , (1 ) .p q V p q

The equation in  is 2 2( )RT UV US U = 0

or 2 2 2 2 2
2 22 2

( 2 ) 1[(1 )(1 ) (1 )]
11

pqp q p q
p qp q

= 0

or 2 2 2 2 2 2 2(1 ) 2 1 1p q p q pq p q = 0

or =
2 2

1
(1 )pq p q

(roots being equal).

We get only one system which will give only one intermediate integral.

The system is 0,U dy T dx U dp

U dx Rdy U dq = 0,

2

2 22 2 2 2

(1 )1
(1 )(1 ) (1 )

p dpdy dx
dq p qp q pq p q

= 0

2

2 22 2 2 2

(1 )1
(1 )(1 ) (1 )

q dqdx dy
pq p qp q pq p q

= 0

or 2
2 2

(1 )
(1 )

dppq dy p dx
p q

= 0,

2
2 2

(1 )
(1 )

dqpq dx q dy
p q

= 0.

Eliminating

2 2 2 2 2 2 2,[(1 )(1 ) ] [(1 ) ]/ (1 )dy p q p q dx q dp pq dq p q

or
2

2 2 3/2
(1 )

(1 )
q dp pq dqdx

p q = 0

or
2 2 2

2 2 3/2 2 2 3/2
(1 ) ( )
(1 ) (1 )

p q dp p dp pq dqdx
p q p q = 0

or 2 2 1/2
2 2 3/2

1 (2 2 )
2(1 )

(1 )

p p dp q dq
dx p q dp

p q
= 0

or 2 2 1/2(1 )x p p q = .     ...(1)

Similarly eliminating 2 2 1/2, (1 )dx y q p q ...(2)
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Higher Order Equations with Constant Coefficients and Monge’s Method

NotesFrom (1) and (2),

( )
( )
x
y = .p

q ...(3)

Substituting in (1) the value of p as found from (3),

q =
2 2[1 {( ) ( ) }]

y
x y

Similarly from (3) and (2),

p =
2 2[1 {( ) ( ) }]

x
x y

Now, dz = pdx q dy

or dz = 2 2

( ) ( )
[1 {( ) . ( ) ]

x dx y dy
x y

Integrating,

( )z = 2 2 1/2[1 {( ) ( ) }]x y

or 2( )z = 2 21 [( ) ( ) ]x y

or 2 2 2( ) ( ) ( )x y z y = 1.

Example 4: Solve 2 2s rt a

or 2rt s = a2.

Solution: Here 20, 0, 0, 1, .R S T U V a

The equation in  is

2 2( ) . 0 1a = 0

or = 1/a.

The two intermediate integrals are given by

1dy dp
a = 0, ...(a)

1dx dq
a = 0.

1dy dp
a = 0, ...(b)

1dx dq
a = 0.
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Notes From (a),

p + ay = ( )F ...(c)

q  ax =

and from (b),

p  ay = ( )F ...(d)

q  ax =

i.e., the two intermediate integrals are

p + ay = ( )f q ax ...(1)

and p  ay = ( )F q ax ...(2)

Now since it is not possible to find the values of p and q from (1)  and (2), we proceed as follows.
Suppose ,  are not constants, but parameters.

Solving (c) and (d),

x = , .
2 2

bq
a ...(3)

p =
1[ ( ) ( )],
2

F f ...(4)

y =
1 [ ( ) ( )].

2
F f

a ...(5)

Substituting these values in ,dz p dx q dy

dz = 1 [ ( ) ( )] ( ) [ ( ) ( ) ]
4 4

F f d dx F d f d
a a

=
1 [{ ( ) ( ) } { ( ) ( ) }]
4

F d F d f d F d
a

1 [{ ( ) ( ) } { ( ) ( ) }]
4

F d F d f d f dB
a

1 [2 ( ) 2 ( ) ].
4

f d F d
a

z = 1 2 2[ ( ) ( ) ( ) ( )] ( ) ( )
4 4 4

F f f F f d F d
a a a

=
1 2 2[ ( ))( ) ( )( )] ( ) ( )
4 4 4

F f G
a a a

=
( ) ( ) 1 1( ) ( )

2 2 2
F f G

a a a

or z  qy = 1 2( ) ( )q ax q ax [from (3) and (5)]
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Higher Order Equations with Constant Coefficients and Monge’s Method

Noteswhere

1( )t =
( ) .

2
f t dt

a ...(6)

and 2( )t =
( ) .

2
F t dt

a ...(7)

Hence the primitive is

z  qy = 1 2( ) ( )q ax q ax

y = 1 2( ) ( )q ax q ax [from (5), (6) and (7)].

Example 5: Solve:

2( ) ( )rq p x s yt y rt s q = 0

Solution: Here , ( ), , , .R q S p x T y U y V q

The equation in  is

2 2[ ] . ( )qy qy y p x y = 0

or = , or /( ).y p x

The intermediate integrals are given by

2y yy dy dx dp
p x p x

= 0 ...(a)

y dx q dy y dq = 0

2qy y dqy dx dy
p x p x

= 0 ...(b)

y dy y dx y dp = 0

From (a)

[( )/ ]p x y = ...(1)

qy = F( ) ...(2)

or one of the integrals is

qy = [( )/ ].F p x y

From second equation of (b),

p + x = , p x
y y

[from (1)]...(2 )

p =   x. ...(3)
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Notes and from (2) and (1),

q = 1 1 1 ( )p xF F F
y y y y y

[from (2 )]

= 1. ( ) From (1) and (3),F
y

 ...(4)

Now

dz = p dx + q dy

= ( ) ( )x dx F dy [from (3) and (4)]

z =
2

( )
2
xx F y k

=
2 1 ( )

2
xx F y

y y

or z =
2

( )
2
xx F

y

Example 6: Solve:

25 6 3 2( ) 3r s t rt s = 0 ...(1)

Solution: Comparing it with

2( )Rr Ss Tt U rt s = V

We have R = 5, 6, 3, 2, 3S T U V

The -quadratic will be

2 2( )UV RT SU U = 0

or 29 12 4 = 0

or 2(3 2) = 0

2 =
2 2, .
3 3

The intermediate integral will be

1 1 .U dy T dx U dp = 0

and 2 2 .R dy U dx U dq = 0

or 3 3 2dy dx dp = 0 and 5 3 2 0.dy dx dq
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Higher Order Equations with Constant Coefficients and Mong e’s Method

NotesIntegrating,

3 3 2y x p = , 5 3 2a y x q b ...(2)

The intermediate integral is

3 3 2y x p = ( 5 3 2 )f y x q ...(3)

From (2),

p = 1 1(3 3 ), ( 5 3 )
2 2

y x a q y x b

Putting these values of p and q in

dz = p dx + q dy

dz =
1 1(3 3 ) ( 5 3 )
2 2

y x a dx y x b dy

or 2 dz = 3( ) 3 5y dx xdy x dx y dy a dx b dy

Integrating

2z = 2 23 53
2 2

xy x y ax by c

This is the required complete integral of (1).

Self Assessment

19. Solve

22 ( ) 1s rt s

20. Solve

23 4 ( ) 1r s t rt s

15.10 Summary

 The partial differential equations are classified according to their structure.

 Similar method as used in ordinary differential equations is adopted for partial differential
equations with constant coefficients.

 The methods, adopted in solving various equations are given in details. It is advisable to
understand the partial differential equations and apply the appropriate methods.

15.11 Keywords

C.F. or Complimentary Function is the solution of the partial differential equations containing
a  number of arbitrary constants.

P.I. or Particular Integral is the particular solution of the partial differential equation containing
any arbitrary constants.
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Notes 15.12 Review Questions

1. Solve

4 4

4 4 0z z
x y

2. Solve

3 2 2( 3 2 ) 0D D D DD z

3. Solve

2 2 2
2

2 22 0z z za a
x yx y

4. Solve

4 4 4 4 4

4 3 2 2 3 42 3 8 4 0z z z z z
x x y x y x y y

5. Solve

2 2 2

2 2( )z z za b ab xy
x yx y

6. Solve

2 2 2
2

2 22 x yz z z e
x yx y

7. Solve

2 2

2 cos( 2 ) yz z z z x y e
x y yx

8. Solve

( 1)DD D D z xy

9. Solve

2 2
2 2 2

2 2
z zx y x y

x y

10. Solve

2( ) 1r t rt s

Answers: Self Assessment

1. 1 2 3( ) ( 3 ) ( 2 )Z F y mx F y x F y x

2. 1 2( 2 )
2
xZ F y F y x

3. 1 2 3( ) ( 2 ) ( 2 )Z F y F y x xF y x

4. 1 2( 3 ) ( 3 )Z F y x x F y x
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 Higher Order Equations with Constant Coefficients and Mong e’s Method

Notes
5.

3 4

1 2( 2 ) ( 3 )
6 24
x xZ F y x F y x y

6.
33

1 2( 2 ) ( )
6 12

yxZ F y x F y x

7. 3
1 2

1( 2 ) ( ) ( )
36

Z F y x F y x x y

8. 1 2 2 2
1( ) ( ) cos( )

( )
Z F y i x F y i x mx xy

m n

9.
3 2

1 2( ) ( ) ( )
6 2
x xZ F y x x F x y x y

10.
2

1 2 3( ) ( 2 ) ( 2 ) sin(2 )
4
xZ F y F y x x F y x x y

11. 1 2( ) ( ) sinZ F y x x F y x x y

12. 1 2( 2 ) ( ) xZ F y x F y x y e

13. 2
1 2( ) ( )abxZ F y ax e F y ax

14. 1 2
1( ) ( ) sin( 2 )
2

x xZ e F y e F y x x y

15. 2 2 2 2
1 2( ) ( )Z F y x F y x

16. 1 2( ) logyZ F xy x F xy x
x

17. 2 2
1 2( ) ( )Z F x y F xy

18. 1 2( ) ( )y zx F z F x

19. 1 2 3Z xy C x C y C

20. 2 2
1

12 ( 3 ) ( )
2

Z xy x y C x y mx

15.13 Further Readings

Books Piaggio, H.T.H., Differential Equations

Sneddon L.N., Elements of Partial Differential Equations.

241



LOVELY PROFESSIONAL UNIVERSITY

Notes Unit 16: Classifications of Second Order
Partial Differential Equations

CONTENTS

Objectives

Introduction

16.1 Classification of Linear, second order Partial Differential Equations in Two
Independent Variables

16.2 Canonical form

16.3 Classification of Second Order Partial Differential Equations

16.4 Summary

16.5 Keyword

16.6 Review Questions

16.7 Further Readings

Objectives

After studying this unit, you should be able to:

 Observe that the partial differential equations of the second order can be of linear type or
non-linear type.

 Understand that linear partial differential equations can be classified into three categories,
namely hyperbolic, parabolic and elliptic type.

 Know that we have equations having variable coefficients there are some cases where the
equations involve variable coefficients but they can be transformed into equations with
constant coefficients.

Introduction

Classification of the partial differential equations help us in solving them in a systematic way. It
is advisable to understand the type of the partial differential equation before trying to solve it.

The methods of solving various classes of differential equations are also different.

16.1 Classification of Linear, Second Order Partial Differential
Equations in two Independent Variables

Consider a second order linear partial differential equation in two independent variables x and
y which can be written as

2 2 2

1 2 32 2( , ) 2 ( , ) ( , ) ( , ) ( , ) ( , ) ( , )a x y b x y c x y d x y d x y d x y f x y
x y x xx y

    


    
...(1)

Sachin Kaushal, Lovely Professional University
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Classifications of Second Order Partial Differential Equations

NotesIt will be seen that the first three terms of equation (1) allow us to classify the equation into one
of three distinct types: Elliptic, for example Laplace s equation, Parabolic, for example the diffusion
equation or Hyperbolic, for example the wave equation as follows:

2 2

2 2 0V V
x y 

(Laplace equations for two variables x, y)

2

2
V VK

tx 
(Diffusion equation)

2 2

2 2 2
1V V

x C t 
(Wave equation)

Each of these types of equation has distinctive properties. We would like to know about those
properties of equation (1) that are unchanged by any change of co-ordinates since these must be
of fundamental significance and not just a result of our choice of co-ordinate system. We can
write this change of co-ordinates as

(x, y)  { (x, y), (x, y)}

with

( , ) 0
( , )x y
 

 ...(2)

If equation represents a model physical system, a change of co-ordinates should not affect its
qualitative behaviour. Writing (x, y)  ( , ) and using subscripts to denote partial derivatives,
we find that

2 2, 2x x x xx x x x x x xx xx                      

and similarly for the other derivatives. Substituting these into equation (1) gives us

1 2 32 + ( , ) ( , ) + ( , ) ( , )Α B C b b b g                  ...(3)

where

2 2

2 2

2 ,
( )

2 ,

x x x y

x x x y y x y y

x x y y

A a b c
B a b c

C a b c

   

       

   
....(4)

We do not need to consider other co-efficient functions b1, ( , ), b2( , ), b3( , ).

We can express (4) in a concise matrix form as

x x x y

y y x y

A B a b
B C b c

   

    ...(5)

which shows that
2

( , )det det
( , )

A B a b
B C b c x y

 
...(6)

In (6) 
( , )
( , )x y
 

 = Jacobian of transformation.

This shows that the sign of a c  b2 is independent of the choice of co-ordinate system which
allows us to classify the equation.

An Elliptic equation has ac < b2, for example Laplace equation

243



LOVELY PROFESSIONAL UNIVERSITY

Notes 2 2

2 2x y
 

.

A Parabolic equation has ac = b2, for example the diffusion equation

K 
2

2 0
yx

  ...(here y = t)

A hyperbolic equation has ac < b2, for example the wave equation

2 2

2 2 2
1 0

x c y
  ...(here y is time)

16.2 Canonical Form

Any equation of the form (1) can be written in Canonical form by choosing the canonical co-
ordinate system in terms of which the second derivative appear in the simplest possible way.

Hyperbolic Equation ac < b2

In this case we can factorize A and C to give

A = 2 2
1 1 2 22 ( ) ( )x x y y x y x ya b c p q p q       

C = 2 2
1 1 2 22 ( ) ( )x x y y x y x ya b c p q p q       

with the two factors not multiples of each other. We can then choose  and  so that

p1 x + q1 y = p2 x + q2 y = 0

and hence A = C = 0. This means that

 is constant on curves with 
1

1

dy q
dx p ,  is constant

on curves with 
2

2

dy q
dx p

we can therefore write

p1dy  q1dx p2dy  q2dx = 0

and hence

(p1dy  q1dx) (p2dy  q2dx) = 0

which gives

ad2y  2b dxdy + cdx2 = 0 ...(7)

As we shall see, this is the easiest equation to use to determine ( , ). We call ( , ) the characteristic
co-ordinate system in terms of which (1) takes its Canonical form

 + b1( , )  + b2( , )  + b3  = g( , ) ...(8)

The curves where  is constant and the curves where  is constant are called characteristic curves
or simply characteristics. As we shall see it is the existence or non-existence of characteristic
curves for the three types of equations that determines the distinctive properties of their solutions.
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 Classifications of Second Order Partial Differential Equations

NotesAs a less trivial example, consider the hyperbolic equation

xx  sech4x yy = 0 ...(9)

Equation (7) shows that the characteristics are given by

dy2
  sech4x dx2 = (dy + sech2 x dx) (dy  sech2 x dx) = 0

and hence

2sechdy x
dx

The characteristics are therefore

y  tanb x = constant,

and the characteristic co-ordinates are

 = y + tanb x,  = y  tanb x. On writing (9) in terms of these variables with  = (x, y) = ( , ), we
find that its canonical form is

 = 2
( ) ( )

[4 ( ) ]
    

 
...(10)

in the domain (   )2 < 4.

Parabolic Equation ac = b2

In this case

A = 2 2 22 ( )x x y y x ya b c p q     

C = 2 2 22 ( )x x y y x ya b c p q     

so we can construct one set of characteristic curves. We therefore take  to be constant on the
curves pdy  qdx = 0. This gives us A = 0 and since AC + B2, B = 0. For any set of curves where  is
constant that is never parallel to the characteristics, C does not vanish, and the canonical form is

 + b1( , )  + b( , )  + b3( , )  = g( , ) ...(11)

We can now see that the diffusion equation is in canonical form.

As a further example, consider the parabolic equation

xx + 2cosec y xy + cosec2y yy = 0 ...(12)

The characteristic curves satisfy

dy2  2 cosec y dxdy + cosec2 y dx2 = (dy  cosec dx)2 = 0,

and hence

cosecdy y
dx

The characteristic curves are therefore given by x + cos y = constant, and we can take  = x +
cos y as the characteristic. A suitable choice for the other co-ordinate is  = y. On writing (12) in
terms of these variables, with (x, y) = ( , ), we find that its canonical form is

 = sin2  cos ...(13)

in the whole ( , ) plane.
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Notes Elliptic Equations: ac > b2

In this case we can make neither A nor C zero, since no real characteristic curves exist. Instead we
can simplify by making A = C and B = 0, so that the second derivative form the Laplacian 2  and
the canonical form is

 +  + b1( , )  + b2( , )  + b3  = g( , ) ...(14)

Clearly Laplace s equation is in canonical form

In order to proceed, we must solve

A  C = 2 2 2 2( ) 2 ( ) ( ) 0x y x y x y y ya b c       

B = ( ) 0.x x x y x y y ya b c       

We can do this by defining x =  + i , and noting that these two equations form the real and
imaginary parts of

2 22 0x x y xa b c   

and hence





2
x

y

b ac b
a ...(15)

Now  is constant on curves given by ydy + xdx = 0, and hence from (15) on

2b ac bdy
dx a

...(16)

By solving (16) we can deduce , . For example consider elliptic equation

xx + sech4x yy = 0 ...(17)

In this case  =  + i  is constant on the curves given by

2sech ,dy i x
dx

and hence  y  i tanb x = constant. We can therefore take  = y + i tanb x, and hence  = y,  = tanb
x. On writing (17) in terms of these variables, with (x, y) = ( , ), we find that the canonical
form is

2
2 ,

(1 )
n

    
 ...(18)

in the domain | | < 1.

16.3 Classification of Second order Partial Differential Equations

Let us consider a function z of two independent variables x and y. Writing various partial
derivatives as

2 2 2

2 2, , , ,z z z z zp q r s t
x y xdyx y ...(1)
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Classifications of Second Order Partial Differential Equations

NotesWe find that the most general form of the partial differential equation of the second order will
be of the form

F(x, y, z, p, q, r, s, t) = 0 ...(2)

Example: Consider z as a function of x, y through two functions f and g as follows

z = f(x2  y)  + g(x2 + y)= 0 ...(3)

Find the differential equation by eliminating f and g

Solution:

p =
f qz

x x x

Let u = x2  y and v = x2 + y, so that

z = f(u) + g(v)

then p = . .f qz u v
x u x v x

 = . (2 ) (2 ) 2f q f qx x x
u v u v ...(4)

q  = ( 1) .(1)f f
u v

 =
f f
u v ...(5)

r  = 
2

2
z p

xx =
2 2

2 22 2 2 2f q f fx x x
u v u v

=
2 2

2
2 22 4f q f fx

u v u v
...(6)

2z q
x y x =

2 2

2 2
f fu v

x xu v

=
2 2

2 22 2f fx x
x v ...(7)

2

2
z q

yy =
2 2

2 2.f fu v
y yu v

=
2 2

2 2
f f

u v ...(8)

Now using equations (4), (6) and (8) we have

r = 
2

2
z

x = 2
2 2

2
2 24f q f fx

u v u v

or
2

2
z

x =
2

2
2

1 4z zx
x x y ...(9)
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Notes We can have various types of partial differential equations.

1. Linear partial differential equations with constant coefficients

We may have equations of the type

 C1r + C2s + C3t + C4p + C5q + C6z = f(x, y)

where C1, C2, C3, C4, C5 are constants. We have already given the methods of solving these
types of equations in the earlier unit no. 20.

The examples are 
2 2

2 2 ( , )z z f x y
x y

2
( , )z f x y

x y

2 2

2 2 2
1z z

x C y

2

2
z zK

yx (here K is a constant)

2. Equations with Variable Coefficients

In this type of partial differential equations we will have a structure as follows

Rr + Ss + Tt + f(x, y, z, p, q) = 0 ...(1a)

where R, S, T are functions of x, y, z.

As suggested in the section (21.1) we classify this equation into three classes

(a) Hyperbolic if s2  4rt > 0

(b) Parabolic if s2  4rt = 0 and

(c) Elliptic if s2  4rt < 0

In dealing with equations of the above types first we reduce them to canonical form. The
solution of Laplace equation, Wave equation and conduction of heat or diffusion we defer
cases to next two units.

3. Equations reducible to homogeneous linear form

An equation in which the coefficient of a differential coefficient of any order is a constant
multiple of the variables of the same degree, may be transformed into one having constant
coefficients.

Example: Transform the equation

2 2
2 2

2 2 0z z z zx y y x
y xx y ...(1)

into a form with constant coefficients.

Solution: Put u = log x, v = log y

1.z z
x u x

or x
z z
x u
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Classifications of Second Order Partial Differential Equations

NotesSo operator

x
x u

x
2 2

2
2 2
z z zx z x x

x x xx u

Similarly

2 2
2

2 2
z z zy y

yy v

So the equation reduces to

2 2
1 1
2 2 0z z

u v

where z1(u, v) = z(x, y).

Self Assessment

1. Reduce the equation

2 2 2

2 22z z z
x yx y

to canonical form.

2. Reduce the equation

2 2
2

2 2 0z zx
x y

to canonical form

3. Transpose the partial differential equation into one having constant coefficients

2

2 0z zy
qy

16.4 Summary

 In units 17 to 20 we studied and solved various types of partial differential equations both
first order and higher orders as well as linear and non-linear equations.

 There are three main classes of partial differential equations i.e. hyperbolic type, parabolic
type and elliptic type.

 The wave equation is of hyperbolic type, diffusion equation is of parabolic type and
Laplace equation is of elliptic type.

16.5 Keywords

An Elliptic equation has ac < b2, for example Laplace equation

2 2

2 2x y
 

.
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Notes A Parabolic equation has ac = b2, for example the diffusion equation

K 
2

2 0
yx

  ...(here y = t)

A hyperbolic equation has ac < b2, for example the wave equation

2 2

2 2 2
1 0

x c y
  ...(here y is time)

16.6 Review Questions

1. Reduce the partial differential equation

2 2

2 2 0z z
x y
 

 

to canonical form

2. Transform the partial differential equation into the form having constant coefficients

2 2 2
2 2

2 22 0z z zx xy y
x yx y

  

  

Answers: Self Assessment

1.
2

2 0 


 where ( , ) = z (x, y)

and  = x  y,  = x + y.

2.
2 1   

    

3.
2

2 0
2

  

 

where ( , ) = z(x, y)

16.7 Further Readings

Books Piaggio H.T.H, Differential Equations

Yosida K., Lectures in Differential and Integral Equations
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 Solution of Laplace Differential Equation

NotesUnit 17: Solution of Laplace Differential Equation

CONTENTS

Objectives

Introduction

17.1 Solution of Laplace Differential Equation  Cylindrical Co-ordinates

17.2 Circular Harmonics

17.2.1 Solution of Laplace s Equation in Spherical Polar Co-ordinates

17.2.2 Steady Flow of Heat in Rectangular Plate

17.3 Summary

17.4 Keywords

17.5 Review Questions

17.6 Further Readings

Objectives

After studying this unit, you should be able to:

 Know that Laplace equation is a partial differential equation involving one dependent
variable and three independent variables.

 See that it has a vast number of applications in gravitational potential process in electrostatic
potential distributions, in the propagation of waves, in diffusion process or heat
conductions.

 Note that three major co-ordinate systems namely the Cartesian co-ordinate system the
spherical polar co-ordinate system or the cylindrical co-ordinate systems are used to
express Laplacian operator.

Introduction

This Laplace equation is seen to be written in such a way that the dependence of dependent
variable on three independent variables can be separated.

Both spherical polar co-ordinates and cylindrical co-ordinates are used to find the solution of
Laplace equation.

17.1 Solution of Laplace Differential Equation  Cylindrical

Co-ordinates

The most important partial differential equation of applied mathematics is the differential
equation of Laplace i.e.

2V = 0 ...(1)
The Laplace operator is expressed in general curvilinear co-ordinates 1 2 3, ,u u u  in the following
manner,

2 = 2 3 3 1 1 2

1 2 3 1 1 1 2 2 2 3 3 3

1 h h h h h h
h h h u h u u h u u h u ...(2)

Sachin Kaushal, Lovely Professional University

251



LOVELY PROFESSIONAL UNIVERSITY

Notes If we use cylindrical co-ordinates ( , , )r z  given by

x = cosr

y = sinr ...(3)

z = z

Then 2V  in this co-ordinate system is given by

2V =
2 2

2 2 2
1 1V V Vr
r r r r z ...(4)

So Laplace differential equation in cylindrical co-ordinates is given by

2 2

2 2
1 1V V Vr
r r r r z = 0

or,
2 2

2 2 2 2
1 1V V V V
r rr r z = 0 ...(5)

Here V is a function of r,  and z. Let us suppose the solution of (5) as

V = ( ) ( ) ( )R r r Z r ...(6)

Where ( )R r  is a function of r,  is a function of  and Z is a function of z only. This method is
known as method of separation of variable. Substituting in (6) and dividing by R  Z, we have

2 2

2 2 2 2
1 1 1d R dR d

Rr drR dr r d =
2

2
1 d Z
Z dz ...(7)

Now the right hand side is only a function of z whereas L.H.S. is function of r and , so each side
must be constant i.e.

2 2

2 2 2
1 1 1d R dR d

dr Rr drR r d =
2

2
2

1 d z
z dz ...(8)

Where 2 is a negative constant. This gives us

2 2

2 2 2
1 1 1d R dR d
R rR drdr r d = 2 ...(9)

and

2
2

2
d Z Z
dz = 0 ...(10)

The equation (9) can be rewritten as

2
2 2

2
r d R r dR r
R R drdr =

2

2
1 d

d ...(11)

Keeping in view the same argument, we have from (11)
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Solution of Laplace Differential Equation

Notes2 2
2 2

2
r d R r dR r
R R drdr =

2
2

2
1 d µ

d ...(12)

which gives
2

2 2 2 2
2 ( )d R dRr r r µ R

drdr = 0 ...(13)

and
2

2
2

d µ
d

= 0 ...(14)

In equation (13) if we use the substitution ,xr  it reduces to

2 2

2 2
1 1d R dR µ R
x dxdx x

= 0 ...(15)

Equation (15) is Bessel s differential equation and so the solution is given by

R = –( ) ( )µ µA J x B J x

or R = –( ) ( )µ µA J r B J r ...(16)

where µ is not an integer and

R = 1 1( ) ( )µA J r B Yy r ...(17)

when µ is an integer. The solutions of equations (10), (14) are given by

Z = .
2 2

z zA e B e ...(18)

and = 3 3cos( ) sin ( )A µ B µ ...(19)

Hence the total solution is

V = – 2 2 3 3( ) ( ) cos( ) sin( )z z
µ µR Z A J r B J r A e B e A µ B µ ...(20)

where µ is a fraction and  = 1, 2, 3... and

V = 1 3 3 2 2( ) ( ) cos( ) sin( ) z z
µR Z A J r BY r A µ B µ A e B e ...(21)

When µ is an integer and  = 1, 2,...

The solutions (20) and (21) depend upon the parameters µ, . If we see a solution that is finite at
r = 0 and also be single valued in  then µ be a positive integer and taking all values from 0 to .
Thus for a fixed ,

V = 1 3 4 2 2
0

( ) cos sin z z
µ

µ

A J r A µ A µ A e A e ...(22)

Thus the above solution is known as cylindrical Harmonics and will be useful for certain physical
problems.

The solution (22) V for a single value of µ is called general cylindrical Harmonics.
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Notes 17.2 Circular Harmonics

Laplace equation in cylindrical co-ordinates is given by

2 2

2 2 2
1 1V V Vr
r r r r z = 0 ...(1)

Assume that V is independent of co-ordinates z, we then have

2

2 2
1 1V Vr
r r r = 0 ...(2)

We now attempt to find a solution of this equation of the form.

V = 1 2( ) ( )F F r ...(3)

Substituting this in (2), we have

2
21 2 1

2 2
( ) ( ) ( )dFF d F r d Fr
r dr dr r d = 0 ...(4)

Multiplying by r2 and dividing by 1 2 ,F F  we have

2
2 2 2

2
1

1 d F dFr r
F drdr =

2
21

2
1

1 d F n
F d ...(5)

Since L.H.S. is a function of r and the R.H.S. is a function of  so each one of them is a constant.
We thus have the two solutions.

2
21

12
d F n F
d = 0 ...(6)

and

2
2 221

2
dFd Fr r n F
drdr = 0 ...(7)

The solutions are separable. The solution of (6) is given by

1F = cos sinA n B n ...(8)

Also it is easily verified that the solution of (7) is

2F = , 0n nCr Dr if n ...(9)

If n = 0, we have the solution

2F = 0 0logC r D ...(10)

Where A, B, C and D are arbitrary constants. The solution of Laplace equation in cylindrical co-
ordinates when V is independent of the co-ordinate z are called circular harmonics. The circular
harmonics are then

V0 = 0 0 0( )( log )A B C r D   degree zero

V = ( cos sin )( )n n
n n n nA n B C r D r  degree n ...(11)
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Solution of Laplace Differential Equation

NotesIn most applications of circular harmonics, V is usually single-valued function of . So if we
change by 2 , we reach the conclusion

( , 2 )V r = ( , )V r ...(12)

It is necessary that n take integer values. So a general single valued solution of Laplace equation
is obtained by summing over n i.e.

V = 0 0
1 1

1log ( cos sin ) ( cos sin )n
n n n nn

n n r
a r a n b n r q n p n c ...(13)

where 0 , , ,n n na a b q  and np  and 0c  are constants.

Example: Find the steady state temperature in the region inside a cylinder, the two
halves of the cylinder are ‘thermally insulated from each other, and the upper half of it is kept at
temperature 1 ,  while the lower half is kept at temperature 2 .  It is assumed that cylinder is so
long in the z-direction that the temperate is independent of z.

Solution: To solve this problem, let ( , , , )r z t  be the temperature that satisfies heat equation

t = 2 ...(1)

In the steady state  is independent of t so that we have to solve Laplace equation

2 = 0 ...(2)

in the region inside the cylinder and satisfy the boundary conditions

= 1 at 0r R ...(3)

= 2 at 2r R
we do this by taking the general solution independent of z as, we have

= 1
0 0

1 1

log ( cos sin ) ( cos sin )n n
n n n n

n n

a r r a n B n c r q n f n ...(4)

and use the boundary conditions (3). We first see that the temperature must be finite

Figure 17.1

r

x
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Notes at the origin r = 0. so 0 , xa q and fx must be equal to zero. Therefore the solution (4) reduces to

= 0
1

( cos( ) sin( ))n
x x

n

r a n b n c ...(5)

As a first step let us assume that the temperature on the circumference of the cylinder r = a is
specified as

= ( ) atF r R

Then placing r = R in (5) we have

( )F = 0
1

( cos( ) sin( ))n
x x

n

r a n b n c ...(6)

Now 0 , xc a  and bx are Fourier coefficients and so are given by the relations

ax =
2

0

1 ( )cosn F n d
R

bx =
2

0

1 ( )sinn F n d
R

...(7)

and c0 =
2

0

1 ( )F d
R

An interesting special case arises when the temperature of the upper half of the cylinder is kept
at 0 and the lower half is kept at zero degree. The function then is given geographically by
figure 22.2. We have

ax = 0

0

cos 0n n d
R

bx = 0 0

0

2sin ,n nn d n odd
R R n

Figure 17.2
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Notesand

C0 = 0
0

0

1
2 2

d ...(8)

substituting into (6), we obtain

( , )r = 0 0

1

sin2 .... for odd
2

n

n

nC r n
R n

...(9)

Self Assessment

1. Find the potential ( , )u r  in the exterior of a unit sphere satisfying the relation

2 1 sin 0
sin

ur u
r r

under the conditions

(1,0)u = cos2

and lim
r  ( , )u r = 0

17.2.1 Solution of Laplace s Equation in Spherical Polar Co-ordinates

The Laplace equation in spherical polar co-ordinates is given by

2 2
2

2 2 2
1 12 sin

sin sin
V V V ur r

rr
= 0 ...(1)

we apply here a separation of variable s method and write the solution of (1) in the form

( , , )V r = ( ) ( ) ( )R r ...(2)

where R is a function of r only,  that of  and that of only. Substituting in (1) we get

2 2
2

2 2
2 1 sin sin

sin
r d R r dR d d
R R dr d ddr

=
2

2
1 d

d ...(3)

Since both sides are functions of different independent variables hence each side should be equal
to some constant. Let this constant be 2. Then equation (3) gives

2

2
d
d

= 0 ...(4)

and
2 2

2
2r d R r dR

R R Rdr =
2

2
1 sin

sin q sin
d d
d d ...(5)

Again in (5) both sides are functions of different variables and hence both will be equal to a
constant say ( 1).n n  This gives us from (5)
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2

2 2 ( 1)d R dRr r n n R
drdr = 0 ...(6)

and
2

2
1 sin ( 1)

sin sin
d d n n
d d

= 0 ...(7)

To solve (6), let

r = ep,

so that
dr
dp = pe r

Therefore
dR
dr = 1. dpdR dR

dr dr r dp

or
dr
dr = d

dp

Let us denote the operator d
dp

 by D, then

d dRr r
dr dr =

2
2

2
d R dRr r

drdr

So
2

2
2

d Rr
dr =

d dR dRr r r
dr dr dr

= 1d dr r R
dr dr

= ( 1)D D R

Using these values in (6), we get

( 1) 2 ( 1)D D D n n R = 0

or ( )( 1)D n D n R = 0 ...(6a)

The solution of (6a) is

R = ( 1)np n pA e B e

or R = ( 1)nnA r B r ...(5)

To solve (7) put cos µ

so that
d
d = sind dµ d

dµ d dµ

Substituting these values in (7) we have
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Notes2

2
1 sin ( 1)

sin sin
d d n n
d d

= 0

=
2

2
2

1 sin ( 1) 0
sin 1

d d n n
d dµ µ

=
2

2
2sin cos sin ( 1) 0

sin 1
d d d n n
dµ d dµ µ

=
2 2

2
2 2sin 2 ( 1) 0

(1 )
d dµ n n

dµdµ µ

or
2 2

2
2 2(1 ) 2 ( 1) 0

(1 )
d dµ µ n n

dµdµ µ ...(9)

It is clear that  will be a function of µ i.e.

( ) (cos )z or

Hence the solution of Laplace equation is

V = ( 1)( ) (cos )nn i iA r B r A e B e ...(10)

where the solution of (µ) is

= a iA e B e ...(11)

For 2 2 ,m  integer m, the solution is satisfied by associated Legendre polynomial ( )m
nP x  as

shown below:

Consider the Legendre equation

2
2

2(1 ) 2 ( 1)d y dyx x n n y
dxdx

= 0 ...(12)

Differentiating it m times and putting

=
m

m
d y
dx ...(13)

We have

2
2

2(1 ) 2 ( 1)
mm m

m m m
d y dy d yd dx x n n

dxdx dx dx dx
= 0

or

2 1
2

2(1 ) 2. ( 1)
m m

m m m
d y dmydx mx y m m x
dx dx dx

1

12 2 ( ) ( 1) 0
m m m

m m m
d y d y d yx m n n
dx dx dx
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Notes or from (13)

2
2

2(1 ) 2 ( 1) ( 1) ( 1)d dx x m n n m m
dxdx = 0 ...(14)

Let us put

w = 2 /2 2 /2(1 ) (1 ) ( )
m

m m
nm

dx x P x
dx

...(15)

then = 2 2(1 )
m

x w

d
dx =

12 22 2( 2 )(1 ) (1 )
2

m mm dwx x w x
dx

2

2
d
dx =

21 2 12 2 2 22 2 2 2
2(1 ) ( 2 ) 1 (1 ) 2 (1 ) (1 )

2

m m m mm dw d wm x w mx x x w mx x x
dx dx

=
2 1 22 2 2 2 22 2 2

2(1 ) 2 (1 ) (1 ) (1 ) ( 2)
m m md w dwx mx x x w m x mx m

dxdx

Substituting in equation (14) we have

21 12 2 2 22 2 2
2(1 ) 2 (1 ) (1 ) ( 1)

m m md w dwx mx x x m mx m w
dxdx

12 22 22 ( 1) (1 ) 2 ( 1)(1 )
m m dwx m mx x w x m x

dx

2 2( 1) ( 1) (1 )
m

n n m m x w = 0

Dividing by 2 2(1 )
m

x  we have

2 2 2
2

2 2 2
2 ( 1) ( 1)(1 ) 2 ( 1) ( 1)

(1 ) (1 )
d w dw x m m m mx mx x w n n m m

dxdx x x
= 0

2 2
2

2 2(1 ) 2 ( 1)
(1 )

d w dw mx x n n w
dxdx x

= 0 ...(16)

The equation (16) is same as equation (9) where

= w and µ = x

Thus the solution of equation (9) is given by

= 2 22 2(1 ) (1 ) ( ) ( )
m m m

m
n nm

dw P P
dx

...(17)

Where ( )m
nP µ  is known as associated Legendre polynomial. Hence the solution of Laplace

differential equation is given by (for  = m)

V = 1 ( )n n im im m
nA r B r A e B e P ...(18)
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NotesFor solution which exist for r = 0, then B  = 0.

The complete solution is given by summing over m or

V =
0,1,2 ,...
0,1,2 ,...

( )

n
m

n im im m
n

m
n

A r A e B e P µ ...(19)

Since ( )m
nP x  involves mth derivative of ( )nP x  which is polynomial of degree n, so for m > n

( )m
nP m = 0 ...(20)

for m > n. Defining S, the surface Harmonic by

Sn = ( )im im m
nA e B e P µ ...(21)

If Sn is independent of , then

ndS
d = 0

So Sn has only m = 0 value hence

Sn = ( ).nP µ  In the case V becomes

V = 1( ) ( )n n
n

n

A r B r P µ For m = cos ...(22)

Example 1: Gravitational Potential Due to Uniform Circular Ring

Let us consider a particle of mass m situated at a point 1 1 1( , , )x y z  of a reference Cartesian
coordinate system, then the gravitational potential  due to this mass at the point with coordinate
( , , )x y z  is given by

V =
2 2 2

1 1 1

mass
distance {( ) ( ) ( ) }

m
x x y y z z

...(i)

We know that potential V, satisfies Laplace equation

2V = 0 ...(ii)

in matter free space.

Now, we have to calculate the gravitational potential at any point due to a uniform circular ring
of small cross-section, lying in the x  y plane and with its centre situated at the point O, (Figure
22.3).

Obviously, the gravitational potential is symmetric about the z-axis and so it should be
independent of the angle . The potential V, therefore may be written with following form:

V = 1
0

(cos )n n
n nn

n

BA r P
r

...(iii)
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where An and Bn are constant coefficients and are to be evaluated. To evaluate these coefficients,
we know that the gravitational potential is symmetric about the z-axis and therefore any point

P on the same distance 2 2( )a r  from all the points of the ring, where a is the radius of the ring
and distance OP = r.

Let M denote the total mass of the ring, then the gravitational potential at P due to the ring will
be

V =
2 2

mass
distance ( )

M
a r

...(iv)

but
2 2( )
M

a r
=

1/22
2 2 1/2

2( ) 1M rM a r
a a

or V =
2 4

2 4
1 31 . . ...
2 42

M r r
a a a

...(v)

by Binomial theorem for r < a

However in case r > a, we can write

2 2( )
M

a r
=

1/22
2 2 1/2

2( ) 1M aM a r
r r

=
2 4

2 4
1 1 31 . ...
2 2 4

M a a
r r r

or V =
3 5

3 5
1 1 3. ...
2 2 4

M a a a
a r r r

...(vi)

Now, for point situated on the z-axis,  = 0 and the general solution as contained in equation (iii)
must reduce either to equation (v) or equation (vi). Now the Legendre polynomials Pn (cos )  for
a point on the z-axis (cos 0°) become

(cos0 )nP = (1) 1nP
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NotesTherefore for all points situated on the z-axis, the general form of the potential as contained  in
(iii), reduces to

V = 1
0

n n
n n

n

BA r
r

...(vii)

Comparing this equation with equation (vi) we see that for r > a, the coefficients An = 0 and Bn are
the coefficients of equation (vi).

Again comparing equation (vii) with (v), we see that for r < a,  the coefficients Bn = 0 and An are
the coefficients of equation (v).

Hence the solution for the case r > a may be written as

V =
3 5

0 2 43 5
1 1 3(cos ) (cos ) . . (cos )...
2 2 4

M a a aP P P
a r r r

...(viii)

and that for r < a is

V =
2

0 2 42
1 1 3(cos ) (cos ) . . (cos )...
2 2 4

M rP P P
a a

...(ix)

Example 2: Electrical Potential about a Spherical Surface

Let us consider a spherical surface which is being kept at a fixed distribution of the electrical
potential of the form

V = f( ) ...(i)

On the surface of the sphere.

Figure 17.4

Let us assume that the space both inside and outside the surface is free of electrical charge and we
will determine the potential at points within and outside the spherical surface under consideration.

Obviously, the potential V is quite symmetric around the z-axis and as such it shall be independent
of angle .
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Notes Therefore we have
2

2
V

= 0 ...(ii)

So Laplace equation expressed in spherical polar co-ordinates reduces to

2 2

2 2 2 2
2 1 1

tan
V V V V

r r rr r r = 0 ...(iii)

The general solution of this equation can be written in the form

V = 1
0

(cos )n n
n nn

n

BA r P
r

...(iv)

The potential satisfies the boundary conditions

V = ( ) when 0 and 0
r

f r Lt V ...(v)

Potential in the Region outside the spherical surface

According to the second boundary condition of equation ( ), the potential may not be zero at
r = . Therefore in the region outside the spherical surface no positive powers of r are admissible
in the solution of Laplace s equation. Thus in the general solution we should have An = 0 and so

V = 1
0

(cos )n
nn

n

B P
r

for r > a ...(vi)

The coefficients Bn are to be determined. This can be done by making use of the first boundary
of equation ( ). Hence from (vi) we get

V = 1
0

( ) (cos ) (cos )n
nn

n

BF f P
a

...(vii)

Let cos  = u then

V = 1
0

( ) ( )n
nn

n

Bf u P u
a

...(viii)

To obtain the value of the general coefficient Bn, we multiply both sides of equation (viii) with
Pn(u) and integrate with respect to u in between the limit 1 to +1 we obtain

1

1

( ) ( )nf u P u du =
1

2
1

1

[ ( ) ]n
nn

B P u du
a

All other integrals vanish because of the orthogonal property of Pn(u).

1

1

( ) ( )nf u P u du = 1
1 2

(2 1)
n

n
B

na

or nB = 1

0

(2 1) . ( ) (cos )sin
2

n
n

n a f P d ...(ix)

This gives us the value of the coefficient Bn. Hence the potential outside the spherical surface is
given by equation (viii) with Bn given by equation (ix).
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NotesPotential in Region within the Spherical Surface

The potential within the spherical surface cannot be infinite and therefore negative powers of r
are inadmissible in the general solution as contained in equation (iv). This means that potential
inside spherical surface will be

V =
0

(cos ) forn
n n

n

A r P r a ...(x)

Again the coefficients An are determined by the boundary condition at the surface, viz., V = f( )
at r = a

V = ( ) (cos )F f

=
0

(cos )n
n n

n

A a P ...(xi)

Let cos ,u  then

V =
0

( ) ( )n
n n

n

F u A a P u ...(xii)

multiplying both sides by ( )nP u  and integrating within the limits 1 to +1, we get

1

1

( ) ( )nF u P u du =
1

2

1

[ ( )]n
n nA a P u du

All other coefficients vanish on account of the orthogonal property of ( )nP u

1

1

( ) ( )nF u P u du =
2

(2 1)
n

nA a
n

or nA =
1

1

(2 1) ( ) ( )
2 nn
n F u P u du
a

or nA =

1

1

(2 1) ( ) (cos )sin
2 nn
n F P d
a ...(xiii)

So the potential within the spherical surface is given by equation (xi) or (xii) with values of An
given by the equation (xiii).

Self Assessment

2. Solve

2 0ur
r r

subject to the boundary conditions
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Notes ( )u r = 10u at r a

and ( )u r = 20u at r b

17.2.2 Steady Flow of Heat in Rectangular Plate

We now consider the steady state temperature distribution in a rectangular metallic sheet. In
this case temperature is every where independent of time, and hence the equation governing the
temperature distribution is given by

2 2

2 2
V V

x y
= 0 ...(i)

This equation is called Laplace s equation of two Dimensions. We shall now solve this equation
under various boundary conditions.

Case I: Let there is a thin plate bounded by the lines 0, , 0x x a y  and ,y the sides x  = 0
and x = a being kept at temperature zero. The lower edge y = 0 is kept at ( )f x  and the edge y =

 at temperature zero.

In this case the boundary conditions are:

(0, )V y = 0 ...(ii)

( , )V a y = 0 ...(iii)

( ,0)V x = ( )f x ...(iv)

( , )V x = 0 ...(v)

Figure 17.5

Let the solution of (i) be in the following form

( , )V x y = ( ) ( ) (say)X x Y y X Y ...(vi)

where X and Y are the functions of x and y respectively. Substituting this solution in (i). We have

2

2
1 X
X dx

=
2

2
1 d Y
Y dy

Since L.H.S. is the function of x only and R.H.S. is the function of y only, both sides will be equal
only when both reduce to a constant,
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Notes2

2
1 d X
X dx

=
2

2
2

1 .d Y
Y dY

Here we have taken the negative constant because it suits the boundary conditions.

Therefore the corresponding differential equations are

2
2

2
d X X
dx

= 0 and 
2

2
2 0d X Y

dx

whose general solutions are

X = cos sinA x B x

and                                                  Y = y yCe De

Hence

( , )V x y = ( cos sin )( )y yXY A x B x Ce De ...(vii)

using boundary condition ( ), we get C = 0

Otherwise V  as y  and hence

( , )V x y = ( cos sin ) .yA x B x e   (we have put D = 1)

and using boundary condition (iii), we have

sin a = 0

or                                                    = ( 1, 2, 3,...)n n
a

Thus for each value of n, we have

( , )nV x y = /sin ( 1,2,3,....)n y a
n

nB xe n
a

            ...(viii)

and therefore for different values of n, the solution may be taken as

( , )V x y =
1

( , )n
n

V x y

or                     ( , )V x y = /

1

sin n y a
n

n

nB xe
a

...(ix)

Using boundary condition (iv), we have

( ,0)V x =
1

sin ( )n
n

nB x f x
a

which gives

nB =
0

2 ( ) sin
a

nf x x d x
a a

...(x)
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Notes Hence (ix) with the coefficient (x) is the solution of Laplace s equation (i), which satisfy all the
given boundary conditions.

Case II: Let there be a thin rectangular metallic plate bounded by the lines 0, , 0x x a y  and
,y b  the edges 0, , 0x x a y  are kept at temperature zero while the edge y b  is kept at

temperature ( ).f x

Here the boundary conditions are given by

(0, )V y = 0 ...(xi)

( , )V a y = 0 ...(xii)

( ,0)V x = 0 ...(xiii)

( , )V x b = ( )f x ...(xiv)

Proceeding as in Case I and using (xi) and (xii), we get

Figure 17.6

A = 0 and ( 1, 2, 3, ....)n n
a

Therefore for each value of n, we have

( , )nV x y = / / sin ... ( 1, 2, 3,...)n y a n y a
n n

nC e D e x n
a

Hence for different values of n, the solution of (i) is

( , )V x y = / /

1

sinn y a n y a
n n

n

nC e D e x
a

In this result using (xiii), we get

nD = .nC

Therefore

( , )V x y = / /

1

sinn y a n y a
n

n

nC e e x
a

or

( , )V x y =
1

sin sin where 2n n n
n

n y n xC h C C
a a

            ...(xv)
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NotesNow using (xiv), we get

( , )V x b =
1

sin sin ( )n
n

n b nC h x f x
a a

or                          sin hn
n bC

a
= 2 ( ) sin

a

b

n xf x dx
a a

or                                             nC =
0

2 ( )sin
sin

a
n xf x dxn b aa h

a

...(xvi)

Hence (xv) with coefficient (xvi) in the solution of (i) satisfying the given boundary conditions.

Case III: Let there be a rectangular plate of length a and width b, the sides of which are kept at
temperature zero, the lower end is kept at temperature f(x) and the upper edge is kept insulated.

Boundary conditions are:

(0, )V y = 0 ...(xvii)

( , )V a y = 0 ...(xviii)

( ,0)V x = ( )f x ...(xix)

Y b

V
y = 0 ...(xx)

Figure 17.7

Proceeding as in Case I, assuming the solution of equation (i) as ( , ) ( ) ( )V x y X x Y y  and
substituting this in equation (i) itself. We get two differential equations.

2
2

2
X X

x
= 0 and 

2
2

2 0Y Y
y

whose general solutions are

X = cos sinA x B x

and                                                  Y = cos sinC h y D h y
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Notes respectively. Therefore

( , )V x y = ( cos sin )( cos sin )A x B x C h y D h y       ...(xxi)

Using boundary conditions (xvii) and (xviii) in (xxi), we get

A = 0 and ( 1, 2, 3,...)n n
a

Hence for each value of n, we have

( , )V x y =
1

cos sin sinn n
n

n y n y nC h D h x
a a a

         ...(xxii)

Using (xix) in (xxii) we have

( ,0)V x =
1

sin ( )n
n

nC x f x
a

Therefore

nC =
0

2 ( )sin
a

nf x x d x
a a

...(xxiii)

Again using (xx) in (xxii), we have

1

sin cos sinm n
ny b

n b n b nV C h D h
y a a a = 0

This will be true for all values of x, if

sin cosn n
n b nC h D h b

a a = 0

or

nD = tann
n bC h s

a
...(xxiv)

Therefore (xxii) with coefficients given by (xxiii) and (xxiv) is the solution of the equation (i)
satisfying all the given boundary conditions.

Self Assessment

3. Solve

2 2

2 2 0U U
x y

subject to the conditions

(0, ) 0U y

( , ) 0U l y

and ( , ) sin and ( , 0) 0 for 1, 2, 3, ...n xU x a U x n
l
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Notes17.3 Summary

 Laplacian operator is expressed in Cartesian spherical polar co-ordinates and cylindrical
co-ordinates.

 The solution of Laplace equation in these co-ordinate systems is solved.

 Laplace differential equations finds its applications in potential problems, in wave
propagation and diffusion and heat conduction processes.

17.4 Keywords

Method of Separation of Variables helps in finding the solution of Laplace differential equation
in all the three co-ordinate systems.

Partial Differential Equation involve one dependent variable which is a function of more than
one independent variable.

17.5 Review Questions

1. Solve Laplace s equation in cylindrical co-ordinates and independent of Z.

2. Solve

2 0ur
r r

subject to the boundary conditions

( ) 0 atu r r a

and 0( ) at 2r u u r a

3. Solve for ( , )U x y  distribution

2 2

2 2 0U U
x y

subject to the conditions

2(0, ) ( , ) 0, ( ,0)U y U l y U x x

and 0
y b

U
y

4. Find the potential U(r, ) inside the spherical surface of radius R when its spherical surface
is kept at fixed distribution

0( , ) cosU R U

Answers: Self Assessment

1.
2 2

3
2(3cos 1)( , )

3
rU r

r
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2.

10 20 10 20( ) ( )( )
( ) ( )

a u b u ab u uU r
a b a b r

3. ( , ) sin sin sinn y n x n aU r y h h
l l l

17.6 Further Readings

Books K. Yosida, Lectures in Differential and Integral Equations

L.N. Sneddon, Elements of Partial Differential Equations

Louis A. Pipes and L.R. Harnvill, Applied Mathematics for Engineers and Physicists
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NotesUnit 18: Wave and Diffusion Equations by
Separation of Variable

CONTENTS

Objectives

Introduction

18.1 On Solution of Wave Equation

18.1.1 Solution of One Dimensional Wave Equation

18.1.2 Two Dimensional Wave Equation

18.1.3 The Vibrations of a Circular Membrane

18.2 Boundary Value Problems (Heat Conduction or Diffusion)

18.2.1 Variable Heat Flow in One Dimension

18.2.2 Heat Flow in Two Dimensional Rectangular System

18.2.3 Temperature Inside a Circular Plate

18.3 Summary

18.4 Keywords

18.5 Review Questions

18.6 Further Readings

Objectives

After studying this unit, you should be able to:

 Note that it finds its applications in almost all branches of applied sciences.

 Understand how heat flows in solids

 See how the electrical current and potentials are distributed in certain medias.

 Know how the diffusion problem is tackled by means of diffusion equation.

Introduction

It is seen that Laplace equation plays an important role in the solution of wave equation as well
as conduction of heat.

The problems occurring in this unit are based on boundary values of the waves as well as the
temperature distribution of the substance.

Depending upon the symmetry of the problem the Laplace equation is solved in Cartesian or
spherical polar co-ordinates or cylindrical co-ordinates.

18.1 On Solution of Wave Equation

When a stone is dropped into a pond, the surface of the water is disturbed and waves of
displacement travel radially outward, when a tuning fork or a bill is struck, sound waves are

Richa Nandra, Lovely Professional University
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Notes propagated from the source of the sound. The electrical oscillations of a radio antenna generate
electromagnetic waves that are propagated through space. All these entities are governed by a
certain differential equation, called a wave equation. This equation has the form

2 2 2 2
2

2 2 2 2 2
1u u u uu

x y z c t ...(1)

Where c is a constant having dimension of velocity, t is the time, x, y, z are the co-ordinates of a
certain reference frame and u is the entity under consideration, whether it be a mechanical
displacement of components of electromagnetic wave or currents or potentials of an electrical
transmission line.

In finding the solution of equation (1) we some times also employ cylindrical co-ordinate
system or spherical polar co-ordinate system.

In cylindrical co-ordinate system, wave equation is given by

2 2 2

2 2 2 2 2 2 2 2
2 1 1 1sin

sin sin
u u u u u

r rr r r c t
...(A)

where as in cylindrical co-ordinate system r, , z the wave equation becomes

2 2 2 2

2 2 2 2 2 2
1 1 1u u u u u
r rr r z c t

...(B)

Example: Solution of wave equation symmetric in all directions about the origin, i.e.
independent of  and  .

In this case u is independent of and . So from equation (A) we have

2 2

2 2 2
2 1u u u
r rr c t

...(C)

Putting

v ru

v ur u
r r

2

2 2v u ur
r rt

so from (C)

2 2

2 2 2
1v u

r c t
...(D)

Putting

R r ct

T r ct

gives

v v R v T
r R r T r
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v v
R T

2 2 2 2

2 2 22 . .v v R v T v T
r R T r rr R T

       
2 2 2

2 22v v v
R TR T

.v v R v T
r R t T t

      ( )r ve e
R T

2 2 2 2
2 2

2 2 22v v R v ve e e
t R Tr R T

       
2 2 2

2
2 22v v ve

R TR T

Substituting in (D) we have

2 2 2 2 2 2 2

2 2 2 2 22 2v v v c v v v
R T R TR T a R T

or
2

0v
R T

...(E)

Integrating with respect to T we have

v F R
R ...(F)

where F(R) is a constant as far as T is concerned.

Integrating (F) we have

( ) ( )v F R dR G T

   ( ) ( )H R G T

or v H r ct G r ct

This is known as D, Alemberts, solution of the wave equation.

The Transverse Vibrations of a Stretched String

Consider a perfectly flexible string that is stretched between two points having a constant
tension T which is large enough so that the gravity may be neglected. Let the string be uniform
and have a mass per unit length equal to m.
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Notes Let us take the initial i.e. undisturbed position of the string to be the axis of x and suppose that
the motion is confined to the xy plane. Consider the motion of an element PQ of length as shown
in the Figure 23.1.

The net force in the y direction, Fy, is given by

2 1sin sinFy T T ...(i)

Now, for small oscillations, we may write

2 2sin tan
x dx

y
x ...(ii)

1 1sin tan
x

y
x

...(iii)

1

T
P

Q 2

T

X

Y

0

Therefore, we have

y
x dx x

y yF T T
x x

...(iv)

Using Taylor s expansion and neglecting terms of order dx2 and higher, we have

y
x x x

y y yF T T dx T
x x x x

or y
x

yF T dx
x x

...(v)

By Newton s Law of motion, we have

2

2y
y yF T dx mdx

x x x ...(vi)

where mdx represents the mass of the section of string under consideration and where we have

written dx for ds since the placement is small 
2

2
y

x
 is the acceleration of the section of string in

the y direction, we thus have

Figure 18.1
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2
y yT m

x x t ...(vii)

Now if the stretching force is constant throughout the string then we can write

2 2

2 2
y yT m

x t
...(viii)

or
2 2

2 2 2
1y y

x c t
...(ix)

where 
Tc
m ...(x)

This equation (ix) is known as one dimensional wave equation and is a special case of the
general wave equation.

The Oscillations of a Hanging Chain

Let us consider the small coplanar oscillations of a uniform flexible string or chain hanging
from a support under the action of gravity as shown in Figure 23.2. We consider only small
deviations y from the equilibrium position; x is measured from the free end of the chain. Let it
be required to determine the position of the chain

,y y x t ...(1)

where at t = 0 we give the chain an arbitrary displacement

0y y x ...(2)

In this case the tension T of the chain is variable, and hence eq. governing the displacement of the
chain at any instant is given by

2

2
y yT m

x x t
...(3)

where m is the mass per unit length of the chain. In this case the tension T is given by

T mgx ...(4)

Hence we have

2

2
y ymgx m

x x t ...(5)

Or, differentiating and dividing both members by the common factor m, we have

2 2

2 2
1y y yx

xx g t ...(6)
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x

y

As in the case of the tightly stretched string, let us assume

, jwty x t e v x ...(7)

Substituting this into (6), we obtain

2 2

2 0v vx v
x gx ...(8)

This equation resembles Bessel s differential equation. Changing the variable x to Z by the
relation:

2
2 4 xZ

g ...(9)

reduces (8) to

2
2 2

2 0v vZ Z Z v
ZZ

...(10)

whose general solution is

0 0v AJ Z BY Z ...(11)

where 0 0,J Z Y Z  are Bessel functions of first and second kind.

In order to satisfy the condition that the displacement of the string y remain finite when x = 0, we
must place

B = 0 ...(12)

Accordingly, in terms of the original variable x, we have the solution

0 2 xv AJ
g

...(13)

for the function v.

So far, the value of  is undetermined. In order to determine it, we make use of the boundary
condition

0 : at v x s ...(14)

Figure 18.2
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00 2 sAJ
g ...(15)

Now, for a non-trivial solution, A cannot be equal to zero, and hence we have

0 2 0sJ
g ...(16)

If we let

2 su
g ...(17)

we must find the roots of the equation

0 0J u ...(18)

If we consult a table of Bessel functions, we find that the first three zeros of the Bessel function

0J u are given by the values

2.405, 5.52, 8.654

Accordingly the various possible values of  are given by

1
2.405

2
g
s 2

5.52
2

g
s 3

8.654
2

g
s etc. ...(19)

To each value of  we associate a characteristic function or eigenfunction vn of the form

0 2n n n
xv A J
g ...(20)

Since the real and imaginary parts of the assumed solution (7) are solutions of the original
differential equation, we can construct a general solution of (6) satisfying the boundary conditions
by summing the particular solutions corresponding to the various possible values of n in the
manner

0
1

, 2 cos sin
n

n n n n n
n

xy x t J A t B t
g ...(21)

where the quantities An and Bn are arbitrary constants to be determined from the boundary
conditions of the problem. In the case under consideration there is no initial velocity imparted
to the chain; hence

0
0

t

y
t ...(22)

This leads to the condition

0nB ...(23)

At t = 0 we have

0 0
1

2
n

n n
n

xy x A J
g ...(24)
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Notes That is, we must expand the arbitrary displacement y0(x) into a series of Bessel functions to
zeroth order. To do this, we can make use of the results of unit 13. It is shown there that an
arbitrary function of F(x) may be expanded in a series of the form

0
1

n

n n
n

F x A J u x ...(25)

where the quantities un are successive positive roots of the equation

0nJ u ...(26)

The coefficient An are then given by the equation

1

02 01

2
n n

n
A zJ u z F z dz

J u ...(27)

To make use of this result to obtain the coefficients of the expansion (24), it is necessary to
introduce the variable

xz
s ...(28)

In view of (17) and (18), eq. (24) becomes

2
0 0 0

1

n

n n
n

y x y sz F z A J u z ...(29)

This is the form (25), and the arbitrary constants are determined by (27).

The determination of the possible frequencies and modes of oscillation of a hanging chain is of
historical interest. It appears to have been the first instance where the various normal modes of
a continuous system were determined by Daniel Bernoulli (1732).

Self Assessment

1. Find the relations between l, m , n and k so that

, , , exp expV x y z t A i lx my nz kct B i lx my nz kct

is the solution of wave equation

2
2

2 2
1 VV
c t

18.1.1 Solution of One Dimensional Wave Equation

We shall now solve one dimensional wave equation under some boundary conditions. Let f(x)
and g(x) be the initial deflection and initial velocity of the string and the string is stretched
between two points (0, 0), (L, 0). Hence for the wave equation

2 2

2 2 2
1 0u u

x c t
...(i)

u(0, t) = 0,

and u(L, t) = 0, for all t, and initial conditions ...(ii)

280



LOVELY PROFESSIONAL UNIVERSITY

 Wave and Diffusion Equations by Separation of Variable

Notesu(x, 0) = f(x) ...(iii)

and
0t

u
t

= g(x) ...(iv)

It is obvious from the equation (i), that u is a function of x and t. Therefore we suppose that the
solution of equation is of the form by

u(x, t) = X(x)T(t)

or u(x, t) = XT(say) ...(v)

where X is a function of x only and T is that of t only.

Substituting this solution in (i), we have

2 2

2 2 2
1 1 1. .d X d T
X Tdx c dt

Now L.H.S. is a function of the independent variable x, while R.H.S. is a function of independent
variable t. Therefore both sides cannot be equal unless both reduce to a constant value. Hence

2 2
2 2

2 2 2
1 1 1. . 0 or or d X d T
X Tdx c dt

Therefore in the three cases, we have

2 2

2 2

2 2
2 2 2

2 2

2 2
2 2 2

2 2

0,                                  0,

0,                       0,

0,                       0

d X d T
dx dt

d X d XX c T
dx dt

d X d XX c T
dx dt

The general solutions in the above three cases are

(a) X = Ax + B, T = Ct + D

(b) X = ,x xAe Be T = ct ctCe De

(c) X = cos sin ,A x B x T = cos sinct D ct

Using boundary conditions and the solution (a), we have

u(0, t) = X(0) T(t) = 0

and u(L, t) = X(l) T(t) = 0

which gives either T(t) = 0 or X(0) = X(L)= 0

But T(t)  0 otherwise we get

u(x, t) = 0

Therefore X(0) = X(L) = 0

Using this in solution (a), we have

X(0) = B = 0

and X(L) = AL + B = 0

Giving A = B = 0. Hence X(x) = 0 and therefore u (x, t) = 0 which is absurd. This proves that (a)
cannot be solution of the wave equation (i).
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Notes Now from solution (b) using boundary conditions

X(0) = A + B =0

and X(L) = 0x xAe Be

Giving A  B =0, so that X(x) = 0 therefore 0 which is absurd.

Hence (a) and (b) are not the solutions of wave equation (i). The third solution (c) is periodic (in
time). Therefore the solution is , cos sin cos sin 0u x t A x B x C ct D ct . Using the
boundary conditions (i) and (ii), we have

0, cos sin 0.u t A C ct D ct

Hence A = 0

and , sin cos sin 0.u L t B L C ct D ct

this gives sin L = 0

or L n

or
n
L

where n = 1, 2, 3......, (i.e. a + ive integer).

Hence the solution of equation (i) satisfying boundary conditions is

, cos sin sinn n n
n ct n ct n xu x t C D

L L L ...(vii)

Now using initial conditions (iii) and (iv), we have

,0 sinn n
n xu x C f x

L

and
0

sinsin cosn n
t

y n c n ct n c n ct n xC D
t L L L L L

                         = sin .n
n c n xD g x
L L

Clearly these will not be satisfied if we take only a single term as our solution. The equation
(i) is a linear and homogeneous therefore the sum of different solutions will still be a solution.

This instead of (vii), the solution may be taken as

1

, cos sin sinn n
n

n ct n ct n xu x t C D
L L L ...(viii)

Therefore using initial conditions

1

,0 sinn
n

n xu x C f x
L

and
0 1

sinn
t n

y n c n xD g x
t L L
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NotesL.H.S. can be considered as the Fourier since expansion of the R.H.S. Hence

0

2 sin
L

n
n xC f x dx

L L ...(ix)

and
0

2 sin
L

n
n c n xD g x dx
L L L ...(x)

These values completely satisfy the solution (viii). Thus u (x, t) given by (viii) with the coefficients
(iv) and (x) is the solution of the above equation that satisfies the conditions (i), (ii), (iii) and (iv).

18.1.2 Two Dimensional Wave Equation

As another example leading to the solution of the wave equation, let us consider the oscillations of
a flexible membrane. Let us suppose that the membrane has a density of m gms. per cm2 and that
it is pulled evenly around its edge with a tension of T dynes per cm. length of edge. If the
membrane is perfectly flexible, this tension will be distributed evenly throughout its area, that is,
the material on opposite sides of any line segment dx is pulled apart with a force of T dx dynes.

Tdy Tdy

Tdx

Tdx

Let u is the displacement of the membrane from its equilibrium position. u is then clearly a
function of time and of the position on the membrane of the point in question.

If we use rectangular co-ordinates to locate the point, u will be a function of x, y and t. Let us
consider an element dx dy of the membrane shown in the figure 23.3.

If we refer to the analogous argument for the string, we see that the new force normal to the
surface of the membrane due to the pair of tensions Tdy is given by

2

2
x dx x

u u uTdy T dxdy
x x x ...(i)

The net normal force due to the pair Tdx by the same reasoning is

2

2
y dy y

u u uTdx T dxdy
y y y ...(ii)

The sum of these forces is the net force on the element and is equal to the mass of the element
times its acceleration. That is, we have

2 2 2

2 2 2
u u uTdy dxdy m dxdy

x y t ...(iii)

or
2 2 2

2 2 2 2
1u u u

x y c t ...(iv)

Figure 18.3
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where 

Tc
m

Equation (iv) is the wave equation for membrane.

Solution of Two Dimensional Wave Equation

Let us now obtain the solution of the two dimensional wave equation. In the last section we have
derived that the oscillations of a perfectly flexible membrane stretched to a uniform tension T
are governed by the two dimensional wave equation. Here in this equation u(x, y, t) is the
deflection of the membrane.

Let f(x, y) be the initial deflection and g (x, y) be the initial velocity of the membrane.

Therefore the boundary conditions and initial conditions are

Y

XA

B

a

b

C

O

0, , 0

, , 0
,0, 0
, , 0

u y t

u a y t
u x t
u x b t

 for all t, ...(i)

and , ,0 ,u x y f x y

0
, respectively.

t

y g x y
t

...(ii)

It is obvious that u is a function of x, y and t. Hence we suppose that the solution of the equation
is of the form

, ,u x y t X x Y y T t

or , ,u x y t XYT say ...(iii)

where X is a function of x only, Y is that of y only and T is that of t only.
Substituting this solution in wave equation

2 2 2

2 2 2 2
1 ,u u u

x y c t

we have

2 2 2

2 2 2 2
1 1 1 1. T X Y

T X Yc t x y

Figure 18.4
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NotesL.H.S. is purely a function of t and R.H.S. is a function of x and y. Hence both sides will be equal

only when both reduce to some constant value. Again in R.H.S. the sum of two terms 
2

2
1 Y
X x

 and

2

2
1 X
X y  cannot be equal to a constant unless each of these is constant.

Thus we have following three possibilities

(a)
2 2 2

2 2 2 2
1 1 10, 0, 0,T X Y z

X Yc T t x y

(b)
2 2 2

2 2 2
1 22 2 2 2

1 1 1, , ,T X Y
X Yc T t x y

where 2 2 2
1 2  and 

(c)
2 2 2

2 2 2
1 22 2 2 2

1 1 1, , ,T X Y
X Yc T t x y

where again 2 2 2
1 2

The general solution in above three cases are

1 1 2 2 3 3,  , ,X A x B Y A y B T A t B ...(iv)

2 21 1
1 1 2 2 3 3,  2 2 and y yx x ct ctX A e B e Y A e B e T A e B e ...(v)

1 1 1 1cos sinX A x B x

2 2 2 2cos sinY A x B x

3 3cos sinT A C t B C t ...(vi)

From the boundary conditions (i) it is clear that (iv) and (v) are not the solution of the wave
equation. Therefore (vi) must be required solution which is periodic in time. Hence we have

1 1 1 1 2 2 2 2 3 3, , cos sin cos sin cos sinu x y t A x B x A y B y A c t B c t ...(vii)

Using the boundary condition (i), we get

1 2 2 2 2 3 3(0, , ) cos sin cos sin 0u y t A A y B y A c t B c t

1        0A

1 1 2 2 2 2 3 3, , sin cos sin cos sin 0;u a y t B a A y B y A c t B c t

1        Sin 0a

or 1a m

1                                   1,2,3, ...m m
a
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2 20 and                n = 1, 2, 3, ...nA
b

Now (vii) becomes

, , cos sin  sin sinmn mn mn mn mn
n ym xu x y t A t B t x x

a b ...(viii)

where 
2 2

2
2 2mn

m n
a b

.

Since the wave equation is linear and homogeneous, therefore sums of any number of different
solution will still be a solution.

Thus instead of (viii) an appropriate solution of , ,u x y t is

1 1

, , cos sin sin sinmn mn mn mn
m n

n ym xu x y t A t B t
a b ...(ix)

where 
2 2

2 2 2
2 2mn

m n
a b

Now using the initial conditions (ii), we have

1 1

, ,0 sin sin , .mn
m n

m ym xu x y A f x y
a b

This series is called the double Fourier series of ( ),f x y therefore.

0 0

2 2. , sin sin
a b

mn
x y

n ym xA f x y dxdy
a b x b

and
0 1 1

sin sin , .mn mn
t m n

n yu m xC B g x y
t a b

...(x)

Therefore,

0 0

2 2B , , , sin sin
a b

mn mn
x y

n ym xc g x y dxdy
a b x b

or
0 0

4B , , sin sin
a b

mn
x ymn

n ym xg x y dxdy
abc x b

...(xi)

Hence the solution of two dimensional wave equation is given by (ix) with the coefficients (x)
and (xi) satisfying all the conditions (i) and (ii).

18.1.3 The Vibrations of a Circular Membrane

In the case of the circular membrane we naturally have recourse to polar co-ordinates with the
origin at the centre. In this case the equation of motion obtained in Cartesian co-ordinates must
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Notesbe transformed to polar co-ordinates, we may write the basic equation of motion of the membrane
in the form.

2
2

2 2
1 uu
c t

 where 2 is Laplacian operator in two dimensions. ...(i)

Transforming this equation to polar co-ordinates, we have

2 2 2
2

2 2 2 2
1 1u u u uc
r rr r t

...(ii)

Let ,f r be the initial displacement and ,g r the initial velocity of the membrane. Therefore

the function , ,u r t  is required to satisfy (ii) and all the boundary and initial conditions, i.e.

Boundary Condition

, , = 0                 ; 0u a t l ...(iii)

Initial Condition

, ,0 = ,u r f r ...(iv)

and
0

,  0 ,
t

u g r r a
t

...(v)

since u is a function of r,  and ,t we suppose the solution of equation (ii) as

, ,u r t R r T t

or , , sayu r t R T ...(vi)

Using the solution (ii) we have

2 2 2

2 2 2 2 2
1 1 1 1 1 1 1. .d T d R dR d
T R r R drc dt dr r d

L.H.S. is a function of t and R.H.S. is a function of r and , hence both sides will be equal only
when both reduce to a constant.

Hence

2 2
2

2 2 2 2 2
1 1 1 1.dT d R dR d

R Rr drc T dt dr r d
...(vii)

where 2 is any constant. We separate the variable in equation (vii) and write

2
2

2
1 d

d

thus we get

2 2
2

2 2
1 0d R dR R
r drdr r

...(viii)
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2

2 0.d
d

...(ix)

2
2 2

2 0.d T c T
dt

...(x)

Equation (ix) has the solution of the form

iAe ...(xi)

Substituting new  variable s = r  in equation (vii), we have

2 2

2 2
1 1 0d R dR R
s dsds s

which is Bessel s equation whose general solution is

1 2R C J s C Y s

or 1 2R C J r C Y r

But since the deflection of the membrane is always finite while Y  becomes infinite as 0r
hence we cannot use Y  and must choose C2 = 0.

Now using boundary condition (iii)

, ,u a t R a T t

        R 0a

Otherwise if 0 or 0, 0T t u

R  0a GJ a

or  0J a ...(xii)

Let 1 2,  be the positive root of (xii),

The corresponding solution of (viii)

cos sinT A n e nt B n C nt

Thus we get the general solution as

1 1

, , cos sin i
n n n n n

n

u r t A C t B t e J r ...(xiii)

which satisfies the boundary condition (iii).

Considering the solution of the wave equation (ii) which are radially symmetric i.e. when the
solution is independent of , we get the general solution as

0
1

, cos sinn n n n n
n

u r t A C t B C t J r ...(xiv)
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Noteswhen 1 2, ... are the positive roots of the equation

0 0J a

From (xii) and initial condition (iv) when t = 0, we have

0
1

,0 n n
n

u r A J r f r

,0u r  becomes f r  when independent of .

Hence An must be the coefficients of Fourier Bessel series which represent f(r) in terms of 0 nJ r
i.e.

02 2 00

2 , 1,2,...
a

n n
n

A rf r J r dr r
a J a ...(xv)

The initial condition (v) gives

0
0 1

n n n
t n

u C B J r g r
t

, becomes when independent of g r g r

Again using Fourier Bessel series, we get

02 2 00

2 a

n n n
n

c B rg r J r dr
a J a

02 2 00

2

1,2,3.....

a

n n
n n

B rg r J r dr
a J a c

n
...(xvi)

Hence (xiv) is the solution of the wave equation with the coefficients given by the equations (xv)
and (xvi) which is radially symmetric.

D, Alembert s Solution of Wave Equation

Given wave equation is

2 2
2

2 2
u uc

t x
...(i)

Let us introduce two independent variables v and w given by

and
v x ct
w x ct

...(ii)

1 and 1v w
x x

Therefore, . .u u u w u
x v x x x
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u w
v w

i.e., 
x v w

Now 
2

2
u u u w

x x v w v wx

2 2 2

2 2 22u u u u
v wx v w

...(iii)

Again  and v wc c
t t

. .u u u u w u uc
t v t w t v w

2
2

2
u u uc

v w v wt

                  
2 2 2

2
2 22u u uc

v wv w ...(iv)

Substituting from (iii) and (iv) in (i), we get

=
2 2 2

2
2 22u u uc

v wv w

=
2 2 2

2
2 22u u uc

v wv w

or
2

0u
v w

Integrating with respect to w, we get

u F v
v

where F(v) is an arbitrary function of v.

Integrating this with respect to v, we get

.u v w

where f v dv v

and (w) is an arbitrary function of w.

,u x t x ct x ct ...(v)

This is known as D, Alembert s Solution of the wave equation (i).
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Notes
Example 1: A string is stretched between the fixed points (0, 0) and (1, 0) and released at

rest from the positions u = A sin x. Find the formula for its subsequent displacement u(x, t).

Solution: Here the variation of the string is governed by one dimensional wave equation

2 2
2

2 2
u uc

t x

Boundary conditions are 0, 0u t

and                                       1, 0u t

Initial conditions are       ,0 sinu x A x

and                                    
0

0
t

u
t

Hence, we have

1

, cos sinn
n

u x t C n ct n x

where 
1

0
2 sin sinnC A x n x dx

C1, C2, C3,... are all zero, since R.H.S. vanish for all these values

and
1

1
0

2 sin sinC A x x dx

       
1

0
1 cos2A x dx

                  = A

Hence 1, cos sinu x t c c t x

                        = cos sinA c t x

Example 2: Find the deflection u(x, y, t) of a square membrane with 1a b and c = 1, if
the initial velocity is zero and the initial deflection is

2, sin sinf x y A x y

Solution: Equation governing the deflection of the membrane is

2 2 2
2

2 2 2
u u uc

t x y
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Notes Boundary Conditions

0, , 0

1, , 0
,0, 0
,1, 0

u y t

u y t
u x t
u x t

Initial Conditions
2, ,0 , sin sinu x y f x y A x y

and
0

0
t

u
t

Now 
1 1

, , cos sin sinmn mn
m n

u x y t A t m x n y

Since C = 1, a = 1, b = 1

and 2 2 2 2
mn m n

where
1 1

0 0

4 , sin .sinmnA f x y mn n ydxdy

                  
1 1

2

0 0

4 sin sin .sin sin .A x mn x y n ydxdy

clearly 1 3 4 5 ...0m m m mA A A A

and
1 1

2
2

0 0

4 sin sin .sin 2 .mA A x m x ydxdy

                   =
1

0

2 sin sin .A x m xdx

Now 22 32 42 ... 0A A A

and
1

2
12

0

2 sinA A xdx A

Hence we have

12 12, , cos sin 2u x y t A t x y

cos 5 sin sin 2 ,A t x y  as all coefficients

Vanish except 2 2 2 2
12 1 2 .

or                12 5

Self Assessment

2. Solve one dimensional wave equation

2 2

2 2 2
1 0u u

x c t
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Noteswith the boundary equations

0, 0
, 0
,0 0

u t
u L t
u x

0t

u g x
t

18.2 Boundary Value Problems (Heat Conduction or Diffusion)

Derivation of the Equation of Heat Conduction

In applied mathematics the partial differential equation

2 2V h V
t

where h2 is a constant and 2  is the Laplacian operator governs the temperature distribution V
in homogeneous solids.

To prove this, we know that the role of flow of heat in a homogeneous solid across the surface

is 
VK
n  per unit area, where V is the temperature and K a constant called the thermal

conductivity, n  denotes the differentiation along the normal. Taking an element of the solid

at the point P (x, y, z) as a rectangular parallelepiped with P centre and edges parallel to the co-
ordinate axes, of lengths dx, dy and dz, we find that the rate of flow of heat into the element is

2K Vdxdydz

But the element is gaining heat at the rate

VC dxdydz
t

where  is the density and C the specific heat. Thus, if there is no gain of heat in the element other
than by conduction, we have

2 2V C V
t

where 2 .KC
C

...(i)

If heat is being produced at ( , , )x y z in any other way, a term must be added to the right hand side
of (i).

18.2.1 Variable Heat Flow in One Dimension

If we consider the heat flow in a long thin bar or wire of constant cross-section and homogeneous
material which is along x-axis and is perfectly insulated, so that the heat flows in the x-
direction only, V depends only on x and t and therefore the heat equation becomes.
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Notes 2
2

2
V Vc
t x

...(i)

Equation (i) is known as one dimensional heat equation.

Now we shall find out the solution of equation (i) under different initial and boundary conditions.

Case I: Let L is length of the rod whose ends are kept at zero temperature and whose initial
temperature is f(x).

The boundary conditions are

0, 0V t ...(ii)

, 0 for all V L t t ...(iii)

The initial conditions are

,0 0V x f x x L ...(iv)

Let the solution of equation (i) is of the form

,V x t X x T t

V XT say ...(v)

where X is a function of x only and T is that of t only.

Substituting this solution in equation (i), we get

2

2 2
1 1d X dT
X dtdx c T

since L.H.S. is a function of x and R.H.S. is a function of t, hence both sides will be equal only
when both reduces to same constant. Therefore

2
2 2

2 2
1 1 0 or ord X dT
X dtdx c t

and hence in these three cases, we have

(a)
2

2 0d X
dx

and 0dT
dt ,

(b)
2

2
2 0d X X

dx
and 2 2 0,dT c t

dt

(c)
2

2
2 0d X X

dx
and 2 2 0dT c t

dt

The general solution in these three cases are

(i) X Ax B T c

(ii) x xX Ae Be
2 2xe c tT c

(iii) cos sin ,X A x B x 2 2c tT Ce
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NotesIf we use the boundary conditions (ii) and (iii) we observe that (i) and (ii) do not constitute the
solution as they give A = B = 0 i.e. X = 0 and hence V (x, t) = 0, which is absurd.

Using boundary conditions (ii) and (iii) the solution (iii) gives.

0 0 and 0 sin 0.X A X L B L

Now 0B otherwise 0X  and hence , 0.V x t

Therefore

sin 0L

or L n

or , 1,2,3,.....n n
L

Hence for each value of n.

2 2 2 2/, sin n c t L
n n

nV x t B xe
L

are solution of (i) satisfying the given boundary condition. Therefore for each value of n, we
take the solution as

1

, ,n n
n

V x t V x t

or
2 2 2 2/

1

, sin . n c t L
n n

n

nV x t B x e
L

...(vi)

Using initial condition, we have

1

,0 sinn
n

nV x B x f x
L

which gives

0

2 ( )sin .
L

n
nB F x x dx

L L ...(vii)

Thus (vi) with coefficient (vii) is the solution of one dimensional heat equation in (i).

Case II: Let L be the length of a uniform wire whose end x = 0 is kept at 0 temperature and other
end x = L is kept at constant temperature t0  and we have to obtain the temperature function of the
wire as t increases, the initial temperature being t1.

Hence boundary conditions are

0, 0V t ...(viii)

0,  for all V L t t t ...(ix)

and initial condition is

,0 iV x t ...(x)
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Notes Let the solution of heat equation be

,V x t XT ...(xi)

where X is a function of x only and T that of t only.

Substituting this solution in (i) as we have done in Case I, we get the following three solutions:

(i) X Ax B T C

(ii) x xX Ae Be 2 2C tT Ce

(iii) cos sinX A x B x 2 2C tT Ce

Hence (ii) does not constitute the solution of (i), since in this case ,V x t XT  increase indefinitely
with time, which is not the case. (iii) is also inadequate to give complete solution since in this
case temps tends to zero as t tends to infinity. Hence the complete solution must be a compilation
of (i) and (iii) Therefore

3, ,tV x t V x V x t ...(xii)

where Vs (x) denotes the temperature distribution after a long period of time when the rod has
reached a steady state of temperature distribution, Vt (x, t) denotes the transient effects which die
down with the passage of time. These two must be the solutions of the types (i) and (iii)
respectively.

It is obvious that when the end x = 0 is maintained at temperature V = 0 and the end x = L at
V = t0 ultimately there will be uniform gradation of temperature.

Therefore 0 .s
tV x x
L

(xii) then becomes

0, ,t
tV x t x V x t
L

with the help of (viii), (ix) and (x) the boundary and initial conditions for ,tV x t are as follows:

0, 0, 0tV t V t ...(xiii)

0 0, ,tV L t t V L t t

or , 0tV L t

and 0,0 ,0t i
tV x x V x t
L

...(xiv)

or 0,0 .t i
tV x t x
L ...(xv)

Therefore let us take

2 2
, 'cos 'sin c t

tV x t A x B x e ...(xvi)
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NotesIn this result by making use of (xiii), we get

2 2
0, ' 0c t

tV t A e

' 0A

Then making use of (xiv) in (xvi), we get

, 'sin 0tV L t B L

sin 0L

or L n

or
n
L                     (n = 1, 2, 3, ...)

Therefore a solution for ,tV x t  is

2 2 2 / 2sin .               (   1,2,3,...)x c t L
n

nB x e n
L

Now adding the solutions for different n the general solution may be written as

2 2 / 2

1

, sin . x t L
t n

n

nV x t B x e
L ...(xvii)

In this result if we use (xv), we get

0

1

,0 sint i n
n

t nV x t x B x
L L

which gives 0

0

2 sin
L

n i
t nB t x xdx

L L L

Integrating by parts, we get

0
2 1n i iB t n t t

n

Therefore

2 2 2 /0
0

1

2, 1 sinn x c t L
t i i

n

t n xV x t x t t t e
L L ...(xviii)

Here if the initial temperature of the wire is zero then, we get

2 2 2 /0

1

2, 1 sin .n x c t L
t

n

t n xV x t x e
L L ...(xix)

Case III: Let there is a bar of infinite length (i.e. extending up to infinity on both sides) which is
insulated laterally. Then we have to find out the solution of heat equation (1) if the initial
temperature of the bar is f(x).
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Notes In this case there is no boundary condition and the initial condition is

,0                         V x f x x ...(xx)

Again we assume the solution of equation (xi) as

, . .V x t X T

Proceeding as in the last two cases, we get the three solutions and here we find that (i) and (ii) do
not constitute the solution. Hence we take here the third solution (iii), i.e.

2 2
0cos sin  and pc tX A px B px T C e

Here we have taken the constant as p2 instead of 2.

Hence 2 2
( , , ) ( cos sin ) pc tV x t p XT C px D px e ...(xxi)

Since f(x) is not periodic here, therefore we will use Fourier integrals and not Fourier series.
Also, we may consider C and D as functions of p

write ( ), ( ).C C p D D p

Now since the heat equation is linear and homogeneous, we have

0
( , ) ( , , )V x t V x t p dp

or
2 2

0
( , ) cos sin pc tV x t C p px D p px e dp ...(xxii)

(xxiii) is the solution of (i) provided this integral exists and can be differentiated w.r.t. ,x,  and
w.r.t. ,t,.

Using the initial condition (xx), we get

0
( ,0) cos sinV x C p px D p px dp X x

1 sinC p f p d

and
1 sin ;D p f p d

2 2

0

1, cos pc tV x t f px p e d dp

           
2 2

0 0

1 cos .pc tf e x p dp d

The change of the order of integration is justified, since inner integral exists and after changing
the order of integration resulting integral also exists.

Solving the inner integral by using the substitution cp t s  and using the well known integral

2
2

0

cos2
2

b
s ee bsds
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Notes
we get 

2 2/4
6

1,
2

x c tdV x t f e
t

Putting ,  so that 2 ,  we have
2

x w dx c tdw
c t

21, 2 w dwV x t f x cw t e ...(xxiii)

which is the required solution.

Case IV: Let there be a bar of length L which is perfectly insulated. Both ends i.e. x = 0 and x = L
are also perfectly insulated and the initial temperature of the bar is

,0V x f x

The flux of heat across the faces 0 and x x L is proportional 0
Vt
x

at the end, since these ends

are insulated. In this case the boundary conditions are

0, 0V t
x ...(xxiv)

, 0V L t
x ...(xxv)

and the initial condition is

,0         0V x f x x L ...(xxvi)

Proceeding as in Case I, here also we get three solutions. Solution (ii) is inadmissible as in this
V = XT increases indefinitely with time. The solution (iii) by itself is inadequate since in this case
the temperature will tend to zero as t tends to infinity. Therefore general solution will consist of
the solution of (i) and (iii).

Using boundary condition (xxiv) in solution (i), i.e.

 and X Ax B T C

or ' 'V A x B

we get ' 0.A

Therefore 'V B  is one of the solution of (i). Considering solution (iii) i.e.

2 2
cos sin ,  c tX A x B x T Ce

or 2 2
, 'cos 'sin c tV x t C x D x e

Using boundary condition (xxiv) and (xxv), we get

' 0D

and                     1,2,3,.....n n
L
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Notes Therefore for each value of n, we have a solution of (i) of the type

2 2 2 2/, cos n c t L
n

nV x t A xe
L

Hence the complete solution of (i) is

2 2 2 2/

1

, ' cos n c t L
n

n

nV x t B A xe
L ...(xxvii)

Using the initial condition (xxvi), we have

1

,0 ' cosn
n

n xV x f x B A dx
L ...(xxviii)

If we integrate both sides w.r.t. x between the limits 0 to L, we have

0

1'
L

B f x dx
L ...(xxix)

Also if we multiply both sides of (xxviii) by cos n x
L  and then integrate w.r.t. x between 0 to

L, we have

0

2 cos
L

n
n xA f x dx

L L ...(xxx)

B, can also be written in a better way as

0

1'
L

B f x dx
L

0

1 2. cos 0
2

L
xf x dx

L L

0
1
2

A

Hence complete solution of (i) to be given by

2 2 2 /
0

1

1, cos
2

n r c t L
n

n

n xV x t A A e
L ...(xxxi)

where
0

2 cos
L

n
n xA f x dx

L L
...(xxxii)

Self Assessment

3. The heat equation is given by

2

2
u uK

tx
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Notesshow that the function

21, exp
4
xU x t
xtt

is also the solution of heat equation.

18.2.2 Heat Flow in Two Dimensional Rectangular System

To illustrate the solution of the two dimensional diffusion equation, let us consider the following
problem.

Y

O

t = 0

a

b
X

A thin rectangular plate whose surface is impervious to heat flow has at t = 0 an arbitrary
distribution of temperature. Its four edges are kept at zero temperature. It is required to determine
the subsequent temperature of the plate as t increases.

Let the plate extend from x = 0 to x = a and from y = 0 to y = b. Expressing the problem
Mathematically, we must solve the equation

2 2
2

2 2
V V Vc

tx y
. ...(i)

Subject to the boundary conditions

0, , 0

, , 0
   for all 

,0, 0
, , 0

V y t

V a y t
t.

V x t
V x b t

...(ii)

The initial conditions are

, ,0 ,  for 0 ,0V x y F x y x a y b

, , 0V x y ...(iii)

To solve equation (i) assume a solution of the form

, ,  t tV x y t e X x Y y e XY say . ...(iv)

where X is a function of x only and Y is function of y only. Substituting (iv) in (i) we get

2 2

2 2 2
1 1d X d Y
X Ydx dy c

or
2 2

2
2 2 2

1 1 1d X d Y
X Ydx c dy

. ...(v)

Figure 18.5
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Notes We have now succeeded in separating the variables since the left hand member of (v) is
a function of Y only and hence both members of (v) are equal to a constant which we have
called 2.

Let 2 2
2C then ...(vi)

the solutions are

1 1sin cosX A x B x

2 2sin cosX A x B x ...(vii)

And A s and B s are arbitrary constants. Now, to satisfy the boundary conditions (ii), it is obvious
that there cannot be any cosine forms present so that we must have

1 2 0B B

Also we must have

sin 0a

and sin 0b

which gives                    0,1,2,.....m m
a

and                                 0,1,2,.....n n
b

From (vi) we find that

2 2
2

mn
m nc
a b ...(viii)

Hence for all value of m and n we find a particular solution of (i) that satisfies the boundary
conditions (ii) of the form

sin sinmnt
mn

n ym xV B e
a b

If we sum over all possible values of m and n construct the general solution

1 1

sin sinmnt
mn

m n

n ym xV B e
a b

...(ix)

Using initial conditions (iii), we get

1 1

, sin sinmn
m n

n ym xF x y B
a b ...(x)

Multiplying both sides of (x) by

sin sin s yr x
a b ...(x)
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Notesand integrating w.r.t. x and y from x = 0 and y = 0 to y = b, because of the orthogonality properties
of the sin  all the terms in the summation vanish except the term for which m = r and n = s and
we obtain the result.

0 0

4 , sin sin
a b

r
x y

yr xB F x y dxdy
ab a b ...(xi)

This determines the arbitrary constants of the general solution (ix)

Three Dimensional Heat Flow

The heat equation in three dimensions is given by

2 2 2
2 2 2

2 2 2
V V V Vc V c
t x y z

...(i)

where 2 kc
cp

Consider now a slab of dimensions a, b, c, the boundary conditions are

and

0, , , 0,

, , , 0,
,0, , 0,
, , , 0,
, ,0, 0,

, , , 0,

V y z t

V a y z t
V x z t
V x b z t
V x y t

V x y c t

...(ii)

for all t.

, , ,0 , ,  for 0 , 0  and 0 .V x y z F x y z x a y b z c ...(iii)

To solve equation (i) we assume as usually a solution of the form

, , , tV x y z t e X x Y y Z z ...(iv)

and then find the solutions similar to the case of two dimensions.

18.2.3 Temperature Inside a Circular Plate

Consider a thin circular plate whose faces are impervious to heat flow and whose circular edge
is kept at zero temperature. At t = 0 the initial temperature of the plate is a function f(r) of the
distance r from the center of the plate only. It is required to find the temperature u (r, t). Let the
radius of the plate be a.

The equation of heat conduction is

2 2u h u
t ...(i)
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Notes It is clear that the temperature u must be a function of r and t only (due to symmetry). So using
cylindrical co-ordinates, we have

2
2

2
1 ,             0u u uh r a

t r tr ...(ii)

The boundary condition is

0 at u r a ...(iii)

The initial condition is

,0u r f r ...(iv)

To solve eq. (ii), let us assume

mtu e v r ...(v)

Substituting in eq. (ii), we obtain

2
2

2
1v umv r h
r rr ...(vi)

Rewriting (vi) in the form

2

2 2 0v v mrr v
rr h

...(vii)

Let 2 2/k m h ...(viii)
and t = kr,  we have from (vii)

2

2 0v vt tv
tt

...(ix)

which has the same form as Bessel s differential equation for n = 0. Hence the general solution of
(ix) is

0 0v AJ kr BY kr ...(x)

where A and B are arbitrary constants. Now since the temperature must remain finite at r = 0, the
arbitrary constant B in (X) must be equal to zero. We thus have

0v AJ kr ...(xi)

Since the boundary r = a, of the plate is maintained at zero temperature for all values of t, we
must have

0 0J ka ...(xii)

Thus only those values of k are allowed that satisfy equation (xii). Let these values be

1,2,3,...ik i .  Equation (viii) gives the following values for m:

2
i im k h ...(xiii)

A particular solution of (v) that satisfies the boundary condition is

2 2

0
k thi

i i iu A e J k r
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NotesThe general solution is obtained by summing over all values of i.e.

2 2

0
1

k thi
i i

i

u A e J k r ...(xiv)

where the arbitrary constants Ai must be obtained from the initial conditions i.e. at t = 0, u = f (r).
Putting t = 0 in (xiv), we have

0
1

i i
i

f r A J k r ...(xv)

Here Ai are now obtained as

022
1 0

2 ,  1,2,....
a

i i
i

A r f r J k r dr i
a J k a ...(xvi)

Example 1: Determine the solution of one dimensional heat equation under the following
boundary and initial conditions:

( ) ( )0, , 0                0V t V L t t= = >

and ,0                               0V x x x L  where L is the length of the bar.

Solution: Proceeding as before for Case I; we have

2 2 2 2/

1

, sin . n a t L
n

n

n xV x t B e
L

where 
0

2 .sin
L

n
nB x xdx

L L

Integrating by parts, we get

2 cosn
LB n

n

Therefore 
2 2 2 2/

1

2 1, cos sin . n a t L

n

L n xV x t n e
n L

Example 2: A rectangular plate bounded by the lines x = 0, y = 0, x = a, y = b has an initial
distribution of temperature given by.

, ,0 sin sin yxV x y A
a b

The edges are kept at zero temperature and the plane faces are impervious to heat. Find V at any
point and at a time.

Solution: We have the heat equation as

2 2 2
2 2 1 2V V V

tx y c
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Notes Let us put the solution as

2

1 1

( , , ) sin sinc mnl
mn

m n

m nV x y t A e x y
a b

where

2 2
2 2

2 2mn
m n
a b

and
0 0

4 sin sin sin sin
a b

mn
y n yx m xA A dx dy

ab a b a b

0 0

4 sin sin sin sin
a b

x y

yA x m x n dy dx
ab a a b b

for n = 2, 3, 4, ... the inner integral vanishes and for n = 1, the value of the integral is 
1 ,
2

a  we have

11A A

and 2
11 2 2

1 1 .
a b

Therefore 
2

11( , , ) sin sin .c t yxV x y t Ae
a b

This give the temperature of the plate at any point and time.

Example 3: Find the temperature ( , )u x t  of a slab whose ends x = 0 and x = L are kept at
temperature zero and whose initial temperature f(x) is given by

f (x) = A when 0
2
Lx

f (x) = 0 when
2
L x L

Solution: Let L be the length of the slab whose ends are kept at zero temperature and whose
initial temperature is f(x).

The boundary conditions are

(0, ) 0u t

( , ) 0 for all .u L t t …(A1)

The initial conditions are

( ,0) ( )u x f x A when 0
2
Lx

            ( ) 0f x when 
2
L x L …(A2)
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NotesLet the solution of the heat equation

2
2

2 ,u uc
t dx

…(1)

is of the form

( , ) ( ) ( )u x t X x T t …(2)

where X is a function of x only and T is that of t only.

Substituting in (1), we get

2 2

2 2 2
1 1d X d T
X dx c T dt

…(3)

Since L.H.S. is a function of x only and R.H.S. is a function of t only, both sides will be equal if
they are constant i.e. equal to 2

2
2

2 2
1 1d X dT
X dtdx c T

Thus

2
2

2 0d X X
dx

and

2 2 0dT c T
dt ...(4)

The solutions of equations (4) are

2 2
cos sin ; e tX A x B x T Ce …(5)

using boundary conditions (A1), the solution (5) gives

(0) 0  and ( ) 0 sin 0X A X L B L …(6)

Now B  0  hence

sin 0L

or ,L n for n = 1, 2, 3, … …(7)

. . /i e n L

Hence for each value of n

2 2 2 2/( , ) sin c n t L
n n

nu x t B x e
L …(8)

are solution of equation (i) satisfying the given boundary conditions (A1). So the general solution
is

2 2 2

2

1 1

( , ) ( , ) sin
c n t

L
n n

n n

n xu x t u x t B e
L

…(9)
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Notes The coefficients Bn  are given by

0

2 ( )sin
L

n
n xB f x dx

L L

/2

/2

0

0

cos2 2sin
( / )

L

L
n x

A n x A Ldx
L L L n L

2 cos
2

nA
n

or

2 1 cos
2n

A nB
n L

22 2sin
4

A n
n L

24 sin
4

A n
n L …(10)

Thus the solution (9) becomes

2 2 2 2

2

1

sin4 4( , ) sin
n c t

L

n

n
A n xLu x t e

n L
...(11)

So the solution of equation (i) subject to the conditions (A1)  and  (A2) is given by equation (11).

Self Assessment

4. Find the solution of heat equation.

2 2

2 2
V V V

dtdx dy

Subject to the boundary conditions

0 when ,  whenV t 0 or x x   and when 0 or .y 

Also initially

( , ,0) ( , )V x y f x y

18.3 Summary

 Wave equation is written in Cartesian co-ordinates, cylindrical co-ordinates and spherical
polar co-ordinates.
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Wave and Diffusion Equations by Separation of Variable

Notes It is shown that depending upon the nature of the process the suitable wave equation can
be set up and solved.

 One dimensional wave equation suits in most problems. So the solution of wave equation
in one dimension is solved.

 Two dimensional wave equation depending upon the symmetry of the problem is solved
both in rectangular and circular cases. Also heat conduction is studied.

18.4 Keywords

Heat Conduction: It is an other process that occurs in so many processes. Diffusion process is
very very similar to conduction process.

Wave Motion: It can be obtained in mechanical vibrations, electrical vibrations and other
processes.

18.5 Review Questions

1. Show that the solution of the wave equation

2
2

2 2 2
1 1u vr

r rr a t

can be of the form

1( , ) ( ) ( )u r t t r at F r at
r

where f and F are arbitrary functions.

2. Solve the one dimensional wave equation

2 2

2 2 2
1 0u u

x c dt

with the boundary conditions

(0, ) 0
 for all 

( , ) 0
u t

t
u l t

and

u(x, 0) = A sin 2x

0
0

t

u
t

3. Solve the heat equation in one dimension:

2

2 0u Vk
t x

subject to the conditions

u(0, t) = u(, t) =0

and V(x, 0) = sin 3x
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Notes 4. Find the temperature u(x, t) in a slab whose ends x = 0 and x = L are kept at temperature
zero and whose initial temperature F(x) is given by

( )  when 0
2
Lf x A x

10 when .
2

L x L

Answers: Self Assessment

1. 2 2 2 2l m n k

2.
1

( , ) sin sinn
n

n ct n xu x t D
L L

where

0

2 ( )sin
L

n
n xD g x dx

n c c

4. ( , , ) sin sin rt
mn

n ym xV x y t A e
l l

where

2 2 2 2  andrl m n

2 0 0

4 ( , )sin sin
l l

mn
x y

n ym xA f x y dxdy
l  

18.6 Further Readings

Books H.T.H. Piaggio, Differential Equation

L.N. Sneddon, Elements of Partial Differential Equations

Louis A. Pipes, and L. R. Harnvill, Applied Mathematics for Engineers and
Physicists

310


