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Sachin Kaushal, Lovely Professional University Existence Theorem for the Solution of the Equation - = =f(x, y)

Unit 1: Existence Theorem for the Notes

Solution of the Equation % = flx, y)

CONTENTS
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1.6 Keyword

1.7 Review Questions

1.8  Further Readings

Objectives

After studying this unit, you will be able to:
° Discuss the existence and the uniqueness of the solution of the first order equation.

° Employ Picard’s method of finding the solution. The method consists in successive
approximation. It also leads to integral equations under certain conditions.

° Learn that the method is not so famous as it involves a lengthy set of solving integrals.
Introduction

The Picard’s method of finding the existence of the solution of first order equation is well
explained in Yosida’s book.

The method is quite general and can be applied to a system of n coupled first order differential
equations as well as equations of nth order. The case of nth order differential equation will be
taken up in the next unit.

1.1 On the Solution of a Differential Equation

In the previous units we have been studying different types of differential equations and their
solutions. Those differential equations chosen were for special purposes of studying certain
functions like Bessel function, Legendre polynomials, Hermite polynomials and Laguerre
polynomials. We also studied some differential equations which were easily soluble. In this
unit we want to study whether a given differential equation has a solution or not. We shall see
under what conditions the solution does exist.
An ordinary differential equation involves the dependent variable y, its derivatives
2 n
dl, L/ dJ, and independent variable x in the form of a functional relation
dx’ dx* " dx"
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dy d2y d"y
LY, ==, 5. =0
(1)[3( y dX dxz dxn (1)

The general solution of an nth order differential equation involves n arbitrary constants a,, a,,
..... a_. In the following we shall study the existence of an ordinary first order differential equation.
The ordinary differential equation of the first order is generally written in the form

(o020 o

we shall study the solution of the equation (2) with the initial conditions i.e. at

x=x, y=y, -0
We can vary x in a certain range i.e.

xy—h<x<x,+h ..(4)

where & is an increment to x. The above range of x is in a domain D. When x varies in the above
range we want to see how y changes from the initial value y,. Let us assume that y varies in the
range

Yo—kSy<y,+k (5

So let D be a domain in (x, y) plane given by (4) and (5). Let the set of points in (4) are given by
Xy X, - X_,... and set of points in (5) are given by y,, y,, ... y_,... . We want to study the existence
and uniqueness of the solution of equation (2). There are various forms of (2). We in particular
study the equation in the form

d
= =fxy) (6)

subject to the initial conditions (3).

1.2 Picard®s Method

Our purpose is to find a solution of equation (6) subject to the initial condition (3). To formula
the problem we have to make the following assumptions concerning f(x, y). The behaviour of
f(x, y) will decide the solution of (6).

Assumption 1: The function f(x, y) is real-valued and continuous on a domain D of the (x, y) plane
given by

xy—h<x<x,+hy -k<y<y, +k (7)
Here h, k are positive numbers.

Assumption 2: f(x, y) satisfies the Lipschitz condition with respect to y in D, that is, there exists a
positive constant k such that

|, 1) ~fe v) | <kl =y, )
for every pair of points (x, y,), (x, y,) of D.

If f{(x, y) has a continuous partial derivative % then assumption 2 is satisfied. Now since D
is a bounded closed domain and Bfgx,y) is continuous in D so w is bounded. Put
Yy Yy

LOVELY PROFESSIONAL UNIVERSITY



d
Existence Theorem for the Solution of the Equation ?Z =flx, y)

Ot(x, y)
oy

k= Sup(x,y)aD

-(9)

Notes

where k is a limit superior.

Then the mean value theorem implies that (8) holds for f(x, y). By Assumption 1, f(x, y) is
continuous on the bounded domain D, therefore |f(x, )| is bounded on D, that is,

SUP, e |f (%, y)|= M < e ..(10)
Set

& =Min (h, k/m) ..(11)
Let us define a sequence of functions {y (x)} for |x - x,| <39,
successively by

Yo(x)=Yo

@ =yo+ [ 0 y0)it

v =y + [ f(E )t

-(12)

Theorem: That {y_(x)} converges uniformly on the internal |x — x| < 3§, and the limit y(x) of the
sequence is a solution of (5) which satisfies (3).

Picard® Method of Successive Approximation

The above theorem is proved by Picard’s method of successive approximation as follows. We
here give this proof as shown by K. Yosida.

Proof: According to (10) and (11), we obtain
|y,(x) =y, [<8M < k

for |x —x,|— 8. Therefore J:; f(t, y,(t)dt can be defined for |x —x,|<h, and
|y,(¥) =y, | £ SM <K

In the same manner, we can define y,(x),......y (x) for |x - x,| £ & and obtain
[y, () =y, £ M £ K, forK=1,2,..n

using assumption (2), we have

1@ =@ K 1)~ a0

for |x— X, | £ 6. Therefore, if we assume that for k=1, 2, ...... n
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h|K|x-x, "
90 -2 £ HEE forlr x| 53 3
We obtain forl=n +1,
k|K|x—x,]|"
@ - @l s S foraox) <5 -9

Since (13) holds for n = 1 as mentioned above, we see, by mathematical induction, that (14) holds
for every n. Thus for m > n, we obtain

m-1

Y Y@ -y()
I=n

m-1

k3)!
sk 12 % ..(15)

Since the right hand side of (15) tends to zero as 1 — o, {y_(x)} converges uniformly to a function
y(x) on the interval |x - x| £3. As the convergence is uniform, y(x) is continuous and more over,
evidently, y(x,) to y,. To prove that y(x) is the solution, we know that as the sequence of functions
{y (x)} converges uniformly and y (x) is continuous on the interval |x - x,| £9, then the lim and
integral can be interchanged. Thus

Iym(x)_yn(x”é

lim [y, (x)dx— [ lim y,(x)dx
0

n— e Jdx xgh—> e

Hence we obtain

y(x)=lim y,,(x)

n— oo

—yo+ lim [ f(t,y, (H)dt

n— e dxy

=yo+ [ Llim f(ty, ()l
=0+ [ fit vy
that is,
y@=yo+ [ f(t v .(16)

The integrand f{t, y(f)) on the right side of (16) is a continuous function, hence y(x) is differentiable
with respect to x, and its derivative is equal to f{x, y(x)).

Hence the proof.

Integrating from x, to x, we see that a solution y(x) of (6) satisfying the initial conditions (3), must
satisfy the integral equation (16). The above proof also shows that the integral equation can be
solved by the method of successive approximation.

Uniqueness of Solution

In the above treatment we have obtained by the method of successive approximation, a solution
y(x) of (6) satisfying the initial condition (3). We have yet to show the uniqueness of the above
solution.

Proof:

If the solution y(x) is not unique, let z(x) be another solution of (6), such that z(x,) = y,. Then

2(x) = yo + jo F(t, 2(t))t.

LOVELY PROFESSIONAL UNIVERSITY
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Existence Theorem for the Solution of the Equation .

By assumption 2, we obtain Notes

|y -2()1 < [ 1y - z()dt] .(7)
X
Therefore we also obtain for |x — x| £39.
|y(x) = 2(x)[ £ KN|x = x|
where
N=SUP . s |y(x) —z(x)|.
Substituting the above estimate for |y(f) — z() | on the right side of (17), we obtain
|y(x) = 2(x) | < N (K |x = x0)* | 2!

for |x —x,| £9. Substituting this estimate for |y(f) — z(t) | once more on the right side of (17), we
have

|y() ~ 2(x) | SN(K|x—x,|)*/3! for |x x| <8.
Repeating this substitution, we obtain
|y(x) —z(x) | EN(K|x—x,|)"/m!, m=1,2, ... ...(18)
for |x —x,| £8. The right side of the above inequality tends to zero as m — e . This means that
N=SUP_ . Iy()-=()]
is equal to zero.

Hence y(x) given by (16) is a unique solution.

' Example 1: Solve

dy

Yy (1)

with the initial conditions x = 0.0, y(0) = 0.1
Now  y,(x) = 01

1@ = 01+ [ xyo)dx

- 01+ J:x (0.1)dx

2 2
_ 01+01% -01[1+%
2 2

Y(x) = 01+ j;x Yo (x)dx

2

= 0.1+0.1jxx(1+"2]dx
0

2 4
= 01+0.1 x—+x—
2 24

2 4
= 0141+ +
2 24
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. 2 4
y,(x) = 0.1+0.1f0x(1+"2+;4de

2 4 6
o.1+0.1[x+x+ o j

2 24 246
2 4 6
011+ 2+ 42
2 24 246

y () = 01 (1 + % + 22'11'2 () 4t (;;IZ}: j -(2)
So the solution of equation (1) is y(x)
o1 1 (% ’
y(x) = lim y(x) = 0.1{1 MR () + 233![2j Fo 1 (2)

The above series is a convergent series

' Example 2: Solve the following by Picard’s method of integrating by successive
approximation

dy - _

ax F

d

o= P

1
wherey=1andz=5whenx=0
_ * A

Here y = 1+'[Ozdxandz—2+_[ox (y + z)dx

The first approximation gives us

_ 1 1. X
y l+.[0(§)dx—l+2,

x 4
1+J. x3(1+1)dx=1+§.x—
2 Jo 2 2 24

Second approximation

1+J.x(1+§x4)dx=1+£+ix5
o\2 8 2 40

N
Il

y

z 1+J‘){x3(§+£+§x4)dx:14—§x4+ix5+ix8
2 Jo \2 2 8 2 8 10 64

Third approximation

y = 1+Ix(1+§x4+ix5+ix8)dx
ol2 8 10 64
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x 3 PR Notes
= 1+2+—x" +—+——
2 40 60 192

z = l+J‘xxs(3+£+§x4+lx5+ixg)dx
2 Jo \2 2 8 40 64

1 3 4 XS 3 8 7 9 xlz
= —+oxt = —
2 8 10 64 360 256

and so on. So the series solution of y and z are convergent for x < 1.
Self-Assessment

1.  Solve the differential equation

dy
dx

under the initial conditions y = 1 for x = 1 by the method of successive approximations.

2. Solve the differential equation
d

under the initial condition y = 0 when x = 0.

1.3 Remark on Approximate Solutions

On letting m — e in equation (15), we obtain
< (K8)
) -y, 0|k 3 EY (1)
k=n @

for |x - x,| £8. The equation (17) is an estimate of the error of the nth approximate solution
y,(x). The method of successive approximation may be used, in principle. However this method
is not always practical because it requires one to repeat the evaluation of indefinite integrals
many times.

We shall now consider another method which is sometimes rather useful. Suppose that g(x, y) is
a suitable approximation to f{x, y) such that we can find the solution z(x) of the differential
equation

d
=8y e

On the interval |x - x,| £ 8 satisfying the initial condition z(x,) = y,. We put

SUP,, yep | fF(x,y) —8(x, )| < & -(3)

Let y(x) be the unique solution of the differential equation

= fxy) e

on the interval |x - x,| £ h satisfying the initial condition y(x ) = y,. Then from (2) it follows that

¥ =20 = [ (F0)- st =0t

LOVELY PROFESSIONAL UNIVERSITY



We obtain by assumption 2,

1y —z(x) | =

[ 1702000 2000+ [ 170010, 20|

< +K

[RECECR R

INECRECIE

<elr=x [ +K1[ Iyl - = -6)
Therefore setting
SUB, e ¥(x) ~ 2(x) | = M,
We have
ly(x) —z(x)| <& |x—x,| + KM |x~x]|

for |x—x,| £ 0.Substituting this estimate for |y(t) —z(f) | on the right hand side of (5), we obtain

M'K?|x - x, 2 K™ x—x, "
+¢€ "
Q m=1 m:

for |x - X, | £ 8. Repeating this substitution, we obtain, foreachn =1, 2,3, ...... ,

MIKnlx_xo |n + i Km_1|x_xo |m
n! ¢ m!

m=1

ly(x) - 2(x)| <

for |x—x,| £ 9. As n— e the first term on the right hand side converges to zero uniformly on
the interval |x —x,| £ 3. The second term is less than

eK Hexp(K|x~x,])~ 1)

Accordingly, the estimate of the error of the appropriate solution z(x) in the interval |x —x,| <
d is given by

|y(@) - 2(0) | < (eK) (exp(K(x — x0) ~ 1) (6)

1.4 Solutions by Power Series Expansion

Consider the differential equation

d
a = fwy) -~

in the case when f(x, y) is a complex valued function of complex variables x and y. We assume that
flx, y) can be expanded in a convergent power series in (x — x,) and (y — y,) in a domain D’ of the
complex (x, y) space given by

|x —x,| <d, |ly-y,| <V.

LOVELY PROFESSIONAL UNIVERSITY
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In other words, f(x, y) is regular function in the domain D’. From this assumption it follows that Notes

o (x,y)

—a is also regular in D’. Therefore, for any positive numbers a, b such thata <4’ and b <V,
Yy

both |f(x, y)| and w are continuous on the closed domain D given by
Y

|x-x,| €4, ly-y,| £b
Thus there exist positive numbers M and K such that

SUF, yyen | f(x, y) |= M <o

FEY)|_K o -(2)

SUP(x, y)eD | ay

Integrating along the segment connecting y, and y,, we obtain

o (x,y)
%y

fx y) flx, y,) = _[: %dy.

Hence the Lipschitz condition

|fx y,) - fix y) | <Kly, -y, | -(3)

holds on D. Therefore, under the above assumption, we can apply to the equation (1), the
method of successive approximations and the domain

|x—x,| £ h=min|a, b/M]| ..(4)

as follows, we write
¥1(x)=Yyo +.[ fx, yo)dt
X

p2(0=yo + [yt

B0 =y0+ [ flaey, ()

where the integration means complex integration along a smooth curve connecting x, and x in
the domain (4). Since f{x, y,) is regular in the domain |x — x,| <&, the first integral is well-
defined, independent of the curves, and hence so is y,. Taking the first integral along the segment
connecting x, and x, we obtain,

ly, ()-yl S hAM £ b
Hence fx, y,(x)} is well defined for |x — x,| </ as a function of x.

Since y,(x) is given by the integral of the regular function f(x, y,), y,(x) is regular in the domain
|x - x,| <h.Hence f{(f, y,(x)} is also regular. Therefore the second integral is well defined and
hence y,(x) is well defined and regular. Taking the integral along the segment connecting x, and
x, we obtain further

|y,(x) = y,(x) | < hM < b.

LOVELY PROFESSIONAL UNIVERSITY
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In this way we can define y,(x), y,(x),...... successively in the domain | x — x| <. The functions
f,(x),n=1,2,3,...all regular in the domain | x —x,| <hand

|yn(x) _yo| < b.

So taking the integral along the segment connecting x, and x we can prove that the sequence of
regular functions |y (x)| converges uniformly in the domain |x - x,| <& and that the limit
function y(x) satisfies

d
) =ypand L = g )

in the domain |x- x,) <h. As y(x) being the uniform limit of the sequence of regular functions is
also regular.

The Method of Undetermined Coefficients

Since in the previous section we have guaranteed the existence of the regular solution y(a), we
can calculate this solution by the method of undetermined coefficients as follows. By virtue of its
regularity, y(x) can be expanded in a power series

- dy) | (x-x)* d%
y(x) = Y, * (x— xo) (dx)m +T0?+

in the domain |x — x| < h. Substituting this expansion for y on the right hand side of the
equation and differentiating we obtain

= fny)

Py Sy Fy)dy
dx? Ox oy dx

setting in these equations x = x, and y = y, we can determine successively the expansion coefficients

Byl Lyl Py
dx|,, Tdx?| Tox®| T
X0 X0
1.5 Summary
° Picard method of finding the conditions under which the solution of the first order

differential equation is described.

° The method involves on the successive approximation and proving the uniform
convergence of the series. It also reduces to an integral equation.

° The Picard method of successive approximation does not find favour of the method of
existence as compared to Cauchy’s method of comparison test or other numerical methods
like Runge’s method.

LOVELY PROFESSIONAL UNIVERSITY
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1.6 Keyword Notes

The method of finding the conditions for the existence of the solution of the first order differential
equation is quite appealing but sometimes cumbersome.

1.7 Review Questions

1.  Solve d—y=x—y.
dx

when x = 0, y = 1, by Picard method up to fifth successive approximation

d
2. Solve L=3x+ y?
dx

givenx=0,y=1.

up to third successive approximation.
Answers: Self-Assessment

2 4
T y=l+x++ 42

3+7
2 3B 4

n

o X
_,;]E

Loty s, bLom

2 Y=Y o0 Y0 w00

1.8 Further Readings

N

Books Yosida, K., Lectures in Differential and Integral Equations

Piaggio, H.T.H., Differential Equations
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Unit 2: General Properties of Solutions of Linear

Differential Equations of Order n

CONTENTS

Objectives

Introduction

21 Existence and Uniqueness of the Solution of a System of Differential Equations
2.2 General Properties of Solution of Linear Differential Equations of Order n
2.3 Solution of the Linear Equation with Constant Coefficients

2.4  Particular Integral

25 Summary

2.6 Keywords

2.7 Review Questions

2.8  Further Readings

Objectives

After studying this unit, you should be able to:

Deal with a differential equation of order 1, and there are lots of properties to be kept in
mind before actually solving any problem.

° Discuss Picard method of existence and uniqueness of the linear differential equation
before solving any problem.

° Know some properties of linear differential equation of nth order with constant coefficients
and the solutions obtained both for complementary functions (C.F.) and Particular Integral
(P.L)

Introduction

The method of proof of the existence of the solution of nth order differential equation is similar
to that of first order one.

Some

properties of the differential equations are listed and later used to find the solutions of a

class of nth order differential equations.

21

Existence and Uniqueness of the Solution of a System of

Differential Equations

An nth order linear differential equation involving dependent variable y and independent
variable x can be written as

dny i dn—ly dn—Zy

a
1 2
R el P

to.tay =0

LOVELY PROFESSIONAL UNIVERSITY



General Properties of Solutions of Linear Differential Equations of Order n

Assuming that a_# 0, we can write the above equation in the form Notes
ar 2 n-1
. e (1)
dx dx” dx dx"
We are interested in solving the equation (1) under the initial conditions
d i n-1 .
Y(x0) = Yoo o (50) = Yo () = Y -2
Let us define
dy
P
dy,
FE
........................... ®)
dyn—Z _
dx - ynfl
dy,,-
71 = Y=Y YrrrYna)
with the initial conditions
Y(%0) = Yo 11(%0) = Yo, Y2 (X0) = Yo--Yna (%0) =y (4
We may consider more generally, the system of ordinary differential equations
dz
7; = fi(x,21, 29,...2,)
dz
7; = Lz, z,.2,)
.................................................. )
dz,
E = fn(x' 21, Zy, /Zn)
with the initial conditions
z,,(%0) = yé’”’l), m=1,2,..,n
where " = y,. For this problem we shall prove the following theorem 1.
Theorem 1: Let
F1(x, 20,20 ,0002,), fo (X, 20,29 o2y ) e fulX,21,25,..2,) ...(6)
be real valued and continuous on a Domain of the real (x,z,2,,..,2,) space given by
-xolsafe, -y sh, m o= 1,2,.n (7)

LOVELY PROFESSIONAL UNIVERSITY
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Notes

Assume that Lipschitz condition with respect to z,, z,, ... z, is satisfied in D, that is, there exists
positive constant k such that for every pair of points (¥, €1, €,...€,), (X, Ny, Np, M,) in D

A

\ﬁ(x/81/82,~---83)—ﬁ(x,m/nz/-wm)\ = KZ\(E,n—nm)\

m=1

for every i =1, 2, ..., n. Further let

h = min (g, b/m)
(8)
M = SUP ‘ﬁ(x,zl,zz,zy....z”)‘
(x,24 oees2y JED
i=1,2,3,...m
Then there exists one and only one set of solution z(x), z,(x)...z,(x) of (5) on the interval
[x=xo| < h ..(9)

satisfying the initial conditions (6).
This theorem implies the following:

Assume that f(x, z;,2,,....z,) is real valued and continuous on the domain D and satisfies the

Lipschitz condition on D, that is for every pair of points (x,€;,¢,,....,€ ),(x,MN,Ny,...M,) of D,

feereame) = fEM-m) £ KY e, -n,)

m=1

Then there exists one and only one solution y(x) of the equation (1) satisfying the initial conditions
(2) on the interval.

lx—x| < B

where h=min(a,b/m) and m=  SUP ‘f(x,zl,zz,...z”)‘
(x21/22,..20)€D

Proof of the theorem 1

The proof of the theorem 1 is entirely the same as in the case of the first order differential
equation in unit 6. The initial value problem for (5) with (6) can be reduced to the system of
integral equations.

z,(x) = ygﬂ-luj‘” Fult2,(),2,(8), .2, (B)dt) (m=1,2, ...n)

and solved by the method of successive approximations. In this case the successive approximation
functions are defined by

2,00 = W [ Lt v v vy
X0
2,,0) = W[ Fults 208, 20182, 0 ()
X
2, @ = W [ (b 210 2200023 00 ()2 ga ()

Xo

LOVELY PROFESSIONAL UNIVERSITY



General Properties of Solutions of Linear Differential Equations of Order n

Then by virtue of the Lipschitz condition, we obtain

xp M=1

17

Zy i1 ()= 2, o (8)

m
32 ()= 2 ()
n=1

From this we obtain, for k > s

n

>

m=1

E(K‘x %) ..(10)

17

ka(x) - Zm,s(x)‘

On the interval (9), provided that z,, ,(x)=yg" . !. This suffices to prove the theorem.

2.2 General Properties of Solution of Linear Differential Equations
of Order n

We now discuss some of the properties of the solution of nth order linear differential equations.
For this purpose write down the differential equation in the form

4" dn—l
AN C =y Sty = Py =) (1)
The equation (1) is said to homogeneous if g(x) = 0, otherwise it is called inhomogeneous. We
assume that the coefficients p;,p,,....p,, q(x) are all continuous on a domain D. We state that

(1) Ify,(x) and y,(x) are any two non-zero solutions of equation (1) then y,(x) + y,(x) is also a
solution.

(2)  Infactif y,(x), y,(x), y,(x)...y (x) are solutions of equation (1) then any linear combination

m

y = Eci Yi -(2)

i=1

of these solutions with arbitrary coefficients c,, c,, ...., ¢_ is also a solution of (1). This fact
is called the principle of superposition.

(3) Lety,(x), yy-y,,, be an arbitrary set of n + 1 solutions of equation (1), then there exist

n +1numbers ¢, c,, ..., ¢, not all zero such that

n+l

Yeyix) =0 -(3)

i=1

that means that the set of n + 1 functions y,, y, ...y

-y, ,, is a dependent set.

Thus if we have a set of n independent functions y,,.... y_ then the most general solution of
equation (1) is written as
y = 267' Yi - (4)

i=1

So a set of n solutions of y,(x), y,(x),...y, (x), which are linearly independent is called a
fundamental system of the solutions of equation (1) (or general solution)
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Relations between the solution and the coefficients

Let y,(x), ¥,(x),...y, (x) be a fundamental system of the solutions of (1). If every y.(x) i=1, 2,
.... n) satisfies another equation

dny dn_lyi
" dx"

Fontry; = 0

With continuous coefficients , (x),i=1, 2, ... nin the domain D then we have
@ = p(x), i=12,.n
This fact may be stated as follows:

The coefficients of a linear differential equation of the nth order are determined uniquely
by an arbitrary chosen fundamental system of the solutions, provided the coefficient of

n

dx"

is identically one.

Let us write equation (1) as

y" +pl~y”_1 +p, y”_z +opy =0 ..(5)

with conditions

¥(xo) = My (x) =Ny () =",y (x0) =M" -(6)
Wronskian. Liouville’s formula

We shall enter into the details of the relations between the solutions and the coefficients
mentioned above. We denote by W(y, y,, y,,-...y,) the determinant

y Vi Y2 o Yy
V o Y2 o Y
V' ¥ Y2 e Ya
y oy e Ly

which is called the Wronskian of the n + 1 functions y, Yy Yoy -r Y, We consider the linear
differential equation

Wy, y1(x), Y2 (%), -y (x)) = 0 ()

where y is unknown and v, (x),,(x),.....y,(x) is a fundamental system of the solutions of
(5). Since

Wi (x) y1(x), Y2 (x) 0y (x)) = 0 (=1,2,..,n)

every y,(x) satisfies the equation (i). Furthermore, as will be shown shortly, the coefficient

D" W (y1(x), Y2 (), Y () --«(i)

of y™ in (i) does not vanish at any point in the domain D. Therefore, we obtain the
following identity

(D)"W(Y, y1(%), Yo%), ¥, (%))
W (1 (%), Y2 (%), Y (%))

Y @y A g (Y )y = ...(iif)

This gives the relations between the solutions and the coefficients.
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General Properties of Solutions of Linear Differential Equations of Order n

Now we shall prove that (ii) does not vanish at any point in D. Suppose that there exists a Notes
point x, in D for which
W(y1(x0), ¥2(x0)s-s ¥ (%)) = 0 -(iv)

Then the system of linear equations with the coefficients 4!/ )(x,)

|
o

Ciy1(x9) + Coya(xg) +-..+ Cpy, (%)

|
o

Cly;(x0)+C2y’2(x0) + ~--+Cn]/;1(xo)

(n-1

Cini )(xo)+C2y§n_1)(x0)+~-~+Cn%(1nil)(xo) =0

has solutions C, C, ..., C not all zero. The linear combination

¥ = Y Ciyix)

of y,(x) with these coefficients C, obviously satisfies the equation (5) and the initial conditions
(6) at the point xin D. Therefore, we have

y@) = PCyi(x)=0

This contradicts the fact that y,(x), y,(x),....,y,(x) are linearly independent. Therefore, the
Wronskian of linearly independent solutions y,(x), y,(x),....,y,(x) does not vanish at any
point in D.

Next we shall consider the Wronskian W(yl(x), yz(x),...,yn(x)) of n solutions y, (x), y,(x),
s Y (x) where y;(x),y5(x),...,(x) are not necessarily linearly independent. Differentiating

W (y1(x), Y5 (x),-..,y,,(x)) with respect to x, we obtain

1), (), e Yux)

(), ), e ()
AW (12 (), Y2 (X)) |

(V)
d - e .
i A W@, )
W, 1@, . v
Since y,(x) satisfies the equation (5)
n-1 .
@) = PN 0@y
k=1
Substituting this in the above determinant, we obtain
AW (12 (%), Y5 (%), -, (%) .
= ..(vi)

dx
POV (11 (%), Y2 (%), s Y, (%))
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Accordingly, W(yl(x),yz(x)...,yn (x)) transpose is a solution of the linear homogeneous
equation (vi) with coefficients continuous in D. Therefore, if W(yl(x),yz(x)...,yn (x))

vanishes at a point in D, then, W(yl(x),yz(x)...,y,, (x)) is identically zero in the whole
domain D. This proves the following theorem.

Theorem 1: Either the Wronskian of # solutions of (5) is identically zero or it never vanishes
at any point in D.

By integration of the equation (vi), we obtain
W) 120 3,0) = WG vasohevyaexp( [ 00t xe D v

which is called Liouville’s formula. From (3), it follows immediately that, if n solutions y, (x),
Yo(%), ... y, (x) of (5) are linearly dependent, then the Wronskian W (y,(x), y5(x),....y,(x)) is
identically zero on D. Thus we obtain the following;:

Theorem 2: Let y,(x), y,(x), .... y_(x) be n solutions of the equation (5). Then these solutions
are linearly independent if and only if the Wronskian W(y,(x),v,(x),...,¥,(x)) does not
vanish at any point in D. Further, these solutions are linearly dependent if and only if their
Wronskian is identically zero in D.

Lagrange’s method of variation of constants and D' Alembert’s method of reduction of
order

We shall be concerned with the inhomogeneous linear differential equation (1). Let y,(x),
y,(x) be solutions of (1). Then, clearly, y(x) = y,(x) — y,(x) is a solution of the associated
homogeneous equation (5). This proves the following theorem.

Theorem 1: The general solution of (1) is written as the sum of a particular solution of (1)
and the general solution of (5).

However, if we know a fundamental system of the solutions of (5), then we can obtain a
particular solution of (1) by the method of variation of constants which is due to Lagrange.
Accordingly, in order to solve linear differential equations, it is sufficient to solve the
associated homogeneous equations.

The method of variation of constants. Let y,, y,, ..., y, be a fundamental system of the solutions
of (5). Then the general solution of (5) is written in the form

o) = PGy (1)

Now we regard these constants C, as functions of x, and try to determine them in such a
way that

¥ = PR

satisfies (1). As was shown by Lagrange, if C;(x),C,(x),...,C,(x) satisfy the system of
linear equations

|
o

Y1 () C1 (1) + 12 (1) C (%) # o+ 1, (1) C, (x)

Y1 (1) C1(0) + 1o (1) Co (1) + o+, (1) C(x) = 0
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General Properties of Solutions of Linear Differential Equations of Order n

W ECE)+ YT (@) L+ y TG, () = a()
then X, C;(x)y;(x) satisfies (1).

In fact, if there exist C (x), C,(x), ..., C (x) satisfying (ii), then, by differentiation and by

n

making use of (ii), we obtain successively

y@) = Y C)yi(x)
i=1

<
—~
=
Na
Il
0n
=
=
Na
=
S
=
Na

Y = PGy @) +q)

Since y,(x) satisfies (5), y(x) is certainly a solution of (1).

Now we consider the system (ii). According to Theorem 2, the Wronskian W(y, (x), y,(x), ...,
y,(x)) of the fundamental system {y,(x)} never vanishes at any point in the domain D, in
which the coefficients p, (x), p,(x), ..., p, (x) of (5) are continuous. Therefore, there exists one

and only one set of solutions C;(x),C,(x),....C,(x) of (i), which is written as

dCi(x)/dx = g )Wi(x)/ W(Yi(x), Y2(x)sr Y (X)) --.(i)

= Zx), (=12,.,n)

where W, (x) is the cofactor of y" V() in W(y,(x), y,(x),--, y,(x)). Integrating (iii), we
obtain

c@ = [ Z@warC, (=12..m) (i)

X0

where C, is a constant of integration. Consequently, a particular solution of the equation
(1) is

n

v = X[ za+C Jueo )

X

The method of reduction of order. If a particular solution y, (x), not identically zero, of the nth
order linear differential equation (5) is known, then, by setting

¥y = Yz

(5) can be reduced to a linear differential equation of the (n — 1) order with respect to dz/
dx. This procedure is called the method of reduction of order and is due to D" Alembert.
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In fact, Leibnitz’s formula yields

y® = 2P+ pyy 2P 4y Pz (p=1,2,...,n)

Substituting these in (5), we see that the coefficient of z" is y,, and that of z is zero. Thus (5)
becomes an equation of the (1 — 1) order with respect to 2/,

ylz(”) + ql(x)z("’]) +q2(x)z(”’]) +otg,1(x)z7 = 0 (vi)

In particular, when 7 = 2, the reduced equation (vi) can be solved. Hence, by virtue of this
method, we obtain the general solution

y(x) = yl(x)ryl(f)’zeXP(—fpl(T)dedt ...(viii)

y,(x) being a particular solution of (5) with n = 2. This method is useful in the practical
treatment of the linear differential equations.

Self Assessment

1. Consider the second order differential equations

Y +p(x)y +pa(x)y =0

having two independent solutions y, and y,. Find a relation between p,, p, in terms of y,
y, and their derivatives.

2. Obtain the particular solution of the differential equation

yu_ y= er

by the method of variation of constants.

2.3 Solution of the Linear Equation with Constant Coefficients

To solve the equation

4" dn—l )
PO dx}r{-'.Pl dx11—]{+"'+Pny =0, (1)
where P, P,,...., P_are constants.
Substitute y = ¢™ on a trial basis,
Then " (PBym" + Pm" ' +..+P,) = 0 ..(ii)

Now, e™ is a solution of (i) if m is a root of the algebraic equation

Pym" +Pm" ' +..+P, = 0 ...(ii)

Auxiliary Equation

The equation (iii) is called the auxiliary equation. Therefore if m have a value say m, that satisfies
(iii), y = e™* is an integral of (i), and if the n roots of (iii) be m,, m,, m,, ...m_the complete solution
of (i) is

mpx 1M,

Yy = " ™+ 4 e
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General Properties of Solutions of Linear Differential Equations of Order n

This will be the case when all the roots, m,, m,, m,,... m_of the auxiliary equation are real, distinct Notes
and different.

Auxiliary Equation having Equal Roots

If the auxiliary equation has two equal roots, say m, and m,, the solution of the given equation

d" dnfl
RELip i Yy 4Py =0
dx dx
will be Yy = (c;+cy)e™ +cge™ +. +c, e
p— mqx moX 11, X
or Yy = e +cze" +tc,e
where c,*tec, = ¢

This is not the general solution of (i), because it contains (n — 1) arbitrary constants while the
order of the equation is . To obtain the general solution of (i) in this case, we proceed as follows:

2
Consider the repeated factor as (Z—y—ml) y=0.This can be written as (D-m,)’y=0,
x

d

where D = =

Put D-m)y = v

then (D-m)v = 0.
dv

Therefore = mv
dv

or — = mpdx
v

. v
Integrating, we have log — =m, x

]
Hence v = et
p— nmyx
or (D-m)y = c,e™
or dl_ my = ¢ oM
dx 2

This is a linear differential equation and we will have

ye ™ = ¢+ _[cz ™ eT™  dx
= +0X
y = (cq+cyx)e™.

LOVELY PROFESSIONAL UNIVERSITY
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This consequently means that if two roots of the auxiliary equation are equal, the general
solution of (i) will be

mx myx M, X

Yy = (cp+opx)e™ +ce™ +. 4

In general, if r roots of the auxiliary equation Pym" + Pym" " +..+ P, =0 are equal to m, say, the
general solution of (i) will be

My 1% My X

Yy = (g +extex+o o x e v, e +..t+c,e

Auxiliary Equation having Complex Roots

If some of the roots of auxiliary equation are complex, then we shall follow the procedure as
given below:

Let a £ iff be the roots of the auxiliary equation; then the corresponding part shall become

0, HB) 4 ¢ 0B

Bx

c,e* P c,e*re”

e™(c, cos Px +icy sinfPx) +e™(c, cos Px —ic, sinPx)

= e™[(cq +¢,)cos Px + (ic; —ic,)sinPx]

= e™[Acos fx+b sin Bx],

where A and B are arbitrary constants.
Therefore the solution is

1myx 1M,,X

y = e"(c;cos Px+c,sinPx)+cie™ +..+c, e

'i Example 1: The expression e™ (A cos Bx +b sin fx) can be also written as
c;e™ cos(B x £ ¢y) or cie™ sin(P x *¢y),

'i Example 2: if the auxiliary equation has two equal pairs of complex roots, say o +1i f§

occurring twice, then the portion of the solution corresponding to these roots, is
™ [(c; +cpx)cos B +(c5 +c4x)sin Px]

'i Example 3: If the auxiliary equation has the roots as o /B, then the portion of the

solution corresponding to these roots is
c,e™ cos h(x B +c2) or ¢, e™sin h(x B +c2)

Solution of equations of the form

dny dn—ly
P—>+P —=+..+Py=0.
R R n
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will have the following properties.

Nature of the roots Solution

1.  Real and distinct Y=y 4oy e 4ot e

ie., my, my,..m,

mx

2. Real and equal, each m (say)

Y= (0 +px+ex’ +tc,x" e

3. Non-repeated roots as o0+ i f§ y = (c; cos Px +c, sinPx) e™
or y=cqe™ cos(Px+cy)

4. Repeated roots o+ if, r times y= [(C1+sz+-~~+c,,x"_1) COSﬁx+(Ci +C/2x+~--+c;,x"_1)
sin Bx] e®*

5. Trrational roots as o, % /B y=c1e™ cosh(x\p+cy)

or y=cqe™sinh(x\B +cy)

n

' d d
@ Example 4: The symbol D is used for I for D" for AR It should be kept in mind that

D and D! are the inverse operations, i.e., as D means differentiations, D! means integrations.

Illustrative Examples
' E le 1: Sol '@—7ﬂ—44 =0
xample 1: Solve: a2 dx y=Vu.
Solution: The equation can be written as (D>~ 7D —44) y = 0
The auxiliary equation is
m*-7m-44 =0 or (m-11)(m+4)=0

-~ m =11, - 4, which are real and distinct. Hence solution of the given equation is

y = ce e, e,
Py dy
: =4y
Example 2: Solve: 2 Yy y
Solution: The given equation is
(D>-4D+1) =0

The auxiliary equation is

I
o

m*—4m+1

+. /16—
4+416 4:2i\/§

m =
2
Hence general solution is
y = Cle(z+ﬁ)x +CZ€(2—J§)X
It can also be written in the form
y = ezx(clem+cze(_ﬁx))
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or y

e (cl cosh~/3x +¢c, sin h \/ﬁ)

e Ly &y, dy
% ExampleS:SolV:f—Zy 4d—+8y 0.

dx®
Solution: The given equation is
D*-2D*-4D +8) y
Auxiliary equation is
- 2m*—4m + 8
or (m—2) (m*-4)

.. General solution is

= 0m=2,-2.

Example 4: Solve: 3 +4y=0.
X

Solution: The given equation is

(D*+4)y
Auxiliary equation is
m*+ 4
The general solution is
y

Self Assessment

3. Solve
Py dy o dy
— = +23—=-15 0
i d Tax YT

4. Solve

&y o dy
+8% 4125, -0
a2 g YT

5. Solve

3
4y 4d3§+5dy 2y =0
oA dx

6. Solve

dx* dx dx* dx

4
YL .

(c; +cpx) e +cye7 .

Oorm=+2i.

¢, €os 2x + ¢, sin 2x.
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2.4 Particular Integral

1
Let mQ ..(i)

denote som e function ofx which when operated upon by f(D) gives Q. This function of x is a
particular solution of the differential equation.

fDy =Q -oo(i1)

As f(D) and f(D)! are inverse operations, therefore

D{DT(Q) = Q (Particular case)
or Li07Q) = Q
DQ = [Qaxr
Example: Properties of L
pre: Top f(D)

1. If Q=u;+u,+us+---+u, then

1 1
ORNE)

1
ot ——u

1 Uy +- .
f(D) foy"

u +

1 1
2. ——(kQ)=k.——=Q. where k is a constant
f(D) G
1 .
3. can be resolved into factors.
f(D)
1 . . .
4. can be broken into partial fractions.
f(D)
5 L Q is a particular integration
f(D)

1 o [ -
To show that Q=e"] e ™Qdx
D-a

1
Let (D_a)Q =V
Therefore D-0yV =Q
or ﬂ—oﬂ/ = Q

dx

This is a linear differential equation. The solution is
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Ve ™ = er'” dx+c

Vv

e”J.Q e “dx+ce™.
Now c can be taken zero, for we want only a particular solution.
Hence vV = e”XJ.Q e "dx.

1
(D-a)

Q

or

e”"IQ e “dx.
We are now in a position to evaluate

{fo)'Q
Let on factorization
fD) = (D-04)(D-0,)-++(D-0,)
Then (D-0,)(D-0)-(D-0,)y = Q
It follows that

(D-0y)(D=-0,)-+(D-a,)y = (D-0y)"Q

- eCX]XJ.efotlx de

Therefore

(D-0y)-(D-a,)y = (D—OCZ)_l ealxj'e—aledx
or (D-0,)(D-0,)y = Euzxje(u‘_uz)xje_%xde
and so on.

Hence, we get generally

y o= e J‘ (1) J‘ I olo=a)x J‘ Q- dx.

This is the required particular integral.

Note: In case f(D) fails to give real linear factors, we may use imaginary factors and use the above
method and finally put the result in a real form.

1
Let —— be capable of resolving into partial fractions. Thus

f(D)

f(D) D-oy D-oa, D-o

Now, particular integral
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A eo‘l"J. e Qdx + A,e*” J. e **Qdx Notes
1 2

oot Aneo‘"xJ.e’O‘"x Qdx.

To evaluate e**, where

fD) = PD"+PD"'+---+P

n’s

and f(o)#0.

Il
)
&

We know that D(e™)

Therefore,

(B,D"+P, D" ' +---+P,) e™

f(D)e™ =

= PD"e™+P, D" e™ +.--+ P, e™

= Pa"e™ +Pa"" e +--+ P, e™
= (Pya"+Pa"" +---+P,)e™

Now, f(D)e™ = f(a)e™.

Operating upon both sides with L we have

f(D)

1 1

o) O T oy O
ax = 1 ax
et = f(a)@e
eﬂx 1
() = D) e™, provided f(a)#0.

Illustrative Examples

' Example 1: Solve the following equation

(D*-3D+2)y = ¢,
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Solution: The given equation is

|
Y

(D*-3D+2)y =

Auxiliary equation is

m*=3m+2 = Qor(m-1)(m-2)=0
m = 1,2
CF. = ¢ e +c,e™
Pl = #e&r
~ 7 D*-3D+2
_ 1 eSx_iESx
25-35+2 12
y = CF.+PL

1
= e tc, e+ —e*
12

' 2
% Example 2: Solve: %+ % +y=e".

Solution: Here the auxiliary equation is

m*+m+1 0, m=—-==i

1
C.F. e? [ACOS%«/gx+BSin%\/§x:|

1 -
D*+D+1

1 e—x — e—x
(-1)* +(-1)+1

Also Pl =

Hence the general solution of the given equation is

1
y = eQx{Acos\/fx+Bsin\/2§x}+e‘x

Self Assessment

Solve the following differential equations:
7. (D*+5D+6)y=e*.

8. (D’-D*-4D+4)y=¢".

9.  (4D*+4D-3)y=¢*

10.  (D*+1)y =(e* +1)?
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sinax, where f(D)=P,D"+P,D" " +...P,

Notes

ne

Py(D?)" + P(D*)" " +---+ P,

n.

—a? sin ax.

To evaluate L
f(D)
Case I. When f(D) contains even powers of D
Let f(D?)
We notice that D?sin ax
D* sin ax
D® sin ax

Therefore f(D*)sin ax

or f(D*)sinax

Py(D*" + P,D*"% +---+ P,)sin ax

P,)D*"sinax + P, D*"?sinax +---+ P, sin ax
Py(—a*)'sinax + P, (—a*)"" sinax+...+ P, sin ax

f(~a?)sinax.

1
Operating on both sides with F(D?)’ We have

1

09 f(D?*)sinax

or sin ax

%f(—az)sin ax

f(D)

f(~a?).——5—sinax.

1
£(D?)

Dividing both sides by f(-a®), we have

————sin ax

1
f(D?)

sin ax.

1
f(=a®)

Case I1. When f(D) contains odd powers of D.

Let it be put in the form f,(D?)+Df,(D?); then

1
f(D)

sin ax

1

——— . sinax
H(D)+D £(D7)

1
f(=a®)+D fy(-a®)

sinax

sinax say
m+nD
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Notes [where m = f,(~a®),n= f,(-a)]

= (m—nD){l L sinax}

(m-nD) m+nD

1
Since (m—nD),————— are inverse operations.
( ) (m-nD) P

(m—nD){zlzzsin ux}
(m”-n"D")

1 .
m—nD)————sin ax
( )m2+1’12ﬂ2

msinax —na cos ax
2

m2+n2a

fi(=a*)sinax — f,(-a*)acosax

(i)Y +a2 ] fy(-a?))

|

Note Similar results are true for

COS ax.

1
(D)
Ilustrative Examples

' Example 1: Solve: (D* + D + 1) y = sin 2x.

Solutions: Here C.F.

e /2 [cl COS§X+ cy sin;x]

P.L sin2x

D*+D+1

1 .
= ——5——sin2x
—(2)"+D+1

= 1 sin2x
D-3

D+3 .
= —5——sin2x
D" -9

D(sin2x)+ 3sin2x
—4-9

= —l(2C052x+ 3sin2x)
13
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Therefore the general solution is

y = CE.+PL

V3

= ¢*/? clcosﬁx+CZSin—x —l(2c052x+3sin2x)
2 2 13

Self Assessment

11.  Solve the following differential equations

(D*-D-2)y =sin2x

4y _5dy

12. dx? dx

+6y =sin3x

2.5 Summary

° The unit starts with the existence the uniqueness of the solution of nth order differential
equation.
° Here the nth order linear differential equation is reduced to a system of n first order

equations and the method of last unit applied.

° Some of the properties listed, help us in finding the general solution of the equation when
the coefficients are constant.

2.6 Keywords

Complementary functions are the solutions of the nth order differential equation without the
non-homogeneous term and involves n arbitrary constants.

Particular Integral (P.1.): It is the solution of non-homogeneous, nth order differential equation
without having any arbitrary constants.

2.7 Review Questions

1. Solve

2
Y 1 18% _16y-0

9
dx? dx

2. Solve

% +y=0
3. Solve
(D*-D*-9D*- 11D - 4) y =0
4. Solve

4y _5dy

dx? dx toy= e
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5. Solve

2
4y _qdy

dx? dx t2y= e
2

6. %—4y=e"+sin2x
X

Answers: Self Assessment

Yoy (YY)
1. P1 7 » P2 7 7
(V1Y2 = ¥1Y2) (V1 Y2 = ¥1¥2)

er
2. Particular integral, P.I. = 3

3. ="+, + 0%
Y= 2 3

4 = e (c; cos3x + ¢, sin 3x)

. y 1 2
5. y=(cr+cx)e” + c3ezx
6. Yy =(cq +cyx)e” +c5c082x +c,sin2x
7 y=c e—2x+c e—3x+i62x

: ! 2 20

_ x 2x —2x 1 3x
8. y=ce tce teze T +—e
10
=3x
9. =ce/*+ce 2 +—e*
Y= 2 1

3

10, y=cet+e? czcos£x+c3sin—x +162"+e"+1
: 2 2 4
2x —X 1 .
11.  y=ce™ +cye +%(cos2x—3sm2x)

12, y=ce™ +ce™ +%x(5 cos3x —sin3x)

2.8 Further Readings

N

Books Yosida, K., Lectures in Differential and Integral Equations

Piaggio, H.T.H., Differential Equations
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Unit 3: Total Differential Equations, Notes
Simultaneous Equations

CONTENTS

Objectives

Introduction

3.1 Total Differential Equation

3.2 Condition of Integrability of Total Differential Equation
3.3  Methods for Solving the Differential Equations

3.4 Simultaneous Differential Equations

3.5 Summary

3.6 Keywords

3.7 Review Questions

3.8  Further Readings

Objectives

After studying this unit, you should be able to:

° Deal with equations which are total differentials as well as simultaneous differential
equations involving more than one dependent variable and one independent variable.

° See whether total differential equations are integrable and study the condition of
integrability as well its uniqueness of the solution.

Introduction
The total differential equations are seen to be integrable with some illustrated examples. There
are four differential methods of obtaining the solution of total differential equations. The

conditions when the total differential is exact are obtained.

3.1 Total Differential Equation

An equation of the form
Pdx+Qdy+Rdz =0 ...(i)

Where, P, Q, R are functions of x, y, z is known as "total differential equation’. The equation (i) is
said to be integrable if there exists a relation of the form

u(x,y,z) = ¢ ...(ii)

which on differentiation gives the above differential equation (i). The relation (ii) is called the
complete integral or solution of the given differential equation.

Now consider equation (i). If (ii) is the integral of (i) and since

du = g—:ldx+%dy+g—:dz, .. (iif)
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du = 0, gives on comparison with (i) the relations

du N ou
x - Y _0z_ .
P Q"R A (say) .(iv)
So we get
Ju Ju u
— = AP, —=MQ,—=AR
ox ady L oz ©)

3.2 Condition of Integrability of Total Differential Equation

Now differentiating these three equations (v), first with respect to y and z, second with respect to
z and x and third with respect to x and y, we get

2
9u BA aﬁp/aungmaip
dyox ay dy dz0x  Jz Oz

0’ 8 ou 8
oxdy ax ax "0zdy az az

2 2
Fu _ gk 0R &u o AaR

0x0z ox  ox’ ayaz ay ’
. o’u .
equating the values of oxay etc., and rearranging

[oP 9Q oL _Or

AM—-=—"|=Q—-P—
| dy ox } ox ay
(00 oR .

A=~ —-Q—
| 0z dy } ay Q (v
[OR 9P oL OA

A= | =pZ R
| 0x 0Jz } 0z ox

Now multiplying the above three equations by R, P, Q respectively and adding, we get

R|9P_9Q 9Q dR dR 9P _ )
{83/ Bx}l{az ay}-Q[ax az} 0 ...(vii)

which is the required condition.
Sufficiency of the Condition (vii)
Now if (vii) holds for the coefficients of (i), a similar relation holds for coefficients of

uPdx+uQdy+uRdz = 0 ...(viii)

where u is a function of x, y, z. Now consider Pdx+Qdy. If it is not an exact differential with

respect to x, y an integrating factor u can be found for it. So Pdx+Qdy can be regarded as an
exact differential.
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Now p Pdx+Qdy is an exact differential,

op _ 99
ay oax’

and if V = [[Pdx+Qdy]
W W _
ox = Pand@—Q

-.(ix)
oP PV 9Q _ oV
oz Ozdx' 9z 0z0y

Putting these values in (vii)

V[V _or| ovIaR V| _
ox |0zdy dy | dy|0dx 0z0x |
aV 9 [BV :| aV o [E)V _
or ——|—-R|-———| —- =0
ox Jy| 0z dy ox| oz
aV d (dV
< LR
or 0x ax(az ) - 0
W0y
dy oy\ 0z

This equation shows that a relation independent of x and y exists between

aV
Vand —-R.
0z

Therefore aa—v —R can be expressed as a function of z and V alone.

Z
Suppose
a—V—R = 0 (zV)
oz
aV aV aV aV
Since Pdx+Qdy+Rdz = gdxﬁL@dyﬁLgd“(R—g)dz - (x)

Equation (i) may be written, on taking into account (x) as
AvVv-¢(z,V)dz = 0 (i)
The equation is an equation in two variables. Its integration will lead to an equation of the form

F(V,z) = ¢
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Hence the condition (vii) is necessary and sufficient both. In the vector form the equation (i) can

be written as

Adr =0
where
A = Pi+Qj+Rk and
dr = dxi +dyj +dzk

The necessary and sufficient condition then becomes A Curve A= i.e.

o &lv©

9 9
ox 0z
P R

Self Assessment

1.  Show that the differential equation
xz’dx -z dy+2y dz=0

is integrable.

2. Show that the differential equation
yz(y + 2)dx + zx(z+ x)dy + xy(x + y)dz =0

is integrable.

3.3 Methods for Solving the Differential Equations

Pdx+Qdy+Rdx = 0

The condition for integrability of the above equation is

(2908, o200, 2020 _
dz  dy ox 0z dy Ox

If the differential equation (1) is exact differential then its integral is of the form

u(x,y,z) = ¢
Now

Jou ou ou
du = —dx+—dy+—
u x y %

dz=0
ox ady ‘

Giving us the conditions
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P Pu_ u_0Q Notes

N _— = = ==
ow dy dydx Jxdy Ox
JoP _ 9Q
o dy ox
..(5)
d
Similarly 7(22 - OR OR_oP

' ax oz
There are various methods of solving equation (1) which are shown below.
Method I: Solution by Inspection

If the conditions of integrability are satisfied, then sometimes by rearranging the terms of the
given equation and/or by dividing by some suitable function, the given equation may be
changed to a form containing several parts, all of which are exact differential. Then integrating
it, the integral can be obtained directly.

|

Note: Certain common exact differentials, which may occur in the transformed total differential
equation are as follows:

xdy+ydx d(xy)

xydz +xzdy+ yzdz = d(xyz)

M = d(y /)y
y‘iyJ - d(x/y)
% = d(tan'(y/x))
% _ d[%log(x2+y2)]

f(xzy,Z) = d[logf(x,y,z)]

xdx+ydy+zdz 1
# = d{alog(x2 +yt+ zz)}
' Example 1: Solve
(y*+yz)dx+ (2" +zx)dy + (y* —xy)dz = 0 (1)
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Solution:

Let
P = y*+yz,Q=72"+zx,R=y"—xy

The condition for integrability of equation (1) is

p(aQ_M}Q[M_az’}R{aIJ_w} o

dz  dy ox 0z dy Ox

Now

9Q oR

9 2z+x, @ =2y-

R _ P _

0x v z

oP 2Q

— = 2y+z, —=

ay YTE T

Substituting in equation (3) we get

(y* +y2)(22+2x = 2y) + (2" + 2x) -y~ ¥) + (v’ — 1) (2y + 2~ 2)
or Y (2z+2x =2y +2y) + yz(2z+ 2x - 2y) - 2y(2* + zx) - 2xy”

= 2y’z+2xy* +2yz* + 2xyz - 2y’ z — 2yz" — 2xyz —2xy* = 0 = RH.S.

So condition of integrability is verified.

Let z be constant, so that dz = 0. So from (1) we get

(y* +yz)dx+ (2> +zx)dy = 0

So b, 2y
x+z Yy +yz
or _x +{1— ! }dy =0
x+z |y z+y
Integrating we get
y_ _
1 +z)+log—— = Constant
og(x +2z) Ogy+z onstan
or log{(ﬁ-z)y} = constant
y+z
so y(x+2z) I
y+z

LOVELY PROFESSIONAL UNIVERSITY
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Where ¢ is only a function of z. Taking the differential of both the sides, we get

(y+2) [y(dx +dz)+(x+ z)dy] —y(x+2z)(dy +dz)
(y+2)°

d¢
or

(y* +yz)dx + dy(z* + zx) + dz(y* + zy — yx — y2)
(y+2)°

= do ~(8)

Now from (1) and (8) we have,

dp = 0 or ¢ =k (constant)

Thus from (7)
y(x+2) -k
y+z
or the solution is
yla+z) = k(y+2) QED.
' Example 2: Solve
(*y—y® —y*2)dx + (xy’ =z =x)dy + (xy* +x*y)dz = 0 (1)
Let P = xy-y’-y’z,Q=xy>-x"z—x°, R=xy’ +x°y
The condition of integrability is
dQ oR oR 0P JoP 0Q
P-4 Q) S - 4R[S -2= | = 0 (2
(az 8yJ Q{ax az] |:8y 8x} @)
So
9Q _ 5 IR _ 2
FYR ,@—ny+x
JR oP
o T VA o=y
oP 90
2 2 a2 L _ 2 5. a2
y = x° =3y -2yz, i Yy~ —2xz-3x

Substituting in (2) we have
= (Py-y° —yzz)[—x2 —2xy—x2]+[xy2 —xzz—x3](y2 +2xy+y°)+
+(xy2 + xzy)[x2 - 3y2 —2yz— yz +2xz+ 3xz]
= Y-y +y)—yz|[2x](c+y) +[ x(y =)y +x) — 22| y)(x +y) +

+2xy(x +y)[2x* -2y —yz +xz]
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2yx(x+y)[-x* +y  +yz+y’ -2 —xz+2x7 - 2% —yz+xz]

2xy(x+y)[0]=0 -(3)
So integrability condition is satisfied.

Now dividing by x*y* eq. (1) we have

1y zj [1 z x] [1 1]
— Y 2 i 22—y 4| 24— dz = 0
[y X' x vy vy Xy

or ydx—zxdy+ xdy—zydx+xdz—zdx+ ydz—zzdy

2

y x x y

or ‘{;]”(ij”(i)”(;) =0 ()

Integrating (4) we have

il Z0 2 2 (say) .(5)
y x xy
or
x*+y’+z(x+y) = cxy is the solution of equation (1).
Self Assessment
3. Solve the differential equation
2yzdx + zxdy —xy(1+ z)dz
4. Solve the differential equation

xdx+ydy—\a*-x"-y*dz=0

Method II: Regarding one Variable as Constant

If the differential equation satisfies the condition of integrability and any two terms say
Pdx+Qdy=0 can easily be integrated, then the third variable (say z) may be regarded as

constant so that {4z =0.

Note that we should choose such a variable constant so that the remaining equation may be
integrated easily.

So the given differential equation will reduce to the integrable form

Pdx+Qdy

0 (1)

suppose its solution is

c (constant) (2)

NS
]
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i.e. not involving x, y. Now we take Notes
u = () .(3)

where ¢(z) is the function of z alone as the solution of the given equation. Now taking the
differential of both sides of equation (3), we must get the given equation.

d d
On equating the two, we may get the value of £ Eliminating x, y from the value of £, using

(3), and then integrating we can obtain the value of ¢(z). Substituting the value of ¢ in (3), we get
required solution.

' Example 1: Solve

3x’dx+3y*dy —( +y* +e¥)dz = 0 (1)
by regarding one variable as constant.
Solution:
Let z be constant so that
dz = 0 )
Then (1) gives
3x%dx+3y*dy = 0 -(3)
This gives
x*+y® = constant = ¢(z) (say) (4
Taking the differential of (4) we have
3xdx+3y*dy = do ..(5)
Comparing (5) with (1) we have
dz(x® +y® +e**) = do ...(6)
or eliminating x, y from (6) we have
(p+e*) = %
or %—ﬂb = ok (7)
This equation is linear in ¢, whose I.F.=e". So
de? = I€22~€_Zdz + constant

= Iel dz+C (say)

Thus 0(z) = €F+Ce
LOVELY PROFESSIONAL UNIVERSITY
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Now from (4) we have

which is the required solution

' Example 2: Solve

(2x% +2xy +2xz° + 1)dx +dy +dz.2z =

by regarding one variable as constant.

Solution: Let x be constant, so that

dx =
Then dy+2zdz =
or dy+z°) =
SO y+ 2 =
Taking differential of (3) we have
dy+2zdz =
Comparing (4) with (1) we have
—(2x% +2xy +2x 2> +1)dx =
_de
dx
d¢
or T o
So % +2x¢ =

+[2x dx 2
eI =e" .

The equation (5) is linear in ¢, so L.F. is

Thus det =

So o=-x+ Ce™. Thus y+zi=—x+ ce™ Q.E.D.

LOVELY PROFESSIONAL UNIVERSITY
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constant

dd(x)
2x% +1+2x(y +2%)
2x% +1+2x¢

_2x2—1

—J(2x2+1) edx+C
—Jx[erxz] dx—Jedex+C
—xet +Iexdx—jexzdx+c

2
-xe" +C

(1)

(2
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Self Assessment Notes

5. Solve the differential equation

yz dxzxdy —3xydz =0
6.  Solve

2y +z)dx—(x+2z)dy+(2y—x+2)dz=0
Method III: For Homogeneous Equations
Consider the equation

Pdx+Qdy+Rdy =0 (1)

If the functions P, Q and R are homogeneous functions of x, y, z then one variable say z, can be
separated from the other variables by substituting x = z # and y = zv, so that

dx = zdu+udz,

zdv+v dz, (2

dy

in the given equation. Then transformed equation can be integrated as

du f;(u,v)+ f,(u,v)dv +@

Fuz) - =0 ()

Now to integrate the first term, we find d[F(u,v)] and add and subtract it to numerator. After

doing so, the first term will also be integrable.

' Example 1: Solve

(yz+28)dx—xzdy+xydz = 0 ..(1)

Here yz+2?,—xz and xy are homogeneous in x, y, z. Let us put x = uz, and y = vz, so that

dx = zdu+udz
-(2)
dy = zdv+vdz
Substituting (2) in (1) we have
(02 + 2 (zdu+udz) - uz*(zdv +vdz) +uvz’dz = 0

-uv
z[(v+1)du—udv]+{u(v+l) ]dz

o =0 -(3)
(v+1)du—u dv +E
or M(U+1) z =0 (4)
Simplifying we have
du_do b= .(5)

u 1l+v z
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Integrating
logu—log(l+v)+logz = logc (c being constant)
or % = ¢
or uz? = c(z+zv)
or xz = c(y+2z) ..(6)

is the solution of the equation (1).

' Example 2: Solve

Z(z—y)dx+z(z+x)dy +x(x+y)dz = 0

Here P = zz-y), Q=z(z+x), R=x(x+y)
op 9Q
A
dR oD
= _ 2 , ——=2z—
ox ¥y 0z Y
d
€K = 2z+x, a—R=x
0z ay

The integrability condition

dQ oR doR 0P oP 0Q
ol o] e Wy 3
{dz ay}-Q[ax az}- {ay ax} =0

L.H.S. of equation (4) is

2(z—y)[2z+x - x|+ z(z+ X)[2x +y -2z + y]+ x(x + y) [~z — 2]

= 27%(z-y)+z(z+x)(2x + 2y — 22) - 2zx(x + y)

= 22%-272%y+22%x +22x% + 2yz” + 2xyz - 22° - 22°x - 2zx% - 2xyz =0 =R.HS.

So condition (4) is satisfied

Let

x = uz,dx=zdu+udz

vz, dy =z dv+vdz

<
|

Substituting in equation (1)

Il
=)

22(1-v)[zdu +udz]+ 2* (1 +u)[zdv + vdz]+ z°u(u +v) dz

Il
=)

or (1-v)zdu+z(1+u)do+|u(l-v)+v(1+u)+u(u+0v)|dz
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A-o)dur(rwdo dz Notes
ot (u+0)(1+u) z

[1T+u-u-vldu dov dz
+ +

(u+o)1+u) uto z -0
(1 B 1)du+dv+£

or u+v 1+u u+v oz 0
du+dv du dz

- = _ +— =90

u+v l1l+u z

Integrating we have

1 ¢ being
log(u+v)—log(l+u)+logz = log( )

c constant

or cz(u+v) = 1+u

or cx+y)z = z+x ...(6)

is the solution of the equation (1).
Self Assessment
7. Solve the differential equation
2dx + (22 - 2yz)dy + (2y* —yz—zx)dz = 0
8. Solve
(y* + 2% —x?)dx—2xy dy—2xz dz=0
Method IV: Method of Auxiliary Equations

Let the given equation
Pdx+Qdy+Rdz = 0 (1)

be integrable. Then we must have

4Q R | [OR_OP) 0P _0Q| _
P[dz By:|+Q{ax 82]+R[8y Bx} 0 -(2)

Comparing these two, we obtain

dx _ dy _ dz
dQ_0R) - (R_9F) [9P_20
dz dy ox 0z dy ox

These equations are called auxiliary equations and can be solved as shown in the two examples
below.

LOVELY PROFESSIONAL UNIVERSITY
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' Example 1: Solve

Here put

Now

The auxiliary equations are

or

SO

Thus

or

Also from (4)

So

Gives us

or

or

So

(y? +yz+20)dx + (2% +zx +x2)dy + (x> +xy +y?)dz = 0
P = y’+yz+2°, Q=22 +zx+x2
R = x2+xy+y2
Q 2z+x, a—R=2y+x
oz ady
g—lj = 2x+y, 3—1;—22+y
op Q
y = 2y+z, a=2x+z
dx _ dy  dz
9Q 9R ~ 9R_9P 9P 0Q
dz  dy ox dz dy Ox
dx _ dy  dz
2(z-y) 2x-z) 2(y-x)
dx +dy +dz _ dx+dy +dz
Z-y+x—z+y-—x 0
dx+dy+dz = 0
x+y+z = constant=u (say)
(z+y)dx _ (x+z2)dy (y+x)dz
Zz_yz I = yz_xz

(z+y)dx+(x+2z)dy+(y+x)dz
0

(z+y)dx+(x+2)dy+(y+x)dz = 0

ydx+xdy+zdy+ydz+zdx+xdz = 0

d(xy+yz+zx) = 0

Xy +yz+zx

constant = v (say)

LOVELY PROFESSIONAL UNIVERSITY
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Let the solution of (1) is Notes

Adu+B do ..(10)

then Adu+Bdv = 0 ..(11)

is identical to (1) i.e.

A(dx +dy +dz)+ B[(z +y)dx+(x+z)dy +(y + x)dz] =0 (12)
[A +B(z+ y)]dx +[A+B(x+z)|dy + [A +B(y + x)]dz =0 ..(12)
Comparing (12’) with (1) we have
A+By+z) = yl+yz+2?
A+B(x+Z) = Zz+Zx+x2 .(13)
A+B(x+y) = x*+xy+y’
From (13) we have B=x+y+z=u ..(14)
And A = —(xy+yz+xz)=-v ...(15)
Hence
Au+Bv = 0 ...(16)
becomes —vdut+udv = 0
du dv
or -—+— =0
u v
on integrating
u
log| —| = logk
of2) - v
u
or o k ...(17)
From (6) and (9) we have
x+y+z
xy+yz+zx k -(18)
which is the solution of equation (1).
' Example 2: Solve
(2xz - yz)dx + (2yz — zx)dy — (x* —xy +y*)dz = 0 ..(1)

Solution: By the method of forming auxiliary equations

Here P=2xz-yz,Q=2yz—zx, R=-x*+xy-y°
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The set of Auxiliary equations are

dx

dy dz

9Q _aR
dz  dy

9
0z

JdR
ox

aP
dy

30 aR

Jdz oy

oR dP

ox 0Jz

P 90

dy ox

(BR_BI’): oP_0Q

ox 0z dy  ox

Zy—x,a—R=z+x—2y
dy

oP
14

2y—x—x+2y
—2x-2x

-z+2z=0

Thus substituting (3) into equation (2) we have

dx

dy dz

(2y —x)—(x-2y)

dx

(y-2%)-(2x—y) —z—(-2)

2(2y—x)

Last equation gives dz = 0

or z

dy :@
2(y-2x) 0
a=u (say)

From first two members of equation (4) we have

dx
2y—x

or (y —2x)dx

Re-arranging we have

ydx+xdy-2xdx-2ydy = 0
or d(xy—d(x*)-d(y*) = 0
dixy-x*-y*) = 0

Thus xy—-x*>-y> = constant = (say)
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Let the given equation (1) be identical to Notes
Adu+Bdv = 0 -(7)

From (5) du = dz.

From (6) and (7) we have

Adz+Bd(xy-x*-y*) = 0

or Adz+B(xdy +ydx-2xdx-2ydy) = 0 (8
Rearranging in (8) we have
(By—2xB)dx+(x-2y)Bdy+Adz = 0 ..(9)
Comparing (9) with (1) we have
By—-2xB = 2xz-yz, ieB=—z=-u ...(10)
And A= xy-x"-y’=v (1)
Hence (7) gives
vdu—-udv = 0 (12)
Integrating (12)
du dv
—— =90
u v
or logu—-logv = constant = log ¢ (say)
Therefore
u
2 -
v
z

is the solution of equation (1).
Self Assessment

9.  Solve
(a-2)(ydx+xdy)+xydz=0
10.  Solve

(y? +yz+28)dx + (22 + zx + x2)dy + (2 +xy +y?)dz = 0

3.4 Simultaneous Differential Equations

In the unit 5 we have discussed differential equations involving two variables i.e. one independent
variable and another dependent variable. There is quite a lot of situations in which we have to
deal with a number of dependent variables that depend on one independent variable. In the
above sections also we have been dealing with more than two variables. So in these cases we can
take one variable as independent and solve the equations for the other remaining variables. We
illustrate these by means of examples.
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' Example 1: Solve

Biwy =0 (1)
dt
%—wx =0 (2

Differentiate (1) by ¢, we have

d*x dy

—+ =
St =0 -(3)

d
Substituting the value of Y from (2) into (3) we have

dt
dz—x+ wx =0 4
dr’ ~(4)
The solution of (4) is
x = Acoswt+Bsinwt ...(5)

Where A, B are constants. Substituting this value of x in (1) we have

—wAsinwt+wBcos wt+wy = 0
or y = —Asinwt+B coswt ..(6)
Example 2: Solve
%+4x+3y =t (1)
%+2x+5y - -2)

Introducing D operator, D = % in (1) and (2) we have

(D+4)x+3y =t -(3)
(D+5)y+2x = ¢t (4)
Operating equation by (D + 5),
(D+5)(D+4)x+3(D+5y) = (D+5)t
or (D+5)(D+4)x+3(D+5)y = 5t+1 ...(5)
Eliminating y from (5)
(D+5)(D+4)x+3(e' —2x) = 5t+1

or (D*+9D+20)x—6x = 541-3¢
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Not
or (D*+9D+14)x = 1+5t-3¢' .(6) ores
or (D+7)(D+2)x = 1+5t-3¢! (7)

CF.is Ciet Cpe™

The particular integral, P.I. is given by

PL = 1 145t-3)
[14+9D+D7]
1(, 9D+D?)"
= —|1+ {1+5t-3¢'}
14 14
1 9D 3e!
BREVLGETY S ! 2
+9(1)+(1)
t
- i(1+5t—§)—3—“3
14 14) 24
1( 31 ¢
= |- 45t|-=
a2 ®
So the complete solution is
o 5, 31 ¢
-7t 4 C 2t+7t_7_7
Cre R VR T T ©)
Self Assessment
dx
—=7x+y=0
11. Solve it x+y
dy
= _2x-5y=0
a0
d d
12.  Solve d—’t‘+2d—3:—2x+2y=3e'
3§+d—y+2x+y=4e3t
dt dt
The equation of the type
Pdx+Qdy+Ridz = 0
(1)
Pydx+Q,dy+R,dz = 0

Where P,,P,, Q,,Q, and R,, R, are functions of X,Y,z

We can write these equations as

dx dy
P—+Q,—~+R; =
Yz Q dz ! 0
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51



52

Notes

192‘L’C+Qz@+122 =0
dz

dz
. dx dy
Solving for iz and iz
dx = QiR -OhR dlz RiP, -PR,
dz PQ, - dz PQ,-Qib
hence
dx _ dy dz

= -(2)
QlRZ - QZRl R1P2 - PlRZ PlQZ - PZQl

i.e. equations (1) can be put in the form

dx _ dy_dz

b 0 R e

Hence forth the equations (3) will be taken as the standard form of a pair of ordinary simultaneous
equations of the first order and of the first degree.

Solution of dx - A _ 4z
P Q R
We have
dx _ dy _dz _ldx+mdy+ndz @
p Q R IP+mQ+nR
and if IP+mQ+nR =0 ..(5)
then ldx+mdy+ndz = 0 ...(6)

and if (5) is an exact differential, say du, then u = a is one equation of the complete solution.
Similarly choosing !’, m’ and 1’ such that

I'P+m’'Q+n'R = 0.
then Vdx+m'dy+n'dz = do=0 (7)

Whence v = b is another equation of the complete solution.

This method may be used with advantage in some examples to obtain a zero denominator and
a numerator that is an exact differential or a non-zero denominator of which the numerator is
the differential.

' Example 1: Solve

dx dy  dz
wxvy) T Ay Fy )
Each fraction is equal to
xdx—ydy—zdz _xdx-ydy-zdz
T xz(y+x)-yz(x —y) - z(x* +y?) 0
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Therefore
xdx—-ydy—zdz
2 .2 2
or a-L_z
2 2 2
or 2oy -2
Similarly

ydx+xdy—zdz
yaly +2) +xz(x - y) 2 + )

Thus
ydx+xdy—zdz
2
z
Th -——
us XY=

constant = (o

ydx+xdy —zdz

0

constant = c,

So the two integrals (3), (4) are complete integrals of (1) Q.E.D.

' Example 2: Solve

dx dy _ dz
+yt T 2xy  (x+y)z
Solution: From the first two members
dx +dy dz
X +y*+ 2y (x+y)z
or
dx +dy dz
x+y R
Integrating (2) we have
log(x+y) = logz+logc
xty = cz
Also from (i)
dx +dy dx—dy
(x+y*) T (x-y)
Integrating (4) we have
—(Hy)t = -y o
L ! +c
or xty T ox-y

LOVELY PROFESSIONAL UNIVERSITY
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1
or x—y_x+y 2 =0
X+y-x+y
oy 270
2y+e,(@-y?) = 0
2y
So c, = yz_xz

So complete solution is

0(cr,cy) = 0=¢(x+y,2“’2]=0

' Example 3: Solve

dx dy  dz
xy v* xyz—2x°

Solution:

From the first two members

dx dy
xy Ty
dx dy

Integrating (2) we have

logx = logy+logc,
or x = cy

From the second and third member of (1) we have

dy dz

vy T ayz-2x°

Putting the value of x from (3) we have from (4)

dy _ _ dz
v zey’ -2y
dz
dy = — %%
. Y7 z-2a)

Integrating (5) we have

Jor = [emy e

LOVELY PROFESSIONAL UNIVERSITY
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1 c

= —1 —2¢,)+2

or y . og(z—2c;) C1
or cy = log(z—2c;)+c, ...(6)

Substituting value of c, from (3)

x = log(z—2x]+c2 (7)

Y
Thus from (3), (7) we have
Lo X
1
Y (8)

zy —2x

c, = x—log[ny

So equation (8) form the complete integral of the set of equations.

Self Assessment

13. Solve
x _dy _dz
I+y 1+x 2z
14. Solve
dx dy dz

Coyioyz P oyi-y Ay
Geometrical Meaning of

dx dy dz

— = 553 (1)

P Q R
We know that the direction ratio of the tangent to a curve at any point (x, y, z) on it are proportional
to dx, dy, dz at that point. Hence geometrically the given equations represent a system of
curves in space, such that the direction ratios of the tangent to any one of these curves in space,

at that point (x,y,z) on it are proportional to P, Q and R at that point. If u=a,v="b are the
general solutions of (1), then system of curves must be the curves of intersection of the surfaces

u=a,v=>b. Itis also clear that since 4, b are arbitrary constants, the system of curves represented
by the equations is doubly infinite.

3.5 Summary

o Total differential equations can be solved under certain conditions.

o Simultaneous Differential equations are also shown to be solved by the above method.

o Illustrated examples are solved so that the technique of solving by various methods is
clear.
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3.6 Keywords

Exact Differential: An equation
Pdx+Qdy+Rdz=0, ..(1)
is an exact differential if its integral is found in the form
u(x,y,z)=c, (c being a constant)
Exact Differential Equation: When equation (1) is put into the form
du(x,y,z)=Pdx+Qdy+Rdz=0,
it is called Exact Differential Equation

Integrable: A differential equation when solved is said to be integrable.

3.7 Review Questions

1.  Solve dx_dy _dz
x

y oz

2. Solve yzlogy dx—z xlogz dy+xy dz=0

3.  Solve (y+b)(z+c)dx+(x+a)(z+c)dy+(x+a)(y+b)dz=0
4. Solve yz?(x*-yz)dx +zx*(y* - xz)dy +xy*(z—xy)dz =0

dx _dy _ dz

5. Solve ?_ X xyzz(xz—y2)

Answers: Self Assessment

3. X%y = cze?, (c being a constant)
4. (@*-x*-yH/*=C-2, (c being a constant)
5. xy? =cz?, (c being a constant)
6. (x+z)’ =c(y+2) (c being a constant)
7. z(x+y)-yP=cZ? (c being a constant)
8. P+ =cx (c being a constant)
9. xy=c(a—z) (c being an arbitrary constant)
10.  xy+yz+zx=c(x+y+z), (c being a constant)

11.  x=¢% (Acost+Bsint)

y=e"[(A—-B)cos t+(A+B)sin t]
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12.

13.

14.

3.8

5 2 11
0 6
= -1 ——t
Y =cye 3 exp{ B ]
X+ty+z=cz
x(2+x)
y(2+y)

X—Yy—-z=0
X -y =cz

Further Readings

N

Books H.T. Piaggio, Differential Equations

E.L. Ince, Ordinary Differential Equations

Notes
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Unit 4: Adjoint and Self-Adjoint Equations

CONTENTS

Objectives

Introduction

41 Adjoint and Self-adjoint Operators

4.2  Boundary Conditions

4.3 Eigenvalues and Eigenfunctions of Hermitian Linear Operators
4.4  Eigenfunction Expansions

45 Summary

46 Keywords

47 Review Question

4.8  Further Readings

Objectives

After studying this unit, you should be able to:

° See that adjoint and self-adjoint operators play an important part in the solution of certain
types of equations.

° Observe that the properties of the solutions as well as the values of certain parameter are
obtained in a systematic manner.

° Notice that the self-adjoint equations when solved under certain boundary conditions
yield values of the solutions known as eigenfunctions corresponding to certain eigenvalues.

Introduction

In this unit the method of putting an equation into a self-adjoint form is dealt with. This method
and the Sturm-Liouville’s method leads us to the solutions of the differential equations which
are orthogonal.

The solutions form a set of eigenfunctions which are complete and so any function on the given
interval can be expanded in terms of these eigenfunctions.

4.1 Adjoint and Self-adjoint Operators

In this unit we are interested in solving inhomogeneous boundary value problems for linear,
second order differential equations. We will now develop an approach that is based upon the
idea of linear algebra. We shall work with the simplest possible type of linear differential
operator L, C*[a, b} — Cla, b} being in self-adjoint form:

d

L = —
dx

d )+q(x) (1)

(oL

where p(x) € C'[a, b] and is strictly non-zero for all x € (4, b), and g(x) € C’[a, b]. The reasons for
referring to such an operator as self-adjoint will become clear later in this unit.
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This definition encompasses a wide class of second order differential operators.

For example, if

2
L' = az(x);?+a1(x)£+a0(x) (2

is non-singular on [a, b], we can write it in self-adjoint form by defining

o= [ oS Genl 5654

Note that p(x) # 0 for x € [a, b]. By studying inhomogeneous boundary value problems of the
form Ly = f, or

d

P02 Jeatary = 1) -

dx

we are therefore considering all second order, non-singular, linear differential operators. For
example, consider Hermite’s equations.

dy  dy
-2x—=+Ay =0,
2 Nt @)

for —eo < x < o, This is not in self-adjoint form, but, if we follow the above procedure, the self-
adjoint form of the equation is

d (e"‘z d—yj+ ke"‘zy =0

dx dx
. o . . iy (-+*/2) .
This can be simplified, and kept in self-adjoint form, by writing u=¢e y to obtain
dZ
d—xbzl—(xz—l)uz—ku ..(6)

4.2 Boundary Conditions

To complete the definition of a boundary value problem associated with (4), we need to know
the boundary conditions. In general these will be of the form

o,y(a) + oy (b) + oy (a) + oy (b) =0,
Buy(a) + By (b) + By (a) + By (b) = 0. (7)

Since each of these is dependent on the values of y and y’ at each end of [a, b], we refer to these
as mixed or coupled boundary conditions. It is unnecessarily complicated to work with the
boundary conditions in this form, and we can start to simplify matters by deriving Lagrange’s
identity.

Lagrange®s Identity: If L is the linear differential operator given by (1) on [a, b] and if vy, C
[a, b], then

y1(Ly2) - yz(Ly1) = [P(%Vz - yllyz)]" (8)
Proof: From the definition of L,

LOVELY PROFESSIONAL UNIVERSITY

Notes

59



60

Notes

Y1 (Ly2) = Y2 (Lyr) = i [ (pya) +av2 |- va[ (pvi) +av: ]
= (py2) =10y =va[pva+1'y, |- va | pys +P Y, ]

= p (y1¥2 = y1¥2) + PWaya — Vi) =[p(vaya — yayo)]

Now recall that the space C[g, b] is a real inner product space with a standard inner product
defined by

(f.8)=] Fseas
If we now integrate (8) over [g, b] then

(Wi Lya)=(Lyiva) = [pys -yl -(9)
This result can be used to motivate the following definitions. The adjoint operator of T, written

T, satisfies (yl,Ty2>—<Ty1,y2> for all A and y,- For example, let us see if we can construct the

adjoint to the operator

with y, 8 € R, on the interval [0, 1], when the functions on which D operates are zero at x = 0 and
x = 1. After integrating by parts and applying these boundary conditions, we find that

(00,20) = [ 0103 +105+802)x =002 ], - [ 0105+ [10:02 ], - [ 101020+ [ 80,0,

{00+ [ oot [ vor0ae+ [ 3010, = (D002,

where

— d d
D=—2-y—+38
dx? de+

A linear operator is said to be Hermitian, or self-adjoint. If (y1,Ty,)=(Ty,,y,) for all y, and y,.

It is clear from (9) that L is a Hermitian, or self-adjoint, operator if and only if

[Pnys-viv: | =0
and hence
p(0){y1(0)y(b) — 1 (b)y2 (b)) - p(a){y1 (a)y2(a) - y1 (a)y, (a)} = O -(10)

In other words, whether or not L is Hermitian depends only upon the boundary values of the
functions in the space upon which it operates.

There are three different ways in which (10) can occur.

(i)  p(a) = p(b) = 0. Note that this doesn’t violate our definition of p as strictly non-zero on the
open interval (g, b). This is the case of singular boundary conditions.
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(i) p(a)=p®)=0,y,a)=y,b)and y;(a) = y;(b). This s the case of periodic boundary conditions.

(iii) oy,(@) + o,y;(a)=0 and By,(b) + B,y;(b)=0, with at least one of the o, and one of the f,
non-zero. These conditions then have non-trivial solutions if and only if

Y1(0)Y2(8) = 11 ()12 (@) =0, y1(0)y2(0) = 1 (b)y>(B) =0,
and hence (10) is satisfied.

Conditions (iii), each of which involves y and y at a single endpoint, are called unmixed or
separated. We have therefore shown that our linear differential operator is Hermitian with
respect to a pair of unmixed boundary conditions. The significance of this result becomes apparent
when we examine the eigenvalues and eigenfunctions of Hermitian linear operators.

As an example of how such boundary conditions arise when we model physical systems, consider
a string that is rotating or vibrating with its ends fixed. This leads to boundary conditions
y(0) = y(a) = 0 - separated boundary conditions. In the study of the motion of electrons in a crystal
lattice, the periodic conditions p(0) = p(l), y(0) = y(l) are frequently used to represent the repeating
structure of the lattice.

4.3 Eigenvalues and Eigenfunctions of Hermitian Linear Operators

The eigenvalues and eigenfunctions of a Hermitian linear operator L are the non-trivial solutions
of Ly = Ay subject to appropriate boundary conditions.

Theorem 1. Eigenfunctions belonging to distinct eigenvalues of a Hermitian linear operator are
orthogonal.

Proof: Let y, and y, be eigenfunctions that correspond to the distinct eigenvalues A, and A,. Then

<Ly1,y2> = <)»1y1,y2> =M <y11y2>
and

<y1/L3/2> = <]/1,7»2y2> =X, <y1r]/2>
so that the Hermitian property (Lyl,y2> = (yl,Ly2> gives

(M1 =22)(y1,Y2) =0

Since A, # A,, (y,, y,) = 0, and y, and y, are orthogonal.

As we shall see in the next section, all of the eigenvalues of a Hermitian linear operator are real,
a result that we will prove once we have defined the notion of a complex inner product.

If the space of functions C?[a, b] were of finite dimension, we would now argue that the orthogonal
eigenfunctions generated by a Hermitian operator are linearly independent and can be used as
a basis (or in the case of repeated eigenvalues, extended into a basis). Unfortunately, C*[a, b] is
not finite dimensional, and we cannot use this argument. We will have to content ourselves with
presenting a credible method for solving inhomogeneous boundary value problems based
upon the ideas we have developed, and simply state a theorem that guarantees that the method
will work in certain circumstances.

4.4 Eigenfunction Expansions

In order to solve the inhomogeneous boundary value problem given by (4) with fe Cl[a, b] and
unmixed boundary conditions, we begin by finding the eigenvalues and eigenfunctions of L.
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We denote these eigenvalues by A, A,,...,A ,.., and the eigenfunctions by ¢,(x), ¢,(x)..., ¢ (x),...

oreeerly,

Next, we expand f(x) in terms of these eigenfunctions, as

oo

Fx) =Y c,0,(x) (1)

n=1

By making use of the orthogonality of the eigenfunctions, after taking the inner product of (11)
with ¢ , we find that the expansion coefficients are

f/¢n
Ch = <<¢n’¢n>> ...(12)

Next, we expand the solution of the boundary value problem in terms of the eigenfunctions, as

y(@) = d,0,(x), .(13)
n=1

and substitute (12) and (13) into (4) to obtain

L[idnw)}icn%(x)-

n=1 n=1

From the linearity of L and the definition of ¢, this becomes
N d, 2, 0,(0)= D e, 0,(x).
n=1 =

n=1

We have therefore constructed a solution of the boundary value problem with d = c /A , if the
series (13) converges and defines a function in C*(a, b). This process will work correctly and give
a unique solution provided that none of the eigenvalues A is zero. When A = 0, there is no
solution if ¢, # 0 and an infinite number of solutions if ¢ = 0.

Example 1: Consider the boundary value problem

-y” =f(x)  subjecttoy(0) =y(m)=0 ...(14)
In this case, the eigenfunctions are solutions of

Yy’ +Ay=0 subject to y(0) = y(n) =0,

which we already know to be A, =1 ¢ (x) = sin nx. We therefore write

oo

f(x)= ch sin nx,

n=1
and the solution of the inhomogeneous problem (14) is

oo

y(x)= Z;—Z sin nx,

n=1

In the case f(x) = x,

c, =

T - 7

J.:x sin nx dx 2(_1)n+1
J' n

sin? nx dx
0
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so that

This type of series is known as a Fourier series.

This example is, of course, rather artificial, and we could have integrated (14) directly. There are,
however, many boundary value problems for which this eigenfunction expansion method is the
only way to proceed analytically.

' Example 2: Consider the inhomogeneous equation
(1-x%y" —2xy'+2y = f(x) on-1<x<1, ..(15)

with fe C[-1, 1], subject to the condition that y should be bounded on [-1, 1]. We begin by noting
that there is a solubility condition associated with this problem. If u(x) is a solution of the

homogeneous problem, then, after multiplying through by u and integrating over [-1, 1], we
find that

[u-22)y' ] -[wa-2)y], = j " () f(x)dx

=]

If u and y are bounded on [-1, 1], the left hand side of this equation vanishes, so that
1

J. u(x) f(x)dx =0. Since the Legendre polynomial, u = P,(x) = x, is the bounded solution of the
-1

homogeneous problem, we have

1
[ R@fEax=0
Now, to solve the boundary value problem, we first construct the eigenfunction solutions by
solving Ly = Ay, which is
(L~ 20/ + (2~ Ay =0

The choice 2 — A = n(n + 1), with n a positive integer, gives us Legendre’s equation of integer
order, which has bounded solutions y (x) = P (x). These Legendre polynomials are orthogonal
over [-1, 1]. If we now write

where A, = 0 by the solubility condition, and then expand y(x) = 2:;:0 BB, (x)

we find that
{2-mm+1)}B =A form=0
The required solution is therefore

oo

Y= 3 Ao +BIR () Y gt ()

m=2

with B, an arbitrary constant.
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Having seen that this method works, we can now state a theorem that gives the method a
rigorous foundation.

Theorem: If L is a non-singular, linear differential operator defined on a closed interval [a, b] and
subject to unmixed boundary conditions at both endpoints, then

(i) L has an infinite sequence of real eigenvalues A, ,,..., which can be ordered so that
[} < A << | <.

and

lim [, | =
n—> e

(ii) The eigenfunctions that correspond to these eigenvalues form a basis for C[a, b], and the
series expansion relative to this basis of a piecewise continuous function y with piecewise
continuous derivative on [a, b] converges uniformly to y on any subinterval of [a, b] in
which y is continuous.

We will not prove this result here. Instead, we return to the equation, Ly = Ay, which defines the
eigenfunctions and eigenvalues. For a self-adjoint, second order. Linear differential operator,
this is

d dy
— — |+ =\y,
dx(ﬁ(x) dx) q(x)y = Ay ..(16)
which, in its simplest form, is subject to the unmixed boundary conditions

oy(@) +oy'(@ = 0, By®)+By () =0, +(17)

with o2 +03 >0and B2 +B3 >0 to avoid a trivial condition. This is an example of a Sturm-

Liouville system, and we will devote the unit II for study of the properties of the solutions of
such systems.

Self Assessment

1.  Consider the linear second order differential equation
x@+(1—x)ﬂ+)» =0
i ax Y
Show that the Sturm-Liouville form of the above equation is

(xe™y’) + ey =0, for x>0

2. Show that the equation

d? d
T AR+ [MB(x) - C(x)ly =0

can be written in self-adjoint form by defining

p(x) = exp(J. A(x)dx)

what are g(x), r(x) in terms of A, B, C?
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In this unit we rearrange certain linear equations of the second order in a way in which the
differential operator is self-adjoint.

Examples of self-adjoint equations are Legendre equation, Bessel’s equations, Hermite
equations and many more.

Putting these equations into self-adjoint form enables us to study certain properties known
as eigenvalue and eigenfunction expansions and completeness etc.

4.5 Summary
[ ]
[ ]
[ ]
4.6 Keywords

Eigenfunctions are a set of solutions of the self-adjoint equations that form an orthonormal set
of complete system.

The real symmetric matrix is self-adjoint or an Hermitian operator.

4.7 Review Question

Show that
(/' (x))" = —Axy(x)

is self-adjoint on the interval (0, 1), with x = 0 a singular end point and x =1 a regular end
point with the condition y(1) = 0.

4.8 Further Readings

N

Books King A.C,, Billingham and Otto S.R., Differential Equations.

Pipes L.A. and Harrill L.R., Applied Mathematics for Engineers and Physicists

Yosida K., Lectures on Differential and Integral Equations.

LOVELY PROFESSIONAL UNIVERSITY

Notes

65



66

Sachin Kaushal, Lovely Professional University

Notes

Unit 5: Green # Function Method
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5.9 Further Readings

Objectives

After studying this unit, you should be able to see that:

° Green’s function plays an important part in the solution of the differential equations.

) It finds its applications in most of the boundary value problems.

. Green'’s function is quite helpful in converting a differential equation into an integral
equation.

Introduction

Green’s function method helps in solving most of the boundary value problems. It is quite
useful in reducing a differential equation to an integral equation. With the help of the Green’s
function method the problem of solution of differential equations becomes simpler.

5.1 Boundary Value Problem of Sturm-Liouville Type

We consider a differential equation of the second order

4> d
I Ly =0 -

where p, (x), p,(x) are real-valued continuous function on a closed interval a < x < b. The equation

(1) can be put into the form

d%(p(x)%) =q(x)y (2)
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by multiplying equation (1) with

exp ( [ m(x)dx] = p(x) -0

and putting
q(x) = =p,(x¥)p (x) ..(4)
The coefficients p(x) and g(x) satisfy the following conditions:

p(x) and g(x) are real-valued continuous functions on the interval a < x < b and p(x) > 0 there.

d

Putting z = p(x) d—i in (2) we have
dy _ _z
o .(5)
£ :
= @y -©)

If a pair of functions y(x) and z(x) is a solution of the equations (5) and (6) and if y(x) # 0, then y(x),
and z(x) do not vanish at any point in the interval a < x < b. So due to y(x) # 0, we may seek a
solution.

y(x) = p(x) sin O(x)
z(x) = p(x) cos O(x)
with p(x) = (*(x) + 2(x))/2> 0 (7

Substituting in (5) and (6) we have

b sin 0(x) + p(x) cos 0(x) 9 _ p(x)cosO(x)

dx dx p(x)
dp . do .
and — cos 0(x) — p(x) sin O(x) —— = g(x) p(x) sin O(x)
dx dx
Simplifying the above equations, we have
dp(x 1 .
F;(x ) _ [p(x) + q(x)JPsme(x) cosO(x) -(8)
2
d9 _ cos 0(x) _ g(x)sin® 6(x), p(x)>0

A p(x)

The second equation of (8) does not contain the unknown p, hence we can find a solution 8(x).
Then substituting this solution in the first equation, we can obtain the general solution p(x)

p(x) =p(a) exp U{p(lx)+q(x)}sin6(x)cose(x)dx] ..(9)

a
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Since p(x) > 0 or < 0 or every point a < x < b, according as p(a) > 0 or < 0, we can find a positive
solution p(x) from which, along with 6(x), we can obtain a solution y(x) = p(x) sin 6(x), not
identically zero, of the original equation (2).

Now for an integer n, 8(x) + 2n n is also a solution of the second equation of (8). Thus the
solutions y, (x) and y,(x) obtained from 6(x) and 0(x) + 2nm are linearly dependent. So if the two
solutions y, (x) and y,(x) given by

Y, (%) = p,(x) sin 6, (x)
Y,(%) = p,(x) sin 6,(x)
are linearly dependent, then for some integer n
0,(x) = 6,(x) + 2.
Now, an initial condition for q(x),
0(a)=a ...(10)
gives a relation between y(a) and y,(a) as follows

At x = a from (5) and (7) we have

z(a) = p(a) y'(a) = p(a) cos 6(a)

So p(a) y'(a) sin 6(a) = p(a) cos O(a) sin O(a)
or p(a) y'(a) sin 6(a) = y(a) cos 6(a)
or p(a) y'(a) sin B(a) — y(a) cos 6(a) =0 ..(11)

In this section we shall be concerned with the problem of finding the solution y(x) corresponding
to the solution 6(x) satisfying the boundary conditions

B(a)=a, 6(b) = B (12)
at both ends of the interval a < x < b.
Condition (12) corresponds to the conditions
p(a) y'(a) sin o - y(a) cos o. = 0
p(®) ¥/ () sin B - y(b) cos B = 0 .(13)

for y(x). It should be noted that the boundary value problem of finding the solution of (2)
satisfying the boundary conditions (13) between y and y’ is essentially different from the initial
value problem.

5.2 Green®s Function for One Dimensional Problem

Let us denote L (y), a differential operator

L0 = | 02 - gy )

d d
which is defined for every function y(x) such that % and I [P(X ) % } are defined and continuous

on the interval o < x < b. Let us define Lagrange’s identity
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d dz _d
= a{ﬁ(ﬂf){}/(@;ﬁ%ﬁ}} (2

Integrating both sides of equation (2) we obtain

dz dy v ;s
{p(x)[y(x)a—z(x)a]} , :J.[ny(z)—ZLx(y)]dx,a<u <b'<b ..(3)

Equation (3) is known as Green’s theorem in one dimension. If y(x) and z(x) both satisfy the
boundary conditions

p(@) (@) sin o~ y(a) cos = 0

p(b) y,(b) sin B - y(b) cos f =0

p(a) z,(a) sin o — z(a) cos o =0

p(b) y,(b) sin B - z(b) cos a0 = 0 ()
Then for a, =aand b, = b, L.H.S. is zero and we get

b
[y L) = 2L, (v)1dx = 0 )

a

Suppose that two functions y;(x)#0 and y,(x)#0 satisfy

Ly)=0
p(a) y,,(a) sin o - y, (@) cos o = 0 ..(6)
and
L(y)=0
p(b) y,, (b) sin - y,(b) cos f =0 (7

respectively, and suppose that these two functions y,(x) and y,(x) are linearly independent.
Write

C=p@©) 1, ¥, - v, v,

Differentiating C with respect to § and making use of (2), we see, by virtue of (6) and (7), that C
must be constant. Moreover, the linear independence of y, (x) and y,(x) implies that C is not zero.
Now we define a function G(x, &) of two variables x and & by

G = 2H@nRE @29

n@RE (<
C=pE)[11(E)y2(5)~ 1 (E)ya(§) ] = Constant

Ol

The function G(x, &) is called Green s Function for the equation L (y) = 0 subject to the boundary
conditions (4). Obviously Green function G(x, &) has the following properties:

G(x, &) is continuous at any point (x, &) in the domain a<x,E<b.

As a function of x, G(x, &) satisfies the given boundary conditions for every &. .(9)

If x # €, G(x, &) satisfies the equation L (G) = 0 as a function of x.
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Both G (x, ) and {p(x)G (x, £)} are bounded in the region x # , a<x,E<b. ...(10)
If a < x, <D then as x — x,, keeping the relation x < ¢ and as x — x, £ — x, keeping the relation
x <&, G(x, §) tends to finite values G (x, + 0, x,) and G(x, - 0, x,) respectively, and ..(11)
G (x,+0,x) -G (x,—0,x)= — ..(12)
x\70 0 0 0 p(xo)
G(x, &) =G x) ~(13)
' Example: On the basis of equation (8), we have
d2
=2 y0)=y(1)=0
L= 1a ¥0)=y()
x=0,x=1
Now solutions of
Ly)=0
d*y
or P 0 ..(14)

Suppose that a Green'’s function G(x, &) exists. Then since
L (G(x, £))=0forx#E,

G(x, &) must be represented, by means of a fundamental system y, (x), y,(x) of the solutions of
L (y) = 0, as follows:

2

d
LAy

The general solution of )

So the solution of (14) is

y=cx+c, ...(15)
Let the two solutions be y, (x) and y,(x). Thus
if y,(0)=0thenc,=0

so y,(x) =x, ...(16)

Thus

=(1-x)¢ (x>9). ..(18)
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Self Assessment Notes
1. Find the Green function for the equation
d2
Ly=22¥=0

with the conditions
¥(0)=0,y’(1)=0

5.3 Periodic Solutions Generalized Greers Function

A system of important boundary conditions not included earlier is
y(@) =y(b), y'(@) =y'©) (1)
If the coefficients p(x), g(x), r(x) are periodic functions with period b — g, that is
plx+b-a)=p(x), qx+b-a)=q(x), r(x+b-a)=r(x)
Then the conditions (1) are just the conditions that the solution y(x) of the equation
(PO — q@)y + Ar(y =0 (&)
is periodic with the same period b — g, that is
y(x+b-a)=yx)

For in each case, y(x), y, , (x + b — a) both satisfy the equation (A) together with the same initial
conditions

Y@ =y,, @ y@=y,,@
Hence by the uniqueness of the solutions, we must have
y®) =y,, (%)

In the following we shall be concerned with more general conditions, which include the
conditions (1), of the form

_ . p)
y@=yy®). p@ y@=""yb) -(2)
or y(@)=yp®),y'®), pa) y' (@) =- %y’(b) -(3)

where yis a non-zero constant. It is easily seen that if y(x) and z(x) both satisfy either (2) or (3),
then the relation

p(x) )2 () Y’ () 2@ =0 )
holds.

5.3.1 Construction of Green ® Function

Suppose that a Green’s function exists. Then since L (G(x, £)) = 0 for x # £, y(x, £) must be
represented by means of a fundamental system y, (x), y,(x) of the solution of L (y) = 0 as follows:

o1y (%) + ¢y (%) (qu<é>} .(5)

Gl &)= {cgyl(x>+c4yz(x> (E<x<b)
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where every C, is a function of £&. We shall determine the relations between C, so that G(x, &)
satisfies the required properties for the Green’s function pertaining to the boundary condition
(2). Since G(x, &) is continuous at x = £, we obtain

& 1,8 ¢, 1,(8) = c;y5(6) * ¢,y,(8) ...(6)
By equation (12) of section (10.2), we obtain

G y1/ (é) + Czyz’(é) - C3y3’(§) - C4y4/(£.:) = % (7)

Finally from the boundary conditions (2) we obtain

€114(@) + ¢, y5(@) =¥ (5 y5(b) + ¢,,(b))

v p(@) (¢, v, @) + ¢y, @) = p(b) (c35'(b) + ¢,y (b)) ~(8)
Also Green’s function should be symmetric i.e.
G(x, &) =G(& x) ..(8a)

Only the last relation of (8) must be changed according as the corresponding boundary conditions,
if we are concerned with Green’s function under the boundary conditions (3).

' Example: Find the Green’s function for L_y = 0 with the boundary conditions
y0) =-y@), y0)=-y@.

Solution:

The general solution of L _y = 0is of the form c, x +c,. Now taking as a fundamental system of the
solutions of y”” =0, as
Y@ = @)y =Lpx) =1y=1
Let G(x, &) be given by the relation (5) where a =0, b =1 from the equations (6), (7) and (8) we have
C1§+CZ=C3§+C4, -c,=lLc,==(c;*+c)c=-¢
Solving these equations, we obtain

1
2c1=1,c1= 5 =—(:3,(C1—c3)§+c2=c4
1 p—
c,— 5 =-c
1
2C2— E +§=0
1 1
c,= 1 —§/2,c4= Z+é’;/2
Therefore

G(x,§)=%x+(%—%)-l for 0 < x<§

_ 1 (1.
——Ex+(z+é)~l for<x<1

or G(x, &)z—%\x—éh%:G(&,x).
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Generalized Green®s Function

Let us consider the inhomogeneous equation

L.y=0@)
whose solution y(x) satisfies the boundary conditions. Let us assume that there exists a non-
trivial solution y,(x) # 0 of the equation L_y(x) = 0. We can show that the function ¢(x) must
satisfy

[Cotmix=0 )

where y,(x) also satisfying the boundary conditions. To see this we have
b b
~[0Co(x)dx = [[ya(0)Le) = YLy (o) dx

’ 4 b
= [p(x) (Yo ()Y (¥) = ¥ s (¥)y(x)], =0
On the other hand the solution y(x) may be written in the form
y(x) = 2(x) + e y,y(x)

where z(x) is a solution of L (z) = ¢(x), satisfying the boundary conditions. Since y,(x) # 0 we can
choose the constant C so that

b
fy(X)yo(x)dx =0 .(10)

Now it can be proved that such a function y(x) of the boundary value problem satisfying (10) can
be written as
b

y(x) = jG(x, €)p(8)de (1)

by means of the generalized Green'’s function G(x, &).
By a generalized Green's function, we mean a such G(x, §) satisfying the following five conditions:

1.  Continuity of G(x, &) at any point (x, &) in the domain a < x < & < b. As a function of x,
G(x, &) satisfies the given boundary conditions.

2. If x 2 &, G(x, §) satisfies the equation
G(x, &) = y,(x) y,(8)

as a function of x. G (x, £) is bounded in the region x # £.

3. Ifa<x,<bthenasx — x, & — x keeping the relation x > £ and as x — x,, { — x, keeping
the relation x <&, G (x, €) tends to finite values Gx(x0 +0, xO) and Gx(x0 -0,x,), respectively,
and

G, (x,+0,x) =G (x,—0,x) = (— ! ]
h h p(xo)

4 GrY=GE)
b
5. [Glx, Byex)dx=0

a
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2

' Example: Find generalized Green’s function for L_= 2

yO=y@=0.

Solution:

with the boundary conditions

The general solution of y”(x) = 0 is a polynomial of degree 1. Hence there exists a non-trivial
solution y,(x) = 1 of the boundary value problem. So from the condition (2) we have
L G(x, €) =1, thatis, G _(x, &) = 1.
Hence we have
2
G(x,§)=A1+A2x+7 x<E

2
=B +B,x+ > x>E
By the boundary conditions G (0,x)=0,G(1, €) = 0, we obtain
A,=0,B,=-1.50 the condition
Gx(&_,+0,&)—Gx(&—0,&) =-1

holds automatically. By the continuity at x = £, that is G(§ + 0, §) = G(§ - 0, §) = 0, we obtain
B, —&- A, =0. Hence we obtain

2

Glx, =4, + X<t

2
=A1+§—x+7 x>&.

Finally, from the relation

1

[et ewoe =0,

0

we obtain A; = 0. Thus the generalized Green’s function is given by

Glx, &)= y<E

2
=Y;—x+% x>E.

Self Assessment

2

g with the boundary conditions

2. Find the generalized Green’s function for L. =

1
Y1) = y(1), ¥ (1) = y (). (Hint: take y,(x) = 75)
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5.4 Green ¥ Function for Two Independent Variables

Let us assume that a function z of x and y satisfies the differential equation

L(z) = flx, y) (1)
Where L denotes the linear operator
0’ 9

+a—+bi+c )
oxdy dx 9y

Now let w be another function with continuous derivatives of the first order. We may write
» 0%z _, 0w _i(wai)_i Zaizu
dxdy  dxdy dy\ dx/) odx\ dy

wg 92 4, 0w) _ 9
ox ox  ox

(awz)

ai+za(aw)_i
dy Ty ay

wb

(bwz)
Defining the M operator by the relation

_ *w  d(aw) O(bw)
Mo= oy ox oy

+cw ..(3)

we find that

9z poz
0xdy 8x+ 8y+cz

2
sz—zMw=w(aZ +uaz 0z J

_, *w  d(aw) a(bw)_l_cw
oxdy  Ox oy

or
ou  Jv
Lz - zMw = ~—+ 5= 4
wlz -z ax " oy 4)
where u=awz-— za—w, v =bwz+ wai ...(5)
ady ox

The operator M defined by equation (3) is called the adjoint operator. If M = L, we say the operator
L is self-adjoint.

Now if I is a closed curve enclosing an area X, then it follows from equation (4) and a straight
forward use of Green’s theorem that

J._i.(sz—sz)dxdy =J.J.(gz+g;]dxdy
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= I(u dy —vdx)
r

=J.[ucos(n, x)—veos(x, y)|ds ...(6)

r

w here 11 denotes the direction of the inward drawn normal to the curve I'.

Figure 5.1

A\ PE )

e) X

Suppose now that the values of z, % or % are prescribed along a curve C in the xy plane (see
x

v

Figure 10.1) and that we wish to find the solution of the equation (1) at the pointp(g, n) agreeing
with boundary conditions. Through P we draw PA parallel to the x-axis and cutting the curve in
the point A and PB parallel to the y-axis and cutting curve in B. We then take the curve to be the
closed curve PABPA since dx = 0 on PB and dy = 0 on PA, we have immediately from (6)

II(sz—ZMw)dxdy = I (udy —vdx)+ J (udy— J vdx
AB Bp pA

B 0z B P B Jw
Now Ivdx —I(bwz+ wg)dx ={bw}" + Jz(bw a)dx .

o el + [b~Goyte—udy o)~ [staw—Gouy
+ Ij(sz—zMw)dxdy ()

Here the function w has been arbitrary. Suppose now that we choose function w(x, y, £, n) which
has the properties

Mw =0
ow
M =b(x, y)w wheny=n
Juw =a(x,y)w  whenx=¢§
ay &
w=1 whenx =&, y=n ..(8)
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Here w function is called Green’s function for the problem. Since also Lz = f, we find that

d 9
[zw] = sz(udy—bdxﬁi[za‘(;dy+w(,)idxj+.|.£wfdxdy ..(9)

dz
Equation (7) enables us to find the value of z at the point P when I is prescribed along the

d
curve C. When dTZc is prescribed, we make use of the following calculation

0 d
ol tewl, - [ ] [‘;“’ )dx—‘azyw)dy}

to show that we can write equation (7) in the form

[4p—uwb-jummdy—bd@—}]{ziﬁﬁdx—%g?uu@}+_ﬁufyudy .(10)
AB AB

2

Finally adding (9) and (10), we obtain the symmetrical results

el = gzl L]~ [z dy - bdx)_ljg (g;dy_gidj

_1J' (?;‘C)dx_dyj J-J. wf )dxdy ...(11)

So we can find z at any point in terms of prescribed values of z,—,—, along a given curve.

8 8

Self Assessment

3. If L denotes the operator

2 2 2
LT
ox oxdy  dy ox oy

and M is the adjoint operator defined by

az(Rw)_BZ(Sw)_BZ(Tw) Jo(Pw) d(Quw)

0x* dxdy oy’ Coox ay -

Muw =

show that

II(wLZ —ZMuw)dx dy = I[U cos(n,x)-V Cos(n,y)]ds
) r

where I' is a closed curve enclosing an area X and

0z a(Rw) d(Sw)
U=Rw— -z——+-P
n o dy “

dz oz d(Tw)
V = Swe—Tw——
Yo" ady z dy

Qzw
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5.5 Green ¥ Function for Two Dimensional Problem

The theory of the Green function for the two dimensional Laplace equation may be developed
as follow s. It is w ell know n that if P(x, y) and Q(x, y) are functions defined inside and on the
boundary C of the closed area X, then

0Q P
—=—-—1dS = | (Pdx+Qd (1
j[ax ay) [pax+ay) )
T C
If we put
oy ay . . .
P=—y—,Q=vy , in equation (1) we find that
ady ox

vazw'ds +I[Ww+a\|’ Al st = J(—llfawdx+wa\|]dy}
b3 b3 C

ox dx dy 9y dy ox
_ y’
- +Illf s o)
C
where al"; denotes the derivative of y in the direction of the outward normal to C and we have

used the relation

oy’ oy’ oy’
dy -2y = T .3
ox Y oy T on ®)

If we interchange y and y’ in (2) and subtract the two equations, we find that

P dy’ .0
i(wzq, i) - l(“’aq:f“’ %)ds @
Figure 5.2

Suppose that P with co-ordinates (x, y) is a point in the interior of the region S in which the
function v is assumed to be harmonic. Draw a small circle I" with center P and small radius € (see
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figure) and apply the result (4) to the region k bounded by the curves Cand T with y’ = log——;
-

Since both  and ’ are harmonic, it follows that if S is measured in the direction shown in the
fig.,

[J. I] log log;_lﬁ(—;: =0 ..(5)

r ‘

we can show that

J-w Iog‘ ‘ds =2my(x,y)+0(¢)

and that

Ilog 1ﬁa ds’|<2nMelog €,

J
where M is an upper bound of 87‘5 Inserting these results into equation (5), we find that

- 1 1 aw(x’,y’)_ J , 6
v(x, ) an 1og;_ﬁ‘7an W(x',y)3-log = ds .(6)

r— 7‘

we now introduce a Green'’s function G(x, y, x’, ) defined by the equations

G,y x,y) = W(ry,x,y)+log—sF

7‘1"‘

where the function W(x, y, x’, i) satisfies the relations

2 2
[8 + J JW(x,y,x’,y') =

I
o
B
(o)
&

a x/2 a y/Z
Wy, x,y) = r— onC .9)
then for y satisfying equations
Viy =0 within %,
and v = flx,y) onC ...(10)
is given by the expression
v, y) = IW G(x,y,xy)ds’ (1)
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ores Where 1 is the outward drown normal to the boundary curve C.

Dirichle®®s Problem for a Half Plane Suppose that we wish to solve the boundary value problem
V2y=0forx>0,y=fy)onx=0,and y =0asx — . If P(x, y) is a point (x > 0), and P’ is (—x, y),

’

then G(x,y,x",y’) = log(QP j, satisfies both equations (8) and (9) since P'Q = PQ. on x = 0.

Qr
Figure 5.3
N Q)
P’ (=x,y) P (x,y)
Tn -
. >
The required Green’s function is therefore
"2 2
, 1 x+x') +(y-
Glx,y,x,y) = Zlog[(,)(yll’)z] -(12)
(x=x)+(y-y)
Now on C
JdG _ 9G 2x

-~ - =—————, so substituting in (11), we find that
I Wl P(y-y)

Tt ’ d ’
vy = ;L 721( )y — ~-(13)
[+ (y-v)]
5.6 Summary
o Green’s functions and its properties are described for one and two dimensional problems.
o It is seen that depending upon the boundary conditions the structure of the Green’s functions
is established.
o It also gives a link to reduce a differential equation into an integral equation.

5.7 Keywords

We can have an initial value problem where the values of the dependent function and its
derivatives are given.

In a boundary value problem the values of the dependent function and its derivatives are given
at both the ends of the interval of the independent variable.
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5.8 Review Questions Notes
1.  Find the Green’s function for the one dimensional case given by
d2
Ly=-7y=0
with y(0) =y'(0), y(1) =-y'(1)

2 2

2. Find the Green’s function for the boundary value problem Vi = [32+82Jw =0, for
X oy

r <0, given that y = f(0) for r=a

3. Prove that for the equation

9%z 2 [0z 0z |_ 0
oxdy x-yl\odx dy
the Green's function is

(x—y)[2xy - (E-)(x—y)— 2&n]
(&-n)’

G(x'y/&/n)=

Answers: Self Assessment

_|x (xg é)

1. G(xg) ¢ (x>¢)

2 G(vE)=—fr-g+(x-8 +=.

5.9 Further Readings

N

Books K. Yosida, Lectures in Differential and Integral Equations

Sneddon L.N., Elements of Partial Differential Equations

King A.C, Billingham J. and S.R. Otto, Differential Equations
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Unit 6: Sturm eLiouville?s Boundary Value Problems

CONTENTS

Objectives

Introduction

6.1 Sturm-Liouville’s Equation

6.2 Boundary Conditions

6.3  Properties of the Eigenvalues and Eigenfunctions

6.4 Bessel’s Inequality, Approximation in the Mean and Completeness
6.5 Summary

6.6 Keywords

6.7 Review Questions

6.8  Further Readings

Objectives

After studying this unit, you should be able to:

o Understand the structure of self-adjoint equations. If we are dealing with only second
order differential equations, we see that under what conditions we can put them in self-
adjoint form.

o Know that Sturm-Liouville boundary value problem is a method of dealing with equations
which can be put into Sturm-Liouville form.

o Find the solutions for some values of the parameters. The solutions are known as
eigenfunctions and the values of the parameter are known as eigenvalues.

o Know that important examples of Sturm-Liouville boundary value problems are Legendre
equation, Bessel’s equations and many more.

Introduction

This method helps us in finding certain sets of functions which are orthogonal and we can
express any function in terms of these eigenfunctions on the interval 2 < x < b where a and b may
be finite or one of them finite and the other infinite or both a and b to be infinite.

These methods are known as Fourier Legendre expansion if we use Legendre polynomials and
0 on.

6.1 Sturm-Liouvillé®s Equation

In the first four units we have studied linear second order differential equations. After examining
some solutions techniques that are applicable to such equations in general we studied the
particular cases of Legendre’s equation, Bessel’s equations, the Hermite equations and Laguerre’s
equations, as they frequently arise in models of physical systems in spherical, cylindrical
geometries and in Quantum mechanics. In each case we saw that we can construct a set of
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solutions that can be used as the basis for series expansion of the solution of the physical
problem in question, namely the Fourier-Legendre’s and Fourier-Bessel series. In this unit we
will see that Legendre’s, Bessel’s, Hermite and Laguerre’s equations are examples of Sturm-
Liouville’s equations which are also in self-adjoint form. Some of the properties of Sturm-
Liouville’s equations are examined in the previous unit also. In this unit we deduce some more
properties of such equations independent of the function form of the coefficients.

Sturm-Liouville equations are of the form

(PO @) +q(y(x) = —Ar(x)y(x) (1)
which can be written more concisely as
Sy(x, A) = —Ar(x)y(x, A) (2
where the differential operator S is defined as
_d d¢
= a(P(X)E) +q(x)9. -(3)

This is a slightly more general equation. In (1) the number A is the eigenvalue, whose possible
values, which may be complex, are critically dependent upon the given boundary conditions. It is
often more important to know the properties of A than it is to construct the actual solutions of (1).

We seek to solve the Sturm-Liouville equation (1) on an open interval, (g, b) of the real line. We will
also make some assumptions about the behaviour of the coefficients of (1) forx € (g, b), namely that

(i)  p(x), q(x) and r(z) are real-valued and continuous

(ii)  p(x) is differentiable, ..(4)
(iii) p(x)>0and r(z) > 0.

Some Example of Sturm-Liouville Equations

Perhaps the simplest example of a Sturm-Liouville equation is Fourier’s equations,

y'(x,A) = “Ay(x, A) ..(5)
which has solutions cos(x+/A) and sin(x~/1.). We discussed a physical problem that leads naturally
to Fourier’s equation at the start of least unit.

We can write Legendre’s equation and Bessel’s equation as Sturm-Liouville problems. Recall
that Legendre’s equation is
dy  2x dy A
o2 75+ 2
dx* 1-x"dx 1-x

y=0

and we are usually interested in solving this for —1 < x <1. This can be written as

(1 -2AyT =-hy.
If & = n(n + 1), we showed in unit 2 that this has solutions P _(x) and Q (x). Similarly, Bessel’s
equation, which is usually solved for 0 < x < g, is

X2y’ +xy’ + (- vAp = 0.
This can be rearranged into the form
2
v
xy'Y ——y=—xy.
Y-y y
Again, from the results of unit 1, we know that this has solutions of the form ] (x+/A) and
Y, (x V).

Although the Sturm-Liouville forms of these equations may look more cumbersome than the
original forms, we will see that they are very convenient for the analysis that follows. This is
because of the self-adjoint nature of the differential operator.
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6.2 Boundary Conditions

We begin with a couple of definitions. The endpoint, x = a4, of the interval (4, ) is a regular
endpoint if a is finite and the conditions (4) hold on the closed interval [, c] for each c € (g, D). The
endpoint x = a is a singular endpoint if a = —ec or if a is finite but the conditions (4) do not hold on
the closed interval [g, c] for some c € (g, b). Similar definitions hold for the other endpoint, x = b.
For example, Fourier’s equation has regular endpoints if a and b are finite. Legendre’s equation
has regular endpoints if -1 < a < b > 1, but singular endpoints if a = -1 or b =1, since p(x) = 1- x*
=0 when x = £1. Bessel’s equation has regular endpoints for 0 < a < b < e, but singular endpoints
ifa=0or b = e, since g(x) = —v*/x is unbounded at x = 0.

We can now define the types of boundary conditions that can be applied to a Sturm-Liouville
equation.

(i)  On a finite interval, [a, b], with regular endpoints, we prescribe unmixed, or separated,
boundary conditions, of the form

ay(a, ) +ouyla, &) =0, By, A) + B,y (v, A) =0. ...(6)
These boundary conditions are said to be real if the constants o, o, B, and f, are real,
with of +af >0 and Bj +p;>0.
(ii) On an interval with one or two singular endpoints, the boundary conditions that arise in
models of physical problems are usually boundedness conditions. In many problems,

these are equivalent to Friedrich’s boundary conditions, that for some c € (g, b) there exists
A ¢ R such that

|y(x,A)| <A forall x € (a, c)

and similarly if the other endpoint, x = b, is singular there exists B ¢ R such that |y(x, A)| <
Bforall x € (a, b)

We can now define the Sturm-Liouville boundary value problem to be the Sturm-Liouville
equation,

(PO W)+ @)y (x) = ~Ar(x)y(x) forx € (a,b)
where the coefficient functions satisfy the conditions (4), to be solved subject to a separated
boundary condition at each regular endpoint and a Friedrich’s boundary condition at each
singular endpoint. Note that this boundary value problem is homogeneous and therefore always
has the trivial solution, y = 0. A non-trivial solution, y(x, A) # 0, is an eigenfunction, and A is the
corresponding eigenvalue.

Some Examples of Sturm-Liouville Boundary Value Problems.
Consider Fourier’s equation.

Y A) = -Ax(x, A) forxe (0, 1)
subject to the boundary conditions (0, A) =y(1, A) = 0, which are appropriate since both endpoints
are regular. The eigenfunctions of this system are sin\/m for x =1, 2,...., with corresponding
eigenvalues A = A =n’n’

Legendre’s equation is
{@ -y (x, V)Y =-Ay(x, A) for x € (-1, 1).

Note that this is singular at both endpoints, since p(+1) = 0. We therefore apply Friedrich’s
boundary conditions, for example with ¢ = 0, in the form

ly(x, A) |[SAforxe(-1,0), |y(x,A)| <Bforxe (0,1),
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for some A, B € K. In unit 2 we used the method of Frobenius to construct the solutions of
Legendre’s equation, and we know that the only eigenfunctions bounded at both the endpoints
are the Legendre polynomials, P (x) for n =0, 1, 2,..., with corresponding eigenvalues A = A =
n(n +1).

Let’s now consider Bessel’s equation with v = 1, over the interval (0, 1),

avd }/
—L = .
(xy’) . xy

Because of the form of g(x), x = 0is a singular endpoint, whilst x =1 is a regular endpoint. Suitable
boundary conditions are therefore

1
|y(x,k)|gAforxe(O,EJ,ya,x)=o

for some A € R. In unit 1 we constructed the solutions of this equation using the method of

Frobenius. The solution that is bounded at x =0 is J; (X,\/x ) The eigenvalues are solutions of

h({)=0,

which we write as A = 1,13, ...., where J (A ) = 0.

Finally, let’s examine Bessel’s equation with v = 1, but now for x € (0, ). Since both endpoints
are now singular, appropriate boundary conditions are

1 1
|y(x,k)|SAforxe(0r§), |y(x,A)| <Bforxe (Er“’),

for some A, B € K. The eigenfunctions are again | (x,\/x ) , but now the eigenvalues lie on the

half-line [0, ). In other words, the eigenfunctions exist for all real, positive L. The set of eigenvalues
for a Sturm-Liouville system is often called the spectrum. In the first of the Bessel function examples
above, we have a discrete spectrum, whereas for the second there is a continuous spectrum. We
will focus our attention on problems that have a discrete spectrum only.

Self Assessment

1.  Put the equation
Xy’ +xy + (MxP -4y =0
in Sturm-Liouville’s form
2. Put the equation
% - 2x% +2Ay=0

into Sturm-Liouville’s form

6.3 Properties of the Eigenvalues and Eigenfunctions

In order to study further the properties of the eigenfunctions and eigenvalues, we begin by
defining the inner product of two complex-valued functions over an interval I to be

(), 0,0 = [ 6 (X (0,
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where a superscript asterisk denotes the complex conjugate. This means that the inner product
has the properties

(1) 0y 0, =0, 0),

(i) (2,0, 2,0, = a; a0, 0,),

(1) {0y, O, + 0y =01, 0,) (0, 03), (D) + dy 0 = (0, 0) + (D, 03
@iv) <o, ¢y = II | 6|2 dx = 0, with equality if and only if ¢(x) =0in I.

Note that this reduces to the definition of a real inner product if ¢, and ¢, are real. If (¢, ¢,) = 0
with ¢, # Oand ¢, # 0, we say that ¢, and ¢, are orthogonal.

Let y,(x), y,(x) € C* [a, b] be twice-differentiable complex-valued functions. By integrating by
parts, it is straightforward to show that
* , * i
W2S) = Sy y1) =[P ()3 @)Y =y ()3 ()} ], )

which is known as Green'’s formula. The inner products are defined over a sub-interval [a, ] C
(a, b), so that we can take the limits o — a* and § — b~ when the endpoints are singular, and the
Sturm-Liouville operator, S, is given by (3). Now if x = a is a regular endpoint and the function
y, and y, satisfy a separated boundary condition at a, then

p@){y1(@)(y2(a)) = yi(a)y2(a)} =0. (8)
If a is a finite singular endpoint and the functions y, and y, satisfy the Friedrich’s boundary
condition at 4,

Tm [P0 (<95 (3)) - (<3 ()] =0 .0

Similar results hold at x = b.

We can now derive several results concerning the eigenvalues and eigenfunctions of a Sturm-
Liouville boundary value problem.

Theorem 1: The eigenvalues of a Sturm-Liouville boundary value problem are real.
(¥ (0, 1Sy, 1)) = (Sy " (x, 1), y(x, 1))

=[Py, M (2, 2) =y (e My (x, W) =0
Proof: If we substitute y,(x) = y(x, A) and y,(x) = y'(x, A) into Green’s formula over the entire
interval, [a, b], we have (y*(x,A), Sy(x,A))—(Sy*(x,A),y(x,A))

=[P [y )y * (e AY —y (e )y () ] =0

making use of (8) and (9). Now, using the fact that the function y(x, A) and y*(x, A) are solutions
of (1) and its complex conjugate, we find that

[ @y Wy (1 W)~ AT) dx = (h - x*)jbr(x)[y(x, M dx=0

Since r(x) > 0 and y(x, A) is nontrivial, we must have A = A* and hence A € R i.e. the eigenvalues
are real.

Theorem 2: If y(x, 1) and y(x, *) are eigenfunctions of the Sturm-Liouville boundary value

problem, with A # 1), then these eigenfunctions are orthogonal over CP[a, b] with respect to the
weighing function r(x), so that

[ e 2y, Ty dx =0 .(10)
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Proof: Firstly, notice that the separated boundary condition (6) at x = a takes the form

oy, (@) + OL1y/1(a) =0, ogy,(a) + aﬂ//z(u) =0. ..(11)
Taking the complex conjugate of the second of these gives
oy y(a) + o, (v (a)* = 0. (12)

since o, and o, are real. For the pair of equations (11) and (12) to have a nontrivial solution, we
need

Y @OW,@) - ¥ @y @) =

A similar result holds at the other endpoint, x = b. This clearly shows that

Py 1) (' (2, 0) =y (M (y(x, M)} =

asx —» aand x — b, so that, from Green’s formula (7),

(y(x, &) Sy(x, )y = (Sy(x, 1), y(x, L))

If we evaluate this formula, we find that
b _
J. r(x)y(x, My(x, A)dx=0
a

so that the eigenfunctions associated with the distinct eigenvalues A and A are orthogonal with
respect to the weighting function r(x).

' Example: Consider Hermite’s equation

for —oo < x < oo, This is not in self-adjoint form. To do that let us define

= exp|: —2x dx]
(-x*

=exp
(

Thus the equation (i) becomes

d dy
E(P( )dxj"'}"e y=0 ...(iif)
By using the method of Frobenius, we showed in unit (3) that the solutions of equation (i) are
polynomials defined by H (x) when A = 2n for n =0, 1, 2, .... . The solutions of equation (iii), the

self-adjoint form of the equation, that are bounded at infinity for A = 27, then take the form

[N}

u, = eJTHn(x) .(iv)

and from theorem (2) satisfy the orthogonality condition

Feo 2
[ e B (0, (x)dx =0 for nm

Self Assessment

3. Put the Laguerre’s equation
xy” +(1-x)+Ay=0,for0<x<eo

into self-adjoint form and deduce orthogonality condition for Laguerre’s polynomials.
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6.4 BesseMs Inequality, Approximation in the Mean and
Completeness

We can now define a sequence of orthonormal eigenfunctions

S P— /T2
(r@)y e &) r@y (e, 2,))

which satisfy

(0(x), 0,4(x)) = 8,1, .(13)

where §__is the Kronecker delta. We will try to establish when we can write a piecewise
continuous function f(x) in the form

©

=Y ah() .(14)
i=0
Taking the inner product of both sides of this series with ¢j(x) shows that

4= {F(x),0,()), (15)

using the orthonormality condition (13). The quantities 4, are known as the expansion coefficients,
or generalized Fourier coefficients. In order to motivate the infinite series expansion (14), we
start by approximating f(x) by a finite sum,

N
@)= Adlx, 1)

i=0

for some finite N, where the A, are to be determined so that this provides the most accurate
approximation to f{(x). The error in this approximation is

N

Ry(x) = f(x) = Y, Ad(x, 1)

i=0

We now try to minimize this error by minimizing its norm

N 2
Ru[" = (Ry (x), Ry () = fﬂblf(x) - ZAA%(X)] dx,
i=0

which is the mean square error in the approximation. Now

N N
Ry [ =<f(x)—2Ai¢i<x), f(x)—ZAm(x)>
i=0 i=0

=|f@I - <f(x>, ZAl«bi(x)>
<2A¢, %), f( x)> <2A¢l 2A¢1 x)>

We can now use the orthonormality of the eigenfunctions (13) and the expression (15), which
determines the coefficients a, to obtain
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N
IR =[f@) = X ACF@), 66D
i=0

N N
Y A, FE), DA AG ), ¢ ()
i=0 i=0

N
=[N+ Doi-Ag - Alal + AA)
i=0
2 N
=lfl + D14 -a P -lal)

i=0

The error is therefore smallest when A=a fori=0,1, ..., N, so the most accurate approximation
is formed by simply truncating the series (14) after N terms. In addition, since the norm of R(x)
is positive,

N
Dol <[ |feof ax
i=0

As the right side of this is independent of N, if follows that

> b
Daf < [[lref ax .(16)

which is Bessel’s inequality. This shows that the sum of the squares of the expansion coefficients
converges. Approximations by the method of least squares are often referred to as approximations
in the mean, because of the way the error is minimized.

If, for a given orthonormal system, (I)l(x), (])Z(x)..., any piecewise continuous function can be
approximated in the mean to any desired degree of accuracy by choosing N large enough, then
the orthonormal system is said to be complete. For complete orthonormal systems, R, (x) — 0 as
N — oo, so that Bessel’s inequality becomes an equality,

-
;\ﬂi\ = [ 1Fef dx .(17)

for every function f(x).

The completeness of orthonormal systems as expressed by
b N i
Jim | {f(x) - ;am(x)} dx =0

does not necessarily imply that f(x) = 220 a;0;(x), in other words that f(x) has an expansion in
terms of the 0,(%). If however, the series Z:o a;0,(x), is uniformly convergent, then the limit

and the integral can be interchanged, the expansion is valid, and we say that EZO a;0;(x),

converges in the mean to f{x). The completeness of the systems ¢, (x), ¢,(x).... , should be seen as
a necessary condition for the validity of the expansion, but, for an arbitrary function f(x), the
question of convergence requires a more detailed investigation.

The Legendre polynomials P (x), P,(x),... on the interval (-1, 1) and the Bessel functions ] (}x),
J(A,x),... on the interval [0, a] are both examples of complete orthogonal systems (they can easily
be made orthonormal), and the expansions of unit 1 to 5 are special cases of the more general
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results of this chapter. For example, the Bessel functions Iv(\/Xx) satisfy the Sturm-Liouville
equation, with p(x) = x, g(x) = —v?/x and r(x) = x. They satisfy the orthogonality relation

J.Onx]z] (\/ﬁx)]v (x/Xx)dx =0

if A and p are distinct eigenvalues. Using the regular endpoint condition J, (\/Xa) =0 and the
singular endpoint condition at x = 0, the eigenvalues, that is the zeros of ]V(x), can be written as
Jra=Aa, ha.., sothat (/) =A fori=1,2, .., and we can write

oo

f@) =Y al,(0x),

i=1
with
2 a
= T [ 310 fydx

'i Example: Show that the functions ¢ = cos mx, m =0, 1, 2, ... form orthogonal set of
functions on the interval -1 <x > 1 and determine the corresponding orthonormal set of functions.

Solution: We have, form#n

T
I COS mx Cos nx dx

= ZJ.: COS Mmx cos nx dx
= J‘O’T{cos[(m +n)x] - cos[(m — n)x]}dx

s

=0

_ |:sir1[(m +m)x]  sin[(m - n)x]i|

(m+n) m-n

0
Hence the given functions g =cosmx,m=0,1,2,.. are orthogonal set of functions.
Now the norm of g _is

m

12

n
ool =lcos ] =|[” cos? e s
-

12

o2
2_[ cos” mx dx
0

=+2n  whenm=0
and =Jn  whenm=1,2,3, ...
Hence the orthonormal set is

1 cosx cos2x cos3x

NN N N

Self Assessment

4. Show that the functions 1, cos x, sin x, cos 2x, sin 2x, ... form an orthogonal set on an interval
-1 < x £ 1 and obtain the orthonormal set.
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6.5 Summary Notes

° The Sturm-Liouville’s boundary value problems leads us to eigenvalues and eigenfunctions
of certain second order differential equations.

° It is seen that the eigenfunctions form a set of orthonormal set and as so form a complete
set.
° This helps us in expanding a certain function in terms of eigenfunctions on an interval

(a,b).

6.6 Keywords

Bessel's differential equations, Legendre differential equations and many more equations can be
written in the Sturm-Liouville equation.

Depending upon certain boundary conditions the solutions known as eigenfunctions can be
found that form orthogonal set.

6.7 Review Questions

1.  Find all eigenvalues and eigenfunctions of the Sturm-Liouville problem

T
Y’ +hy =0, withy(0) =y’ (E) =0

2. Find all the eigenvalues and eigenfunctions of the Sturm-Liouville problem

¥+ Ay =0, withy'(0)=3,y(c)=0
Answers: Self Assessment
N\’ 4
1. (xy) —;y:—kxy

2. (e"‘Zy’)’ + 2ke‘x2y =0

@

(xe Y'Y + ey =0

1 cosx sinx cos2x sin2x

4. \/E’\/E,\/E’\/E,\/E, ......

6.8 Further Readings

N

Books K. Yosida, Lectures in Differential and Integral Equations

Sneddon L.N., Elements of Partial Differential Equations

King A.C, Billingham J. and S.R. Otto, Differential Equations
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Unit 7: Sturm Comparison and Separation Theorems
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74  The Wronskian

7.5 The Sturm Comparison Theorem
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7.8 Keywords

7.9 Review Questions

7.10 Further Readings

Objectives

After studying this unit, you should be able to:

° Deal with a linear second order differential equation with ease, there are a number of
important processes by which the solutions are found easily.

° Know that in certain important cases the method of reduction of order helps in solving the
differential equation.

° Discuss another method called the method of variation of parameters which helps in
solving non-homogeneous differentiation equation.

Introduction

Sturm comparison and separation theorems help us in understanding the nature of solutions of
certain differential equation where the solutions are periodic.

This process helps us in setting up the equation for Wronskian involving the solutions of the
differential equation.

7.1

Linear Ordinary Second Order Differential Equation

We here consider linear, second order ordinary differential equation of the form

4y
dx?

P T+ Q) L+ REy = Fx)
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where P(x), Q(x) and R(x) are finite polynomials that contain no common factor. This equation is
inhomogeneous and has variable coefficients. After dividing through P(x), we obtain the more
concurrent, equivalent form,

dzy

() L by = £ )

dx

Provided p # 0. If p(x) = 0 at some point x = x, we call x = x a singular point of the equation. If P(x)
# 0, x, is a regular or ordinary point of the equation. If P(x) # 0 for all points x in the interval
where we want to solve the equation, we say the equation is non-singular or regular in the
interval.

If a,(x), a,(x) and f{x) are continuous on some open interval a < x < b that contains the initial point,
then a unique solution of the form

y = Au (x) + Bu,(x) + G(x)

where A, B are constants and are fixed by initial conditions. Before we try to construct the
general solution of equation (1), we will outline a series of sub-problems that are more tractable.

7.2 The Method of Reduction of Order

As a first simplification we discuss the solution of the homogeneous differential equation

d2y
d 2

dy

+aq(x )dx

+ay(x)y =0 (2
on the assumption that we know one solution, say y(x) = u,(x), and only need to find the second
solution. We will look for a solution of the form y(x) = U(x)u,(x). Differentiating y(x) using the
product rule gives

dy du
dx  dx

w+ut
dx

dy _du dUdw, . d*u,

A N NN

If we substitute these expressions into (2) we obtain

du,
dx

d*u du du, d ul
dx dx dx

+ay(x )(—u1+ll )+a0(x)llu1—0

We can now collect terms to get

d*u du AU du( du
U(dxl+ ( )dxl+a0(x)u1j+u1dxz+dx(21+a1u1)=0

Now, since u,(x) is a solution of (2), the term multiplying U is zero. We have therefore obtained
a differential equation for dU/dx, and, by defining Z = dU/dx, we have

d—Z+Z(2%+a1u1)=0
dx dx

Dividing through by Zu, we have
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log|Z| +2log|u,| + Ixul(s)ds=C,

where s is a dummy variable, for some constant C. Thus

Z= :—Zexp{—fxal(s)ds} _ad

1 dx

where ¢ = ¢©. This can then be integrated to give

U(x)= J‘Z%exp{—r a (s)ds} dt+c,

Ui
for some constant ¢ . The solution is therefore

() =1, (x)J.xﬁ(t)exp{— [ 'ul(s)ds}dn €1y (x).

We can recognize € u,(x) as the part of the complementary function that we knew to start with,
and

()= enp | s fa -0

as the second part of the complementary function. This result is called the reduction of order
formula.

' Example: Let us try to determine the full solution of the differential equation

(1—x2)%—2x%+2y=0
X X

given that v =u,(x)=xis a solution. We firstly write the equation in standard form as

2
dy  2x dl.,_ 2

=0
x> 1-x% dx 1—x2y

Comparing this with (2), we have a,(x) = -2x/(1 - x%). After noting that

t B t 2s _ 2
J. a,(s)ds = J. s ds=log(1-t°),
the reduction of order formula gives

We can express the integrand in terms of its partial fractions as

1 1.1 1.1 1
PA-12) 2 1- £ 2(1+t) 2(1-t)
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This gives the second solution of (2) as

11 1
)= {t2+2(1+t)+2(1—t)}dt

1 1 1+\]" «x T+x
=x —7+710g(—) =—log(—)—1,
t 2 1-t 2 1-x

and hence the general solution is

1+x
—Ax+B | ( )-1.
4 {2 8l 1«

Self Assessment

1.  Use the reduction of order method to find the second independent solution of the equation
d*y  2dy
—5+=—=+y=0
i xdx Y

with the solution u,(x) = x™" sin x

7.3 The Method of Variation of Parameters

Let’s now consider how to find the particular integral given the complementary function,
comprising u,(x) and u,(x). As the name of this technique suggests, we take the constants in the
complementary function to be variable, and assume that

Y = ¢ (¥u, () + ¢, (x)uy(x)

Differentiating, we find that

dy _ o, Ay do
dx dx dx dx dx

We will choose to impose the condition

d
u17+u27=0, (4)

and thus have

which, when differentiated again, yields

Ay dw dwy doy | duy | duy doy
dx* Vdx®  dx dxe 2 dx® dx dx

This form can then be substituted into the original differential equation to give

Ay
dx

d*u,  du, dc, d*u, du, dc, ( du

€1 2 dx dx &) 2 dx dx L+c, )+ao(C1”1+C2”2)=f~

c
dx
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This can be rearranged to show that

d*u du d*u du du, de; du, de
@*ﬂ]*( il 2J+d£d£+d§d£=f

Since u, and u, are solutions of the homogeneous equation, the first two terms are zero, which
gives us

duy dey . du, dc,
PSS Shiad SRR e Satad” S
dx dx dx dx f ~(9)

Wenow have two simultaneous equations (4) and (5), for ¢, = dc,/dxand ¢, = dc, / dx, which can

be written in matrix form as

These can easily be solved to give

__Su o fun
Q=0 =",
w w
where

U, u
’ ’ 1 2
W =uuy —uyu; =,
Uy U

is called the Wronskian. These expansions can be integrated to give

_fe)ua(s) SfE)m(s)
]—j W(s) ds+A ) —J. (s) d +B.

We can now write down the solution of the entire problem as

v =) x—%”(’;)(s)dﬁ uz(x).llxﬂ;v)ilzls)(s)ds‘ + Ay (x) + Buy (%)

The particular integral is therefore

9-[ 1 { () (:t)l(x)uxs)}ds ©

This is called the variation of parameters formula.

' Example: Consider the equation

2

ay

el +y =xsinx

The homogeneous form of this equation has constant coefficients, with solutions

u,(x) = cos x, u,(x) = sin x
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The variation of parameters formula then gives the particular integral as Notes

o, COSSsinx —cosx sins
y=| ssins ds,

1

since

cosx sinx

=cos’x+sin’x=1

—sinx cosx|

We can split the particular integral into two integrals as

X X
y(x)= sinxj ssinscoss ds — COSXJ ssins ds

1. o 1 x
= Esmxf ssin2s ds— Ecost. s(1-cos2s)ds
Using integration by parts, we can evaluate this, and find that

y(x) =—%x2

1 . 1
COSX +—xsinx +—cosx
4 8
is the required particular integral. The general solution is therefore

2

. 1 1 .
y=0C COsx+c, smx—Zx COSX+ZJCSII’IX

Self Assessment

2. Find the general solution of the equation
4’y
—5+4y =2sec2x
R

7.4 The Wronskian

Before we carry on, let’s pause to discuss some further properties of the Wronskian. Recall that
if V is a vector space over R, then two elements v,, v, € V are linearly dependent if 3 o, o, € R,
with o, and @, not both zero, such that oo, + o,,v, = 0.

Now let V = C'(a, b) be the set of once-differentiable functions over the interval a <x <b.If u, u,
€ C(a, b) are linearly dependent, 3 o, o, € R such that o, u, (x) + o,,u,(x) =0 v x € (4, b). Notice

that, by direct differentiation, this also gives ou;(x)+ 0yt (x) = 0 or, in matrix form.

up (%) ty(x) (0!1} B (0)
w(x) up(x) o) \0
These are homogeneous equations of the form
Ax=0
which only have nontrivial solutions if det(A) = 0, that is

uy(x)  uy(x)

uy(x) s (x)

=Uyly —Ugty = 0.
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In other words, the Wronskian of two linearly dependent functions is identically zero on (a, b).
The contrapositive of this result is that if W = 0 on (g, b), then u, and u, are linearly independent
on (a, b).

' Example 1: The functions u, (x) = x> and u,(x) = x° are linearly independent on the interval
(-1,1). To see this, note that, since u, (x) = x% u,(x) = x°, u;(x) =2x, and u,(x)=3x?, the Wronskian

of these two functions is

X X

=3yt —2xt =yt
2x 3x2

This quantity is not identically zero, and hence x* and x° are linearly independent on (-1, 1)

' Example 2: The functions u,(x) = f{x) and u,(x) = kf(x), with k a constant, are linearly
dependent on any interval, since their Wronskian is

k

/. 0

T
oy

If the functions u, and u, are solutions of (2), we can show by differentiating W = Uity — Uiy
directly that

aw +a,(x)W =0.
dx

This first order differential equation has solution

W(x)= W(xo)exp{— I al(t)dt} -0

which is known as Abel’s formula. This gives us an easy way of finding the Wronskian of the
solutions of any second order differential equation without having to construct the solutions
themselves.

'i Example 3: Consider the equation
1 1
"+=y'+|1-— |y =0
y 3y ( 2 )y
Using Abel’s formula, this has Wronskian

W(x)= W(xo)exP{_j" ﬂ} _ XW(x) :é

xot X

for some constant A.
We end this section with a useful theorem.

Theorem. If u, and u, are linearly independent solutions of the homogeneous, non-singular
ordinary differential equation (2), then the Wronskian is either strictly positive or strictly negative.

Proof: From Abel’s formula, and since the exponential function does not change sign, the
Wronskian is identically positive, identically negative or identically zero. We just need to
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Uy (%)
exclude the possibility that W is ever zero. Suppose that W(x,) = 0. The vectors (u/ (x )j and
1\

[u2(x1)
”lz(xl)

constant k. The function u(x) = u,(x) — ku,(x) is also a solution of (2) by linearity, and satisfies the

j are then linearly dependent, and hence u (x,) = ku,(x,) and uy (x) = ku, (x) for some

initial conditions u(x,) = 0, ’(x,) = 0. Since (2) has a unique solution, the obvious solution, u =0,
is the only solution. This means that u, = ku,. Hence u, and u, are linearly dependent - a
contradiction.

The non-singularity of the differential equation is crucial here. If we consider the equation

x*y” = 2xy’ + 2y = 0, which has u,(x) = x> and u,(x) = x as its linearly independent solutions, the

Wronskian is —x? which vanishes at x = 0. This is because the coefficient of iy also vanishes at
x=0.
Self Assessment

3. Find the Wronskian of x, x> on the interval (-1, 1).

7.5 The Sturm Comparison Theorem

The theorem states that if f{(x) and g(x) are nontrivial solutions of the differential equations
0 (1)
0 (2)

u” + p(x)u

and v’ + g(x)v

and p(x) = g(x), f{x) vanishes at least once between any two zeros of g(x) unless p =g and f= ug
where U is a real number.

Proof: As p(s) > g(x) for all values of x within the interval of interest. For example consider the
equation

w’ +atw = 0,a*>0 -(3)
This equation has an oscillatory behaviour and the solution is of the form
w(x) = c, sinax +c,cos ax ..(4)
since p(x) = a*>0

then (1) will have an oscillatory solution and so will have zeros. As (1) is more oscillatory then
(2) it will have zeros also more frequently and hence in between zeros of (2) it have at least one
Zero.

7.6 The Sturm Separation Theorem

If u (x) and u,(x) are the linearly independent solutions of a non-singular homogeneous equation
(1), then the zeros of u,(x) and u,(x) occur alternately. In other words, successive zeros of u, (x) are
separated by successive zeros of u,(x) and vice versa.

Proof: Suppose that x, and x, are successive zeros of u,(x); as the Wronskian W is given by

oy ()~ ()1 ()

W(x)=

1 2
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so that
W(x;)=u, (x;)uy(x;)  fori=1,2

We also know from Abel’s formula that IV(x) is of one sign on x, < x < x,, since u,(x) and u,(x) are
linearly independent. This means that u,(x,) and u,(x;) are nonzero. Now if u,(x,) is positive
then u,(x,) is negative or vice versa, since u,(x,) = 0. Since the Wronskian cannot change sign

between x, and x,, so u,(x) must change sign and hence u, has a zero in between x, and x, as we
claimed.

Self Assessment

4. Consider the equation

dzy
ﬁ+w2y =0

It has the solution
y = A sin wx + B cos wx

If we consider any two of the zeros of sin wx, it is immediately clear that cos wx has a zero
between them.

Compare its solutions with respect to those of

dZ
—ZZU +4w*w=0
dx
7.7 Summary
o The comparison and separation theorems of Sturm are useful in the periodic solutions of
the second order linear equation.
o These theorems are understood in a better way once the reduction method of order is set
up.
o The variation of parameters help us in finding the particular integral of the non-

homogeneous differential equation.

7.8 Keywords

Sturm comparison theorem helps us in telling when the solution of a differential equation has at
least one zero in between the two zeros of the solution of another differential equation simply
by studying their coefficients in the equation.

Whereas, the Sturm separation theorem helps us in predicting that one independent solution of
the equation has at least one zero in between the two zeros of the other independent solution.
This happens in the case of periodic solutions.

7.9 Review Questions

1. Find the Wronskian of ¢*, ¢™*

2. Find th I soluti f@+dl—6 =X
. m € general solution o dx2 dx Y=
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3. If u, u, are linearly independent solution of y” + p(x)y” + q(x)y = 0 and y is any other Notes
solution, show that Wronskian of (y, u,, u,)

y o ou U
L,

W(x) =y U U
L,

Uy U

is zero.

Answers: Self Assessment

COsXx
X

complete solution is (A sin x + B cos x)/x

2. y=Asin2x + B cos 2x + x cos 2x — sin 2x log (cos 2x)

3. -3x2

7.10 Further Readings

N

Books Pipes, Louis A. & Lawrence R. Harvill, Applied Mathematics for Engineers &
Physicists

King A.C,, Billingham, J. Otto S.R., Differential Equations.
Yosida, K., Lectures on Differential and Integral Equations

Sneddon, L.N., Elements of partial differential equations
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Unit 8: Orthogonality of Solutions
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Objectives

After studying this unit, you should be able to:

o Understand better the solutions of Bessel equations, Legendre equations, Hermite equations
and Laguerre differential equations.

o See that there are solutions which are obtained for some values of the parameters known
as eigenvalues. These solutions are known as eigenfunctions.

° Reduce these equations and many more differential equations of second order to Sturm-
Liouville boundary value problem. Hence the solutions can be shown to be orthogonal,
orthonormal and the set of various solutions of the equations form a complete set.

Introduction

Knowledge of Sturm-Liouville problem and certain methods are prerequisite to the ideas of
orthogonality of the solutions of certain differential equations.
Also the solutions of these equations can be used to expand any function on an interval in terms

of them in a systematic manner.

8.1 Review of Some Basic Definitions

In the last four units we had studied the properties of linear second order differential equations.
By now you must have got enough inside into the solutions of the equations. It is seen that the
form of self-adjoint equations as well as Sturm-Liouville’s boundary value problems led to the
kind of solutions of certain linear second order differential equations the orthogonal set of
functions which are solutions of these equations. The most important of these solutions are the
Fourier sine and cosine series, the Legendre polynomials, the Bessel functions; the Hermite
polynomials and Laguerre’s polynomials. In the last four chapters we had already seen that the
solutions do resemble the eigenfunctions of a self-adjoint operator and also form an orthogonal
set with respect to a weight factor. So it is advisable to introduce the inner product of two
functions. The concept of an orthogonal set of functions arises in a natural way from an analogy
with vectors in a vector space. This is a natural generalization of the concept of an orthogonal set
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of vectors, i.e. a set of mutually perpendicular vectors. In fact, a function can be considered as a
generalized vector so that fundamental properties of the set of functions are suggested by an
analogous properties of the set of vectors.

Some Basic Definitions

Inner Product: The inner product of two functions f(x) and g(x) is a number defined by the
equation

(he) = [f()g(x)dx

a

on the interval a < x < b.

Norm of the function: The norm of the function f(x) is defined as the non-negative number

. 1/2
1 - {firored

Orthogonal functions: The condition that the two functions be orthogonal is written as

b
(he) = [f(x)gx)dx=0.

Orthogonality with respect to a weight (or density) function: The concept of orthogonality can
be extended as follows. Let p(x) > 0. Then the condition that the two functions f(x) and g(x) be
orthogonal with respect to the weight function p(x) is written as

Further the norm of the function is defined as

b 1/2
I, - {jpm f2<x>dx}

Again f(x) is said to be normalized when

b
[P s =1

The orthogonality with respect to weight function p(x) can be reduced to the ordinary type by
using the product /p(x) f(x) and /p(x) g(x) as two functions.

Orthogonal Set of Functions:

If we have a set { fn(x)}, (n=1,2,3,..) of real functions defined on an interval a < x < b, then the
{f.(x)} is said to be an orthogonal set of functions on the interval a < x < b if

b
Iﬁn(x)fn(x)dx = }0 whenm #n
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The set {f, (x)} is said to be orthonormal set if

b

[ fu@ax =5,

a

I
led]

Where the Kronecker delta,

mn

N 0 if m#n
1 if m=n

Orthonormal Set of Functions with Respect to a Weight Function

Let {¢, (x)} (2=1, 2,3, ...) be a set of real functions defined on the interval a<x <band p(x) > 0.
Then the set {,_(x)} is said to be orthonormal set of functions on the interval a < x < b if

b

fP(X)d)m(x)q)n(x)dx _ {0 when m#n
¢ 1 when m=n
b

ie., _[P(X)d)m(x)(])n(x)dx - Smn-

a

Self Assessment

1. Show that the function f,(x) =1, f,(x) = x are orthogonal on the interval (-1, 1) and determine
the constants A and B so that the function f;(x) =1 + Ax + Bx” is orthogonal to both f, (x) and
f,(x) on the interval (-1, 1).

8.2 Review of Sturm-Liouville Problem - Eigenvalues and
Eigenfunctions

Various important orthogonal sets of functions arise in the solution of second-order differential
equation

[R(x)y’] +[Q(x)+AP(x)]ly = 0 (i)
on some interval 0 < x < b satisfying boundary conditions of the form
(a) my+ay =0 at  x=a

...(ii)
0 at x=b

(b) by +byy’

The boundary value problem given by (i), (ii) is called a Sturm-Liouville problem. Here A is a
parameter and a,, 4,, b,, b, are given real constants at least one in each of conditions (ii) being
different from zero. The equation (i) is known as the Sturm-Liouville equation.

You may recall that Bessel’s differential equation, Legendre’s equation, Hermite equation and
other important equations can be written in the form (i).

The solution y = 0 is the trivial solution. The solution y # 0 are called the characteristic functions
or eigenfunctions and A are called A characteristic values or eigenvalues of the problem.
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There are a few theorems about the eigenvalues and eigenfunctions as follows:

Theorem 1: Let the functions P, Q, R in the Sturm-Liouville equation be real and continuous on
the interval a < x < b. Let y_(x) and y (x) be given functions of the Sturm-Liouville problem
corresponding to different eigenvalues A_ and A_ respectively, and let the derivatives y’(x),
¥’ (x) be also continuous on the interval. Then y _and y_are orthogonal on that interval with
respect to the weight function P i.e,,

b
[Py, @y =0 for k22,

a

Theorem 2: The eigenvalues of the Sturm-Liouville problem are all real.

Theorem 3: If R(a) > 0 or R(b) > 0, the Sturm-Liouville problem cannot have two linearly
independent eigen functions corresponding to the same eigenvalue.

' Example: The simpler example of a Sturm-Liouville equation is the Fourier’s equation
Yy’ (x,A)+Ay(x,A) = 0subjectto y(0)=y(l)=0

which has solutions cos (x¥A) and sin (x+/A). Using the boundary conditions, we have for y (0)

=0, only sin (x\/x ) term is present. From the second consideration we have

WA = nm, n=0,1,2,...

So the eigenfunctions are given by

yn(x) A sin (HTT[X), forn=1,2,3,.

The eigenvalues are given by

2.2

o= BT 1=0,1,23,...
" !
Self Assessment
2. Find the eigenvalues ad eigenfunctions of the equation
Y@ +kyE) =0
with the boundary conditions
y(0) = O0and y'(1)=0

8.3 Review of Besse¥s Inequality and Completeness Relation

Let {‘Pn(x), [n=1, 2,3, ..]} be an orthonormal set of functions on an interval (a, b) and let an
arbitrary function on the same interval be a linear combination of these functions, in the form

fo) = iCH‘Pn(X) a<x<b

If the series converges and represents f(x), it is called a generalized Fourier series of f(x). The
coefficient C, v =1, 2, .... given by
b

C, = (f, %)= [ f(x) ¥u(x)dx ()

a
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are called the expansion coefficients of f(x) with respect to the given orthonormal system.

n 2
Obviously f [ f—ZCV‘PVJ dx > 0 ...(id)
v=1

By writing out the square and integrating term by term, we get

0 < _[fz dx—2§CVIf.Wvdx+v§z;Cvz
or 0 < (Nf)*- Zé;CVZ + V};Cvz [Nf means norm of f]
or 0 < (Nf)*- gcvz
or gcf < (Nf? ...(ii)

Since the number on right is Independent of 7, it follows that
Ycr < Ny
v=1

This fundamental inequality is known as Bessel 5 inequality and is true for every orthonormal
system. It proves that the sum of the squares of the expansion coefficients always converges.

For systems of functions with complex values the corresponding relation is

el = (=) (i)

holds, where C, is the expansion coefficient C, = (f, ¥,) -

This relation may be obtained from the inequality

n

dx = (Nf?-Yc)'=0

v=1

[lre-Yew,

The significance of the integral in (ii) is that it occurs in the problem of approximating the given

n
function f{x) by a linear combination 2 AP, with A as constant coefficient and fixed 7, in such

v=1

a way that the mean square error
Y 2
M = I[f—ZXVTV] dx
v=1
is as small as possible.

An approximation of this type is known as an approximation by the method of least squares, or
an approximation in the mean.
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If, for a given orthonormal system ¥, W¥,...,, any piecewise continuous function f, can be Notes
approximated in the mean to any desired degree of accuracy by choosing n large enough, i.e., if
n may be so chosen that the mean square error.

j[ f—écv‘l’v]zdx

is less than a given arbitrary small positive number, then the system of functions ¥, ¥.,..., is said
to be complete.

For a complete or orthonormal system of functions Bessel’s inequality becomes an equality for
every function f

ie. ic& = (Nf?
or Yire? = |ff

The relation is known as the completeness relation or Parseval® equation.
Definitions

Closed Set: The set {¢ } is closed in the sense of mean convergence if for each function f of the
function space

oo

S o0* = |ff

n=1

Complete Set: An orthonormal set {0 _} is complete in the function space if there is no function in
that space, with positive norm which is to orthogonal to each of the functions.

Theorem: If an orthonormal set {¢_ (x)} is closed it is complete.

If an orthonormal set is closed then for each function f of the function space

oo

S0 = A ()

n=1

Now, let us suppose a function ¥(x) in the space which is orthogonal to each function {¢_(x)} of
the closed orthonormal set such that

ol = 0
(0, # 0

Therefore from (i), we have H f H =0, which is a contradiction.

Therefore there is no function in space, with positive norm which is orthogonal to each of the
functions ¢ _(x).

Hence the closed orthonormal set {¢ (x)} is complete also.
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8.4 Orthogonality of Solutions of Some Equations

(a) Orthogonality of Bessel's Functions
We know that | (x") is the solution of Bessel’s equation

x/2 dz]n (x’) +x d]n (X’)

dxlz dx’ +(x’2 _nz) ]Yl(x,) =0

where 7 is a positive integer. Putting x” = Ax, we have

aj, _ 14d],
' A dx
g @], _ 14,
an x> A X
where A is a constant,
2
x2 d sz(?x) +x dI'[li(x}Lx) +()»2x2 —;12)],1 (Ax) =0 (i)
which may be rewritten as
2
d [xid]”(x}h)}+ A2 J.(x) =0
dx dx x
which is Sturm-Liouville equation for each fixed n i.e.
A L1, 1 il
axl P g q 1 ¥y =20
2
with px) = x,q(x)= - and r(x)=x and A, =A%.

Since p(x) = 0 for x = 0, it follows that the solution of (i) on an interval 0 < x < a satisfying the
boundary conditions

J,() = 0 ..(ii)
form an orthogonal set with respect to the weight p(x) = x.

Let o, <o, <o, ..denote the positive zeros of | (x,), therefore (ii) holds for

o
ha = A ork=X = % (m=1,2,..n fixed)

d
and since E] «(%) is continuous also at x = 0, therefore for each fixed n =0, 1, 2, ..., the Bessel’s

o
function [, (A,,x) (m=1,2,..) with A = %, form a orthogonal set on an interval 0 < x <a
with respect to weight function p(x) = x,
a

J.x]n (kmnx)]n (kpnx) =0 ifpzm

0
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Thus we have obtained infinity many orthogonal sets corresponding to each fixed value of n. Notes

If a function is represented by generalized Fourier Bessel series

flx) = icm Ju (M), for n fixed ...(iii)
m=1
1 b
then C, = ————|xf(x) ] (Ayx)dx, m=1,2..
In (}\'Wﬂlx)‘ ’ —!: ( )
Since p(x) = x, }\‘mnz%

a

T()[ =[x 72 ()

0

where

To bind T, (knmx) ’

let us proceed as follows:

Multiplying (i) by 2x J,(Ax), we have
2
2x [} (o) x ];(Ax)]'+(x2x—zzjzx LX) M) = 0

or {[x I;(x)f}, +(A%x —nz)[],,(kx)]’ =0

Integrating over the limits 0 to a4, we have

{xnonT}

0

—I(szz - nz)[],f (Xx)}l dx
Integrating R.H.S. by parts, we have

{[x I (Ax)]z}a = [(2x )2 )] + 2x2jx 12 (hx) dx

0
0

From the following recurrence formulas for ] (u), we have

d -n -n
@[ﬂ I;z(ﬂ):| = —u In+1 (ﬂ)
—n d —n—1 -n
or u ;ﬂ]n(ﬂ)_nﬂ ]n(lu) = —u ]n+l(lu)

Multiplying both sides by u™!

d

M?u]n(u)_n]n(u) = —u ]n+1(tu)
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h— ] () =n J,0)

d(?»x) —Ax ]n+] (}‘x)

or x Jy(hx)=n J,(Ax) = A [ ()
Substituting in (v), we have

—[(kzxz —nz)]ﬁ(kx)]z +2 ijx J2 (Ax)dx

0

[ J,00) =2 ] 0 |

If A=M,,, then J,(Aa)=],(%,,)=0, and

Since ,(0)=0, forn=1,2,..,
then we have

a

}\‘%m ﬁlz I§+1 (}\‘mn ll) = 2 )"rzmljlx Iﬁ (}"mxx)dx
0

2 }\Enn H]n (}\mnx)

H2 {since weight = x}

Thus
2 ﬂz 2
Hln(}"mnx)H = E];H—l (}\'mna)
2
a
= ?]3+1 (O('nm)
where o =X a
2 a
= | Xl x) f(x)dx i
50 T2 Iﬁﬂw,nn){ (V1)
o
and Ao = Z", form=1,2,3...

Thus generalized Fourier Bessel series is given by (iii) with the coefficient C_ given by (vi).
(b) Orthogonality of Legendre Polynomials

The Legendre’s differential equation

Il
o

(1-x%)y” = 2xy’ +n(n+1)y

may be written as

I
(e}

[(A-x?)yT+Ay ..(0)

where A=n (n+1),
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and is therefore a Sturm-Liouville equation with

R(x) = 1-x% P(x)=1 and Q(x)=0
Here no boundary conditions are needed to form a Sturm-Liouville problem on the internal (-
1,1) since R=0whenx =+1.

Further we know that Legendre Polynomials
P,(x),(n=0,1,2,..)

are the solutions of the problem, hence they are the eigenfunctions and since they have continuous
derivatives, therefore it follows that {P_(x)}, n =0, 1, 2, ... are orthogonal on the interval -1,
< x £ 1 with respect to the weight function

1
p=1ie, me (x) P, (x) dx =0 if (msn)
-1

1
2 - 2 _ 1 _
and || :[Pm (x) dx ™ 0,1,2,...

If g,(x), &,(%), -.... are eigenfunctions which are orthogonal on the interval a < x < ¢ with respect to
the weight function p(x), and if a given function f(x) can be represented by a generalised Fourier
series

fx) = DCy8ulx)
n=1
1 b
then, ¢, = T fp(x)f(x)gm(x)dx (m=0,1,2,..)
&n a
5 b
where lsul® = [P0 gh(x)dx

a

(c) Orthogonality of Hermite Polynomials
The Hermite polynomials H (x), given by

a2
nxzd!’leX

H@®) = (e S5

X

2
are orthogonal with respect to the weight function p(x)=e™" on the interval — oo < x < e,

de™
dx‘”

dx

Tmmwmwﬁx vwimm

H%mmwwl

dxn—l
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n ! d" —x?
—(—1) :';Hm(x)we dx

2 4t 2
= —(—1)J.ZmHm_1(x)We dx

. 2 . . .
[since € and all its derivatives
vanish for infinitex and H'=2n H ]

2 n-1 )
= (-1)"! ZmI Hm_l(x)%e"‘ dx  n>m

proceeding similarly again and again

= (—1)”"”2”’141!_'.Ho(x)%e"‘zdx n>m
< dx
n—m r~m loc dni’n —XZ
= (D)2l | e dx [ Hy(x)=1]
2 dn—m—l ) ~
= (_1\m oHm —X
"2 ml_-'[dx”’m‘le }
=0
T 2 _x2 _ T d” _y2 . . .
Now J.HY, (x)e" dx = IH,l(x) o e dx integrating as above 1 times

—oco —oo

= 2" n!ZI e‘x2 dx
0

2"z,

The functions of the orthogonal system are

2

H,(x)e ™ 2

‘Pn(x) = {2”1’1'\/5}

,(n=0,1,2,..)

(d) Orthogonality of Laguerre Polynomials

The Laguerre Polynomials L (x) given by

n

ﬁ(xn e—X)

L(x) = ¢
“(x) ¢ dx
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Orthogonality of Solutions

are orthogonal w.r.t. the weight function p(x) = ¢™ on the interval 0 < x < o Notes

oo

IL,n(x).Ln(x) e dx

0

= L0 e
dx
A I PN
- [mm el )l— [Lme) e e i
T oo d
- ! L () mr (e )

proceeding similarly

(x"e")dxn<m

Il
—_
uxy
=
E
ot—3
—
T3
—
R
=
|

= (—1)’”7(—1)’” ml——(x" e*)dxn<m
0 x

Now,

= (LG ) dx

= (-D)"(-1)"n !Ix”e‘xdx =(n!)?
0

Thus the functions of the orthogonal system are

—x/2
W (x) = ‘?TL'(") (n=0,1,2..)
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Notes Self Assessment

3. Find the eigenvalues and eigenfunctions of the equation
dy
—S+Ay =
Y 0

wheny (0)=0,y (m)=0

Show that the eigenfunctions are orthogonal to each other.

8.5 Summary

° In this unit we have review some of the properties of the solutions of equations like Bessel
equations, Legendre equations, Hermite equations and Laguerre equations which are of
Sturm-Liouville’s form.

° This way we can construct the eigenfunctions for certain eigenvalues of other equations
which resemble Sturm-Liouville problem with certain boundary conditions.

8.6 Keywords

Eigenfunctions are solutions of Sturm-Liouville problem corresponding to certain values of the
parameter called the eigenvalues.

Sturm-Liouville boundary value problem helps us to find eigenvalues and eigenfunctions in a
systematic way and their properties are well understood.

8.7 Review Questions

1.  Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem
” , T
y +hy =0, yO)=y'|5|=0
2. Show that the given set is orthogonal on the given interval and determine the corresponding

orthonormal set

1, cos x, cos 2x, cos 3x, ..., 0<x<m
Answers: Self Assessment
1. A=0,B=-3

2. K= (YH- %)ﬂ', Yu(x)=A, sin[(n+ %)Rx}, n=0,1,2,....
3. A=n?,y,(x)=sin nx,n=1,2,3,...

8.8 Further Readings

N

Books Yosida, K., Lectures in Differential and Integral Equations

King A.C,, Billingham, J. and Otto S.R., Differential Equations
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Unit 9: Classification of Partial Differential Equations

CONTENTS

Objectives

Introduction

9.1 Types of Differential Equations

9.2 Derivation of Partial Differential Equations

9.3  Various Classes of Partial Differential Equations
9.4 Summary

9.5 Keyword

9.6 Review Questions

9.7  Further Readings

Objectives

After studying this unit, you should be able to:
) Know before hand the type of the equation to be solved.

° Know that there are various methods based on the structure of the partial differential
equations.

° See that the partial differential equations of the first order are generally solved by methods
to get either complete solution or general solution.

° See that in the case of second order partial differential equations there are three types of
equations, i.e. hyperbolic type, parabolic type or elliptic type.

° Deal with the methods of dealing with various partial differential equations.

Introduction

The classification of the partial differential equations is quite different than those of ordinary
differential equations.

Some of the most important partial differential equations fall into one of the three categories
i.e., the hyperbolic type, the parabolic type or elliptic type.

9.1 Types of Differential Equations

In dealing with any differential equation involving a number of variables, we first of all classify
the variables into two categories. A variable may be such that it depends upon a number of other
variables. Such a variable is called dependent variable and the other variables on which it is
dependent are termed as independent variables.

In the case of ordinary differential equations we have to deal with one dependent and one
dy ,
I where y is a

dependent variable and x is an independent variable. So the differential equation may be of the
form

independent variable. So the derivative of dependent variable is denoted as
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dy dzy d"y
F|x,y,—~,—5,..., =0 (1
[x Y dx’ dx? dx" @

involving up to nth derivative of y.

In contrast to the above we may sometimes have to deal with a dependent variable and more
than one independent variables. Thus we may have partial derivatives of the dependent variable
u with respect to independent variable x, y, z,.... So we have partial derivatives of u in the

differential equation like du Ju du etc. We may have a higher partial derivatives also present

ox 9y’ 9z

u ’u u
in the differential equations i.e. —, =5
4 ox* " 9xdy "0z
dependent variable # and a number of independent variables x, y, z, ... along with the partial
derivatives of u with respect to x, y, z, .. is known as partial differential equation i.e.

..... Such a differential equations involving one

2
ou du Ju J°u ] -0 Q)

f[x, Y,z ...H,a,@,g,...?,m.

We may have a situation in which the partial differential equation involves only first derivatives
only. Such an equation is known as first order partial differential equation i.e.

Ju Jdu

fi [x,y,z,...u,ax,...%j =0 -(3)

Here the order of the equation is one and it is known as first order partial differential equation.
Let us denote independent variables, as x, y and z as dependent variable. Also let us put

A
P ox @
7= 9y
So the partial differential equation involving x, y, z, g—z, g—z will be of the form
x gy
fo(xy,zp.q9) = 0 (4
' Example: The equation
9%z 9z
o’ oy

is a partial differential equation of second order. The equation

(az)z 202

dox) ody

is a first order partial differential equation and of second degree involving two independent
variables x and y. The equation
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i u_ du du _ . Notes
x oy oz

is a first order partial differential equation involving three variables. So in these units involving
partial differential equations we may have to deal with first order, second order or higher order
partial differential equations.

9.2 Derivation of Partial Differential Equations

' Example 1: Let us form the differential equation from the relation
Ix+my+nz = ¢ (x*+y*+z) (5

Differentiating equation partially with respect to x and y

oz dz
14122 = w2412 42 az
+n8x (X" +y +z )(2x+22dx) ...(6)
and m+ n% = ¢ +y*+ 22)[2y+ZZaZJ (7)
dy dy
Eliminating ¢’
(l+n%)
ox _ x+Zai
0z oz
(m+nayJ y+zay
or (I+np)y - m+n% x+z%(l+n%)—z% m+n% =0
Py ay ay ox ox ay
or (I+np)y—(m+nq)x+z(lg—mp) = 0 .(8)

—]]

Notes When the relation like (6) contains more than one function partial differential
equations of the higher order will be obtained.

' Example 2: Find the partial differential equation from the relation

z - ¢(%) .9

by treating z as dependent variable and x, y as independent variables.

Solution: Differentiating (9) with respect to x, we have

1 x> _ oY
o ¢[ erf} ..(10)
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Again differentiating with respect to y, we obtain

~0 = 01/zmy/2) -(11)

Eliminating ¢’ from (10) and (11) we have

zzp o _ (wp)
(-xq) z-yq
or 2 -zxp - zyq xypq = xypq
or Z-z(px+qy) = 0
or z = px+qy ..(12)

' Example 3: Find the partial differential equation from the relation
-2 = 6(x*-1) ..(13)

Solution: Differentiate (13) partially with respect to x keeping y fixed we have
0z
20—2z—— = 2y :
x=22o- = 2p - (14)
Again differentiate (13) partially with respect to y keeping x fixed.
—2Z@ = -2y’ ...(15)

Eliminating ¢’ from (14) and (15) we have

2(x —zp) 2x
(2z9) T (“2y)

or “Xy+zpy = xzq

or xzy+zpy = xy Ans ...(16)

' Example 4: Find the partial differential equation from the relation
2 = 0(y-22)+0,(2y-2) ~(17)
Solution:

Differentiating (17) partially with respect to x keeping y fixed and z a dependent variable.

) , ,
£ = 01(-2)+05(-1) .(18)

Now differentiate (17) with respect to y,

0z

Em 01 +20, ..(19)

Eliminating ¢, from (18) and (19) we have
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2%+% ’
ox ay = —3¢1 (20)

Now differentiating (20) by x

” 9z 0’z . .
a7+ dxdy = 30,(-2)=6¢, -(21)

And differentiating (20) by y

A

ZaxaerW = -3¢; (1) (22)

Now eliminating ¢; from (21) and (22) we have

9z 0’z 9%z 9%z

ﬁ+8xay+ 8x8y+ W =0

or axz axay ayZ =0 .(23)

—]]

Notes One can see that if there are two unknown functions in the relation between x, y and
z then we obtain second order partial differential equation.

Self Assessment

1.  Set up the partial differential equation by treating z as dependent variable and x, y as
independent variables from the following relation

z= iy +x)+ foy —x)

2. Set up the partial differential equation from the following relation by treating z as
dependent variable and x, y as independent variable

(|)|:e_5" {52 +tan(y — 3x)},(y - 3x):| =0

9.3 Various Classes of Partial Differential Equations

In this section we shall discuss some partial differential equations that occur in problems or
propagation of waves in metals or strings, in electrostatics and gravitation, conduction of heat
and diffusion of things in certain media. The partial differential equations discussed in the last
two sections are generally partial differential equations. There are certain partial differential
equations which are of second order in nature or of higher order. Let us define the partial
derivatives of the dependent variable z of two independent variables x and y as

btz Pz a0,
ox Py o axdy dy’
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up to second order partial differential equations i.e.

9%z 9%z 0%z 0z 0z

ala7+azaxay+a3v+a4£+a5@+z = f(x,y)
or mr+as+at+aprasgrz = f(x,y)
(a) Depending upon the values of a, a, and a, we can have:
1. Hyperbolic type of partial differential equations in which 4a, a; <a3.

Such equations are found in wave motion as well as in vibration of strings etc.

The example is wave motion

3’V _ 19V . . .
FWCR ey here y is replaced by time variable
2. Parabolic type: Partial differential equations in which

2 —
a, —4a; a;=0

Examples of such type of equations are diffusion problems as well as conduction of heat
problems i.e.

2
37‘2/ = aa—‘t/, here y is replaced by time .
3. Elliptic type partial differential equation in which
a2 —4a, a3 <0.

We come across such differential equations in electrostatics or gravitational potential
problems. Such equations are Laplace equations i.e.

PV PV

o oy

The signification of these equations is that if we transform from x, y co-ordinate to another
co-ordinate system by canonical transformation these three properties do not change.

(b) Homogeneous Partial Differential Equations

In these equations the coefficients of differential equations of any order is a constant multiple of
the variables of the same degree i.e.

ox yay n? Y ay’

(c) Linear Partial Differential Equations with Constant Coefficients

In these equations the coefficients of the partial derivatives are constant i.e.

Cir s+ et +eup+csq+cgz= f(x,y)
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where c,, ¢, ... ¢, are constant of x and y. Notes

By means of transformations we can reduce the homogeneous partial differential equations into
those with constant coefficients.

Self Assessment
3. Classify the equation

ox* " oxdy oy’

into one of the categories i.e. elliptical, hyperbolic or parabolic type.

4. Reduce the equation

9’z 9%z 9*z
22240 22220
* ox? ey oxdy Ty 8y2

to equation with constant coefficients.

9.4 Summary

o Like ordinary differential equations partial differential equations play an important part
in understanding certain processes.

o There are various types of partial equations like partial differential equations of first
order. It involves only first partial derivatives of the dependent variable.

o Then there are partial differential equations of second or higher order and involve higher
order than the first one, derivatives of the dependent variables.

o The most important second order partial differential equations can be either elliptic or
parabolic or hyperbolic and play important role in most physical problems.

o In the subsequent units various methods will be given to tackle these types of equations.

9.5 Keyword

The classification of partial differential equations help us to choose appropriate method for
solving these partial differential equations.

9.6 Review Questions

1. Set up partial differential equations by eliminating the constants a and b:
y2{(x—a)2 +y? +22}= b
2. Set up partial differential equation by eliminating b and a from the following equation
z=ax+3a’y+b
3. Reduce the following equation to an equation having constant coefficients of its derivatives
» 0%z 0%z 5 & 0Z 3 4

— +4 + =
s xyaxay 4 oy’ yay
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Pz oz

ox*  ay?

2. p+3g=5z+tan(y —3x)

3. Hyperbola

Pz 9z 9%z 9z Oz

where u =log x, v =log v

9.7 Further Readings

N

Books Piaggio, H.T.H., Differential Equations

Sneddon, L.N., Elements of Partial Differential Equations

Yosida, K., Lectures in Differential and Integral Equations
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Unit 10: Cauchy®s Problem and Characteristics for
First Order Equations

CONTENTS

Objectives

Introduction

10.1 Cauchy’s Problem for First Order Equations
10.2 Cauchy’s Method of Characteristics

10.3 Summary

104 Keywords

10.5 Review Questions

10.6 Further Readings

Objectives

After studying this unit, you should be able to:

° See that in the differential equation p and g may be of any degree also.
° Understand whether the solution exists for certain types of conditions or not.
° Understand that the partial differential equations can be solved by introducing certain

characteristic curves.
Introduction

The method of solution involves the ideas of integral surfaces or curves through which the
solution passes.

Thus one can introduce certain parameters and set up the characteristic equations for x, y, z, p and
g in terms of these parameters. After solving these equations and eliminating the parameters we
can get the solutions.

10.1 Cauchy®s Problem for First Order Equations

We know that z is a dependent variable and x, y being independent variables. So the first order
partial differential equation can be put into the form

0y, 2p,9) =0 (1)
Jz 0z
Herep = o and g = @ are partial derivatives. We are interested in seeking the solution of the

partial differential equation (1). Before we attempt to find a solution we want to understand
whether the solution exists or not. What is meant by the existence theorem which establishes
conditions under which we can assert whether or not a given partial differential equation has
a solution at all. Also further whether the solution if it exists is unique or not. The conditions
to be satisfied in the case of first order partial differential equation are boiled down to the
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classic problem of Cauchy, which in the case of two independent variables may be stated as
follows:

Cauchy®s Problem

Cauchy’s problem is stated as follows:

(@)  x(#), y(t), and z(t) are functions which together with their first derivatives g—z,% are

X dy

continuous in the interval M defined by #, <t <t,

(b) Andif ¢(x, y, z, 0z %) is continuous function of x, y, z, p = % a—z in a certain region

ox’ oy ax’”’:ay

U of the xyz pg space, then it is required to establish the existence of the function z = f(x, v)
with the following properties:

(1)  flx, y) and its partial derivatives with respect to x and y are continuous functions of x
and y in a region R of the xy space.

(2)  For all values of x and y lying in R the point {x, y, f{x, y), f (x, ¥), fy(x, y)} lies in U and

OLx v, fx, ), (), £, (6 )] = 0

(3)  For all ¢ belonging to the interval M, the point {x(f), y,(t)} belongs to the region R
and

Axy(8), v (B} =2,

Geometrically stated, what we wish to prove is that there exists a surface z = f(x, y) which
passes through the curve I" whose parametric equations are

x=x,(t), y=y,(t) and z = z(f) (1)
and at every point of which the direction (p, g, —1) of the normal is such that
olx,y,z,p,9=0 -2)

The Cauchy’s problem stated above can be formulated in seven other ways. For details you are
referred to D. Berstein. To prove the existence of a solution it is necessary to make some more
assumptions about the form of the functions and the curve. There are a whole class of existence
theorems depending on the nature of these assumptions. However we shall be contented our-
selves by quoting one of them as follows.

Theorem: If g(y) and all its derivatives are continuous for |y -y, | <39, if x,is a given number and
z, = 8(,), 9, = §'(y,) and if (x, y, z, q) and all its partial derivatives are continuous in a region S
defined by

le=x [ <8, [y =yl <8 [q-q,]<d
then there exists a unique function ¢(x, y) such that:

(@) ¢ (x, y) and all its partial derivatives are continuous in a region R defined by |x - x,|<3d,,
ly =yl <8,
(b) Forall (x, y)in R, z = ¢ (x, y) is a solution of the equation

0z %
a =f(x’ y’ Z ay )

(c)  For all values of y in the interval |y —y,| <3, ¢ (x, ¥) = gW).
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Cauchy’s Problem and Characteristics for First Order Equations

At this point we want to say a few words about different kinds of solutions. We may get a
relation of the type

F(x,y,2,a,b)=0
for the solution of the first order partial differential equation.

Any such relation containing two arbitrary constants a2 and b and a solution of the partial
differential equation of the first order is said to be a complete solution or a complete integral of
that equation.

On the other hand any relation of the type
F(u,v)=0

involving an arbitrary function F connecting two known functions u and v of x, y and z and
providing a solution of the first order partial differential equation is called a general solution or
a general integral of that equation.

We shall be dealing with the classifications of the integrals of the first order partial differential
equations in the unit 16 in more details.

Self Assessment

1. Eliminate constants a and b from the equation
z=(x+a)(y+Db)
2. Eliminate the arbitrary function f from the equation

=3y +f (24 )

10.2 Cauchy®s Method of Characteristics

We should now consider a method due to Cauchy for solving the non-linear partial differential
equation

dz 0z -0

Flllili
vy 2 ox’ dy

(1)

The method is based on geometrical ideas. Equation (1) can be theoretically solved to obtain an
expression.

7=G Yy zp) )

from which g is calculated in terms of x, y, z and p. Before proceeding further let us consider a
plane passing through a point P(x,, y,, z,) with its normal parallel to the direction 1 defined by
the direction cosines (p,, q,, —1). This plane is uniquely specified by the set of numbers D(x, y,,
Zy Py 4,)- Conversely any such set of five numbers defines a plane in three dimensional space.
We now define

A plane element: A set of five numbers D(x, y, z, p, q) is called a plane element of the space.
An integral element: If the plane element (x, y, z, p, q) satisfies an equation

F(x,y,z,p,q)=0 ..(3)
it is called an integral element of the equation (3) at the point (x,, y,, z,)-

Thus keeping x,, y, and z, fixed and varying p, we obtain a set of plane elements {x, y,, z, p,
G(xy Yy 2z, )} which depend on the single parameter p. As p varies we obtain a set of plane
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elements, all of which pass through the point P and which therefore envelope a Cone with
vertex P; the cone so generated is called elementary Cone of equation (3) at the point P (Figure
15.1). Consider now a surface S whose equation is

z=g(x,y) ..(4)

If the function g(x, y) and its first partial derivatives g (x, y), gy(x, ) are continuous in a certain
region R of the xy plane, then the tangent plane at each point of S determines a plane element of

the type

{xo’ Yo g(xo' yo)' gx(XO' yo)' gy(xo/ yg)} ..(5)
which we shall call the tangent element of the surface S at the point (x,, y,, g(x, ¥,))-

Figure 10.1

Elementary cone

Plane element

We now state the following theorem on geometrical ground.

Theorem 1: A necessary and sufficient condition that a surface be an integral surface of a partial
differential equation is that at each point its tangent element should touch the elementary cone
of the equation.

A curve C with parametric equation
x=x(t), y =y(t), z=z(t) ...(6)
lies on the surface (4) if
2(t) = g(x(), y(b);

for all values of t in the appropriate interval I. If P, is a point on this curve determined by the
parameter ¢, then the direction ratios of the tangent line P, P, (See Figure 15.2) are (x'(t,), y'(t,),

d
Z'(t,)), where x’(t;) denotes the values of 2 Whent= t,, etc. This direction will be perpendicular

dt
to the direction (p,, q,, -1) if

Z,(to) =Po x,o(to) + 9o y,o(to)'

For this reason we say that any set

tx(®), y(8), z(t), p(8), 9(5)} ~(7)
of five real functions satisfying the conditions
Z(f) = p(H) '(5) + q(t) y' () ~(8)
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Cauchy’s Problem and Characteristics for First Order Equations

defines a strip at the point (x, y, z) of the curve C. If such a strip is also an integral element of
equation (3), we say that it is an integral strip of equation (3) i.e., the set of functions (7) is an
integral strip of equation (3) provided they satisfy condition (8) and the condition

Fx(8), y(#), 2(8), p(#), q(1)) = O )

for all tin [.

Figure 10.2

(o 90, 1)

PO P]

C

If at each point, the curve (6) touches a generator of the elementary cone, we say that the
corresponding strip is a characteristic strip. We shall now derive the equations determining a
characteristic strip for the point (x + dx, y + dy, z + dz) that lies in the tangent plane to the
elementary cone at P.

If dz=pdx+qdy ...(10)

where p and g satisfy (3). Differentiating (10) with respect to p we obtain
dq
O=dx+ dy. (11
Y (11

Also from (3)

JF | oF dq
T ) (12
dp  dqdp 12

solving the equations (10), (11) and (12) for the ratios of dx, dy, dz and by putting the values of dq

from (10) into (11), we have

oF
dg _ dx_ op
dp  dy OF
dq
dx d
or ﬁ=%
op
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50 OF ~ OF  OF ~9F  OF OF

P Top Pop Ty Pop Top

Hence ﬁ L = ﬁ (13)

that means that along a characteristic strip, x'(t), y'(t), z’(f) must be proportional to F,F,pF +q
F, respectively. If we choose the parameter f in such a way that

X®)=F, y({)=F, .(14)
then Z{t)=p F +qF,

along a characteristic strip p is a function of ¢ so that

p(t)= P xty+ Pyey

ox ay

_ 9pIF_ dpoF
dx dp dy dq

_ 9pdF g F [sm ap:an
dxdp dxdq dy ox

Differentiating equation (3) with respect to x, we find that
JF  OF
— p + aial_',aiai =0
dx 0z dp 0x  9dq Ox
so that on a characteristic strip
pPH)=-(E+pF) ~(16)
and it can be shown similarly that
q()=~(F, +q F) (17)

Collecting equations (14) to (17), we see that we have the following system of five ordinary
differential equations for the determination of the characteristic strip

Xt)=F,y®)=F,Z(®)=pF,+qFq

p'()=—(F +pF) qt)=—~(F,+qF) -(18)
These equations are known as the characteristic equations of the differential equation (3).
The main theorem about characteristic strip is:

Theorem 2: Along every characteristic strip of the equation F(x, y, z, p, ) = 0, the function F(x,
Y, z, p, q) is a constant.

The proof is a matter simply of calculation. Along a characteristic strip we have

d ’ ’ ’ ’ ’
SLFG(0), 908, 20, p(0, ) = Fx' + By +E.Z +E 4 F g

=R F+EFFE -F(pE +qF)-E(E +pE)-E(F, +qF,)=0
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So that F(x, y, z, p, q) =k, is a constant along the strip.

Theorem 3: If a characteristic strip contains at least one integral element of F(x, y, z, p, q) =0, it is
an integral strip of the equation F(x, y, z, p, q) = 0.

We are now in a position to solve Cauchy’s problem. Suppose we want to find the solution of the
partial differential equation (1) which passes through a curve I' whose freedom equations are

x=0(v), y = 0(v), 2= 1(V) .(19)
then in the solution
x=x(py 9y Xy Yy 2y ty ) etc, ...(20)
and in the characteristic equations (18) we may take
X, = 0(v), 4, = 0(¥), 2, = 4(¥)

as the initial values of x, y, z. The corresponding initial values of 6, ¢, ) are determined by the
relations

X =Py 0(v) +q,0'(V)
FO®), 0(v), x(V), Py d9) =0

We substitute these values of x, y,, z,, p,, 4, and the appropriate value of ¢ in equation (20), and
find that x, y, z can be expressed in terms of two parameters ¢, v to give

x=Xv, 1), y=YW, t),z=2Z(v, 1) ..(21)
Eliminating v, t from these equations, we get a relation
W(x,y,2)=0

which is the equation of the integral surface of equation (1) through the curve I'. We shall
illustrate this procedure by an example.

' Example: Find the solution of the equation

F= 2@ -@)+ -9 -y -2 )

that passes through the x-axis.
It is readily shown that the initial values are
X, =V, y0=0, ZO=0, p0=0, q0=2v, t0=0, (2)
The characteristic equations of this partial differential equations are
X () = E, /40) F, Z({t)=p F,+qF,
p)=—F -pF, qd(®)=-F - qF, -(3)

_9F _ _9F _
Fp-g =p+tq-y F,= o ~arpox

oF oF

Fx=£=_q+y’ Fy=@=_p+x’Fz=_1 (4)

Substituting these values of partial derivatives of F in equations (3) we have
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Notes YO =ptq-yyO=p-q-x2O=plp+q-y)+q(p-q9-x)

r=q-y+p q)=p-x+g .(5)

Now x'(t) =p’(t), which gives x =p + o, so that t = 0
x=v,p=0,s0x=v+p ...(6)
similarly y=q-2v -(7)

Also, it is readily shown that

d
G Pra-0=q-y*tprp-xtq-p-qty
=prq-x

d(p+q-x) _
prq-x

On integrating we get

log(p +q-x)=t+logc,

or prg-x=ce (8)
At t=0,p=0,q=0,x=vwegetcl=+v

therefore ptg-x=+ve (9
Similarly

%(P‘”J‘y) Sprg-ytprgo-p-x-p-qrtx=ptq-y
d
or —(p+q-y) =p+q-y ~(10)
On integrating (10) we get
p+q-y=2ve (11)
the constant of integration being 2v.
From (6) and (9) we have
g=ve'—-p+x
or g=ve+tv=v(+1) (12
From (7) we have
y=g-2v=yv('-1) ..(13)
From (11) we have
p=2ve-qty
=2vel-v(e+1)+v(-1)

or p=2v(-1) .(14)
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Finally from (6)
x=p+v=2v(-1)+v

or x=v (2¢'-1)

Substituting these values of x, y, p, q in the equation for z’(f), we have

d
d—f =2 (e -1) @ve) +v (@ + 1) (ve)
dz
B2 _e2 0t a2t

or it 5vie” —3vie

on Integration of (16) we have

2
z=5%(62t—1)—3v2(et—1)

From (13) and (15)
x-2y=v (2e'-1)-2v (¢ - 1)
or x=2y=v,
and y-x=vE-1)-v (2 -1)
y-x=-ve

so using (18) we have by eliminating v, we get

el = y—x
2y—x

Substituting these values of ' and v into equation (17) we have

5 2

_ 2 y—x 2 y-x

z=2(x—2yP| | L= | -1 ]-3(x—2y)| L1
5 (x=2y) ([zy_xj J (x-2y) [Zy_x J
5 2 5 2 2

= 5 (y=2)" — - (x=2y)" +3(y ~0)(x - 2y)+3(x - 2y)
5 2 1 2 2

= Sy=2)" +(x=2y) =3(y—2)" -3y (y-x)

= —%(yz—2yx+x2)+%(x2—4xy+4y2)—3y2+3xy

= —%y2+2xy=%y(4x—3y)

or z= %(4x—3y)

is the solution of the equation (1).
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Notes Self Assessment

3. Find the characteristics of the equation

pa=z

and determine the integral surface which passes through the parabola x =0, 1> = z.

10.3 Summary

° Cauchy’s problem is the question to be asked, if the given differential equation solution
exists.

° The conditions are given in which the solution does exist.

° Cauchy’s characteristics equations are set up which help in the solution of the partial

differential equations.

10.4 Keywords

Depending upon the values of the parameters the solution of a particular partial differential
equation represents various integral surfaces as well as certain curves.

The characteristic method of Cauchy helps in finding a particular solution passing through
certain curves or surfaces.

10.5 Review Questions

1. Eliminate b and c from the equation
z=b(x+y)+bxy+c
2. Eliminate the function ¢ from the equation

0 -y*x*-2)=0
Answers: Self Assessment

1. pqg=z
2. yp-xg+x*-y*=0
3. x=2v(e-1),y=1/2v (' +1), z=v>¢* 16z = (4y +x)°

10.6 Further Readings
Books Piaggio H.T.H., Differential Equations

Sneddon L.N., Elements of Partial Differential Equations
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Unit 11: Classifications of Integrals of the First Order
Partial Differential Equations

CONTENTS

Objectives

Introduction

11.1 Geometrical Theorems

11.2 Classes of Integrals of a Partial Differential Equation
11.3 General Integrals

114 Singular Integrals

11.5 Summary

11.6 Keyword

11.7 Review Questions

11.8 Further Readings

Objectives

After studying this unit, you should be able to:
o Know various methods of finding the solution of the first order partial differential equation.

o See that the solution may consists of two arbitrary constants and this type of solution is
called complete integral of the solution.

o Come to know that there are solutions which can be written in terms of an arbitrary
function. Such a solution is called a general integral. There is a typical solution also that is
called a singular solution.

Introduction

The types of integrals can be complete integrals that depend upon two arbitrary constants.

There is a general integral of the solution of partial differential equation that is expressed in
terms of one arbitrary constant or function.

Then there is a singular integral which is an other solution of the partial differential equation.

11.1 Geometrical Theorems

In this unit we shall be concerned mainly with equations of geometrical interest and seek the
solutions of various partial differential equations as integrals of various forms, general integrals,
complete integrals, particular integrals and singular integrals and their geometrical
interpretation.

For this purpose it is advisable to revise the following two geometrical theorems.

Theorem 1: The direction-cosines of the normal to the surface f(x, y, z) = 0 at the point (x, y, z) are
in the ratio
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o .of
dx dy 0z

F 0z _

of
Al -
50 dz ox

0x

o
dy

of 0z _
az_ay_q

and

The symbols p, g are to be understood as here defined.
Theorem 2: The envelope of the system of surfaces
flx,y,2,a,b)=0,
where g, b are variable parameters, is found by eliminating a2 and b by using the given relation

of o of
I —0,% <o,
d da b

' Example 1: Let us consider the equation
xZ + yz + (Z — C)Z = az .(1)

which contains two constants a and c. This equation represents the set of all spheres whose
centers lie along the z-axis. If we differentiate the equation (1) with respect to x, we obtain the
relation

Jz
2x+2(z—-c)=— =
x+2(z c)ax 0 (2
And if we differentiate the equation (1) with respect to y. We obtain the relation
0z
2y+2(Z—C)@ =0 (3)

Eliminating (c) from equations (2) and (3) we have

Jz 0z
2Xx—=-2y— =
xay Yox =0
or xqg—yp = 0 ..(4)

d
where p =£ and g= g—z The equation (4) is a first order partial differential equation and is
Y

linear.

We can show that there are other geometrical entities other than the set of all spheres with
centers along the z-axis which can be described by the equation (4).

Let us consider the equation
¥ +y? = (z—co)ftan*a (5

in which the constants c and o are arbitrary. Differentiating (5) with respect to x and y, we get the
relations

pz—otan*a = x,q(z—otan*fa =y (6)
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Eliminating the constant ¢ and o we get the equation (4).

We see that the common things among these two surfaces of revolution (1) and (5) is that they
have the line OZ as the axis of symmetry. So if we simply take the equation

z = fiX*+yP) (7)
where the function fis arbitrary and again differentiate (7) with respect to x and y separately we
get

0z 0z
= 2 /,7 — 2 ’
e P=2 oy yf -8

of

where f’'=-= and u = x? + 2. So after eliminating f from (8)
ou U 8

we get py—gx =0 ..(4)

Thus we see that the function z defined by each of the equations (1), (5) and (7), is in some sense
a solution of the equation.

We now interpret the argument slightly. The relation (1) and (5) are both of the type
F(x,y,z,a,b) = 0 ..(9)

where a and b denote arbitrary constants. If we differentiate this equation with respect to x and
y respectively. We obtain the relations

OF, OF o OF OF
o oz dy Toz ~(10)

The set of equations (9) and (10) constitute three equations involving two arbitrary constants
a and b. It will be possible to eliminate 2 and b from these equations to obtain a relation of the
kind

fy,zpq) =0 .(11)

showing that the system of surfaces gives rise to a partial differential equation (11) of the first
order.

The obvious generalization of the equation (7) is a relation between x, y, z of the type
F(u,v) = 0 ..(12)

where u and v are functions of x, y and z and F is an arbitrary function of u and v. If we
differentiate (12) with respect to x and y respectively, we obtain the relations

aF(au+37u )+8F(av+ alj 0
ou\ dx az 0x az

JOF(du odu| oF(dv dv
—tg— |+—| —+g—|=
du dy "0z ) dv\dy "oz

oF OF
and if we eliminate % and To from these equations, we obtain the equation

JoF (Bl+au )al+ Jdv (av+ av) 8u+ Ju 0
ox P dy 7oz Pz qay
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o1 1 dx dz OJx dz

p + =
0z dy 0z dy dx dy dx dy
o(u,v) + d(u,v) _ d(u,v)

ANy,z) " o(zx) Ax,y) ..(13)

which is partial differential equation of the type (11). It should be noted that equation (13) is a
linear partial differential equation i.e. the powers of p and q are both unity. Whereas the partial
differentiation equation (11) need not be linear. To see that consider the equation

(x—ay+@y-b>+z> = 1 ..(14)
Differentiating (14) with respect to x and y separately, we have
2(x—a)+2zp=0, 2(y—b)+2zq3=0
Substituting the values of (x — a) and (y — b) in equation (14) we have
P+ +22=1 or PP+ +1) =1 ..(15)

So powers of p and g are not one.

' Example 2: Eliminate the constants a and b from
2z = (ax+y)*+b (1)

Solution: Differentiate with respect to x we have

0z
%2 _ =
o 2p =2a(ax+y)

Differentiating (1) with respect to y we have

28—2 = 2g=2(ax+y)
Iy
or p = a(ax+y) (2
q = (ax+y) ~(3)
px+qy = ax(ax+y)+y(ax+y)
= (@)=
or pxtaqy = q°
is the answer.
' Example 3: Eliminate the arbitrary function f from the equation
Xy
= — ..(4
2= (%) @
Differentiating with respect to x and y respectively we have
0z _ _ Sy xy
Eop -y (2_7”,) ..(15)
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_dz [x xy
and q= dy = f (; ?4) ...(16)
. P yz—xyp
q Xz = xyq
or pxz—Xxypq = Yyzq — Xypq
or zpx—qy) = 0
is the answer.
Self Assessment
1. Eliminate the constants a and b from the equation
ax®> +by* +z22=1
2. Eliminate the arbitrary function from the equation

Fx®+y*+2%, 22— 2xy) =0

11.2 Classes of Integrals of a Partial Differential Equation

Let us consider the partial differential equation of the form

Fx,y,z,p,q) = 0 (1)

in which the function F is not necessarily linear in p and g. We saw earlier that the solution
involving two parameter system of equation can be of the form

flx,y,z,a,b) = 0 -(2)

Any envelope of the system (2) must also be a solution of the differential equation (1). In this
way we are led to three classes of integrals of a partial differential equation of type (1):

(@) Two parameter systems of surfaces f(x, y, z, a, b) = 0.
Such an integral is called complete integral.
(b)  If we take any one parameter subsystem

ftx,y, 2,8, 0(2) =0

of the system (2) and form its envelope, we obtain a solution of equation (1). When the
function ¢(a) which defines the subsystem is arbitrary, the solution obtained is called
general integral of (1) corresponding to the complete integral (2).

When a definite function ¢(a) is used we obtain a particular case of the general integral.

(c)  If the envelope of the two parameter system (2) exists, it is also a solution of the equation
(1), it is called the singular integral of the equation.

' Example 1: Show that

z = ax +by +a*+b? (1)
is the complete integral of partial differential equation

z = pxtqytpitg - 2)
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Differentiate (1) with respect to x we have
p = a ..(3)
Also differentiate (1) with respect to y we have

0z

& 1" b (4

Substituting the values of a and b from (3) and (4) into the equation (1) we have
z = pxtqytpitg e

so equation (1) having two arbitrary constants a and b is the complete integral of partial
differential equation (2).

Differentiating (1) with respect to a and b respectively,

we get
0=x+2a
Substituting the values of 2 and b in (1) we have
7z - X V. 2y
2 2 4 4
47 = —(x*+ 1% (6)

To see whether equation (6) satisfies (2) we have

4p=-2x
4q=-2y

Substituting in R.H.S. of (2) we have

So equation (6) satisfies equation (2).

Equation (6) represents a paraboloid of revolution, the envelops of all the planes represented by
the complete integral. Equation (6) represents singular integral.

' Example 2: Show that

Z = bet oy (1)

is the complete integral of partial differential equation

Differentiating (1) w.r.t. x, y respectively

gé =p baeaxﬂzzy (3)
0z
PRk baZe™ Y (4
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pz - b2a2€2ux+2a2y
gz = b2a282ax+2a2y
Thus p* = gz -(2)

So (1) is the complete integral of partial differential equation (2) since it has two arbitrary
constants.

Differentiating (2) w.r.t. p and g, we get
2p =0 ..(5)
and z =0 ...(6)

It satisfies equation (2). So it is a singular integral. Also if we put b =0 in (1) we get
z =0

So z = 0 is both a singular as well as a particular solution.
Self Assessment

3. ShowthatF=ax+by+a*+ab+b*—2z=0
is the complete integral of the partial differential equation
Z=px+qy+p’+pg+q
and find the singular integral

4. Show that
F=ax+by+ %a2b2—Z =0
is the complete integral of the partial differential equation
Z=prtay+ 50
Find the singular integral of this partial differential equation.

11.3 General Integrals

Consider the partial differential equation of the first order

Fix,y,z,p,q9 = 0 (1)
If on integration we get a solution of the form
flu,v) =0 (2)

where u and v are functions of x, y, z we call it a general integral. This will be illustrated by
means of the following example.
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' Example: Find the partial differential equation for the general integral

fir*+yrz) = 0 (3)
Let u = x*+y*=constant
v = z=constant

Now differentiating (3) with respect to x

of _ O du, o &0

We have ox  ouox 0v ox
of of ( dz )
= =—.(20)+=—|—
u @)+ v\ ox

of o of 0z

—_ = 2 e —_= O = —
or Ew x E +p . (where p o ) ..(4)
Again differentiating (3) with respect to y, we have

of _ of du of _,

dy du'dy Jv dy

of o  of 0z

L/ VA Ay L =9z
or 3y yau qav (where g oy ) ..(5)

o . . o of
To solve (4) and (5) we get a condition on the coefficients of the partial derivatives 3 90" 28
2xqg—2yp = 0
or xq—yp = 0 ...(6)
which is the required partial differential equation.
Now from (3) we can write the
z = o(x*+12+p) (7

We now show that (7) is also the solution of (3). To show this let us eliminate o and f from (7).
Now

e,
oy - PT2ox
0z
oy T 972y
p_x
q y

or xq—yp = 0

The solution (7) of (6) has two unknown constants and so (7) is the complete solution of the
equation (6).

Equation (7) denotes the surfaces all of whose normals intersect the axis of z.
To find singular solution let us put 8 = o*in equation (7) and put

Z = a(x®+yH) +o? (8)
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To find o differentiate (8) with respect to «, i.e. Notes

0 = (F+1)+2a

2,2
or o = ) .9)
2
Eliminating o from (8) we have
47 = —(x*+y?? ...(10)
Self Assessment
5. Eliminate the arbitrary function ¢ from the equation

(1)(%,(3(2 +y? +22)/z)=0

11.4 Singular Integrals

The complete integral of a partial differential equation represents a family of surfaces. If these
surfaces have an envelope, its equation is called a singular integral. To see that this is really an
integral we have merely to notice that at any point of the envelope there is a surface of the
family touching it. Therefore the normals to the envelope and this surface coincide, so the values
of p and g at any point of the envelope are the same as that of some surface of the family and
therefore it satisfies the same equation.

The working rule for finding out the singular integral is to start with the complete integral of

the form
f(x, v,z p,q,4,b)=0 (1)
Differentiate (1) with respect to a and b i.e.
of
Fy 0 (2
of
7 0 (3)

and eliminate g, b, from (1), (2) and (3) to get the envelope.
or by eliminating p and g from the differential equation.

Fix,y,z,p,q9 = 0 ..(4)

And two derived equations

oF
— =0 (o)
> ©)
oF
— =0 (6
o ©

One should test whether the singular integral obtained really satisfies the differential equation.

' Example: Verify that

Z = ax+by+a—-b—ab (7)
LOVELY PROFESSIONAL UNIVERSITY
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is a complete integral of the partial differential equation
Z = pxtqytp-q-pq ~(8)
Also find the singular integral.
Solution: Differentiate (7) with respect to a and b respectively, i.e.,
0 =x+1-b .9
0 =y-1-a ...(10)
So a=y—-1,b=x+1
Substituting values of 2 and b in (7) we have
z = xy-DHye+rD+y-1-x-1-@-Dx+1)
Simplifying, we have
z = xy—x+y—1

as singular integral. Differentiating (7) with respect to x and y separately we have

3—5 =p= a'% =q=">, substituting in (7)
we have

z = pxtaqytp-q-pq

which is just equation (8). So (7) is the complete integral of (8).
Self Assessment

6.  Find the singular integral for the differential equation

Z=px+qy+p/q

11.5 Summary

o The partial differential equation of the first order can be a function of x, y, z and the partial
derivatives of z i.e., 9z =pand 9z =q.
ox ay
° The differential equation can have a solution depending upon two unknown constants.
Such a solution is called complete integral.
° If we substitute some fixed values for the constants we get particular integral.
o On the other hand if we get the solution of the equation in the form
O(u,v)=0

where u, v are known functions of x, y, z then we get a general solution.

11.6 Keyword

By varying the two arbitrary constants we can get various integrals or solutions of the partial
differential equations. It is advisable to visualize geometrically the integral surfaces or integral
curves.
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11.7 Review Questions

1.

Eliminate the arbitrary constants a, b from the equation
zx =ax + by —a’b

Show that

z* = ax* + by* — 3a% + b*

is the complete integral of the equation

3,2 — 22,2

(z —px —qy)X’y* = g’z = 3p*2y

Find the singular integral.

Answers: Self Assessment

1. z(px—qy)-z2+1=0

2. z(g-p)+y-x=0

5. (y*+ 2% - x%)p-2xyq +2xz=0

6. zx=-Y

11.8 Further Readings

N

Books Piaggio, H.T.H., Differential Equations

Sneddon, L.N., Elements of Partial Differential Equations

Yosida, K., Lectures in Differential and Integral Equations
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Unit 12: Lagrange?s Methods for Solving Partial

Differential Equations

CONTENTS

Objectives

Introduction

12.1 Linear Partial Differential Equations of the First Order
12.2 Lagrange’s Method of Solutions

12.3 Illustrative Examples

124 Some Special Types of Equations

12.5 Summary

12.6 Keywords

12.7 Review Questions

12.8 Further Readings

Objectives

After studying this unit, you should be able to:

° Understand that Lagrange’s method involves one dependent variable and two or more
independent variables in the differential equation.

° See that in the method the technique involved is similar to that which occurs in total
differential equation.

° Know how to study some special methods of solving non-linear partial differential
equations.
Introduction

Lagrange’s method is quite suitable to linear differential equations involving more than two
independent variables.

Four different methods are also listed to deal with special types of differential equations.

12.1 Linear Partial Differential Equations of the First Order

0
Letp=£ and q=g—z.
Y

Then the linear partial differential equations involving z as dependent and x, y as independent
variables are of the form

Pp+Qq = R (1)

where P, Q and R are given functions of x, ¥ and z and they do not involve p and 4. The first
systematic theory of equations of this type was given by Lagrange. Equation (1) is frequently
referred to as Lagrange’s equation.
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=] Notes

Note: If generalised to n independent variables, obviously the equation is
Pp,+Pp,+Pp,+..+Pp = R - (2

where P,P,..P, Rare functions of n independent variables Xy Xy X, and a dependent variable

ﬁpi=%,(i=1,2,...n).

1

It should be noted that the term ‘linear” in the section means that p and g (or, in general case p,,
... p,) appear to the first degree only, but P, Q and R may be any functions of x, y and z.

12.2 Lagrange®s Method of Solutions

The Lagrange’s equation is

Pp+Qq = R - (1)
where P, Q, R are functions of x, y, z. Suppose
u=flx,y,z) = a (2

is a relation that satisfies (1). Differentiating (2) with respect to x, y,

u au%

—t—= =
dx 0z dx 0
du , gud
And ay ozoy = O
du
or ozl T
d 87u+87u =0
an y ozl T
du du
Hence p = —%andqz—g—z
dz z
Substituting these values of p and g in (1) changes it to
ou _du _ou
P REE
p Qay 5 = 0 e

Therefore, if u = a be an integral of (1), u = a also satisfies (2). Conversely if u = a be an integral

ou
oz
the values above. Therefore equation (2) can be taken as equivalent to equation (1).

of (2), it is also an integral of (1). This can be seen by dividing by and substituting p and g for

We have shown in unit (8) that u =2 and v = b are independent solution of the system of equations

dx d dz
R

?:5: .. (3)
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then ¢(u, v) = 0 is a general integral.
Hence we have the following rule:

To obtain an integral of the linear equation of the form (1), find two independent integrals of
equation (3). Let they be denoted by u = 2 and v = b, then ¢(u, v) = 0, where ¢ is an arbitrary
function, is an integral of the partial differential equation. Equations (3) are called subsidiary
equations.

The solution may also be written in the form

u = fv) (4
where f denotes an arbitrary function of v.
This is known as Lagrange’s solution of the linear equation.

The method given above can be extended to the general equation of the form

—+P—+..... +P = R .. (5)

where P, P, ... P, R are functions of (x,, x,, ... x_, z). To solve equation (5) we write the subsidiary
equations

dx; _dx, _ ax,
P1 P2 """ = P (6)

and find n independent integrals of this system of these subsidiary equations, in the form

Uy = C Uy = Cp Uy = Cy o U = € - (7)

then the integral of the given equation (5) is

O (uyuy.ou) = 0 - (8

12.3 Illustrative Examples

' Example 1: Solve

(mz-ny)p+ (nx-1Iz)q = ly—mx @

Solution:

Here P=mz-ny
Q=nx-lIz
R=1ly-mx

The subsidiary equations are

dx  dy  dz
mz-ny nx-lz ly-mx -2
tdx  mdy  ndz
or lmz-ny) m(nx—1_Lz) n(ly—mx)
ldx + mdy +ndz _ ldx +mdy +ndz
or tmz — (ny + mnx —mlz +nly —nmx N @)
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|
o

So lZdx+mdy+ndz =
On integrating (3) we have

/x+my+nz=a = u (say)

Again from (2)

xdx ydy zdz

x(mz-ny) y(nx-—_(z) z(ly-mx)

xdx +ydy + zdz _ xdx+ydy +zdz
or mxz —nxy +nxy — yz+lzy —mxz @)
So xdx +ydy+zdz = 0
or ¥+y*+z2=b = v (say)

Hence the integral of (1) is

o@v) =0
' Example 2: Solve
1
URA
xT oyt oz

Solution:

The subsidiary equations are

dy dz

dx
=) () (=9

or x%dx = y*dy = zxdz

From the first two equations we have on integration

3

¥ = y+a

or -y

= g (say u)
From the first and third equations
Kdx = xzdz
or xdx = zdz
On integrating it
x> = Z2+b
or x
So the solution of the above equation is
o(u,v) =0
01,2 = 0

-2z> = b=v(sayb=vV)
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' Example 3: Solve: (22 - 2yz — y?) p + (xy + zx) g = xy — zx.

Solution:

The auxiliary equations are

dx dy dz

22 -2yz—y* B Xy+zx xy-—zx

xdx _oydy  zdz
xz” =2xyz—xy®  xy’+xyz  xyz—z'x

or
xdx+ydy+zdz=0.
Ky + 2=

Also from second and third terms,

dy  dz

y+z y-z
or ydy-zdy-ydz—zdz=0
or ydy—-zdz—(zdy+ydz)=0
or V/2-2/2-yz=c,

The general solution is

O (> +y2+ 252 — 22— 2yz) = 0.

' Example 4: Solve: (> + 2 — x%) p — 2xyq + 2zx = 0.
Solution:

The auxiliary equations are

dx _dy  dz
yr+zi-x 2xy 2zx

From second and third terms,

dl:ﬁ, 1e.,z=cj
y oz
2x dx _2ydy 2zdz

Also 5T 2227 —axy’  —dxz®
2xdx+2ydy+2zdz  dz
2x(x?+y*+z%) 2zx

2xdx+2ydy+2zdz dz

Xy’ +7 z
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log (x* +y* + z%) = log z + log c,
(P +y +22) =cpz

The solution is

<

Pyt =z¢( J

z
' Example 5: Solve: (y +z)p + (z +x) g = (x +y).
Solution:

The auxiliary equations are

dx dy  dz

y+z z+x x+y

dx+dy+dz dx—-dy dy-dz
A0x+y+z) —(x-y) —(y-2)

1
or Elog(x+y+z)=—logcl(x—y)

and log (x —y) =logc, (y - 2)

Hence the solution is

(- g +y +2) = f[x‘yj.
y—Z

' Example 6: Solve: (y*x — 2x%) p + y* — ¥*y)g = 9z(x° - 1°).
Solution:

The auxiliary equations are

dx dy dz
vx-2x" 2yt -2y 9z(x3 - y3)'

ﬂ_2y4_x3y

dx y3x—2x4'
Put —Vxﬂ—\wxd—v [ x@—204_v
uty "dx dx’ dx -2

dv_2v4—v—v4+20

N 3
dx v’ =2
v?P-2 dx

or 1 =
v +v X
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or
or
or

or

or

Also

or

Solution:

or

Also

or

) dx

—————d
o(v+1)(0* —v+1) T

J‘ 2 1 2v-1
——t+——+——— |dv=logcx
v v+l v -v+1

2 —
log OTD@ =0+ _yo0
v

(y+x)(y2—xy+x2) B

5 =cx
2.2
iyszk
x’+y
dx/x _ dy/y _ dz

y3 -5 2y3—x3 9z(x3 —yS)'

dx/x+dy/y _ dz

1 -3z
3logx+3logy=-logcz
¥y =1/cz.

1 X
e

Example 7: Solve: ~L—E + =

(xy —22) p + (yz - yx) g = 2x = zy.

dx  dy  dz
y-zx yz—yx zx—zy

dx+dy+dz=0
xtytz=c,.
yzdx +zxdy +xydz=0.

dx dy  dz
—+—L+—==
x Yy oz

0.

log x + log y + log z = log c,.

xyz = c,.
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The general solution is Notes

w+y+2)=f(xyz)

' Example 8: Solve: p cos (x +y) + g sin (x + y) = z.
Solution:

The auxiliary equations are

dx dy dz
cos(x+y) sin(x+y) =z

From first two terms,

dy _sin(x+y)
dx cos(x+y) -

Putx+y=t,
dy dt
dx dx’
dt
1=
ix tant
a
or 1+tant
cost
or —————dt=dx
sint+cost
1 +sint)+ —si
or 7[(cost 51.nt) (cost smt‘)]dt= i
2 sint +cost
cost+smt cost— smt
or '[ 7.[ =x+c
Cost+smt smt+cost
1 .
or t/2+510g (sint+cost)=x+c,
or (x +y) +log [sin (x + y) + cos (x + y)] = 2x + log k,.

[sin (x + y) + cos (x + y)] =ae* ¥

. dx +dy _dz
Again sin(x+y)+cos(x+y) z
dt _dz
or sint+cost z’
or L — @
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or —logtan(——£)=x/§10gczz.
8 2
N (311 x+y)
2V tan| ——-——=|=b.
8 2

Hence the general solution is

[sin(x+y)+cos(x+y)le"™ =0 [zﬁ tan (?ﬂ _ M)]

8 2
' Example 9: Solve:

(t+y+z)%+(t+z+x)§—;+(t+x+y)%=x+y+z.
Solution:

The auxiliary equations are

dx  dy  dz  dt
t+y+z t+z+x ft+x+y x+y+z

dxtdy+dz+dt _ dx—dt _(dt-dt) _ dz-dt
o1 3(x+y+z+t) —(x—t) —(y—-t) —(z-t)

log(x+y+z+1)/>=-logc, (x—1)

log(x+y+z+1)/>=-logc, (y—t)
and log(x+y+z+1)>=-logc, (z-1)
Hence the solution is

Olxty+z+t]Px—t), (xty+z+ )P (y—1), (x+y+z+H P E-1)]=0

' Example 10: Solve:

x%+ %+t%—a2+ﬂ
x Tay ot b

Solution:

The auxiliary equations are

From (1) and (2),
log c,x =logy, ie,y=cpx

From (1) and (3), t = c,x
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Now from (1) and (4),

dx dz _ dz
- xX.cix c
Yoogz+ T g4y
CyX )
‘1
az+-tx
[ dz dz az ¢
or =— or —=—+—"+
x dx dx x ¢

which is linear in z.

IE.= EXP(—J‘gdx) = exp.(—alogx) = l

x[l
The solution is

1-a
1_ca(dx_o x

ZX— = IoN
X' o dx" o (1-a)
1-a
z . C
or 7:z +ey since L=
x* t(1-a) ¢,

Thus the solution is

Self Assessment

1. Solve
XW-2p+ W) E-x)g=2(x-y)
2. xptryq=22
3. ptq=z/a
4.  zp-zg=7"+ (x +y)?

5 xa—u+ a—u+za—u—x Z
' ox yay z
6. tanxp+tanyg=tanz

12.4 Some Special Types of Equations

We have so far studied the method of solving the equations of the type
Pp+Qg=R

Now, before we take up the general method of Charpit to solve the partial differential equations
of the first order but of any degree, we will deal with some special types of equations which can
be solved by methods other than the general method. We give here four simple standard forms

for which “complete Integral” can be obtained.
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Standard I

In this form of the equation only p and g are present. The partial differential equation will be of

the form
fe,q) =0
in which x, y, z do not appear. The complete integral is
z = ax+by+c
where a and b are connected by the relation

f@b) =0

Since p = g—z =g and g= g—; =b, which on substitution becomes the given equation (1).
x

To find the general solution, let from (3) put b = ¢ (1) and replacing c by ¥ (1), we have

z = ax+ ¢ (@y+¥(a)
Differentiating (4) with respect to a,
0 = x+y¢ (@+¥(@

The general solution is obtained by eliminating a between (4) and (5).

(1)

Suppose from (2), b = ¢ (a) and replacing ¢ by ¥ (a) the general solution is obtained by eliminating

‘a’ between the following equations:

z = ax+¢(a)y+¥ ().
Differentiating (3) with respect to a,
0 = x4y’ (@) +¥ (@

Now to find the singular integral, differentiate

z =ax+o(@)y+c
with respect to g and ¢,

0 = x+y’(a)
and 0 =1

Now the last equation shows that there is no singular integral.

Illustrative Examples

' Example 1: Solve: q = exp. (— p/4a).

Solution:

The complete integral is
z=ox+By+y

where f=exp. (- a/a)

i.e., the complete integral is

z=ox+{exp. (—o/aly+y
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The general integral is obtained by eliminating o between

z=ox + {exp. (-a/a)} y + f (o)

and  0=x-{exp. (- 0/a)} % + )

Example 2: Find the complete integral of
p?+yigt =2

Solution:

Now putz=e% x=¢e5y=¢"

0z _dz 90X | Oz BY_lﬂ

P=ox Tox 0x oY ox  x 0X

0z
p=os

d 0Z _9Z 9z _1 9z
anANOW 5% " 92 90Xz 90X

xXp=2Z55.

0X

Similarly,
0Z
yq=z 9y

The equation becomes

) azjz Z(az)z_ )
Z(aX +2z FY% =z

(&) (5] -

o ox) \ay)

The complete integral is
Z=aX+DbY +c

where a?+b=1

ie., logz=alogx— \/(1-a*)logy+c.

' Example 3: p™ sec™ x + z' g cosec™ y = z™/(m=n),
Solution:
Put cos’ dx = dX, sin’ y dy = dY and z7V/™ ™" dz = dZ.

Write the given equation as

Z /) g ”’+ L1/ (m=m) 5, ”_1
cos®x dx sinx dy

Notes
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Notes which on substitution becomes

(al)nl+(a£)li_l
0X ox)

The complete integral is

Z=aX+bY +c
where
=1
and 7 = m-n 'Z(m—n—l)/(m—n)
m—-n—a

X= 1(x+1sin2x).
27 2
Y= %(y—%sin2y).

' Example 4: Solve: (y — x) (qy — px) = (p — q)*>
Solution:

Putx+y=X,xy=Y

0z 0z dX  dz 9Y

P Tox o T oY Tox

_£1+% .
Tox Ty

0z 0z 0X  dz JY

=9 "X oy oy oy

—£1+%x
ToxT oy

The given equation by this substitution becomes
(y—x) (gﬂc%) —(E+ E)x
O\ ax Ty )Y ax Yoy

[y o]
“lox Yoy Tox Yor ]

(8] o)
-7 5] =025
a(a)
o ox Loy
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which is of the form F (p, ) = 0, [Standard I]
Solutionis z + aX + bY + ¢
where a=0%

z=b*(x +y) +bxy +c.
Self Assessment

Find the complete integrals of:
7. pPPrg@=mi

8.  pg=k

9.  p*+q=npq.

10.  Jp+g=1
Standard II

The equation
z = pxtaqy*fipaq).
which is analogous to Clairaut’s form, has for its complete integral

z = ax+by+f(ab) (@)

0z 9z
fora =p=aand dy =g=b

In order to obtain the general integral put b = ¢ (a).
z=ax+yod (a) + f{a, ¢ (a)}.
Differentiating with respect to a4,
0=x+y @) +f (@)
and eliminate a between these equations.
In order to obtain the singular integral, differentiate (1) with respect to a and b, i.e.,
0 = x+9f/0oa, -2
0 = y+df/db - (3)

and eliminate a4 and b between the equations (1), (2) and (3).

Illustrative Examples

' Example 1: Solve z = px + qy — 2\(pg).

Solution:
The complete integral is

z = ax + by - 2\(ab) (@
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Differentiating with respect to a2 and b,

1
= x-2vb. ,

0 X 2Va

A
AN

% =x and (g) =y
Eliminating a and b, the singular integral is

xy=1.

' Example 2: Solve z — px — qy = NI+ P2+ ).
Solution:

The complete integral is

z = ax+by+c(1+a>+ 1)

Differentiating with respect to 2 and b,

c*(a* +b%)
24,2 = .
¥ry 1+a” +b°
20242
2 2 .2 o z_c(a +b7)
cTrTy 1+a° +b*
2
T 1+a 40
2
1+2+0 = 57—
cC-x" -y
Putting in (2), (3),
a0 = N1 +a® +b%) —x
c \/(cz—xz—yz)
Y
and b = \/(Cz_xz_yz)-
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Put the values of a and b, the singular integral is Notes

or 22 (c2 - yZ) - (c2 V-3 yz)z

or X +yP+z? =

|
a

Self Assessment

Find a complete integral of following equations:

11. z=px+qy+pq.
12. z=px+qy+p*+q4-
13.  z=px+qy +N(op>+ Bg* +7).

Standard I11

The equations which do not contain x and y, i.e., which are of the form

F(z,pgq =0 (@)
can be solved in the following way.

Write x + ay = X where a’ is an arbitrary constant and assume z to be a function of (x + ay) i.e. of
X alone.

z=f(X) whenX= (x +ay);

_0z_dzdX _dz
P=ox  dxox dx’

_de_ds X _ e
dy dX gy dX’

Now the equation (1) becomes

F (z,ﬂ, ad—x) =0
X dX
which is an ordinary differential equation of the first order and can be integrated. So the complete
integral will be known.

The general and singular integrals can be found as in first two cases.

Illustrative Examples

' Example 1: Find a complete integral of: 9(p’z + %) = 4.
Solution:

Putz=f(x +ay) = £ (X)

_ 0z _dz X _ dz

P=ox " ax ox  dx
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Notes _ 0z _dz dX dz
S0y dX dy dX *

Therefore the equation becomes
2 2
9 (ﬁj z+a2(£j =4
ax X
(dzj {92+9a%) =4
ax

dz_ 2
dX  3V(z+a%)

or J.\/(z+a2)dz:f§dY
(z+a)? 2

77 B R

or (z +a%)? = (X + k)

or (z+a*?= (x +ay + k>

' Example 2: Find a complete integral of: p* + g°> — 3pqz = 0.

Solution:

Putz=f(x+ay) =f(X)
(dz)z 3(112)3 dz(dz)
— | +a’|——| —3a =
dx dx dxX\dXx
j§(1+a) az
d_

or 3az 1+4°
i10 z= +c
3a J 1+4°

or 3a (x +ay) +k= (1 +a° log z.

' Example 3: Find a complete integral of: g*y* = z(z — px).

Solution:

Put aY="",iey=e"
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Notes
dx .
and X = e x= e%,

The equation becomes

() =)
ay) 9x )

z=f(X+aY)=f().

{844
a d& =Z|z d&‘

dz

1
or 1tV +4a%)] 22 %

[1+V(1+4a%)

-1]
logz= oy E+cy

2a? log z = [£ V(1 + 4a%) - 1] [X + aY] + k
= [+ V(1 + 4a%) - 1] (log x + a log y) + k.

' Example 4: Find complete integral of: pg = x™y"z'.
Solution:
m+1 n+1

Put Y _x Y -y,
m+1 n+1

dz _9dz 9X 9z _dz 9Y

dx 09X ox'dy oY dy’
9z _ w0z 9z,
Prox =" ax 1oy

0z 1

. . 9z 0z _
The given equation becomes X' 3y 2

’

which is of the form f (p, g, z) = 0.

dz _dz dz 0z

Putti —_—=—,—=a—,
N8 Ox Taeray  TaE

dzdz
g dg
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OF
) a

70 g
=—+c,
1-(1/2) ~a
m+1 n+l
A ey @YX X Y
2-1 Va Va(m+1) n+1
' Example 5: Solve: 2% (p* + ¢ + 1) = &2

Solution:

ZZ

Putzdz=dZie Z = >

0Z dZ oZ
% ds oy =P (say)

9z _dz 9dz _
oy oz oy ~A1=QGay)

The given equation becomes
2ZZ+ PP+ Q=
now let Z = f (x + ay) + f (X)

_z_az ox_ap
T o9x 09X 9x dx

Q= 02 _dZ X _ dzZ
Y oX 9y  dX

azy’
i 1+ad)=c2-2Z

dZN(1+a®)
or m—dx
or NV [A+ DIV -22)] =X +c
or -NA+A V(-2 = (x+ay) +c
or (1+a) (P-2%) = (x+ay+c)

Self Assessment

Solve
4. p(A+g)=q(z-a
15. p*=z2(1-pgq)
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16. p*-g*=pz. Notes
17. pz=1+¢

18. p(@+gq) =gz

Standard IV

If the equation is of the type

fi@p) = f,a), (1)
write Ly = Lya)=¢ e
Solving equations (2) for g and p, we have
dz/dx = p="¥ (x,c)
and 9z/dy = q=",(y, c).
Now dz = pdx+qdy

Y, (x,c)dx +¥, (y, ) dy,

2 J.‘Pl(x,cl)dx + j P(y,c,)dy +b.

The general integral may be obtained from the above complete integral and as in Standard I,
there is no singular integral.

Illustrative Examples

Example 1: Find complete integral of:
N p+ N q="2x.

Solution:
Vp-2x=-Vg=a (say),
p=(2x+a)and g =d?,
dz=pdx+qdy

= (2x +a)’ dx +a’ dy

(2x +a)’
3.2

z= +a%y +b

the complete integral is

6z — 6b = (2x +a)® + 6a%y.

' Example 2: Solve: 2% (p* + ¢°) = x> +

Solution:

Putzdz=dZ;ie Z=272/2.
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dx 0z ox

2 =P (say)

9Z _9Z 9z
dy oz oy — 21=Q(say)

The given equation becomes
P2+ Q* =22+
P2-x?=y- Q2
Let PP-x?=y-Q*=a
or P =+(@+ 2% and Q = V(i - @?).
dZ =Pdx + Qdy =N(x* + a?) dx +N(y* - @) dy
2

Z= g\/(x2+az)+%log[)ﬁ\/(x2 +412)]+%\/(y2 —az)—élog[y+\/(y2—a2)]+c.

Complete integral is

2=x\(?+a?) + a? log [x + V(x? + a?)] + W(y? - a®) — a® log [y + V(> - a?)] + k.

' Example 3: Solve: (x* + %) (p*+ ¢%) = 1.
Solution:

Putx=rcos6,y=rsinb,

ie. P=x*+y% 0=tan’ %

0z 0z dr 0z 00 _ eaz_sine 0z

P Torox 00 ax or r 90’

_0z _dz dr 0z ae_sine%_'_cose oz
d dy OJr dy 90 dy o r 00

On substitution the equation becomes
2 2
B
or =\ d0
R
or or) oo

which is of the form £, (g, x) = £, (v, y).

2 azjz 2 (az)z
_ = :1— —_ ,
' (87’ ? 30

Putting
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and

Solution:

Put

Jz a 0z 2
E_LE N1,
dr r 90 \/( )

z =alog r + a quantity independent of r
z="(1 - a% 6 + a quantity independent of .
General solution is

z=alogr+J(1-a)0+c

- 2 42 _ 2 1Y
alog (x*+y’) + {/(1-a") tan e

Example 4: Solve: (x +y) (p +q)* + (x—y) p—q)*= 1.

@+y =X (x-y =Y,

0z 0z dX 0z BY_BZ+BZ

PP "X ox "oy ox X oY
0z 0z 0X 0z JY Jz 0z

J92,02 0X | 0z OY 0z, 0z 4
1= 5y Tox oy Tov ay “ox Tay )

On substitution the given equation becomes

or

9z 2V 1
X(afx) *Y(a*y) =y

Y 1 0z \
X|l—=| ==-Y| =1,
(5% i)

which is of the form £, (x, p) = £, (9, y).

Putting

and

and

0z \ 1 oz Y
= d=—-v|Z| =4 t
X( ) a an (Y) a, we ge

0z/9X =(a/X)

(92/9Y) = [G— a) /x] .

z=2(aX) + a quantity independent of x
e .

z=2 2 + a quantity independent of y.

Complete integral is

z=2(aX) + 2V [G_QJY}L b

Notes
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=2 \/[u(x+y)]+2+\/(z—u)(x—y)}+b.

' Example 5: Solve: z (p? — g% = x — .

Solution:

2
Putting Z = 523/2

0Z _2 3 1,02

ax 3 27 ox

(]2 - o

Similarly,
2 2
0z | _ 8£ JpEe
Z[ayj _(Hy] Q)
PP-Q*=x-y.

Let P-x=Q*-y=c.
P =v(c+x)and Q=\(c +y).

dZ=Pdx +Qdy
=(c +x) dx +(c +y) dy.
_(erx)? (e
Z= 3 + 3 +ky
2 2
or 22=(c+x)*2+ (c+y)/?+ k.
is the required solution.
Self Assessment
Solve the following:
19.  q=2yp*
20. X% =yqt
12.5 Summary
o Lagrange method is quite famous. It is used also in the theory of total differential equations

as well as simultaneous differential equations.

o It can be easily extended to the theory of partial differential equations involving more
than two independent variables.
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12.6 Keywords

The geometrical interpretation of the Lagrange’s equation
Pr+Qg=R

where P, Q and R are functions of Z, is that the normal to a certain surface is perpendicular to a
line whose direction cosines are in the ratio P : Q : R.

The subsidiary equations help us in finding the solution of Lagrange’s equation. If u =a,v =10
where u, v are functions of x, y, z and 4, b being arbitrary constants but the statement that ¥ (u, v)
are solutions of the Lagrange equations.

12.7 Review Questions

1. Solve the following x (y—z)p+y(z—-x)g-(x-y)z=0
2. Solve the following p+g=2z/a

3. Solve the following by Lagrange’s method xzp — yzq = xy
4. prg=xty

5. zZp=-x

6. pq=1

Answers: Self Assessment

1. (x+y+z)= 0 (xyz)

R

3. z=e&"f(x-y)
4. Oly+xlog (x*+y>+2xy +2%) - 2x] =0

y x
5. xyz—=3u=¢ <2
sinz sinx
6. =f()
siny siny
7. z=ax+ \J(m* —a®)y +c

k
8. z=ax+;y+c

9. Z=ax+§[ni\/n2—4]y+c

10. z=ax+ (1—\/E)Zy +c

11. z=ax+by+ab
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Notes 12. z=ax+by+a®+1?
13. z=ax+by+ Joa® +pb> +Y
14. 4c(z—-a)=(x+cy+b)>+4

1
15. ﬁ

16. (z—c)[z-cexp{x+ay/(1-a)}]=0

17. 22 i[z,/(z2 —4a%) - 4a? log[z+(z2 +4a2)1/2:|]: dx+4ay+k

18. log(az—-1)=x+ay+c

log[;z\/5+(1+a;zz)1/2:|+(1+azz)1/2 =z+ay+b

19. z=ax+dy’+b

20. (z-alogx—b)*=4a’y

12.8 Further Readings

N

Books Piaggio H.T.H., Differential Equations

Sneddon L.N., Elements of Partial Differential Equations
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Richa Nandra, Lovely Professional University Charpit 's Method for Solving Partial Differential Equations

Unit 13: Charpit’s Method for Solving Partial

Differential Equations

CONTENTS

Objectives

Introduction

13.1 General Method of Solution

13.2 Illustrative Examples

13.3 Special Types of First Order Equations
13.4 Summary

13.5 Keywords

13.6 Review Questions

13.7 Further Readings

Objectives

After studying this unit, you should be able to see that:

o Charpit’s method is used to find the general integral of the partial differential equation.
° This method introduces a second partial differential equation of the first order that contains
an arbitrary constant.
° With the help of this second equation and the original equation the partial derivatives
0z
P =pand g—; =g, can be found.
° After finding these p and g, the solution can be found involving two arbitrary constants.
Introduction

With the help of the second equation and the original equation Charpit’s subsidiary equations
are setup. Only those equations are to be solved that involve p or 4.

Charpit’s method helps in finding the general solution of the partial differential equations with
two arbitrary constants.

13.1 General Method of Solution

After discussing Lagrange’s method and some special methods of solving partial differential
equation we now turn to an other general method due to Charpit in dealing with non-linear
partial differential equations involving two independent variables x and y. Here again we
0z
dy
be sold will be of the form

d
denote p= é and g =—-—. Let the given equation be of the first order only. So the equation to

F(x,y,zpq =0 .. (1)
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Notes The Charpit method of solving this equation is as follows:
Charpit’s Method

Here in addition to equation (1), another equation involving the same variables, is sought i.e.

f&y zpq =0 )

With the help of equations (2) and (1), we solve for p and g and then substitute p and g in the
equation

dz = pdx+qdy - (3)

Clearly the integral of (3) will satisfy the given equation for the values of p and g derived from
it are the same as the values of p and g in (1). Now differentiating (1) and (2) w.r.t. x and y, we get

OF [ OF 0z OF 0p OF 3y

dox Jdz dx dp dx dq ox -0
o [0z of op of 0g _
8x+azax+apax+8qax =0
OF OF 0z OF dp OF oq
—t— —t+t——+—.— =0
dy dz dy dp dy 9g Oy
L 0z o O

dy 09z dy Jdp dy 9q dy

Eliminating dp/dx from the first pair and dg/dy from the second pair, we have

OF of OF of | 0z(0F of OF of | dq(dF of oF of ) _ 4

dx dp dp ox) ox\dz dp op 9z) ox\og op Ip 9g) - @)

OF O OF OF ), z(0F O OF o), 9p(9F 3 OF oF) _ 5

dy 9q 9q dy) dy|\dz dg oq dp) dyldp dqg 9q p

2
Now since %=£=a—p
dx dxdy dy
and dz/dx =p, 0z/dy =g,
adding (4) and (5) and rearranging,
I (OF , JOE) Off0F  OF\ off oF oF) [ OF\of [ OF)of _
ap(ax+p8Z)+8y[aq+q87:J+az[ pap qaqj+( apj8x+ aq Jdy =0 - ©)
The terms involving &» and 9 cancel.
dy ox

Now (6) is a linear equation of the first order, which the function f must satisfy and its integrals
are integrals of

dp _ dg Az dx  _ dy _df ]
ofF  OF “oF oF = _JF JF " —gF/dp —dF/oq 0 - (7)
ax Paz ay T 77 op qaq
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Charpit’s Method for Solving Partial Differential Equations

Any of the integrals of (7) will satisfy (6). The simplest relation involving p or g or both should Notes
be taken and that will be the required relation.

13.2 Ilustrative Examples

' Example 1: Solve by Charpit’s method z = pg.
Solution:

Applying Charpit’s method,

From first two terms,

=cC.

P
q

z=cq? or g=\(z/c)and p = (cz).
Now dz =pdx +qdy
=(cz) dx +(z/¢) dy
zV2dz =\c dx + (1/\c) dy, on integration, we have

272 =Nex + (y/Ne) + b

' Example 2: Solve by Charpit’s method (p*> + 4% y = gz.

Solution:

dp dq dz dx dy af

0+p(-q) (P*+qa°)+a(-q) -p2py)-q(2qy—z) —2py —2py+z O

From first two terms,

dp _dq
- P’
or pdp=—qdgiep*+g*=c

g=cy/zand p=V(c - AP/7)
dz=pdx+qdy
=V(c—-cX?/2) dx +cy/z dy

or zdz = (cz? - )V dx + cy dy

2(z dz—cy dy)

\/(22 —cyz) =2c.dx,

or

(- = Jox+b
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Notes The complete integral is

(2% —cy?) = (Nex +b)?

' Example 3: Solve by Charpit’s method:
q=xp+p*
Solution:

Charpit’s auxiliary equations are

dp _dq _ dz _dx  _dy 8i
p+0 0 -p(x+2p)—q(-1) —(x+2p) +1 O
ie. g = ¢ from second term.
px+p=c

—x+V(x% +4c)
—

—x £V (x? +4c)

d =
z 2

dx +cdy.

2

z= +[1.%\/(x2+4c)+%log{x+\/(x2+4c)}}+cy+b.

X
472

Aliter. Also dl = dTy ,le.,p=ae¥
p

g = axe’ + a*e®
dz = ae¥ dx + axe¥ dy + ae¥ dy.

2
z=axe¥ + EeZY+b.

Example 4: Solve by Charpit’s method:
(P +q) (px+qy)-1=0.
Solution:
By Charpit’s method, auxiliary equations are
dp  __dq
pp+0)+0  (p+a)

b,

P g q
F(1+0) (cx+y)-1=0

or  g- [1}
I+c)(cx+y)
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Charpit 's Method for Solving Partial Differential Equations

dz=pdx+qdy

cdx+dy
\/[(1 +¢)(ex +y)]

N1 +¢)=2(cx +y)/2 +b.

' Example 5: Solve by Charpit’s method:
pq=px+qy.
Solution:

The auxiliary equations are

dp _dq _ dz dx

dy

P q pE-9-qu-p -9 —-q)

From first two ratios,

p/q=a ie.,p=aq.
Putting the value of p in the given equation,

2

aq” = aqx +qy
or g = (y+ax)/a.
Therefore
p o= (y+a).
Now dz = pdx+qdy
= (y+ax)dx+ yrox
adz = (y+ax) (dy +adx).
az = (y+ax)?/2+c.
Writing c as f (a),
= (y+ax/2+ £(a).

Differentiating with respect to a4,

z = x(y+ax)+f’ (a).

dy.

(1)

(2

Eliminating a between (1) and (2) the general integral will be obtained.

' Example 6: Solve by Charpit’s method:
2zx — px? = 2qxy + pg = 0.
Solution:

Applying Charpit’s method,

dx dy dz _dp

g=a.

dg

xz—q - 2xy—p - px2+2xyq B 2z-2qy "0
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Notes Putting this value in the given equation,

2zx — px* = 2axy +ap = 0.

p = 2x(z—ay)/ (x*-a).

Also dz = pdx+qdy
2x(z-ay)
= ——=tdx+ad
’~a) x +ady
dz—ady 2x
or = — dx
z—ay X" —a
or log (z—ay) = log c(x* - a).

(z—ay) = c(*-a).

z = ay+ c(x* - a) is the general solution.

' Example 7: Solve by Charpit’s method:
PP+ g*—2px - 2qy +1=0.
Solution:
Applying Charpit’s method,
dp dq

oF, OF OF OF
Pz ay "oz

dp _ dq
2p -2q

ie. ie. p =qa.

Substituting in the given equation,
G @+1)-2q@ax+y)+1=0.

2 _ 402
q= 2axt y)+\/[;l((a;c:1y)) Aa”+1)] [taking +ve sign with the radical].
a

_ (ax+y)+\/[(zzx+y)2 —(a2 +1)]
- (a2 +1)

Now dz=pdx +qdy

1 1
) (ax +y) (@ dx +dy) + (aTl)\/[(axw)Z— (@ + 1] (a dx + dy).

Now putting ax +y =t
adx +dy =dt
(@ +1) dz =dt + [~ (@® + 1)] dt.
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Charpit 's Method for Solving Partial Differential Equations

(a2+1)z=t+% N

! log [t + V(P - (@+1)}] + b

which is the required solution where ¢ = ax + y.

' Example 8: Solve by Charpit’s method:

q=(z+px)~
Solution:

Applying Charpit’s method,

dp dg

dz

OF OF ~OF _ 9F OF

oF

o Poy oy e oy
_dx _dy _df
S _9E JF 0
dp g
We have
dp dg dx

2p(z+px)+px2(z+ px) B 2q(z + px) - —2x(z + px)

dg dx
or —=—

g —x
or gx=a

Putting this value of g in the given equation §= (z+px)

Now dz=pdx +qdy

= 1(JE—szx+ady
x(Vax x

or (xdz+zdx)=\/gdx+ady
x

or zx = 2\(ax) + ay + b.

' Example 9: Solve p* + ¢ — 2px — 2qy + 2xy = 0.

Solution:
Applying Charpit’s method,
dp

dgq dz dx dy

oF + oF =~ OF

ax Foz

OF = OF OF OoF OoF

ay Te: Ty T Tw
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Notes

dp dg  dx _ dy
or —2p+2y_—2q+2x_2x—2p_2y—2q
dp+dq dx +dy
or =
2(p+tq-x-y) 2ptq-x-y)
or ptg=x+y+c

or p-0+@-y=c
Also the given equation can be written as
P20+ @-y? = (x-y)?
Putting the value of (p - x) from (1) in (2)
fe=@-yP+@-v* = &-y7

or 2q-yP-2c(@@-y+c-(x-y?> =0
_ 2ci\/[4cz—8{c2—(x—y)2}]
=Y = 2%x2
- Sxlpaoyp-ay
272 Y '

g = y+%[c+\/{2(x—y)2 _Cz}]

p-—x = c—(@-y)

c—%[c+\/2{(x—y)2 —cz}]

p x+%{c—\/{2(x—y)2—cz}]

Also we know that dz = p dx + g dy.

[+ e ==y =l +y + e+ 20y — ey

= xdx+ydy+%+ﬂ—l[\/2(x—y)2—cz}{dx—dy}
2 2 2
7z - 2, 1 (- if 2(x—y)? =
T 2222 2 v

2
or 27 = x2+y2+cx+cy—\/12{£ (tzcz)—%log{t+\/t+\/(t2—cz)}k

' Example 10: Solve by Charpit’s method:
pxy +pq*qy =yz.
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Charpit's Method for Solving Partial Differential Equations

Solution: Notes

Here f=pxy+pg+qy-yz=0 (1)

Charpit’s auxiliary equations are

dp dq

py+p(-y) (px+q)—qy

or dp =0 or p=a (2
From (1) and (2), we get

po=aq= at+y

Putting these values of p and q in dz = p dx + q dy, we get

dz = adx+ Mdy
aty
dz—ad d
or zux=yy=[1_ade
Z—ax a+y aty
Integrating, log (z—ax) = y—alog(a+y)+logb
or (z—ax) (y + a)" = beV.

' Example 11: Solve by Charpit’s method:

px +qy =z(1 +pg)/2
Solution:
f=px+q-z(1+pg =0 (1)
Charpit’s auxiliary equations are
dp _ dq -
p-p(L+pn)'/* q-q(L+pg)'/?
or %=% Lp o= aq (2

Putting in (1), we get

qax+y) = z(1+ag’)'?
or g [(ax + y») —az?] = 22

zZ az

= dp=gg= — ¥
q [(@x+y?)—az2)[ 7 andp = aqg [(ax+y%)— a2 ]2

putting these values of p and g in dz =p dx + g dy,

_ _ z(adx+dy) or dz _ adx+dy
\/{(ax+y)2—azz} z \/{(ax+y)2—azz}
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Notes Let ax +y=V(@)u .. adx+dy=\(a) . du

dz _ Nadu du NP -2
z \/(auz—azz) OrE_ 2

This is homogeneous equation. To solve it put u = vz, then

_ 2.2 .2

U+ZE_Z\/(U z°-2%)
or 2@2{\/(02_1)_0}

dz

dz _ dv
or z N@-1)-v

dz 2
or 7=—{\/(v -1)+v}dv

,02

logz= —E\/[(U2 —1)]—%log {o+V(v? —1)}}—7“)

2
or logz+%+§\/(vz—1)—%log{v+\/(vz—1)}:b.

.. . u  ax+
This is a complete integral, where v=—= J Y
z zNa

' Example 12: Solve by Charpit’s method:

C-y)p-xy p*-9°)-1 = 0. (1)
Solution:
f=@-y)pa-xy (P -q)-1 = 0
Charpit’s auxiliary equations are
dp dq dx dy

2pqx—z(p*-q°)  2ypq-x(p>-q°) (v )y+2pxy —(x*-y')p-2pry

from which it follows that each fraction

_ xdptydg+pdx+qdy
- 0
(xdp +pdx)+(qdy +ydg) = 0
Integrating, px + qy = a
a-qy
p= T (2
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Charpit’s Method for Solving Partial Differential Equations

Putting this value of p in (1),

_ N2
(xz_yz)(a qyjq_xy{(axzy)_qz}_l =0

X

a—
or %{(xz-yz)q-(ﬂ-qy)y}wwz-1 =0
or (g -ay) by’ -1 = 0
or (a-qy) (Pq-ay) +x’yg’-x = 0
or ag (> +y?) = ady+x.
_ _@yrx
q a(x2+y2)
2 2
mi -l ey
X a(x“+y°) | a(x”"+y°)

Putting values of p and g in dz = p dx + q dy, we get

(a*x - y)dx +(a’y +x).dy

dz =
z a(x2 +y2)

gz = a(xdx+ydy)+xdy—ydx

or x? +y2 a(x2 +y2)

Integrating,

a 2,2, 1 Yy
=—1 +y?)+—tan” Z+b.
z og(x” +y~) _tan

Self Assessment

Apply Charpit’s method to find the complete integrals of:
L pxy+ap+ay =y

2. q=3p

3. p-3x*=g*-y.

4. z=pxtqyrpitg

5. 2(pg+py+gx)+x*+y?=0.
6 Zxp*-gq=0

13.3 Special Types of First Order Equations

Notes

In the section we shall consider some special types of first-order partial differential equations

whose solutions may be obtained easily by Charpit’s Method.
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Notes

d
(@) The equations involving only p= g—z and 9= i In this case the equation to be solved
x
will be of the type
fp,g) =0 - (1)
From the subsidiary equations
dp __ dg _ dz _dx _dy _df 9
of  of of of of of  of o 0 - @
E e v “PooTPo - To o T
ox "9z 0dz oz dp "9 dp  Ig
dp _dq _ dz _ dx dy
o1 0 0 T ¥ T Yy ~©
dop g dg g
Now from first equation
dp =0
or p = a=constant (@)
Substituting this value of p in (1) we have
flaq) =0 .. (5)
Solving for g from (5) we have
=00 - (6)
So from the equation
dz=pdx+qdy = adx+¢(a)dy ()

We have on integration
z = ax+0@y+b

which is the general solution.

' Example 1: Solve:

pq=1

Solution:

Q|-

Here againp =asoq =

Thus on integrating

dz = pdx +qdy
d ! d
= + —
adx -+ dy
1
z = ax + ;y+b where g, b are constants
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Charpit’s Method for Solving Partial Differential Equations

' Example 2: Solve:

prq = pq - (1)
Solution:
p = a(constant)
so from (1)
a+q = aq
_a
or 9= 7
a
Thus dz = adx+ ﬁdy
i = + 2 +b
given z = ax+ oy

which is the general solution.

(b) Equations not involving independent variables consider the partial equation of the
following type

flzpg =0 (1)
which does not involve independent variables x, y.

From the subsidiary equations:

B g _dy 2

fx+pfz=fy+qu=_pfp_qfq _fp__fq_ 0

Here the symbols used are

I A A T e
So from the first two fractions of (2) we have
dp _dq
EE
Integrating, we have
p = aq .. (4)

From equations (1) and (4) we can find p and g and the complete integral follows from the
relation.

dz = pdx+qdy .. ()

' Example 3: Find the complete integral of the equation
P+ =1 .. (6)
As (6) does not involve x, y. So from the above method

q = pa - (7)
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Notes

Substituting in (6) we have

PR+t P o= 1

-
2 +a?
_ 2
or p == (z +a;

Substituting in

dz = pdx+qdy

dx ady
dz = i(zz+u12) zi( 5 112)1/2
we have
(z2+af)1/2dz = dx+a dy
so J-(zz+af)l/2dz = x+tay+a,

It can be shown that

j(z2 +a? )1/2 dz=2 (z2 + az)l/z +I§log[z+ \lziz"'aiz]

So the solution is (9) with integral (10).
(c)  Separable equation
Let the equation be of the form

flp) = g9

instead of

Fx,y,zpq) =

Then from the subsidiary equations, we have

dl_ﬂ_dx dy dz

fx _gy - _fp - +gq - _(pfp+ng)

ap_fx
So dx fp
or fpdp—fxdx = 0

0

.. (10)

.. (13)

which can be solved for p. Similarly we can solve for g and the complete integral is obtained.

' Example 4: Solve

py(1+x%) = qx

2
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Charpit 's Method for Solving Partial Differential Equations

On rearranging we have Notes
2 2
p-(1+x7) _4q )
2 y a* (say) .. (15)
_ _ ax
Then q a’y and p 1+ 2772
Thus dz = pdx +qdy,

On integration gives

- [t
z = u(1+x2)1/2+%y2+b (16)
is the complete integral.
(d) Clairaut’s Equations
A first order partial differential equation of the form
z = px*ay+fipq) - (A7)
is of Clairaut type of the equation. Here
Fo=pxtqy+fp.q-2z=0 - (18)
So from the corresponding Charpit’s equations, we have
dp _ dqg _ dz _odxdy
p=p a-q parf)-ay+f) —x—f, -y-f - (19)
We have
p = a (say a constant)
g = b (a constant).
So from (17)
z = ax+by+f(ab) ... (20)
is the complete solution of (17).
Example 5: Solve:
pgz = pr g +p) gt (yp + ) - (21)
Solution:
From (21)
_ P
z = pxtgyt ;+?
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Notes

So we have Clairaut equation type

p = aq=b
a* +b*
= ax+by+ . (22

S0 z ax + by o (22)
is the complete solution.
Self Assessment
7. Find the complete integral of

z=px+qy+pt+ g+
8. Find the solution of

p@+1)=q@-"b)
13.4 Summary
o Charpit method is quite useful in finding the complete integral of the first order partial

differential equation.
o Here we are interested in setting up auxiliary equations with the help of which the values

of p and g are obtained.

o Knowledge of the first derivatives or p and g respectively help in finding the

o9z o9z
ox " oy

complete integral involving two arbitrary constants.

13.5 Keywords

Charpit's method helps in finding the complete integral of the first order partial differential
equation.

Jacobi’s method: It deals with two independent variables and so to solve partial differential
equation having more than two independent variables we have to take the help of Jacobi’s
method.

13.6 Review Questions

Solve by Charpit’s method:
1. px+gy=z

2 pPoygEy-a

3. yp=2yx+loggq

4. 2P +g)=1

Answers: Self Assessment

1. z=cxted (yte)-—c

2. z=ax+3a%y+b
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b Notes
3. z=x3+ax + g(y+a)3/2+b

4. z=ax+by+a®+b?
1
5. 2z=ax-x*+ay-y*+ E(x_y) [2(X—y)2+uz]

6. Z2=2ax+a’y’+b

7. z=ax+by+at+bt+a?

2/[a(z-b-a)] =ax+y+c

13.7 Further Readings

N

Books Piaggio H.T.H., Differential Equations

®

Sneddon L.N., Elements of Partial Differential Equations
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Richa Nandra, Lovely Professional University

Unit 14: Jacobi’s Method for Solving
Partial Differential Equations

CONTENTS

Objectives

Introduction

14.1 Jacobi’s Method of Solution of Partial Differential Equations
14.2 Simultaneous Partial Differential Equations

143 Summary

144 Keywords

145 Review Questions

14.6 Further Readings

Objectives

After studying this unit, you should be able to:

° Know that Jacobi’s method for solving partial differential equation is similar to that of
Charpit’s method.

° See that two additional equations are to be found through which the first order derivatives

E,ﬂ,a—z can be found that help in finding the solution of the first order partial
0x; 0x, 0x3

differential equations.
Introduction

Jacobi’s method consists of setting up the subsidiary equations.

Through the solution of subsidiary equations two independent integrals will be found and the
method uses techniques to solve the first order partial differential equation.

14.1 Jacobi’s Method of Solution of Partial Differential Equations

In Jacobi’s method we have to deal with three or more independent variables and one dependent
variable. Consider the equation

F(x1, %3, %3, p1,P2sP3) = 0 1)

Where the dependent variable z does not occur except by its partial differential coefficients p,, p,,
p, with respect to the three independent variables x,, x,, x,. The basic idea of Jacobi’s method is
very similar to that of Charpit’s.

So we try to find two additional equations

K (xlrx2rx3rP1rP21P3) = o (2)
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Jacob i’s Method for Solving Partial Differential Equations

Fz(x1/x2/x3/P1/P2/P3) = 0, ..(3)

Here o, and a, are arbitrary constants. These equations are such that p,, p,, p, can be found from
(1), (2), (3) as functions of x,, x,, x, that make the equation

dz = pydx; +pydx; +padx, (4

integrable, for which the conditions are

oy _ @z _Op s @z _Op Ips_Opy
ox, 0x,0x, 0x, 0x; 0x,0x; 0x; 0X, 0X3

.(5)

Now by differentiating (1) partially with respect to x,, keeping x,, x, constant, but regarding p,,
Py Py @S dependent functions of X, X,, X, we get

OF OF dp; OF dp, =~ OF dp,
—t—t—2+— =0 (6
0x, i op; 0x; " op, 0x, i op; 0x; ©)

Similarly
OF, | OF, dp, , OF, dp, , OF, 9p;
ox; Op, dx; Odp, Ox; Op; Ox;

Multiplying equation (6) by gi and equation (7) by 3—1:, and subtracting we get
p p

1 1

B(F/Fl) + a(FfF1) aﬁ+ a(FfF1) 95

=0 ..(8
B(XT,;A) a(P2/P1)ax1 8(p3,p1)8x1 ®

where

J(FR) denotes "Jacobian" OF ok _ OF oF

3(961,;71) 0x, dp;  Opy 0x

Similarly, like (8) we get

AEFR) | O(FR) opy , I(EER) ops
a(xwpz) 8(p1,p2)8x2 8(p3,p2)8x2

and

9(F.F) n I(F.F) aﬂ_,_ 9(F.F) Iy
8(x3,p3) 8(p1,p3)8x3 a(Pzrpa)axs

=0 ..(10)

Add equation (8), (9) and (10) and noting that two pairs of terms are:

I(F.R) op,  O(FFR) opy 9z {H(F,Fl) , J(E.F) ]:0
a(pZ'Pl)axl a(Pva)axz 0x10x, a(Pzrlﬁ) a(Plrpz)

Similarly two other pairs of terms also vanish, leaving

O(FR) , O(FR)  O(FF)

=0 (11
B(xT,p]) a(x2,p2) 8(x3,p3) )
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Notes

i.e. on expansion

OF 9F, OF 9F, OF OF, OF 0F, OF dF, OF oF,

B oo oo apon o apx, " -2

The equation (12) is generally written as (F,F,)=0.
Similarly
(F,F,)=0and (F,F)=0.

But these are linear equations having more than two independent variables. Here we have the
following rule.

Try to find two independent integrals, F, = a, and F, = a,, of the subsidiary equations

dy _dp _ dv, _dp,  Oxy _ dps 13
OF TOF T _OF OF T _OF _ OF -1
dpy  0xy dp, O aps 0x;
If F,F, satisfy the conditions
oF, OF, OF, oF
(Fo)= 3, B o0 g,
rzlg,s axr apr apr axr
and if the p’s can be found as functions of the x’s from
F=F -a=F,-a,=0,
then integrate the equation formed by substituting these functions in
dz =pdx, +p,dx, + p.dx,.
Examples of Jacobi Method
1.  Solve
2Py, + 3503 + paps =0
Solution:
Let F=2p,x,%3 +3p,x3 + p3p; =0 (1)

The subsidiary equations are

dx, _%_ dx, _%_ dx;  dp,

_OF “oF = dF JF = JF ~ JF
dap;  Oxg dp,  Ox, dp;  Oxs

Now
oF d JoF 5 oF
-—==2 , =2 ,— =-3x5-2 ,—=0,
an X1X3 ox, P1%3 P, X3 —<PapPs3 x,
—oF oF
a - %ra . =2p1x; +6p,x5
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Jacobi’s Method for Solving Partial Differential Equations

So the auxiliary equations are Notes
dx, __dpy _ dx, _dpy _dx; _ dps
2x%; 2pixs B3x3—2paps 0 —p3  2pix +6pyx; -(3)

of which integrals are obtained by integrating the equations

dx, dp;
a T
dp, = 0
or
F = xp =a ..(4)
F, = p,=a, ..(5)

Now consider

(F/ER) = 0xy dp;  Opy dx;  Ox; dp, Opy Ox, Ox3dp;  Op; 0x3

p,(0)~x,0)+0+0+0+0=0

So equations (4) and (5) can be taken as the two additional equations required. So

- h
Py = 2=
Xy
And from equation (1) we have
py = (—2x3a1 - 3a2x§)‘a§ = —(2a1x3 +3u2x§)‘u§

Hence

dz = pdx, +p,dx,+p.dx,

a,dx dx
= 1 4gdx, - (2u1x3 +3a,x3 )—23
X1 a
So on integration we get
- _d o 3
z = ajlogx; +a,x, —— (a1x3 + a2x3)+ a,
a
as the complete integral.
2. Solve
2
(x+23)(py +p5) +2p1 =0 (1)
Solution:

This equation is not of Jacobi’s type as it involves z. But put

z = X,

Oz 0%, Oujou

axl_axl axl ax4=_p1/p4 (SaY)

so p, =
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Notes where u = 0 is an integral of (1).

Similarly
dz _dx, ou | du
e LR N3
P 0x, 0x,  0xy|0x, 2/ By
0z _ 0xy ou | du
= —=——*=———|—=-b/P,
Ps ox; 0xz  0x5|0x, 3/ By
So equation (1) becomes
2
F=(x,+%;) (P +B) —x,pypy =0 e

So equation (2) involves four variables, but not involving the dependent variable u. Now

oF oF oF

2B - x4P4,E=O,—£=—2(x2 +23) (P, + ;)
JOF JF JF
9 2 2
o, (P, +D;) ,—£=—2(x2+x3)(P2+P3),aTC3=(P2+P3)

_oF oF
or, ~ x4P1,E=—P]P4.

The subsidiary equations are
dx; _dP _ dx, dp, dx,

P 0 2(xy+x3)(P+Py) (p2+P3)2=—2(x2+x3)(Pz+P3)

dp,  dx,  dP,
(Pz +P3)2 x4Pl _P1P4

of which integrals are

F, =P =a, dp2=dp3,soP2—P3=a2=F2

% - _[11311)}1)4,50364134:{13:173
s0
F =P =a ..(3)
F, = P,-P,=a, (4)
b, = xP =a, ...(5)

We have to ensure that (F,,F,)=0, where r and s are any two of the indices 1, 2, 3. To see

(F,F,)=0, we have

ox, 0P, 0P, dx 0x, dP, 0P, dx, 0x3 0P, 0P, dx,

ox, 0P, 9P, ox, ~(6)
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Jacob i’s Method for Solving Partial Differential Equations

as F, F, do not contain x,, x,, x, and x,. Notes

From (3) and (5) we have

P =a, P, =2
Xy
From (4) we have
P, = P,+a, (7)

Substituting in (2) we have

(x2+x3)(2P3+a2)2—a1a3 =0

P+P=(2P+a,) = | -% ~(8)
(2 +3)
wa
2P, = a4yt 13 (9
2 27 (2, +x3) ©)
aa
2P, = -a, % 13 ..(10
3 2 (.’)C2+X3) ( )
du = Pdx +Pydx,+Pdx,+Pdx,
adx +@+a—2(dx —dx )i1 % (dx, +dxy )
R Xy 22 7 (xy +x3) 2 ’
on integration we get
u:a1xl+a310g(x4)+%(x2—x3)i%1/a1a3 (x,+%,)"" +a,
so u = 0 gives, replacing x, by z, and dividing by a, we have
o a, a, 1/2 |
—x; +logz+—=—(x, —x3)+ |—(x, +x +—==0
a31 g 2113(2 3) \/;(2 3) o
a a, a, . .
Let —=A,,—==A,,—=A; we have the required equation:
a, 2a,4 a,
logz+Ax+ Ay (x, —x3) 1A (x, +a3)1/2 +A;=0 ..(11)
3. Solve
P+ x, = z ()
Solution:

Let z = x,; let u(xy,%,,%3)=0 be the solution.

292 9% P wherep =2 p = 0%
ox; dx; P 0x, 0x5
S 02 % B herep, = O

1= ox, dx, D ox,
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Notes Substituting in (1)
F = P’x;+Pix,—Pix; =0 -2

The subsidiary equations are

dx; ﬁz dx, =ﬁ= dxs =ﬁ €)
oF = OF T_oF " OF T _oF OF
_ﬁ 0x, oP, 0Ox, 0P,  0x,
or
doy _ 4B _dx, _dP_ dx, _ dPy @
-2Px, P} 2Px, P 2Px, -P}

From first two terms

2. _ 2. _
Pixy=c¢, Bxy =cy,

From (2) pr=8to
X3
Thus du = Pdx +Pydx,+ Pdx, ...(5)

Substituting the values of P, P, and P, we have
du = /c—ldx1 + 2 dx, + /m dx,
X1 Xy X3

u=2(cyx; )1/2 +2(cpxy )1/2 +2[(¢ +cz)z]l/2 +c; QED.

On integrating we have

4.  Solve
F = pi+pr+ps-1=0
oF 9F  9F __ OF JF 9F
o = 2p;,—=0,—=0, —=0, ——=-2p,, ——=-1
Ip & ox, ox, 0x5 p, P2 op;
Solution:
The subsidiary equations are
dx, _ dpy _dx, _dp, dx; dps
2p 0 2p, 0 -1 0
P, = ap,=bp,=1-a-b
Fl = plza,Fzzpzzb
(F.R) =0
dz = adx1+bdx2+(1—a2—b2)dx3
z = axl+be+(1—az—bz)x3+a3 Q.E.D.

Self Assessment

1.  Apply Jacobi’s method to find complete integral of the following:

xX3pipaps +pivs —ps =0
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Jacob i’s Method for Solving Partial Differential Equations

2. Find the complete integral for Notes
p3xs(p1+p2)+ 2+, =0

14.2 Simultaneous Partial Differential Equations

In Jacobi’s method two additional equations are needed to solve the partial differential equation
by Jacobi’s method.

In this section the problem of finding the solution of the partial differential equation F = 0 with
some work of finding F, is already done. The method can be illustrated by the following
examples:

' Example 1: Find the complete integral for the partial differential equations.
F = ppxi+px,—p5=0 (1)

F, = pi-py*tp-1=0 (2
Here

OF OF, OF OF _OF oF _dF F, OF 9F, OF 0F

i
(FR) = 0x, dp; dpy dx; dxy dp, Op, 0x; Ox3dps Jps Ox;

= p1-1-2(0)+po(-1) = x,(0)+ 0- (1) + 2p3(0) = p = p, -(3)

Now (F,F)#0, now to make

(F,F) = 0,wehavep, =p, (4)

From equation (2) p,=1 .(5)
1

S F 1), +x,)-1 =0, = (6

0 rom (1), py (x;+x,) S0 Py (1, +1) (6)

dz = pdx, +p,dx,+p.dx,
dx,

= ——+ +1dxs
X +x, X +x,
or
iz = Pty g ()
Xq+ X,
on integrating (7) we have
z = log(x;+x,)+x;3+a ..(8)

which is the complete integral of (1).

' Example 2: Find the complete integral for

F = 20pps-x,p,=0
F1 2p, -p,=0

—~
[Emy
~

A
®)
I~

Now

b5y = OFOR_OF OF OFOF OF OF
i dx, dp;  dpy dx; dxy dp, Ip, Ox,
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OF oF 9F 9F,

0x3 dp; dpy dx; Jdxy Ip,

OF O _OF OF,

dp, Ox,

= (2p1p3)(0)=2x3p; -(0) = py -(0)+0=0

The next step is to find F, and F, such that

(F.R) = 0=(F,FR)

Now
oF OF OF OF
TS = 2xaps,———=0,——=-2xp;,———=
op; X3P3 s ps X3P1 s Xy
OF GO _ O _, 9F __
ox, e Vox, P1Ps. ox, Pa
_dy dxy  dxy _dxy _dpy_dpy _ dps _dps
—2x3p3 0 “2x3p;  —Pa 0 0 2p1ps —Pa
pZ = 112
50 Fz = P, =4y 80 (F,F2)=O=(F1,F2)
Also from de, —__dps , on integration
—2x3p; 2pips
F3 = x3p3 = 113
Again (F,F) = 0=(F,F)=0=(E,E)=0
Y 0 _2XPsp B0y
Py 5’ P2 =03, P3 X 7 P4 %, 2x,

so from the relation
du

p,dx, + p,dx, + p.dx, + p,dx,

dx,a, N N

a
=2 dx, + a,dx, +
2 X3 2x,

On integrating (6) we have the complete integral

u

Self Assessment

a a,a
?zx] +ayx, +a;logx, +%logx4 +ay

3. Solve for complete integral of

F =

F

1

p% + p2p3x2x§ =0

pl+p2x2=0

4. Find the complete integral of
F = XPr = XP, t PP, = 0
F, = p1+p2—x1—x2=0

1
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Jacob i’s Method for Solving Partial Differential Equations

14.3 Summary

o Jacobi’s method of solution of the partial differential equation of the first order is very
similar to that of Charpit’s method.

° The method consists in setting up subsidiary equations through which two integrals are
found that help in finding the solution.

14.4 Keywords

The subsidiary equations help us in finding the two independent integrals.

Ju Jdu du

Independent integrals help in finding the partial derivatives E' @f % and so the solution

can be found.

14.5 Review Questions

1.

Find the solution of

F = p, +p,+p3-3x-3x,-4x3 =0
with additional equations

F, = xp—xp,- 2x2+2x3 =0

F, = p,—2x,=0
Find complete integral of

pxstps = 0
pax;+psx; = 0
Find the complete integral of

2x,2p,p57 + 2p, = 0

Answers: Self Assessment

1. Z=ayx, +ayXy Tsin T (a,a,x5) + a5
2. 4a,z=4a’logx, +2a,a,(x, —x,) = (x, +x,)* +4a,a,
3. z=a(x; —log x, =1/x3)+b
4. Z=x1%y +a(x3+x4)+b
14.6 Further Readings
Books Piaggio H.T.H., Differential Equations

Sneddon L.W., Elements of Partial Differential equations
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Unit 15: Higher Order Equations with Constant
Coefficients and Monge’s Method

CONTENTS

Objectives
Introduction

15.1 Linear Partial differential equations of order n with constant coefficients;
complementary functions

15.2 Case when the auxiliary equation has equal roots

15.3 The Particular Integral (P.1.)

15.4 Shorter Method for Finding Particular Integral

15.5 General Method for Finding Particular Integral (P.I.)

15.6 The Non-homogeneous Equation with Constant Coefficients
15.7 Equation Reducible to Homogeneous Linear Form

15.8 Monge’s Method

15.9 Monge’s Method of integrating Rr + Ss + Tt + U (rt - %) = V
15.10 Summary

15.11 Keywords

15.12 Review Questions

15.13 Further Readings

Objectives

After studying this unit, you should be able to:
o Set up partial differential equations having higher order than that of first order.

o Know that various methods are employed depending upon the structure of the partial
differential equation.

o See that each section is followed by a set of self assessment problems related to that
section. By solving these problems the method can be understood.

Introduction

This section of the unit needs more practise for solving the various types of partial differential
equations.

The problems are classified according to the method used in solving them. It is therefore essential
to understand the method and its subsequent steps of solving the problem.
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Higher Order Equations with Constant Coefficients and Mong e’s Method

15.1 Linear Partial Differential Equations of Order n with Constant Notes
Coefficients; Complementary Functions

So far we have been dealing with partial differential equations of first order with first degree as
well as with any degree. In this unit we shall introduce higher derivatives than the usual first

a a 2 2 2
order derivatives —,<~. So we may have a—i,ﬂ, J i and so on and so forth. If we are
dx’ 0z dx” dxdy dy
dealing with only second order equations we denote r = & s= i and t= a—zz In dealin
g y q ax2 4 axay ayQ : g

d d
with higher derivatives let us denote —— by D and —— by D’, then

ox dy
2 2 2
9 -0, _ppr-pp, 2 -p7,.
ox oxdy 0

n n-1
aa —=D", aa ] ai =D""'D’ and so on. So we have to deal with a general equation of the form
x X" dy

F(x,y,z,ii,gj,;ii,%i;;,s;,...g;i j = f(x,y) ()
or (A)D"z+ A, D" "D’z + AD"?D? + ..+ A,D"z)
+(B,D" 'z + B,D"*D’'Z+B,D" D2+ ..+ B, ;D" 'z)

+.+[MyDz+ M;D’z]+Noz = f(x,) .(2)

Thus equation (1) may be written as

F(D,DYz = f(x,y) .(3)

Just as in the case of ordinary differential equations it can be shown that the complete solution
of linear partial differential equation will consist of two parts, namely:

(i)  The complementary function (C.F.), and
(i) The particular integral (P.I.)
The complementary function is the general solution of the equation
F(D,D)z =0 ..(4)

The particular integral is that value of z in terms of x, y which satisfies the equation (3) that
contains no arbitrary constants.

A Linear Homogeneous partial differential equation of order n with constant coefficients is that
in which F(D,D’) is a homogeneous functioni.e. f(D,D’) and is of the form

f(D,D)z = (AD"+AD"'D +..+ A,D")z = f(x,) (5)

Non-homogeneous differential equation is not homogeneous i.e. if all terms of D, D’ in the
function F(D, D’) are not of the same degree.
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Notes Just as we deal with ordinary differential equation

D"+a,D" ' +a,D" 2 +..+a = f(x)
1 2 n y

d
Where D = e shall deal briefly with the corresponding equation in two independent

variables,
(D" +a,D"'D+a,D"?D"*+...+a,D")z = f(x,y) ..(6)

0 0
here D=— and D'=—.
where 5y an 5

The simplest case is

(D-mD)z = 0

ie (Eic_maayj =0

or (p—mg) =0

where p = g—zandq=%
X ox

or z = (y+mx)

This suggests what is easily verified, that the solution of (6) if f(x,y)=0 is
Z = 0y +mx)+ 0y (Y +1mpx)+..0, (y +1m,x) +(7)
where the constants m;, m,, mj,...,m, are the roots (supposed all different)

m"+a,m" " +a,m"*+...+a, = 0 (8)

' Example: Solve

9%z 3 9%z 9%z

— - +2—— =0
x> T ox*dy  0xdy’
or (D*-3D*D’+2DD?*)z = 0
Now the roots of
m =3m* +2m = 0

or 0,1 and 2. So the solution is

N
]

Ry +E@y+x)+5(y+2x)
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Self Assessment

1. Solve

(D*-6D*D’+11D D' -6D"*)z=0

2. Solve
2r+5s+2t=0
9%z 9%z 9%z
where r = =

o2 Ty’ oyt

15.2 Case when the Auxiliary Equation has Equal Roots

Consider the equation

(D-mD’)’z = 0
Put (D-mD")z = u.
Equation (9) becomes

(D-mDWu = 0

The solution is

u = F(y+mx)
Therefore
(D-mD")z = F(y+mx)
or g—i—mg—; = F(y+mx)
The subsidiary equations are
dx _ dy __ dz
1 -m  F(y+mx)
From the first two terms we get
y+tmx =g
and from first and last term we have
dz—F(y+mx)dx = 0
or dz—F(a)ydx = 0
So the solution is
z = xF(a)+b
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Notes

Hence the solution is

O(z—x F(y +mx), y+mx) = 0
or z = xF(y+mx)=F(y+mx)
S0 z = xF(y+mx)+F(y+mx)
In general, the solution of

(D-mD)z =0

is z = E(y+mx)+xF(y+mx)+..+x'F(y+mx)
' Example 1: Solve
'z 9z o'z 9%z
Sa 25512 3 532 =0
ox ox’dy  odxdy’ 9y
The auxiliary equation is
m*=2m® +2m-1 = ¢
m*—1-2m(m*-1) = 0

(m? =1)(m* +1)-2m(m*-1) = 0

(m*-1)(m-1* = 0=(m+1)(m-1)°
So therootsare1,1,1, -1

Hence the solution is

z = Fl(y+x)+xF2(y+x)+x2F3(y+x)+F4(y—x)

' Example 2: Solve

(25D*-40DD’+16D"*)z = 0
The auxiliary equation is
25m* —40m+16 =

(5m—4)* =
The roots are m= %, 4/5 are repeated roots so the solution is
z = FE(5y+4x)+x F(5y +4x)
Self Assessment
3.  Solve

9%z 9%z 9%z

gz +4- 9% _
ox® axzay Bx8y2
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Higher Order Equations with Constant Coefficients and Mong e’s Method

4.  Solve
2 2
92 692 19,20
ox oxdy

15.3 The Particular Integral (P.I.)

We now return to the equation (3) i.e.

F(D, D)z = f(x,y) (1)
Now the most general solution of equation (1) can be written as
z = complementary function + Particular function
or z = CF+PlI -(2)

In the above we have found C.F. for the homogeneous equation and now in the following find
the P.I. We can write

. . _ 1
The particular integral = F(D,D’)f(x'y) ..(12)

Here we treat the symbolic function of D and D’ as we do D alone. We can factor. F(D, D’),

1
resolve F(D,D’) into partial fractions on expanding in power series.

(@) OnExpansion

' Example 1: Solve

(D*-4DD’'+4D"?*)z = 0
The complementary function is given by

(D*-4DD’'+4D*)z = 0

CFE. = F(y+2x)+x F(y+2x)
The particular integral is
1 2
= +
PL = 2 —4DD’+ D (4) (" +xy)
or PL = (D?>-4DD’+4D"?)"(x* +xy)

-1
1 4D’ D7
= Dz(l—D+4D2j (x2+xy)

1( 4D’ 4D 16D7
= T+

o7 ) o7 + e +...](x2+xy)
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%(xz +xy+%(x)+0)

Py ot K
= 4+t =
8

Xy
12 6 24 6

+

Thus the complete solution is

4 .3
z = F(y+2x)+x Fz(y+2x)+%+%

' Example 2: Solve

(D2 —aZD’Z)z = 52
Solution: The complementary function is given by the equation
(D*-a*D*)z = 0

The auxiliary equation is

m*—a®> = 0
with roots m = aand m=-a.
So CF. = F(y-ax)+FE(y+ax)

The particular integral is given by

1
PI = (Dz_az D/Z)(‘xz)
-1
1 a*D”?
= Dz[l D2 ] (xz)

So the complete solution is
X
z = F({y—-ax)+E(y+ax)+—.
12
Self Assessment

Pz 0%z 0%z
5. Solve 92 xdy ayz Y

7_{_ =
6. Solve ax2 axay ayZ
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15.4 Shorter Method for Finding Particular Integral Notes

When dealing with the equation
FD,D)z = f(x,y)

We consider a special function of the form

fxy) = o(ax+by),

then a shorter method may be used. Now

D¢ (ax +by) a §’(ax+by); D'¢ (ax +by)=be’ (ax +by)

a’¢" (ax + bx)

So D"¢(ax +by)
D" ¢(ax+by) = b'¢"(ax+bx)

and D’ D'qo(ax+by) = a’ b7 0" (ax+by)

Here ¢" is the nth derivative of ¢ with respect to ‘ax + by’ as a whole and # is the degree of
F(D,D’).

Hence we will have

F(D,D")¢(ax+by) = F(a,b)¢"(ax+by) (13)
when ¢" is the nth derivative of ¢ with respect to ‘ax + by” as a whole and # is the degree of
F(D,D").

. 1 . .
Operating by W on both sides of (13) and dividing by F(a, b), we get
! 0" (ax+by) = L¢(ﬂx+b ) 14
E(D,D') = Fab) v ~(14)
provided
F(a,b) = 0.
Therefore #¢1(ax+b) = L III¢1(u)du...du
F(D,D) F(a,b)
= ! th integral of h =ax+b 15
= Fab) nth integral of ¢, where u = ax + by ...(15)
' Example 1: Solve
(r-2s+t) = sin(2x+3y)
Solution:
2 2 2
Here r = oz U J
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So (D*-2DD’+D"?)z
The auxiliary equation is

m?=2m+1

having roots m =1, 1, so that

CF.

and P.L

Putting 2x+3y =u, so we have

P.L
Thus the solution is
z
' Example 2: Solve
(D> -D"?)z
The auxiliary equation is
m? -1
S0, m
and CF.
PL
Let u=2x+y,
PL

sin (2x +3y)

F(y+x)+x E(y+x)
1 .
WSIH(2x+3y)
ﬁ.”.sin u du,du
1J.(—cos u)du

—sin u = —sin(2x + 3y)

CF. +PL

F(y+x)+xF,(y+x)—sin(2x +3y)

30(2x+y)
0
+1,-1

Ry+x)+E(y-x)

1

m30(2x+ y)

1
a7 j (u du)du

1 u?
g(30)]7du

1/[3 5 3
10 —=—(2x+
6 6( X+y)

LOVELY PROFESSIONAL UNIVERSITY
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Higher Order Equations with Constant Coefficients and Monge’s Method

So the solution is

Notes

5
aw+xw4uy—@+gax+w3

Z =

Self Assessment
7. Solve

(D*+3DD’+D"?)z=(x+y)
8. Solve

(D* + D)z = cos (mx +ny)
Particular case when F(a, b) =0

1, 1

As ———0"(ax+by) = ———b(ax+by)

F(D,D)

F(a,b)

but if F(a,b)=0 then R.H.S. becomes infinite and the above method fails.

Now consider the case

(bD-aD")z

or bp—aq

x"¢ (ax + by)
x"¢ (ax +by), where ...(16)

o i
o1 dy’

Applying Lagrange’s method to (1) we get

So one solution is

dy dz

-a  x"¢(ax+by)

¢, and the other solution is given by

x'9(c)
r+1

(r+1)b

O (ax+by)

This is the solution of the given differential equation (16).

1
L b
Thus (bD—aD')x O(ax+by)

Next consider

r+l

b(r+1)

¢ (ax +by) .(17)

1
m(‘)(ﬂ]f"‘ by)
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Notes

1
Th b g(ax+b
o D —aD'y (> EY)

When F(a,b)

' Example 1: Solve

(D*-2aDD’ +a*D'?)z

Solution: The auxiliary equation is
m? —2am +a>
(m—a)?

m

The complimentary function is

C.F.

PL

1 1
(bD—aD’y"' " (bD - aD’)

O(ax +by)

1 X
1 1
(bD-aD’)""* (bD —aD’)

%¢(ax+by)

1 x
(eD—apry 2 22 M)

1 1 1
|26 (bD—aD’)"™ (bD - aD’)

X% (ax +b)

1 1
@.W.X?)q)(QX‘F b)

f(y+ax)

F(y+ax)+x F,(y+ax)

1
D?>-24DD’ +a

2 f(y+ax)

2

D = e

LOVELY PROFESSIONAL UNIVERSITY



Higher Order Equations with Constant Coefficients and Mong e’s Method

So the complete solution is

' Example 2: Solve

(4D?-4DD’+D"?)z

Solution: The auxiliary equation is

4m® —4m+1

m =

C.F.

PL

So P.L

Thus the solution is

Self Assessment
9. Solve

(D-D’)? =x+d(x+y)
10. Solve

F(y+ax)+x Fz(y+ax)+xL22f(y+ax)

ex+2y + x3

0

1/2,1/2

FEQy+x)+x F(2y+x)

(ZDED')Z e )

1 X+2y 1 3
_ /Ze _ /Zx
(2D-D") (2D-D)

2 7 \—2
LY +L(1_ D ) 2
24 4D? 2D

2 ’
L o2y +L(1+—+ ...)xS
8 4D? D

FRSE S SR o
4745 8 80

2
X €x+2y

8

5
x+2y +L

2
F(2y+x)+x F1(2y+x)+%e 5

(D* -4D’D’ +4DD'?)z = cos(y +2x)

15.5 General Method for Finding Particular Integral (P.I.)

Consider the equation

(D-mD")z =

f(xy)

LOVELY PROFESSIONAL UNIVERSITY
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Notes

) Jz 0z

ie ox Moy = fow)

or p-mq = f(x,y)

where p = g—zandq=g—z.
X

So Lagrange’s auxiliary equations (A.E.) are

dx dy dz

1 -m  f(x,y)
From the first two fractions, we have
y = —-mx+c

From the first and last fractions
dz = f(x,y)dx= f(x,c—mx)dx

z = f(x,c—mx)dx

(1)

-(2)

and after integration (¢ — mx) is replaced by y because the P.I. does not contain any arbitrary

constant.

Now, the particular integral of

1 ~ 1 1 1
70,0y ) = D=mD (D=-mD) " D=m,D

f(xy)

can be determined by the repeated application of the method given above.

Illustrative Examples

' Example 1: Solve: r+s—6t=1ycosx

Solution: The given equation can be written as
(D*+DD’'-6D"%)z = ycosx

AE.is m*+m-6=0, ie, m=2,-3

CF. = ¢;(y+2x)+0,(y—3x)
1 cosx
Now, PIL = (D—2D’)(D+3D’)y
1
W.I(c +3x)cos xdx

= ﬁ[csimﬁi’»x sin x +3cosx]

LOVELY PROFESSIONAL UNIVERSITY
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Higher Order Equations with Constant Coefficients and Monge’s Method

Hence the complete solution is

z

' Example 2: Solve: (D> —4D"?*)z

1 Notes

m[(y—Bx)sinx +3xsinx+3cosx]

[putting back ¢=-3x+y]

(DilzD/)[ysimH 3cosx]

J-{(k—Zx)sinx+3cosx}dx [ 2x+k=y]

—kcosx —2(—xcosx +sinx)+3sinx
—(y +2x)cosx +2xcosx +sinx [y =k+2x]

—Ccosx +sinx.

C.F.4+P.I.=¢;(y+2x)+0,(y—3x)—ycosx +sinx.

Ay
772

<

Solution: The C.F. = ¢1(y +2x)+0,(y —2x)

Now, PIL =

1
(D+2D’)(D—2D’){

4x y
oAl

B 1 J‘ 4x
~ D+2D'd | (c-2x)?

-2
< zx}dx (ve=2x=y)

_ 1 J‘ 5 —2x+c—2c _%+g g
D+2D’ (c—2x) x° x

1 1

D+2D’

D+2D’

k+4x k+4x
- J[Iog(k+2x)+k+2

- j[log(k+2x)+1+

= ! [Iog(c —2x)+

_ 1 |:10gy+y+2x+y+2x
y

e —C+2}dx

= - +
D+2D’I[ c=2x (c-2x)* x* «x

€ +£+210gx}
2x «x

c—

<——+2log x} [putting ¢ = y + 2x]
x

+

+210gx}dx where y =k + 2x

X

2x+k-k k

+7+4+2logx}dx
+2x x

LOVELY PROFESSIONAL UNIVERSITY
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J.[log(k+2x)+1+l— k +k+4+210gx}dx
k+2x x

J.[log(k +2x)+6— k+k2x +§ + 210gx}dx

[log(k +2x).x —'[ P 2

k 1
Xdx+6x —— -=
oz x+6x 2log(k4—2x)+klogx+2{logx.x -I.x'deH

k+2x—-k

xlog(k+2x)—'[ T 0x dx +6x —glog(k+2x)+ klog x +2xlogx —2x

xlog(k+2x) —x+§log(k+ 2x)+6x —glog(k+2x) +klog x +2xlog x —2x

xlogy—x+§10gy+6x—%logy+klogx+2xlogx—2x (putting back y =k + 2x)

xlogy—x+6x+klogx+2xlogx—2x
xlogy +3x+(y—2x)logx +2xlog x

xlogy +3x+ylogux.

Hence the complete solution is

z =

O, (y+2x)+0,(y—2x)+xlogy +3x + ylog x.

' Example 3: Solve: r—t = tan® xtan y - tan xtan’ y

Solution: The given equation is

(DZ_D/Z)Z -

CF.

P.L

tanxtany (tan’ x —tan? y).
2 2
tanxtany (sec” x —sec” y)

0 (y—x)+0,(y +x).

W(D—D’) tan x tany (sec” x —sec” )

%Jl tan x tan (c - x){sec?
+D

5 x —sec?(c - x)}dx [where ¢ —x =y]

1
D+D’

U tan x tan(c - x)sec® x dx — J. tan x tan(c - x)sec? (c —x) dx]

1 1
~ [f’can2 xtan(c —x) +7J.tan2 xsec® (¢ —x)dx
D+D’"[ 2 2

+%’canxtan2 (c —x)—%J.tan2 (c - x)sec? xdx}

LOVELY PROFESSIONAL UNIVERSITY
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Higher Order Equations with Constant Coefficients and Monge’s Method

Notes

ﬁ[tamz xtan(c —x)+ tanx tan®(c — x) + I{secz x—sec’(c— x)}dx}

[tan2 xtan(c - x)+ tanx tan?(c — x) + tan x + tan(c — x)]

2(D+D’)

72(D1 D) [tam2 xtany + tanxtan® y+tanx+ tany] [By putting back y = ¢ —x]
#[tany sec” x + tan xsec” y]

2(D+D’)

%J-[tan(k +x)sec” x + tanx sec? (k + x)]dx wherek+x=y

%I[%{tanx tan(k + x)}] dx

1 1 .
Etanxtan(k +x)= Etanxtany [putting k + x =y]

Hence the complete solution is

4

¢1(y_x)+¢2(]/+x)+%tanxtany

' Example 4: Find the particular integral with the help of general method for

Solution: We have

PL

(D*-2DD’-15D"%)z = 12xy

1
(D*-2DD’ -15D"?)

12xy

1

—————12xy
(D+3D")(D-5D")

12
(D+3D’)

2 (o 5
D+3D’\ 2 3

(3cx? —10x%)

JX(C —5x)dx, where y = ¢ - 5x

D+3D’

2 .
D130 (3y +15x-10x), (putting back c = y + 5x)

LOVELY PROFESSIONAL UNIVERSITY
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Notes 5

_ 2
= 7(D +3D) x°(3y +5x)

= 2jx2{3(k +3x)+ 52} dx, where k+3x =y
= zjx2(3k+14x)dx

= 2k’ +7x* =227 (y - 3x) + 7x*

= 2’2y +x).

Self Assessment

11. Solve
(D+D’)*z=2cosy—xsiny
12.  Solve

(D*-DD’-2D"?*)z=(y-1)e"

15.6 The Non-homogeneous Equation with Constant Coefficients

The simplest case is

(D-mD' -a)z = 0

or 7 = e(mD’+a)x¢ (y)

where D’ has been considered algebraic and ¢ is arbitrary.

= e"o(y +mx).
Note. Also
(D-mD'-o)z = 0.
or p-mq = oz.

- The subsidiary equations are

& dy_dz

1 -m oz
z = e*¢(y+mx).
Similarly the integral of
(D-mD’" =0y )(D-myD" — 0, )(D-myD" —03)... = 0

is z = "1 (y + myx) + €720y (i + m,x) + ™3 05 (Y + M,X) + ...

LOVELY PROFESSIONAL UNIVERSITY
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Higher Order Equations with Constant Coefficients and Mong e’s Method

In case of repeated factors Notes
(D-mD’ -z = 0 (1)
or (D-mD"—o)(D-mD’'-a)z = 0
let (D-mD’ -a)z=v,
Then, (D-mD’—a)v [from (1)]
or v = ", (y+mx)
or (D-mD' -z = e™¢,(y+mx);

, = e(mD’+cx)x [I{e—(r:zD’—u)x +eax(])1(]/+n”IX)}dx+¢2(]/)i|

e(O”"‘D’)xJ. () dx +e™e"™ 0, (y)

€™ x0, (y + mx) + e, (y + mx)

Similarly proceeding in the case of (D—-mD’—a)" z=0, we have

ox . r=1

z = e, (y+mx)+e™ xd, (v +mx)+ e x5 (v + mx)+...+ e x0, (y + mx)

The Particular Integral

The methods for obtaining particular integrals of non-homogeneous partial differential
equations are very similar to those used in solving linear equation with constant coefficients.

Note: It can be easily shown that

ax+by
1 ax+by _ € )

F(D,D’) " F(a,b)

provided F(a,b)#0.

—sin (ax + by) or cos(ax +by)

_1
I Fp,0)

is obtained by putting D* = —a®, DD’ =-ab and D> = —p?, provided the denominator is
not zero.

xmyn — [F(D, D/)]—l xmyn

L. f (D,D)

which can be evaluated after expanding [F(D,D’)]™ in ascending powers of D or D".

1 ax+by
— (e vV
V. Fp, D,)( )

eux+by 1 A%
F{(D+a).(D"+D)}

LOVELY PROFESSIONAL UNIVERSITY
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Notes Illustrative Examples
' 2 2
% Example 1: Solve: %_%_3%+3%=xy+ex+2y.
ox~ 9y ox 9y
Solution: Here, (D*—D’*> =3D +3D")z = xy +e***¥

or, (D-D’)(D+D’-3)z=xy+e"*?

The complementary function is

O(x+y)+e ¥ (y-x).

xy ex+2y
= +
NowPL = 5 pyD+D-3) (D-D)(D+D -3)
1 ex+2y
= 4 xy+ ’ ’
3(D,_D)[1_D;D] (1-D)(1+D’ -3)

1 {1+(D’+D)+(D’+D)2+“1xy+ et e
3 9 (-1)(D’ -2)

= ¥[xy+£+z+g:|—e’(.ezyxi.1
30 -D)Y 373 9 D’

- ;D'(W%*%*%)‘me
—3D(1——)
D

’ ’2
I 1+2+D2 +... (xy+£+z+g)—ye“2y
D D 3 3 9

32 9 2 9 27 18 18

The solution is
z = ¢(x+y)+63“l’(y—x)—x— 777777777 yex+2y
' Example 2: Solve: (D-D’-1)(D-D’-2)z=e*"¥ +x.

Solution: The complementary function is

€ 0y(y +2) + €0, (y + )

LOVELY PROFESSIONAL UNIVERSITY
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Higher Order Equations with Constant Coefficients and Monge’s Method

1 Notes

PL = D-D-1)(D-D-2)

[ +x]

1 e 1
(D-D'-1)(D-D’-2) (D-D'-1)(D-D’-2)

X

1 e2x—y
Now, ‘p_p' -1y (D-D'-2)

2x 1

Y
(D+2-D' -1)D+2-D'-2)°

2x 1

eV
(D-D’+1)(D-D’)

er 1 e*y
[0-(-1)+1][0-(-1)]

1 ., 150
ZX.*(:' y_ieZ:( y

2 2

= €

1
Also, (DD —1)(D-D'-2)

X
- 1 11 1 ’ !
= S-(-D)] [1—5(D—D)] x

- 4yip-p Lp-p
= 2[1+D D+...][1+2(D D)+..}x

= l[1+§D—3D’]
2 2
= 1[x+§——><0}=fx+—
2 2
The solution is
X X 1 X—=Y 1 3
z = €O (y+x)+e? (1)2(y+x)+ge2 «’+Ex+1.

2 2
' Example 3: Solve: a—i - a—i + 9z + 3% —2z=¢" - x%y.
Jox~ dy~ ox 9y

Solution: [(D-D')(D+D’)+2(D+D’)~(D-D")-2]z=¢""¥ - x’y

or [(D-D'+2)(D+D’'-1)]z=¢""Y —x%y
The complementary function is
e—2x

2= Py +a)re W (y-2)
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Notes

ey x’y
Now, P.L ; ; T2 2 ,
(D-D'+2)(D+D’'-1) D*-D"+3D"-2

ey B X’y
1-D'+2)D’ ' D2 D?
( o |, |p 8D D2 D

2 2 2 2

e D 3 D? D*) |D 3D D? D*Y
= +—|1+0| —+ - +— |+ =+ - +—
4 2 272 2 27272 22

D 3D D? DY ,
Hor = |+ x
272 2 2

ey 1{ D 3D' D* D* 3DD’ 3D*D' 3DD’ 3D’D’ }2
t5 + + + +o Xt

= - 1+—+ +—+—+
4 2 2 2 4 2 2 4 8
xX-y 2

S x2y+xy+3i+y+1+3x+3+§+E
4 2 2 2 2 4

xX=y 2 2
4 2 4 4 2 2 8

The solution is

z = e'zx(l)(y+x)+ex‘}’(y—x)—

' Example 4: Solve the equation:

(D -4D’D’+4DD*)u = cos(y +2x)

or D(D-2D")u = cos(v+2x)

Solution: C.F.is ¢;(y)+ 0, (y +2x) + x¢5 (y +2x)

1 1 . (y+2x)}
- — 2 = ,
PL = (D—ZD’)ZDCOS(y+ x) (D-2D'Y? {sm 5
i Lq)(mwb ) = E(I)(ax+b )
Now since (bD —aD’) y) = b Y),
Pl = 1 { 1 sin(y+2x)}_ 1 {xsin(y+2x)}
- (D-2D)|D-2D" 2 - (D-2D") 2

2
= Zsin(y +2x)
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Higher Order Equations with Constant Coefficients and Monge’s Method

The solution is Notes

2
W= 1Y)+ oy + 22) + X0y (y +22)+ sin(y + 2x).

Self Assessment

2 2

13.  Solve a—i—ua—i+2ab%+2u2b%=0
ox dy ox y

1 Biz_ O’z +ai—z—cos(x+2 )

14. Solve 0 vy ay Y

15.7 Equation Reducible to Homogeneous Linear Form

An equation in which the coefficient of a differential coefficient of any order is a constant
multiple of the variables of the same degree may be transformed into one having constant
coefficients. The method is explained with the help of the following equations.

' Example 1: Solve

x2&+2x 9’z + 292
o Y oE =0

d 9
Solution: Assume, u =logx, v=1og y, also denoting % by D and P by D’, the given equation

reduces to

[D(D-1)+2DD’ + D'(D’ - 1))z

Il
o

or (D+D)D+D' -1)z

]
o

Hence the solution is
z = 0(v-u)+e dy(v-u)

= 0,(logy —logx)+0,(logy —logx)

= 0 (log%)+ x, (log yj

x
x x
'i Example 2: Solve: yt—q=xy.

Solution: The equation can be written as

P a
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Notes Put x=¢",y=e¢

dz 0z 182_1%

X—,—=—
ox ou x dy yov

o lae = &
X— || X— |2 = —x
ox dx o2

2z, 0z 02
or e ox | on

9%z 0z 92
2072 _ 9z
and Y 3y’ U W

The equation (1) becomes

&_2% - eu+2v
ov:  Tov

The complementary function is
= 01(w)+ e 0, (u)
= ¢:(logx)+y* ¢, (log )
= W@+ ()

1 u+2v
P.I. = ’ ’_ €
D'(D’-2)

_ 1 eu+2v
- D'(D'-2)
u+2v u+2v
_ ¢ « 1 (1)= e
2 (D'-2+2) 2
1 2
= —xy°l
2 XY o8y
2 xy*
The solutionis z = ¢,(x)+y 4)2(x)+710gy
Aliter. yt—q=xy
The equation can be written as
99 1. _ .
Wy
Solving,
[~y ~[Lay
ge V= J.xe Yo dy+0,(y)
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Higher Order Equations with Constant Coefficients and Monge’s Method

< |

or

is the required solution.

[Fay+o.)
y

xylogy +y0q(x)

xylogy +y0q(x)

yZ
[ ylogydy + 01 (1) 2+ 0,()
{yzl fyz 1d} f(x) + F()
x| “—logy— | =—x—dy |+ x)+F(x
5 o8Y 5 yy Y

2 2
%logy—%wzf(XHF(X)

' 2 2
% Example 3: Solve: ngé—yz 0z _, 0z + 0z _ 0

e Yo ox T

Solution: Assume u =logx, v=1ogy. Then

9z
ox
N
or FW
0 ( Bz)
X—| x—
ox\ ox
Similarly
o
The given equation reduces to
u® v’
for which

o 1
ou x

LN )

oy S0 that Yor==-r ..(1)
a0 _—
ax2 ax au2 [ rom ( )]

O(u+Vv)+y(v—u)

0[logx +logy]+w[logy —logx]
¢(logxy)+\u[log(y H

X

A [ Y)

LOVELY PROFESSIONAL UNIVERSITY
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Notes )
2
Example 4: Solve: x Fa 4xy

9%z
dxdy 8y2 ay

2
+4y3a—z+6y% =2’y

Solution: As shown in the last example, if u =logx,v=Ilogy,

0z

ox

pT

oxr " ox

J( oz

Now yg(xaix)
or X G
T axdy

b 0z i
au' Yoy ov
9%z 2%z 0z 9%z

o -+ I =_C
auz and Y ayZ ay ayQ

o)
ov\ du

0%z
ovou’

With these substitution the equation takes the form

9?2z 0z 9%z 9? Jz 0z
g2 % 4 12 4% .6
ou* ou  Juodv * ov?

9%z 9*z 4 9%z

or —

+
ou’ Juov  ov?

d
Denoting ai by D and = by D"in (1).
u

ov

(D*-4DD’+4D*-D+2D')z = e

—+6— = eSu.eﬁlv
Jdv oV
0z 50z sy
ou  dv

2u+4v

[(D-2D)(D-2D'-1)]z = &

The complementary function is

P.L

The solution is

O, (V+2u+e"d,(v+2u).
04 (log x”y) +x0, (log x*y)
o(xy)+x w(x%y)

1 Su+dv
(D-2D')(D-2D’-1)

3. 4
1 QS Xy

(-5)(-6) 30
O(x%y) + 0y (x*y) + %.
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Higher Order Equations with Constant Coefficients and Monge’s Method

Self Assessment Notes

15. Solve

2 aZZ 2 822

Yo VoY

15.8 Monge’s Method

We shall usually take z as dependent and x, y as independent variables and throughout this
chapter we shall denote

0z 0z 9%z 8722

9%z
== by p,— by q,ﬁ by r,—— by s, and o

by t.
ox oy dxdy Y

Monge’s Method of Solving the Equation

Rr+Ss+Tt =V (1)
where 7, s, t have their usual meanings and R, S, T and V are functions of x, y, z, p and q.

We know

dp , . op
L dx+-—"d
ox e ady Y

= rdx+sdy

and dg = S—de+g—3dy

= sdx+tdy.

Putting the values of r and tin (1),

R(M)+S.S+T. dg-sdx) _ y

dx dy

or Rdpdy+Tdgdx+Ssdxdy—Rsdy®>-Tsdx> = Vdxdy

or (Rdpdy+T dgdx—V dx dy) = s(Rdy*-S dxdy+Tdx?) .(2)

If some relation between x, y, z, p, ¢ makes each of the bracketed expressions vanish, the relation
will satisfy (2); therefore

Il
o

Rdy*-S dx dy+T dx* -(3)

Rdp dy+T dg dx—V dx dy ..(4)

]
o

LOVELY PROFESSIONAL UNIVERSITY
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Notes

Now it may be possible to get one or two relations between x, y, z, p, g called intermediate
integrals, and then to find the general solution of (1).

If (3) resolves into two linear equations in dx and dy such as

dy-mydx = 0,and dy-m, dx=0, .(5)
from one of the equations (5) combined with (4) and if necessary with dz=pdx+qdy, we may
obtain two integrals u; =a and v, =b; then u; = f;(v;),
where f, is an arbitrary function, is an intermediate integral.

Proceeding similarly from the second equation, we may get another intermediate integral u, =
(V-

From these two integrals we may find the values of p and g and putting these values in dz = p dx
+ g dy and integrating it we get the complete integral of the original equation.

Illustrative Examples

' Example 1: Solve by Monge’s method 7 = at.

Solution: (This can be easily solved by the method discussed in the last section. Here we solve it
by Monge’s Method).

Putting r = dp=sdy and t= dq—s dx
dx d

in the given equation, dpdy—a* dx dq = s(dy” —a” dx?).

So the subsidiary equations are

dy*—a*> dx* = 0 (1)

and dpdy—a*dxdg = 0. (2)
From (1)

dy+adx =0 ..(3)

dy—adx = 0. ..(4)

Taking (3) and combining with (2), we get

dp+adg = 0.
ptga = A.
Also y+ax =

p+ag=¢,(y+ax) is an intermediate integral.

Similarly p—aq=¢,(y—ax) is the second intermediate integral.

From these,

p o= S0+ +o(y+av)]
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and qg =

5101+ ) =0, (y =)

Substituting these values in dz=pdx+q dy, we have

€z = 210,(+ax) -0,y d+ o [0,(y+a%) =0,y ~d0)ldy
or dz %(dy+u dx)(])dyﬂzx)—%(b2 (y —ax),
or 2 = fily+an)+ foly-av).
Example 2: Solve by Monge’s method:
(b+cq)*r—2(b+cq)(a+cp)s+(a+cp)’t = O.
Solution. Putting
dx dy
(b+cq)? W—Z(lwcq)(aﬂrp)s +(a+cp) % ;ys i 0.
The subsidiary equations are,
(b+cq)® dy® +2(b+cq)(a+cp)dx dy +(a+cp)*dx®> = 0,
(b+cq)dp dy+(a+cp)’dx = 0,
From (1),
(p+cq)dy+(a+cp)dx = 0
Combining it with (2),
(b+cq)dp—(a+cp)dg = 0
From which af—ipcp = %
and therefore, (a+cp) = A(b+cq).
Also from (3) and dz=pdx+q dy, we get
adx+bdy+cdz = 0
or ax+by+az = B.
From (4) and (5),
atcp = (b+cq) d(ax+by+cz)
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dx dy _ dz _adx+bdy+cdz
c -0 —a+bo 0

where ¢ stands for ¢ (ax+by+cz),

so that
ax+by+dz = K,
d
and @ dy
¢ —cd(Ky)
Integrating

X(I)(Kl) = _y+K2'

y+xd(ax+by+cz) = wy(ax+by+cz). [as K, =Y (K))]

' Example 3: Solve by Monge’s method 7 +(a+b)s+abt = xy.

Solution: Putting

dp-s dy, and r:dq—s dx,
dx dy

dg—sdx

dp—-sdy
—=+(a+b)s+tab—— =
(a+b)s+a y xy

dx

or dp dy+ab dq dx—xy dxdy =s[dy® —(a+b)dx dy +abdx*]
The subsidiary equations are

dy* - (a+b)dx dy +ab dx*

Il
o
A
=
~

and dpdy+abdgdx—xydxdy = 0 (2
From (1)
dy—adx = 0, -(3)
dy -bdx = 0, (4)

Whencey —ax=c,and y - bx =c,.
Combining these with (2), we get

adp+ab dg—ax(c; +ax)dx = 0

and bdp+abg—bx(c, +bx)dx = 0
2 3

tbg—c;——-— = A,
or prbg—ci ==
b’

tag—c,——-—— =B
praq=t =
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Higher Order Equations with Constant Coefficients and Monge’s Method

2 ax® Notes
or P+bl1—(y—ax)7—7 = 0y(c;)+0(y —ax)
2 b 3
P+aq—(y—bx)%—% = 0y(cy) =y (y —bx).
Solving,
1 |y ;o
P= o T(a—b)—(a -b )Z+a¢1(y—ax)—bq)2(y_bx) )
1 x°
q = b_a _Z(a_b)+¢1(]/_’1x)—¢2(]/—bx)

Putting these values in dz =p dx + g dy,

5 - {yxz_(Hb)ﬁ+u¢1(y—ux)dx_a%(y—bx)Hf_¢1<y—ax)+¢z<y—bx> dy
2 6 a-b a-b 6 a-b a-b

3
_ _(a+b)x g
6

+3x2y dx+x3dy_ 1

L,y ax)(dy—a o)+ [0y~ bx)(dy b )]
a-b a-b

3 3
oz o= —%+%+‘Pl(y—ax)+‘{’z(y—bx).

Note: This question could be solved by the method of Ist chapter also.

' Example 4: Solve by Monge’s method
q+q)r=(p+g9+2pg)s+p(l+p)t = 0.
Solution: Putting

dp—sdy fo dg—sdx

dx dy
dp—sd dg—sdx
@+ =2 (prg+2pg)s+p(L+p) T
dx d
or [(g+4q°)dp dy+(p+p?)dq dx]

= sl(q+q7)dy® +(q+q+2pq)dx dy +(p +p*)dx’]

The subsidiary equations are

]
o
—~
[
—

(q+q°)dp dy+p(1+p)dq dx

and [(g+q%)dy” +(p+q+2pq)dxdy +(p+p?)dx’]

[
o
A
N
B

From (2), gdy+pdx = 0 .(3)
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and (1+q)dy+(1+p)dx

From (3), and

dz
dz
and from (4), and
dz
dx +dy +dz
or, x+y+tz

Now combining (3) with (1)

(q-1)dp—(p+1)dq

and combining (4) with (1),

qdp—pdg
ie., dp —dq
or p - q
dx

1
or X

.(4)

p dx+qdy, we have

0,0rz=C, .(5)

p dx + q dy, we have

0/
C

2

0
0

.(6)

(7)

(8)
[from (7) and (8)]

ki =01(C1) =04(2)

dl: dz
-1 04(2)

E(2)+k, =F(2)+ K(C,)

F(z)+E(x+y+2)

' Example 5: Solve : q°r —2pgs+p*t =0 and show that the integral represents a surface
generated by straight lines which are parallel to a fixed plane.

Solution: Putting

(9* dpdy +p*dq dx)

The subsidiary equations are

q*dp dy +p*dg dy

g dy+p dx
Also dz
z

From (1) and (2),
or qdp—pdq

dp—sdy

and t=d1754dx
dx dy

s(q* dy* +2pq dx dy +p* dx?)

0

(1)

pdx+qdy=0.

C.
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or p/q = k=fc)
p-afic) = 0
dx _ _dy
1 —f()
y+xf(c) = K=F()
y+xf(z) = F(2).

Notes

e

The integral of the differential equation is the surface (3) which is the locus of the straight lines
given by the intersections of planes y+xf(c)=F(c), and z = c. These lines are all parallel to the
plane z = 0 as they lie on the plane z = ¢ for varying values of c.

' Example 6: Solve by Monge’s method
r—a’t+2ab(p + qa)

Solution: Putting

dp dy —a* dq dx +2ab(p +aq)dx dy
The subsidiary equations are
dy* — a*dx?
dp dy — a* dq dx +2ab(p +qa)dx dy
From (1),

y+ax
y—ax

From (3) and (2)
dp+a dg+2ab(p +qa)dx

dp+adg
ptaq

or

log (p +qa)

ptaq

dp—sd _
proiy and t= dq s dx
dx dy

, we get

s(dy? —a® dx?)

,

—2ab dx

—2abx +logc,

(p+aq)

—2abx

or

f(a)

f((x) e—Zabx
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Integrating,

f(OC) e—Zubx
—2ab

z+k=z+0(p)

—2abx

z

fily+ax)e™ + fo(y - ax)

' Example 7: Solve by Monge’s method
r—tcos’x+ptanx = 0.
Solution: Putting

dp—s dy t_dq—sdx
PV dy r we get

dp dy—cos®x dx dg+qtanx dx dy = s(dy® - cos” x dx?).

The subsidiary equations are

dy* —cos’x dx* = 0, (1)

dp dy—cos®x dx pg+p tan x dx dy - 0. )

From (1), y =sinx + o, .(3)
y = —sinx+p. ..(4)

From (2) and (3),

cosx dp—cos®x dg+psinxdx = 0
or secx dp—dg+ptanxsecxdx = 0
or psecx—q = ¢ =f(a)=f(y—sinx).
ax__ dy_ _ dz
secx -1 (y-sinx)
and hence,
f(y—sinx)i(dy_cgsx dx) —dz.
F(y-sinx)+2z = ¢,G(B).
F(y—-sinx)+2z = G(y+sinx). [From (4)]

' Example 8: Solve the equation by Monge’s method:
t-rsec'y = 2gtany.

Solution: Putting

dp—-sdy t:dq—s dx
dx dy

LOVELY PROFESSIONAL UNIVERSITY



Higher Order Equations with Constant Coefficients and Monge’s Method

Notes
dq—sdx dp desec4y = 2tany
dy dx
or dg dx—secty dp dy—-2qtany dx dy = s(dx*-secy dy?)
Subsidiary equations are
dx* —sec*y dy*> = 0 ..(1)
dg dx—sin*y dp dy—2qtanydx dy = 0 -(2)
From (1) x =tany + a. .(3)
x = —tany+p. ..(4)
From (2) and (3)
sec’y dg dy—sec'y dp dy—2q tany sec’y dy> = 0
or dg-sec’y dp-2qtany dy = 0
or cos’y dg—dp—2gsiny cosy dy = 0
or geos’y—-p = C=f(x—tany)
e _ _dy _ dz
1 cos’y  f(x—tany)
or dx—sec®y dy _ —dz
2 f(x-tany)

%f(x —tany)(dx - sec? ydy) = —dz

F(x—tany)+2z K.

or F(x—tany)+2z O(x +tany) from (4)

The solution is

04 (x —tany)+ ¢, (x + tany).

N
Il

Self Assessment

Solve the following differential equations by Monge’s method
17.  2x%r—5xys+2y°t +2(px +qy) =0

18.  pt—gs= q3
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1594 onge’s Method of Integrating Rr+ Ss + Tt + U (rt-s?) =V

R, S, T, U are functions of x, y, z, p, 4.
As before put

r = (dp—sdy)/dx
and t = (dg—sdx)/dy.
The equation reduces to
Rdpdy+Tdgdx+Udpdq -V dxdy—s(Rdy* —Sdxdy +T dx*>+Udpdx+V dp dy) =0
or N-Ms = 0.

So far, we used to factorise M, but on account of the presence of U dx dp + V dq dy, the factors are
not possible; so let us try to factorise M + AN, where A is some multiplier to be determined later.

Now AN+M = A(Rdpdy+Tdqdx+Udpdg-V dxdy)
+(Rdy?-Sdxdy+T dx* +Udpdx +V dqdy)

= Rdy?+Tdx*—(S+AV)dxdy +Udpdx +Udqdy+XRdpdy+\T dgdx + AU dpdy.
Let the factors of the above be
ody+Pdx+ydp and o'dy +p’dx+7y'dg.
Equating coefficient of dy?, dx?, dp dq in the product,
oo’ = R,BR =T,y =AlU.
Now if we take
o = Ro'=1B=kT,p'=1/k),y=mU,y =A/m

equating the coefficients of the other five terms.

kT+R/k = —(S+AV). (1)
AR/m = U, -(2)
KTA/m = AT, -(3)

mU = AR, --(4)
mU/k = U. ()

From (5), m = k and this satisfies (3).
. AR
From (2) and (3), m=AR /U =k.| on putting k = 5a

From (1),
M(RT+UV)+AUS+U* = 0 (6)

The first step in practical working is to form the equation (6) in A and to determine the two roots
X, and A, of this equation.

So if A, is a root of (6), factorised M + AN is

(R dymlR—quxmlR dp)(dwkulzdﬁlédﬂ
1
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Higher Order Equations with Constant Coefficients and Monge’s Method

Or %(Udy+T)»1dx+7»1Udp)ﬁ()»1Rdy+lldp+)»1qu).
1
Similarly if A, is a root of (6), the same is,

R Wy + T+ 2, Udp) x — (hyRedy + U dx + L dg).
u AR
Now we may obtain two integrals u, =a;, v; =b; of the equations

Udy+A Tdx+AiUdp=0
Udx+h, Rdy+i,Udg=0

or we may obtain two integrals u, =4a,, v, =b, of the equations

Udy+)»2de+}»2Udp=O}

Udx+ARdy+1, Udg =0 ~(8)

Sets of equations (7) and (8), when written down, constitute the second important step in the
solution of the given equation.

Thus we get two intermediate integrals u; = f;(v;) and u, = f,(v,) and substituting in dz = p dz
+ ¢ dy, the values of p and g obtained from the two intermediate integrals, and we get the
solution after integrating.

In case the two roots of the equation (6) are equal, we shall get only intermediate integral
u; = f1(v;) which together with one of the integrals u, = a, and v; =b; will give values of p and
g suitable to solve dz=p dx+q dy.

If it is not possible to obtain the values of p and g from the two intermediate integrals u; = f;(v;)
and u, = f,(v,) , suitable for integration in dz=pdx +q dy, we may take one of the intermediate

integrals say u; = f;(v;) and one of the integrals from u, = a,and v, = b,.

The values of p and g obtained from these and substituted in dz=pdx+qgdy will give the
solution of the given equation.

Illustrative Examples

' Example 1: Solve:

ar+bs+ct+e(rt—s*)=h where a,b,c, e and h are constants.

Solution: Here R=a,S=b,T=c,U=¢,V=h

The equation in A is

A2 (ac + eh) + Abe + e?

Il
o
—~
=
~

Putting A —e/m, -(2)

(1) becomes

E—z(acﬂzh)—e—bﬂz2 =0

3
3
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Notes or m* —bm+(ac+eh) = 0 (3)

If m,, m, are the roots of (3), the first system of intermediate integrals is given by

Udy+MT dx+2 Udp = 0,
Udx+A,Rdy+A,Udg = 0,
ie., by edy+(—e]c dx+(—eJe dp = 0.
m, 1y
edx+(—e]ady+(—e}z dg = .
1, 1,
or by cdx+edp-mydy = 0,
ady+edg—m,dx = 0;
so one of the intermediate integrals is
cx+ep—my = f(ay+eq—m,X). .(4)

Similarly the second intermediate integral is
(cx+ep—myy) = F(ay+ap—mx), ...(5)
It is not possible to get the values of p and g from (4), (5); so we combine (4) with cx+ep—m,y=A,

Thus we have

(my—my)y+A = f(ay+eq—m,x)

or ay +eq myx +0[(my —my )y + Al
where ¢ is inverse function of f.

This gives g, and cx+ep—my=A gives p.

Substituting these values in dz=p dx+q dy,

edz = (A-cx+myy)dx+[—ay+myx+o{(m, —m;)y + A}ldy.

Integrating,
o’ ay?
ez+7+7 = myxy+Ax+{¥(m, —m;)y+ A} +B
fo(t)dt
where P(t) = [

' Example 2: Solve:

z(1+c]2)r—quzs+z(1+pz)if—zz(sz—ri‘)+1+p2 +q2 = 0.
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=
Il

Solution: Here z(1+q%), S=-2pqz, T=(1+p°)z
U= 22,V=—-(1+p*+4%).

The equation in A is

(RT+UV)A%+AUS+U* = 0
or 2N 20 pg+ 2t = 0
or prq* M =2zhpg+2* = 0
or A= z/pg. (roots are equal).

The system of intermediate integrals is given by

Udy +AT dx+AU dp 0

Udx+ARdy+AUdg = 0.

ie, by pqdy+(1+p*)dx+zdp = 0

pqdx+(1+q*)dy+zdg = O.
Also dz = pdx+qdy.
We write (1) as

dx+p(pdx+qdy)+zdp = 0,
With the help of (3), it reduces to

dx+pdz+zdp = 0

or x+pz = q.
Similarly from (2) and (3), y+zq=p.

Putting the values of p and g in dz=p dx+q dy,

dz = ﬂdx+6_—ydy
z z

or -zdz = (0=x)(=dx)+(B-y)(-dy)
N I
or Z+(x-a)+y-p)>* = A?

Where a, 3, A are constants.

' Example 3: Solve: (1+4¢%)r—2pgs+(1+p*)t

+(1+p2 +q2)7l/2(1’t—52) = —(1+p2+q2)3/2.
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Solution: Here R (1+4%), S=-2pq,T =(1+p%),

u = (1+;r72 +q2)_1/2,V=—(1+p2+q2)3/2.

The equation in A is (RT+UV)A*+AUS+U? = 0
or [+ )+ ) -4 pt 2 ea 2P 1
\/l+p2+q2 T+p +q
or VPP (1+p* +9°)-2pq (1+p2+q2)7»+1 =0
1 .
or AE ——_— (roots being equal).

pay(1+p* +0%)
We get only one system which will give only one intermediate integral.

The system is Udy+AT dx+AU dp=0,

Udx+ARdy+Aldg = 0,
2
! dy + (+p) dx + dpz =~ =0
Japr ) pgfaspteg)  da(+p* v’
2
S N € 1 1) N .
Ja+pieg®)  pgJa+piegd) T paEpt+qd)
2 dp _
or pqdy+(1+p°)dx+ ———— = 0,
1+p*+4%)
pqu+(1+q2)dy+L = 0.
(1+p*+q%)
Eliminating
dy,[(1+p*)(1+q%) - p*a* Mx +[(L+4%)dp — padq] /(1 +p* +47)
(1+4*)dp-pq dg
or dx+W =0
o g WP (pPdptpgde)
(1+p2_q2)3/2 (1+p2+q2)3/2
1
drs (1?4 gy d 5 P2p dp+2q dq) 0
or x+(1+p”~+q p-2 =
(L pP+ )
or x+p(1+p*+4*)"? = a. (1)
Similarly eliminating dx,y +q(1+p*+4*)"/*=8 -(2)
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From (1) and (2),

(x-o) 4

w-B ~ q

Substituting in (1) the value of p as found from (3),

g = y-P
Ji-{@-ap +(y-p2)]
Similarly from (3) and (2),
) - -
Ji-{@-ap +(y-p2)]
Now, dz = pdx+qdy
(- @)dx +(y - B)dy
o = (-0 4By
Integrating,

(z=v) = [1-{(x-a)®+(y-B)*)"/?
or (z=v = 1-[(x-0)*+(y-B)]
or (=P +(y-p)P+(z-y) = 1
Example 4: Solve s* —rt=a’
or rH—g? = —d

Solution: Here R=0,5=0,T=0,U=1,V =—-a?

The equation in A is

A (-a*)+A.0+1 = 0

or A = t1/a

The two intermediate integrals are given by

1
-dy——dp =
y=",% 0,
—dx+1dq = 0.
a
1
—dy+=dp =
y+, 0,
—dx—ldq = 0.
a
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Notes From (a),

ptay = F() ©
g-ax = o
and from (b),
p-ay = F(B) (d)
g+ax = P
i.e,, the two intermediate integrals are
pray = f(q-ax) (1)
and p—ay = F(q+ax) -(2)

Now since it is not possible to find the values of p and g from (1) and (2), we proceed as follows.
Suppose 0,  are not constants, but parameters.

Solving (c) and (d),

v s Ty -®
p = SF@+7BL )
y = 5 AF@- O] -6)

Substituting these values in dz=p dx+q dy,

iz = LIF@)+ f)) @)+ P o) da- @) ap)

= o F()dB + BF (o)t~ {F(B)doc + o (B) B

- [1P(o)da+ G (oo — {F(B)dB + B (B)] +- (2 (B) b~ 2F(o) ot
2 = IBF(@) - of ()~ () + (o) + [ (o) b~ [ F(B)das

= LIF@)(@+B)~ )0+ CB) - 0(@)

BT~ ). 1 o 1
_ T[—Za }ZG(@—ZM@

or  z-qy = Wi(q+ax)+0,(q-ax) [from (3) and (5)]
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where Notes
Y.t = %dt. ...(6)
and  W,(t) = —J%dt. -7

Hence the primitive is

z=qy = Wi(q+ax)+¥y(q-ax)

-y = ¢,/ (g+ax)+¥, (g -ax) [from (5), (6) and (7)].

' Example 5: Solve:

rq+(p+x)s+yt+y(rt—s*)+q = 0
Solution: Here R=q,S=(p+x), T=y, U=y, V=—q.
The equation in A is
Mgy -qyl+hy(p+x)+y® = 0
or A = oo, 0r A==y /(p+x).
The intermediate integrals are given by
2

¥ y =
d dx dp 0 ...(a
yay x X ( )

ldx+q dy+ydqg = 0

2
qy Y~ dq
dx — dy— =
y x p+x ]/ p+x 0 (b)

1dy+ydx+y dp =0

From (a)
[(p+x)/yl = o (1)
qy = F(o) (2
or one of the integrals is
qy = Fl(p+x)/yl
From second equation of (b),
prx = pEE_P_g [from (1)]...(2")
y oy
p=p-x (3
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and from (2) and (1),
q
Now
dz
z
or z

' Example 6: Solve:

57+ 65+ 3t +2(rt —s*)+3
Solution: Comparing it with
Rr+Ss+Tt+U(rt —s%)

We have R

The A-quadratic will be

AUV +RT)+ 2 SU+U?
or 902 +12) +4
or (3L +2)?

A

The intermediate integral will be

Udy+aTdx+AU. dp
and AR dy+Udx+ AU dg

or 3dy-3dx-2dp

F(WJ = 1F(BJ - L) [from (2)]
v ) oy \y)y
& F(a) [ From (1) and (3),— = O‘] @)
p y B
pdx+qdy
(B—x)dx+%F(a) dy [from (3) and (4)]
Bx—§+%F((x)y+k
Bx—xz+1F(Bjy+¢(B)

v \y
Bx—xz+F(BJ+¢(B)

y

0 (1)

Vv

55=6,T=3,U=2,V=-3

-5dy+3 dx-2dg=0.
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Integrating,
3y—-3x-2p
The intermediate integral is
3y—-3x-2p
From (2),

Putting these values of p and g in

dz

dz
or 2dz
Integrating

2z

a, -5y+3x—-29=0b
f(-5y+3x-2q)

1(3 —-3x—a) —1(—5 +3x-b)
5 Y r 9=y

pdx+qdy

%(3y—3x—a)dx+%(—5y+3x—b)dy

3(ydx+xdy)—3x dx—-5y dy—adx—b dy

3xy—%x2—gy2—ax—by+c

This is the required complete integral of (1).

Self Assessment

19. Solve
25+ (rt-s%)=1
20. Solve

Br+ds+t+(rt—s*)=1

15.10 Summary

° The partial differential equations are classified according to their structure.

° Similar method as used in ordinary differential equations is adopted for partial differential

equations with constant coefficients.

° The methods, adopted in solving various equations are given in details. It is advisable to
understand the partial differential equations and apply the appropriate methods.

15.11 Keywords

C.F. or Complimentary Function is the solution of the partial differential equations containing

a number of arbitrary constants.

P.I. or Particular Integral is the particular solution of the partial differential equation containing

any arbitrary constants.
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Notes 15.12 Review Questions

1. Solve
otz ot
L
ox* oy

2. Solve

(D*-3D’D’'+2DD*)z=0
3. Solve

9’z _ 9%z 2& B

— =0
ox? ¢ dxdy E)yz

4. Solve

9%z otz otz 9tz 9%z B

— -3 + —=
ox* Tox’oy ox*oy®  oxdy® oy’

5. Solve
9%z 0%z 9*z
—+(a+b +ab—=
o TG, G =Y
6. Solve

ox* " oxdy oy’

7.  Solve
2 2
a—i—£+%—z =cos(x+2y)+e’
ox~ Jdxdy dy

8. Solve
(DD'+D-D-1)z=xy

9. Solve
0’z 9%z
2 - yz ﬁ — 2 y
10. Solve

r+t—(1’t—sz)=1

Answers: Self Assessment

1. Z=F(y+mx)+FE(y+3x)+ FK(y +2x)

x
2. Z=F y‘a)*'l:z(y_zx)

3. Z=F(y)+FE(y+2x)+xFE(y +2x)
4. Z=F(y+3x)+x E(y+3x)
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Higher Order Equations with Constant Coefficients and Mong e’s Method

10.

11.

12.

13.

14.

15.

16.

17.
18.
19.

20.

% xt
Z:Fl(y—Zx)+F2(y+3x)+?y+£

3 3

x .Y
Z=EFE(y-2x)+FE(y—x)+—+=—
1y =20+ B (y—x)+7 -+

Lxayy

Z:Fl(y—Zx)+F2(y—x)+£

Z=F({y-ix)+E(y+ix)- cos(mx +xy)

1
(m2 + nz)

¥ x?
Z=F({y+x)+x Fz(x+y)+z+?¢(x+y)

2
Z=F(y)+F(y+2x)+x F3(y+2x)+xzsin(2x+y)

Z=FK({y-x)+xE(y-x)+xsiny
Z=F(y+2x)+FE(y—-x)+ye*

Z = F,(y - ax) + e F,(y + ax)

Z= exFl(y)+e_XF2(y—x)+%sin(x+2y)

Z=F(y*+x")+E(y* -x7)

Z=F(xy)+x Fz(zjﬂcy log x
X

Z=F,(x*y)+F(xy?)

y=zx+F(z)+FE(x)

Z=xy+Cx+Cy+C;

Z=2xy- (2 +3y7)+C X+ Wy +mx
Y 2 y 1 y

15.13 Further Readings

N

Books Piaggio, H.T.H., Differential Equations

Sneddon L.N., Elements of Partial Differential Equations.
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Sachin Kaushal, Lovely Professional University

Notes

Unit 16: Classifications of Second Order
Partial Differential Equations

CONTENTS

Objectives
Introduction

16.1 Classification of Linear, second order Partial Differential Equations in Two
Independent Variables

16.2 Canonical form

16.3 Classification of Second Order Partial Differential Equations
16.4 Summary

16.5 Keyword

16.6 Review Questions

16.7 Further Readings

Objectives

After studying this unit, you should be able to:

o Observe that the partial differential equations of the second order can be of linear type or

non-linear type.

o Understand that linear partial differential equations can be classified into three categories,

namely hyperbolic, parabolic and elliptic type.

° Know that we have equations having variable coefficients there are some cases where the
equations involve variable coefficients but they can be transformed into equations with
constant coefficients.

Introduction

Classification of the partial differential equations help us in solving them in a systematic way. It
is advisable to understand the type of the partial differential equation before trying to solve it.
The methods of solving various classes of differential equations are also different.

16.1 Classification of Linear, Second Order Partial Differential
Equations in two Independent Variables

Consider a second order linear partial differential equation in two independent variables x and
y which can be written as

0% % %
o

(e, )3+ 200 ) S e () 5

ox

9%
Oox

iy, 1) S 4 dy(x, 90 = f(x, y) )

xZ
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Classifications of Second Order Partial Differential Equations

It will be seen that the first three terms of equation (1) allow us to classify the equation into one
of three distinct types: Elliptic, for example Laplace’s equation, Parabolic, for example the diffusion
equation or Hyperbolic, for example the wave equation as follows:

an + azl =0 . .

o (Laplace equations for two variables x, y)
vV vV o .
2ot (Diffusion equation)

o2 C2 o (Wave equation)

Each of these types of equation has distinctive properties. We would like to know about those
properties of equation (1) that are unchanged by any change of co-ordinates since these must be
of fundamental significance and not just a result of our choice of co-ordinate system. We can
write this change of co-ordinates as

(e y) = {ex y), n(x, y)}
with

d(e, m)
a(;;) 0 -(2)

If equation represents a model physical system, a change of co-ordinates should not affect its
qualitative behaviour. Writing ¢(x, y) = w(g, n) and using subscripts to denote partial derivatives,
we find that

b =W + MW, b =87 + 260, + Wy + BV + My
and similarly for the other derivatives. Substituting these into equation (1) gives us

AY o + 2By g + Cyy + by (2, My b2 (e, MWy +b3(e, v = g(e, M) (3)
where

A+ aeﬁ +2be,m, + CT];,

B+ agn, +b(n,e, +n,e,) +ceyn,

C+ m]ﬁ + anxny + cni,
We do not need to consider other co-efficient functions b, (g, n), b,(€, n), b,(€, n).

We can express (4) in a concise matrix form as
A B € My )fa b €y Sy
B clt e, b c)ln m, ..(5)
which shows that
A B a b a(g rl) :
det =det -
¢ (B c) ¢ (b c][a(x, y) ~(6)

d(e,m) _ ,
In (6) Ay )~ Jacobian of transformation.

This shows that the sign of a ¢ — b? is independent of the choice of co-ordinate system which
allows us to classify the equation.

An Elliptic equation has ac < b?, for example Laplace equation
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%0 9%
FrAE
Y

A Parabolic equation has ac = b%, for example the diffusion equation

o _ 9 -
K ﬁ_@=0 ...(herey =1t)

A hyperbolic equation has ac < 1?, for example the wave equation

% 1 0%
w o

...(here y is time)
c

16.2 Canonical Form

Any equation of the form (1) can be written in Canonical form by choosing the canonical co-
ordinate system in terms of which the second derivative appear in the simplest possible way.

Hyperbolic Equation ac < b?

In this case we can factorize A and C to give
2 2
A = ag;+ 2bsxay +eg, = (P8, + qlsy) (pog, + qzey)

C

an? +2bn.n, +cen; = (pim, +qm,) (P, +4om,)

with the two factors not multiples of each other. We can then choose € and 7 so that
PiE €, = PN+, =0

and hence A = C = 0. This means that

dy
¢ is constant on curves with dx =

, 1M is constant
P1 n

WD
on curves with dx  p,

we can therefore write
p.dy — q,dx p,dy — q,dx =0
and hence
(p,dy = q,dx) (p,dy - q,dx) =0
which gives
ad?y —2b dxdy + cdx*= 0 (7)

Aswe shall see, this is the easiest equation to use to determine (g, 11). We call (¢, ) the characteristic
co-ordinate system in terms of which (1) takes its Canonical form

V., T 0y (& MW, + by(e, m)w, + by =g(e, n) ..(8)

The curves where ¢ is constant and the curves where 1 is constant are called characteristic curves
or simply characteristics. As we shall see it is the existence or non-existence of characteristic
curves for the three types of equations that determines the distinctive properties of their solutions.

LOVELY PROFESSIONAL UNIVERSITY



Classifications of Second Order Partial Differential Equations

As a less trivial example, consider the hyperbolic equation
— 4 =
¢ —sech®x Oy 0 .(9)
Equation (7) shows that the characteristics are given by
dy*— sech*x dx? = (dy + sech? x dx) (dy — sech® x dx) = 0

and hence

d
4 _ + sech?x
dx
The characteristics are therefore
y + tanb x = constant,
and the characteristic co-ordinates are

€=y +tanb x, n =y — tanb x. On writing (9) in terms of these variables with ¢ = (x, y) = y(¢, n), we
find that its canonical form is

(m-e) (v, —vy)

Ve, = [4-(e-n)] ...(10)

in the domain (n - €)> < 4.
Parabolic Equation ac = b*

In this case

A

ag? + 2be,e, + csi =(pe, + qsy)2

C

cmi + anxny + cni =(pm, + qny)2

so we can construct one set of characteristic curves. We therefore take € to be constant on the
curves pdy — gdx = 0. This gives us A = 0 and since AC + B B = 0. For any set of curves where 1 is
constant that is never parallel to the characteristics, C does not vanish, and the canonical form is

Voo 0y (& MW, + b(E, )y, + by(e, ) = g(e, ) (1)
We can now see that the diffusion equation is in canonical form.
As a further example, consider the parabolic equation

¢, +2cosecy o+ cosec’y ¢,, =0 (12
The characteristic curves satisfy

dy* — 2 cosec y dxdy + cosec® y dx* = (dy — cosec dx)* = 0,

and hence

dy _
I cosec y

The characteristic curves are therefore given by x + cos y = constant, and we can take € = x +
cos y as the characteristic. A suitable choice for the other co-ordinate is n = y. On writing (12) in
terms of these variables, with ¢(x, y) = y(¢, n), we find that its canonical form is

W, = sin’n cos Nye, (13)
in the whole (g, ) plane.
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Elliptic Equations: ac > b?

In this case we can make neither A nor C zero, since no real characteristic curves exist. Instead we
can simplify by making A = Cand B = 0, so that the second derivative form the Laplacian A%y and
the canonical form is

Ve W+ b8 MW, + by(e, W, + by = g(e, M) ~(14)
Clearly Laplace’s equation is in canonical form

In order to proceed, we must solve
A-C= a(sﬁ - ni) + 2b(sxay - nxny) + c(ai - ni) =0
B= agn, +b(n,e, +e.m,)+cge, =0.

We can do this by defining x = € + in, and noting that these two equations form the real and
imaginary parts of

ay? + 2by %y + cx?=0

and hence
As ~btjac - b*
SV — ...(15)
Xy a

Now  is constant on curves given by xydy + %, dx = 0, and hence from (15) on
dy_biwlac—bz (16)
dx a
By solving (16) we can deduce ¢, 1. For example consider elliptic equation
¢, *sechxo =0 ..(17)
In this case y = € + in is constant on the curves given by
Ay _ tisech’x,
dx

and hence y i tanb x = constant. We can therefore take 3 =y + i tanb x, and hence € =y, n = tanb
x. On writing (17) in terms of these variables, with ¢(x, y) = W(g, ), we find that the canonical
form is

_ 2n
Ve -i-lvm1 —mwn/ (18)

in the domain |n| <1.

16.3 Classification of Second order Partial Differential Equations

Let us consider a function z of two independent variables x and y. Writing various partial
derivatives as

N N
p_ax'q_ay' T ox?’ _axdy' _Byz (1)
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Classifications of Second Order Partial Differential Equations

We find that the most general form of the partial differential equation of the second order will
be of the form

F(x,y,zp q,151t=0 (2)

' Example: Consider z as a function of x, y through two functions f and g as follows
= fl—y) +8(*+y)=0 ()
Find the differential equation by eliminating f and g

Solution:
_ oz af+aq
PPmoox ox ox
Let u = x*-yandov=2x*+y,so that
z = flu) +g(v)
_ 029 w0 a0
then P o ouox  dv ox
f 9 (9f qu
= 2 2 =2x
(2x)+ (220) = on 5 ..(4)
of of
= —(-1)+=—.(1
1 8u( )+av()
_ S
= 3, "5 ..(5)
P20, (¥, Pf oS
r = axz— axP = 2($+£j+2x 2.7(54‘29(80
= 2(a—f+%J+4x azf+az—f (6)
du  Jdv ou’ v’
9z _3, azf(auj+82f(av)
oxdy ox outlox) 90®
92
d
_ _Zxa%+2xa§ A7)
Pz_0. _ Pfou @ffow
W oy ou* gy 90” |\ dy
O°f O°f
= +au 522 (8

Now using equations (4), (6) and (8) we have

_ Pz (00, 40 PF 2
r= ax2 = 2(5"‘5)4’43{? W‘Fﬁ

9%z 10z , 0%z
—= = ——+4x"—
ax2 x ax +ax ay2 (9)

or
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Notes We can have various types of partial differential equations.
1.  Linear partial differential equations with constant coefficients
We may have equations of the type
Cr+Cps+Ct+Cp+Cyq+Cz=flx,y)

where C, C,, C,, C,, C are constants. We have already given the methods of solving these
types of equations in the earlier unit no. 20.

LR
The examples are oy 'Y

0%z _
oxdy

Sl y)
P 1
ox*  C* oy’

0’z 0z
K P @ (here K is a constant)

2. Equations with Variable Coefficients
In this type of partial differential equations we will have a structure as follows
Rr+Ss+Tt+flx,y,z,p,9) =0 ..(1a)
where R, S, T are functions of x, y, z.
As suggested in the section (21.1) we classify this equation into three classes
(@) Hyperbolic if s* — 4rt > 0
(b)  Parabolic if s> — 4rt = 0 and
(c) Ellipticif s> —4rt<0

In dealing with equations of the above types first we reduce them to canonical form. The
solution of Laplace equation, Wave equation and conduction of heat or diffusion we defer
cases to next two units.

3. Equations reducible to homogeneous linear form

An equation in which the coefficient of a differential coefficient of any order is a constant
multiple of the variables of the same degree, may be transformed into one having constant
coefficients.

Example: Transform the equation

S CRY R

axz y ayZ yay ax (1)
into a form with constant coefficients.
Solution: Put u =log x, v =log y

ooz 1
ox Ju x
dz 0z

or X5 - =5

9x Ju
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Classifications of Second Order Partial Differential Equations

So operator

xa 0
dx Jdu

Similarly

, 0%z 0z B 9%z

T ey o
So the equation reduces to

2 2
d0°z; 0°zy _

ol 0t
where z (1, v) = z(x, y).

Self Assessment

1.  Reduce the equation

0%z 9?z 9%z
—+2 +—
ox oxdy  dy

to canonical form.

2. Reduce the equation
Pz, 0%z
T2 X o7 =0
ox dy
to canonical form
3. Transpose the partial differential equation into one having constant coefficients
%z 0z
Yoz =5 =0
Y q

16.4 Summary

o In units 17 to 20 we studied and solved various types of partial differential equations both
first order and higher orders as well as linear and non-linear equations.

o There are three main classes of partial differential equations i.e. hyperbolic type, parabolic

type and elliptic type.

o The wave equation is of hyperbolic type, diffusion equation is of parabolic type and

Laplace equation is of elliptic type.

16.5 Keywords

An Elliptic equation has ac < V?, for example Laplace equation

%0 9%
o oyt
Yy
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Notes A Parabolic equation has ac = b?, for example the diffusion equation

kL6 %

o oy ..(herey = 1)

A hyperbolic equation has ac < 1?, for example the wave equation

% 1 0%
PRl

...(here y is time)

16.6 Review Questions

1. Reduce the partial differential equation
ot oy
to canonical form
2. Transform the partial differential equation into the form having constant coefficients
2 2 2
xza—§+2xy 0’z y2a—'2z=0
Ox Oxoy oy

Answers: Self Assessment

1 — =0 where y(g, 1) =z (x, y)

ande=x-yn=x+y.

oy 1 (a\,}_a\yj

2 Zeon Ye+mloe o

Py v _
ov2  ov
where y(v, v) = z(x, y)

16.7 Further Readings

N

Books Piaggio H.T.H, Differential Equations

Yosida K., Lectures in Differential and Integral Equations
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Sachin Kaushal, Lovely Professional University Solution of Laplace Differential Equation

Unit 17: Solution of Laplace Differential Equation

CONTENTS

Objectives

Introduction

17.1 Solution of Laplace Differential Equation — Cylindrical Co-ordinates

17.2  Circular Harmonics
1721  Solution of Laplace’s Equation in Spherical Polar Co-ordinates
17.2.2  Steady Flow of Heat in Rectangular Plate

173 Summary

174 Keywords

17.5 Review Questions

17.6 Further Readings

Objectives

After studying this unit, you should be able to:

o Know that Laplace equation is a partial differential equation involving one dependent
variable and three independent variables.

o See that it has a vast number of applications in gravitational potential process in electrostatic
potential distributions, in the propagation of waves, in diffusion process or heat
conductions.

° Note that three major co-ordinate systems namely the Cartesian co-ordinate system the

spherical polar co-ordinate system or the cylindrical co-ordinate systems are used to
express Laplacian operator.

Introduction

This Laplace equation is seen to be written in such a way that the dependence of dependent
variable on three independent variables can be separated.

Both spherical polar co-ordinates and cylindrical co-ordinates are used to find the solution of
Laplace equation.

17.1 Solution of Laplace Differential Equation — Cylindrical

Co-ordinates

The most important partial differential equation of applied mathematics is the differential
equation of Laplace i.e.

vV -0 (1)
The Laplace operator is expressed in general curvilinear co-ordinates u,, i, t3 in the following
manner,
1 d_[hohs 9 d [hshy 0 0 (hh, 0
= < 0 ), 9 |k 0 )\, 9 [l J
v?2 hyhyhy {aul ( hy ou, J du, ( hy, Ou, ) Ous\ hy Ou, -(2)
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If we use cylindrical co-ordinates (7,0,z) given by

X = rcos0
Yy = rsin0 -(3)
z =z

Then y?2y in this co-ordinate system is given by
10( 0V, 10V 0V
Vv o= oo

corl oy T2 002 922 ..(4)

So Laplace differential equation in cylindrical co-ordinates is given by

L[,V 10 0

R +7
ror ’ or r2 00> 9z?

PV LoV 1PV PV 5
o R A i ()

Here V is a function of r, 6 and z. Let us suppose the solution of (5) as
V = R(r)© (r) Z(r) ...(6)

Where R(r) is a function of 7, © is a function of 8 and Z is a function of z only. This method is
known as method of separation of variable. Substituting in (6) and dividing by R © Z, we have

QAR 1R, 1 Pe 14z ]
R?2 dr> Rrdr r?@d0> ~ ZdZ ~(7)

Now the right hand side is only a function of z whereas L.H.S. is function of r and 6, so each side
must be constant i.e.

1dR 1d4dR 1 d°© 1d°z 52

_ 4 = =
R* dr Rrdr r*© do® z dz? ~®)
Where A? is a negative constant. This gives us

1d2R+ 1d4drR 1 d*®

Ty = = )2
R dr* R dr 1’0 do? - )
and
4’z
E_}LZZ =0 ...(10)
The equation (9) can be rewritten as
&R rdR .,, 1d°©
——+——+A = ———
Rd? Rdr ' 0 do? ~(11)

Keeping in view the same argument, we have from (11)

LOVELY PROFESSIONAL UNIVERSITY



Solution of Laplace Differential Equation

%§T§+%i—f+kzr2 = —%%auz ..(12)
which gives
2‘;2712{4. Zﬁ+(k2r2_ﬂ2)R =0 ..(13)
and
’e  ,
Wﬂ; © =0 ..(14)
In equation (13) if we use the substitution * = %, it reduces to
§§+1?§+(1—Z§JR =0 ...(15)
Equation (15) is Bessel’s differential equation and so the solution is given by
R = AJ,(x)+B] (%)
or R = AJ,(Ar)+B]_,(Ar) ...(16)
where p is not an integer and
R = A;J,(Ar)+B; Yy, (Ar) ..(17)
when p is an integer. The solutions of equations (10), (14) are given by
Z = A, +Bye (18)
and © = A;cos(u0)+B;sin (u 0) ..(19)
Hence the total solution is
V = ROZ=[A],(h)+B] ,(Ar)|[Ase* +B, e |[A;cos(ub) + By sin (u0)| (20
where p is a fractionand A =1, 2, 3... and
V = ROZ=[A],(\r)+BY,(Ar)][A;cos(u6)+Bysin(u6)|[ Ay’ +Bye ™ | (21)

When p is an integer and A =1, 2,...

The solutions (20) and (21) depend upon the parameters p, A. If we see a solution that is finite at
r =0 and also be single valued in 8 then p be a positive integer and taking all values from 0 to eo.
Thus for a fixed 2,

Vo= D AT ()[Ascos u0+Aysinu0] [ A+ Aye™ | (22)
u=0

Thus the above solution is known as cylindrical Harmonics and will be useful for certain physical
problems.

The solution (22) V for a single value of u is called general cylindrical Harmonics.
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17.2 Circular Harmonics

Laplace equation in cylindrical co-ordinates is given by

13(2v), 15y o
ror or ) r200% 0z> 0 ~(1)

Assume that V is independent of co-ordinates z, we then have

1), 10V
Aor ST T 0 ~(2)
We now attempt to find a solution of this equation of the form.

V = EO)F(r) e

Substituting this in (2), we have

BOA( 45 BOSEO @

r dr\ dr 2 de?

Multiplying by #* and dividing by F, F,, we have

1( ,d’F,  dF, 1d°F
PR —Ltr—= _ P =
3 (r PR o " (5

Since L.H.S. is a function of r and the R.H.S. is a function of 0, so each one of them is a constant.
We thus have the two solutions.

d°F
d621+”21:1 =0 .(6)
and
,d’F,  dF,
el EE =0 -(7)

The solutions are separable. The solution of (6) is given by

F, = Acosn0+Bsinn0 ...(8)
Also it is easily verified that the solution of (7) is

E = Cr"+Dr™",if n#0 .(9)

If n = 0, we have the solution

E, Cy logr +D, ...(10)

Where A, B, C and D are arbitrary constants. The solution of Laplace equation in cylindrical co-
ordinates when V is independent of the co-ordinate z are called circular harmonics. The circular
harmonics are then

VO

(A0 +By)(Cylogr+D) degree zero

Vv

(A, cosn0+B,sin0)(C,r" +D,r") degree n ..(11)
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Solution of Laplace Differential Equation

In most applications of circular harmonics, V is usually single-valued function of 8. So if we
change 8 by 2 m, we reach the conclusion

V(r,0+2m) = V(r,0) -.(12)

It is necessary that n take integer values. So a general single valued solution of Laplace equation
is obtained by summing over # i.e.

VvV = aologr+2(ancosn9+bnsinne)r”+2%(qncosn6+pnsinn6)+co ..(13)
n=1’

n=1

where a,,4a,,b,,q, and p, and ¢, are constants.

Example: Find the steady state temperature in the region inside a cylinder, the two
halves of the cylinder are ‘thermally insulated from each other, and the upper half of it is kept at
temperature v;, while the lower half is kept at temperature V,. It is assumed that cylinder is so
long in the z-direction that the temperate is independent of z.

Solution: To solve this problem, let v(r,0,z,t) be the temperature that satisfies heat equation

ov

5 " v2v (1)

In the steady state v is independent of ¢ so that we have to solve Laplace equation
viv =0 -2
in the region inside the cylinder and satisfy the boundary conditions
Vo=V at r=R 0<0<m -(3)
vV =V, at r=R 7m<0<2m

we do this by taking the general solution independent of z as, we have

v = gylogr+ 2 r"(a, cosn®+ B, sinnb)+ ¢, + 2 1771 (g, cosn®+ f,sinn®)  ..(4)

n=1 n=1

and use the boundary conditions (3). We first see that the temperature must be finite

Figure 17.1

Ya
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at the origin r = 0. so 4y, g, and f, must be equal to zero. Therefore the solution (4) reduces to

(a, cos(nB) + b, sin(nB))+c, ..(5)

&Mﬂ

As a first step let us assume that the temperature on the circumference of the cylinder r = a is
specified as

v = F(0) at r=R

Then placing r = R in (5) we have

(a, cos(nB) + b, sin (n0))+c, ...(6)

&Mﬂ

Now ¢, a, and b_are Fourier coefficients and so are given by the relations

ax =
b, = jF(e )sinn 040 -(7)
1 2n
d = —[Fr@)do
an “ = el FO

An interesting special case arises when the temperature of the upper half of the cylinder is kept
at v, and the lower half is kept at zero degree. The function then is given geographically by
figure 22.2. We have

b1
Y
a = R—fnz[cosnedezo

s

b = Yo J.smnede— 2V
Rno Rmz

,nodd

Figure 17.2

Vo
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Solution of Laplace Differential Equation

and Notes

17 Vo
c, - E_([vo do =0 .(8)

substituting into (6), we obtain

_ 2Cy (1 Y'sinn® v,
v(r,0) = TZ(E) e forn odd (9

n=1
Self Assessment

1.  Find the potential u (r,0) in the exterior of a unit sphere satisfying the relation

2(72 a—”)— 1 i(simeiuj =0
or dor ) sin0d0 00

under the conditions

u(1,0) = cos20
and 11_{2 u(r,0 =0
17.2.1 Solution of Laplace’s Equation in Spherical Polar Co-ordinates

The Laplace equation in spherical polar co-ordinates is given by

, %V v 1 a(.eavj 1 9%

—+2r—+ — — |+ — = (1
T T o Tsine 90" 90 sin? 0 0> M

we apply here a separation of variable’s method and write the solution of (1) in the form
V(r,6,0) = R(r)©(0)®(9) ~(2)

where R is a function of r only, © that of 8 and ¢ that of ¢ only. Substituting in (1) we get

_de]| . -1d’0
smede)}smze g -(3)

Since both sides are functions of different independent variables hence each side should be equal
to some constant. Let this constant be A%. Then equation (3) gives

i -
R dr* R dr ©sin®0do

d’®
A =0 ..(4
dq)z ( )
r* d’R  2rdR 1 i(sined—@)+ 5
and Ra2TRR = ©singdo\”" do) sin?0 ~(5)

Again in (5) both sides are functions of different variables and hence both will be equal to a
constant say n(n+1). This gives us from (5)
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2
rzd—1;+2rd—R—n(n+1)R
dr dr
1 4d e A2
d —| sin0— |+ +1)- ()
an sin® do (Sm do ) {n(" )i e]
To solve (6), let
dr
so that di;?
dR
Therefore -
dr
L
o dr
Let us denote the operator di by D, then
p
d ( dR)
r—|r—
dr\ dr
. iR
© dr?

Using these values in (6), we get
[D(D-1)+2D-n(n+1)|R
or (D-n)(D+n+1)R

The solution of (6a) is

or R

To solve (7) put cos®=u

de
so that o

Substituting these values in (7) we have
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el =r

4R dp _1dR

dr dr rdp

4

dp

,d*R  dR

P ——tr—
dr dr

d( dR) dR
r—|r— |-r—
dr\  dr dr

Ale™ + Bze—(n+l)p

A+ B/r—(71+1)

B __ ;500

du do du



Solution of Laplace Differential Equation

2
! d(sineil(:)+{n(n+l)— A }@) =0

sin© % sin®0

2
= ,1 a —sinzed—e +|n(n+1)— }L 5 1=0
sin0 do du 1-u

_7gi 2
= 2Smecosed@—sined(d®)+{n(n+l)— A 2}G):O

sin0 du do\ du 1-u
= sinzedz?—zﬂd@{n(n+1)- » 5 }@:0
du du (1-u7)
or (1—112)[[7;1(;)—2#65‘)‘{”(”"'1)‘(11\12)}@):0 .(9)
It is clear that ©® will be a function of p i.e.
O(z) or © (cos0)

Hence the solution of Laplace equation is

Vo= (A7"+Br")0(cosb)] A”e™ + B e | ..(10)
where the solution of (p) is

O = A" 4B .(11)

For )2 =m?, integer m, the solution is satisfied by associated Legendre polynomial P (x) as
shown below:

Consider the Legendre equation

2
(1—x2)%—2x%+n(n+1)y =0 (12)

Differentiating it m times and putting

<
Il

..(13)

We have

m 2 m m
d{(1—x2)dy}—2d[xdy}+n(n+l)d Y - o
dx dx

dx™ dx?
or

dm+2 m+1 dm dm+1 dm dm
(1—x2)Tm+¥—2.mx T y—m(m —1)x#— 2x dx’"g -2 de (m)+n(n+1) dx’]’{ =0
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or from (13)

2

(1—x2)%—2x(m+1)%+[n(n+l)—m(m+1)]v =0 ..(14)

Let us put
— 2 m/2 m/2 a
w = (1-x%) =(1-x%) o —P,(x) ...(15)

thenv = (1-2%)2w

d - —m

dia\: = —%(—2x)(1—x2) 2 w+(1 x?) 2 %

d*v 231 52 25l dw 25 dw

o m(l-x7)2  w+mx(-2x) ——1 (1-x%)2 “w+2mx(1-x%) E+(1—x ) e

-m 42 -m m_
= (1-x%)2 i—+2mx(1 x?) 2 1tzl]lw+(1—x2) 2 2w{m(l—x2)+mx2(m+2)}
X x

Substituting in equation (14) we have

2 —-m —-m_
(1- )2 Z >+ 2mx(1-x 22 Z—+(1 x%) 2 {m+mx2(m+1)}w—
X

—2X(m+1)mX(1—xz)%_lw—Zx(rrHl)(l—x )1%+
+[n(n+1)—m(m+1)](1—x2)_7mw =0

Dividing by (1-x%) 2 we have

2 2 2
=3 LL 0 B+ 1) = mm 1) - 2D mamc (L)
dx dx (1-x7) (1-x7)
d*w dw m*
1-x")—-2x—+ +1)- =0 ..(16
(-5 g -2 {(n ) (1_x2)}” (16)
The equation (16) is same as equation (9) where
O = wandu=x
Thus the solution of equation (9) is given by
0 = w=(1-w")2v=(1-p*)? = B,(W) =B/ (w) -(17)

dmn

Where P;"(1) is known as associated Legendre polynomial. Hence the solution of Laplace

differential equation is given by (for A = m)

[A’r” +B’ r”HJ[A” em 4+ B e’i'"‘"]Pyi” (M) ..(18)
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Solution of Laplace Differential Equation

For solution which exist for » = 0, then B’ = 0.

The complete solution is given by summing over m or

Nn=co

m=A
V=), A[A%"™ B e PN (u) ~.(19)

0,1,2,.
2

m=0,1
0,1,2,...

n

Since P)"(x) involves mth derivative of P,(x) which is polynomial of degree 7, so for m > n

Pr(m) = 0 -.(20)

for m > n. Defining S, the surface Harmonic by

S, = [A7e™ +B” e [P (u) -(21)

n

If S, is independent of ¢, then

s,

n

do

So S, has only m = 0 value hence

S

n

P,(u). In the case V becomes

\%

Y (A" +Br" )P, () Form=cos0 (22)
n

' Example 1: Gravitational Potential Due to Uniform Circular Ring

Let us consider a particle of mass m situated at a point (x;, y,,z) of a reference Cartesian
coordinate system, then the gravitational potential 6 due to this mass at the point with coordinate
(x,y,2) is given by

mass m ()
distance {(x~x;)* +(y - 11)* +(z-2)’)
We know that potential V, satisfies Laplace equation
ViV =0 ...(id)

in matter free space.

Now, we have to calculate the gravitational potential at any point due to a uniform circular ring
of small cross-section, lying in the x — y plane and with its centre situated at the point O, (Figure
22.3).

Obviously, the gravitational potential is symmetric about the z-axis and so it should be
independent of the angle 6. The potential V, therefore may be written with following form:

oo

vV = Z(Anr" + rle )Pn(cose) ...(iii)

n=0
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Figure 17.3

AZ

A TP

where A and B_are constant coefficients and are to be evaluated. To evaluate these coefficients,
we know that the gravitational potential is symmetric about the z-axis and therefore any point

P on the same distance +/(a® +r?) from all the points of the ring, where a is the radius of the ring
and distance OP =r.

Let M denote the total mass of the ring, then the gravitational potential at P due to the ring will
be

mass M

vV = = (1
distance \/(uz +77) (i)
2 \-1/2
but M M(¢12+r2)_l/2—M 1+r—2
(a* +7%) a a
M 13!
V= —|l-—5+=.—.—..
o a { 2q> 244 } )
by Binomial theorem for r < a
However in case r > a, we can write
2N\-1/2
M = M(az+r2)"l/2=M 1+a—2
(a® +7%) r r
M(, 14 13a*
r 2r° 2 4r
3 5
or vV = M 5_1”3 +1§% (Vi)
alr 2r° 24r

Now, for point situated on the z-axis, 8 = 0 and the general solution as contained in equation (iii)
must reduce either to equation (v) or equation (vi). Now the Legendre polynomials P, (cos 6) for
a point on the z-axis (cos 0°) become

P,(cos0°) = P

n

1)=1
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Solution of Laplace Differential Equation

Therefore for all points situated on the z-axis, the general form of the potential as contained in
(iii), reduces to

N n, B .
vV = Z[Anr +r"11} ..(vii)

n=0

Comparing this equation with equation (vi) we see that for r > 4, the coefficients A = 0and B_are
the coefficients of equation (vi).

Again comparing equation (vii) with (v), we see that for r <a, the coefficients B, = 0 and A_are
the coefficients of equation (v).

Hence the solution for the case r > 2 may be written as

3 5
vV = ]f[fpo(cose)-;;pz(cose)+;.i.f5P4(cose)..} ...(viii)
and that for r<ais
2
vV = M PO(COSG)—E%PZ(COSG)+l.E.P4(COSG)... ...(ix)
a 2a 2 4

' Example 2: Electrical Potential about a Spherical Surface

Let us consider a spherical surface which is being kept at a fixed distribution of the electrical
potential of the form

V = f0) -(Q)

On the surface of the sphere.

Figure 17.4

AZ

Y

Let us assume that the space both inside and outside the surface is free of electrical charge and we
will determine the potential at points within and outside the spherical surface under consideration.

Obviously, the potential V is quite symmetric around the z-axis and as such it shall be independent
of angle ®.
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Therefore we have

2’V 3
W =0 ...(ii)

So Laplace equation expressed in spherical polar co-ordinates reduces to

%V 20V 19*V 1 %
— =0 ...(iii)

ot S+ —
o ror 1?90 \s*tan0 ) or

The general solution of this equation can be written in the form

oo

vV = 2( J"  (cos0) .(iv)
n=0
The potential satisfies the boundary conditions
V = f(®) whenr=0and Lt V=0 (V)

Potential in the Region outside the spherical surface

According to the second boundary condition of equation (v), the potential may not be zero at
r = co. Therefore in the region outside the spherical surface no positive powers of r are admissible
in the solution of Laplace’s equation. Thus in the general solution we should have A =0 and so

oo

), (cos 0) forr>a (Vi)

w0

The coefficients B, are to be determined. This can be done by making use of the first boundary
of equation (v). Hence from (vi) we get

V = F(0)= f(cosB)= 2 T P, (cos0) ...(vii)
=0 4
Let cos 0 = u then
- S B
Vo= f(”)zzan+1pn(”) ...(viii)
n=0

To obtain the value of the general coefficient B, we multiply both sides of equation (viii) with
P (u) and integrate with respect to u in between the limit -1 to +1 we obtain

+1

+1
[ reopdn = [rip, o1
-1 a

-1

All other integrals vanish because of the orthogonal property of P (u).

" 1 2B
J.f(u) Pn(u)du an+l (21,1 _:1)
-1

T

or B, = (2”2+ D ”+1If(e) DB, (cos0)sin6 d6 -(ix)
0

This gives us the value of the coefficient B . Hence the potential outside the spherical surface is
given by equation (viii) with B, given by equation (ix).
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Solution of Laplace Differential Equation

Potential in Region within the Spherical Surface Notes

The potential within the spherical surface cannot be infinite and therefore negative powers of r
are inadmissible in the general solution as contained in equation (iv). This means that potential
inside spherical surface will be

vV = ZAnr” P,(cos0) forr<a (¥)
n=0

Again the coefficients A are determined by the boundary condition at the surface, viz., V = f(0)
atr=a

V = F(8)= f(cosb)

= ) Aua" By(cosb) (i)
n=0
Let u=cos0, then
Vo= F()= ) A" Py(u) ..(xii)
n=0

multiplying both sides by B, (1) and integrating within the limits -1 to +1, we get

+1 1
[E pwyan = [ 4, a"[P, )
-1 -1

All other coefficients vanish on account of the orthogonal property of P, (u)

+1 2
n
[Fepan = A" G
-1
1
@t |
or 4, = 223 f F(u) P, (u)du
-1
1
@n+1) | .
o 4 - 7J‘F(e) P, (cos6)sin® do .. (xii)

-1

So the potential within the spherical surface is given by equation (xi) or (xii) with values of A
given by the equation (xiii).

Self Assessment

2. Solve

i(rz a—u) =0
or or

subject to the boundary conditions
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u(r) = uq at r=a

and u(r) = uy at r=>b
17.2.2 Steady Flow of Heat in Rectangular Plate

We now consider the steady state temperature distribution in a rectangular metallic sheet. In
this case temperature is every where independent of time, and hence the equation governing the
temperature distribution is given by

%V 9%V
+

—+— =0
ax?  ay? @

This equation is called Laplace’s equation of two Dimensions. We shall now solve this equation
under various boundary conditions.

Case I: Let there is a thin plate bounded by the lines x=0, x=a, y=0 and ¥ =, the sidesx =0

and x = a being kept at temperature zero. The lower edge y = 0 is kept at f(x) and the edge y =
o at temperature zero.

In this case the boundary conditions are:

V(©,y) =0 . (i)
V(gy) =0 (i)

V(x,0) = f(x) (iv)
V(x,) =0 (V)

Figure 17.5
AY
vt
x=0 /x =oc .
y=0

Let the solution of (i) be in the following form
V(x,y) = X(x)Y(y)=XY (say) ...(vi)

where X and Y are the functions of x and y respectively. Substituting this solution in (i). We have

1%X _ 14
X dx? Y dy?

Since L.H.S. is the function of x only and R.H.S. is the function of y only, both sides will be equal
only when both reduce to a constant,
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5 > Notes
18X 1Y,
Xdax* — Ydy? '

Here we have taken the negative constant because it suits the boundary conditions.

Therefore the corresponding differential equations are

%mzx = 0and %m%:o
whose general solutions are
X = AcosAx+BsinAix
and Y = Cc+De
Hence
V(x,y) = XY =(Acosix+BsinAx)(Ce" +De™) ...(vii)

using boundary condition (v), we get C =0

Otherwise V — e as iy — o= and hence
V(x,y) = (Acoshx+Bsinix)e ™. (wehave putD =1)

and using boundary condition (iii), we have

sinka = 0
or A = ’L:(n=1, 2,3,..)
Thus for each value of 1, we have
V,(xy) = B, sin%xe‘"“y /a (1=1,2,3,...) ...(viii)

and therefore for different values of 1, the solution may be taken as

Vix,y) = ZVn(x,y)
n=1
or V(x,y) = ZB" sin 2 xe™ /@ (iX)
n=1 “

Using boundary condition (iv), we have

V(x,0) = ianin%x= £(x)
n=1

which gives

B, = g‘[f(x) sin T xdx (%)
ad a
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Hence (ix) with the coefficient (x) is the solution of Laplace’s equation (i), which satisfy all the
given boundary conditions.

Case II: Let there be a thin rectangular metallic plate bounded by the lines x =0, x=4a, y=0 and
y=b, theedges x=0,x=a,y=0 are kept at temperature zero while the edge y =0 is kept at
temperature f(x).

Here the boundary conditions are given by

VO,y) =0 (xd)
Via,y) = 0 ...(xii)
V(x,00 =0 ..(xiii)
V(x,b) = f(x) (xiv)
Proceeding as in Case I and using (xi) and (xii), we get
Figure 17.6
Yp
y=b
x=0 xX=a
. T > X
A = Oand A="" (n=1,2,3,..)
a

Therefore for each value of 1, we have
Vixy) = Ce™/ +D,e™  sinCx.. (n=1,2,3,.)
a

Hence for different values of n, the solution of (i) is

oo

Vix,y) = Z(Cne"”y/“ +Dne_"”y/“) sin T x
n=1 a
In this result using (xiii), we get
D, = -C,.
Therefore
V(x,y) = C, (e —e/0)sin My
(x.y) 2 a Jsin=
or
Vioy) = YCsinh™Ysin™ "% where C, =2C, o (xV)
n=1 a a
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Now using (xiv), we get Notes
o nnb . nm
= C,sinh sin—x = f(x
Veob) = XCsinh= SsinTEr= f)
nmb 2 nmXx
or C, sinh—— = fJ.f(x) sin dx
a as a
b 2 i . nmX .
or C, = S f(x)sin——dx ..(xvi)
asinh 0 a

Hence (xv) with coefficient (xvi) in the solution of (i) satisfying the given boundary conditions.

Case III: Let there be a rectangular plate of length a and width b, the sides of which are kept at
temperature zero, the lower end is kept at temperature f(x) and the upper edge is kept insulated.

Boundary conditions are:

V(O,y) =0 ...(xvii)
Vay) =0 ...(xviii)
V(x,0) = f(x) o (xiX)
oV
(ayl:b =0 e (xx)
Figure 17.7
AY
Insulated
b
0 7 S

Proceeding as in Case I, assuming the solution of equation (i) as V(x,y)=X(x)Y(y) and
substituting this in equation (i) itself. We get two differential equations.

IX 4o PY sy
a?‘l'}\. X 0and ay

whose general solutions are

Acos Ax+ B sin Ax

>
[

and Y

CcoshAy+Dsinh Ay
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respectively. Therefore

V(x,y) = (A cosix+BsinAx)(C cosh Ay+D sin h Ay)

Using boundary conditions (xvii) and (xviii) in (xxi), we get

A = Oand?»zﬂ n=1,2,3,..)
a
Hence for each value of 1, we have
V(x,y) = Z(C" coshnny+D,lsinh y)
n=1

Using (xix) in (xxii) we have
N nn
V(x,0) = C, sin—x=
(50) = 3,C,sin” "x= 1)
Therefore

C, = gJ.f(x)sinﬂx dx
as a

Again using (xx) in (xxii), we have

[BVJ Z(Cm sin i 22 b +D, cos hn—TEbJSinn—TE
dy a a a

y=b n=1

This will be true for all values of x, if
. . nmb nm
C,sinh ——+D, cos h—b
a a

or

D, = -C, tanhn—nbs
a

- (xxi)

...(xxii)

...(Xxiii)

..(xxiv)

Therefore (xxii) with coefficients given by (xxiii) and (xxiv) is the solution of the equation (i)

satisfying all the given boundary conditions.
Self Assessment
3. Solve

%U  9°U

o oy "

subject to the conditions
UuQ,y)=0
u{,y)=0

nmx

and U(x,a) = sin and U(x, 0)=0 for n=1, 2, 3, ...
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17.3 Summary Notes

° Laplacian operator is expressed in Cartesian spherical polar co-ordinates and cylindrical
co-ordinates.

° The solution of Laplace equation in these co-ordinate systems is solved.
° Laplace differential equations finds its applications in potential problems, in wave

propagation and diffusion and heat conduction processes.

17.4 Keywords

Method of Separation of Variables helps in finding the solution of Laplace differential equation
in all the three co-ordinate systems.

Partial Differential Equation involve one dependent variable which is a function of more than
one independent variable.

17.5 Review Questions

1.  Solve Laplace’s equation in cylindrical co-ordinates and independent of Z.

2. Solve

50

subject to the boundary conditions
u(r)=0 at r=a

and r(u)=uy atr=2a

3. Solve for U(x,y) distribution

’U o' _

o oy "

subject to the conditions

u(,y)=U(,y)=0, U(x,0) = x*

and (auj =0
ady yb

4. Find the potential U(r, 0) inside the spherical surface of radius R when its spherical surface
is kept at fixed distribution

U(R,0)=U, cosO

Answers: Self Assessment

2(3cos*0-1)—r?

1. U(r,6) = 373
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U(r) = (auy9=buyy)  ab(uyg —tiy)

2 (a-D) (a-b)r

3. U(r,y)=sinhn?ysinn?x/sinh(n?a)

17.6 Further Readings
Books K. Yosida, Lectures in Differential and Integral Equations

L.N. Sneddon, Elements of Partial Differential Equations

Louis A. Pipes and L.R. Harnvill, Applied Mathematics for Engineers and Physicists
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Wave and Diffusion Equations by Separation of Variable

Unit 18: Wave and Diffusion Equations by Notes

Separation of Variable

CONTENTS
Objectives
Introduction

18.1 On Solution of Wave Equation

18.1.1  Solution of One Dimensional Wave Equation
18.1.2 Two Dimensional Wave Equation
18.1.3  The Vibrations of a Circular Membrane
18.2 Boundary Value Problems (Heat Conduction or Diffusion)
18.21  Variable Heat Flow in One Dimension
18.2.2  Heat Flow in Two Dimensional Rectangular System

18.23  Temperature Inside a Circular Plate

18.3 Summary
18.4 Keywords
18.5 Review Questions

18.6 Further Readings

Objectives

After studying this unit, you should be able to:

Note that it finds its applications in almost all branches of applied sciences.

See how the electrical current and potentials are distributed in certain medjias.

Know how the diffusion problem is tackled by means of diffusion equation.

[ ]

° Understand how heat flows in solids
[ ]

[ ]

Introduction

It is seen that Laplace equation plays an important role in the solution of wave equation as well
as conduction of heat.

The problems occurring in this unit are based on boundary values of the waves as well as the
temperature distribution of the substance.

Depending upon the symmetry of the problem the Laplace equation is solved in Cartesian or

spherical polar co-ordinates or cylindrical co-ordinates.

18.1 On Solution of Wave Equation

When a stone is dropped into a pond, the surface of the water is disturbed and waves of
displacement travel radially outward, when a tuning fork or a bill is struck, sound waves are
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propagated from the source of the sound. The electrical oscillations of a radio antenna generate
electromagnetic waves that are propagated through space. All these entities are governed by a
certain differential equation, called a wave equation. This equation has the form

gy P Pu Fu_ 1
ox* 9y 9z¢ o

(1)

Where c is a constant having dimension of velocity, ¢ is the time, x, y, z are the co-ordinates of a
certain reference frame and u is the entity under consideration, whether it be a mechanical
displacement of components of electromagnetic wave or currents or potentials of an electrical
transmission line.

In finding the solution of equation (1) we some times also employ cylindrical co-ordinate
system or spherical polar co-ordinate system.

In cylindrical co-ordinate system, wave equation is given by

*u 2 0u 1 9d(. ,ou 1 *u 1%
St oot o SNBSS o = (A)
or® rdr r°sin“000 00/ r°sin“000° ¢ ot

where as in cylindrical co-ordinate system 7, 8, z the wave equation becomes
Pu 1ou 19°u 0*u_19%u
Sat oot oot =g -(B)
or® radr r-d0° 9dz= c° ot

' Example: Solution of wave equation symmetric in all directions about the origin, i.e.
independent of 8 and ¢.

In this case u is independent of 8 and ¢. So from equation (A) we have

82u+28u_ 1 0%u

PR +(©
Putting

v=ru

P_, .,

or  or

do_ Puou

ar ot? Jar
so from (C)

v 1%

? = sz? ..(D)
Putting

R=r—ct

T=r+ct

gives

% _ 9w oR ool
dor OR or OT or
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w9 Notes
=—+

COR AT

v 9% IR 9*v 9T 0%v oT
T2 T A5 A + —+ i
or~  OR” or OROT dr OT* or

" 9R* TOROT OT?

% _oR v oT

or R ot  oT ot

or Jdv
= ﬁ(—ff) + eﬁ
9% 9%v OR 9% v
72=(—3)727—2€2 6272
or JdR” ot OROT JaT

[ 9% v v
=e 5y 2 + Py
JdR OROT dT

Substituting in (D) we have

c
2

OR? " TORIT  9T? 4

v v % 2( 9% v 9%
+2 + 5 =2 +t—F
oR OROT 0T
%

=0
OROT ®)

or

Integrating with respect to T we have

dv

R F(R) (F)

where F(R) is a constant as far as T is concerned.

Integrating (F) we have
v= _[F(R)dR +G(T)
=H(R)+G(T)

or v=H(r—ct)+G(r+ct)

This is known as D, Alemberts, solution of the wave equation.

The Transverse Vibrations of a Stretched String

Consider a perfectly flexible string that is stretched between two points having a constant

tension T which is large enough so that the gravity may be neglected. Let the string be uniform
and have a mass per unit length equal to m.
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Let us take the initial i.e. undisturbed position of the string to be the axis of x and suppose that
the motion is confined to the xy plane. Consider the motion of an element PQ of length as shown
in the Figure 23.1.

The net force in the y direction, Fy, is given by
Fy=Tsin0, —T'sin6, ()

Now, for small oscillations, we may write

sin0, = tan6, = (%) ...(ii)
X+dx
sin@; =tan®, = (g—y) ...(iii)
x X
Figure 18.1
Ay T
QA8
0,
P
T
0 X

Therefore, we have

dy Byj .
F =T | T—
Y ( axlﬁdx ( ax x (IV)

Using Taylor’s expansion and neglecting terms of order dx?and higher, we have
F=(r2) + (1] ae-(r22]
Y dx ), ox\ ox), ox ),
or F i(Ta—y) dx (V)

v T ox U ox

By Newton’s Law of motion, we have

_ 0 (0[O .
Fy —g(Ta)dx = mdx[axz ...(Vl)

where mdx represents the mass of the section of string under consideration and where we have

2

written dx for ds since the placement is small ﬁ is the acceleration of the section of string in

the y direction, we thus have
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Notes

...(vii)

2
21,7y
dx\ ox Jat

Now if the stretching force is constant throughout the string then we can write

Ty 2y (v
ox?

T m
o

This equation (ix) is known as one dimensional wave equation and is a special case of the
general wave equation.

The Oscillations of a Hanging Chain

Let us consider the small coplanar oscillations of a uniform flexible string or chain hanging
from a support under the action of gravity as shown in Figure 23.2. We consider only small
deviations y from the equilibrium position; x is measured from the free end of the chain. Let it
be required to determine the position of the chain

y=y(x1) (1)
where at t = 0 we give the chain an arbitrary displacement
Y=y (x) - 2)

In this case the tension T of the chain is variable, and hence eq. governing the displacement of the
chain at any instant is given by

9 (..0y 82y
—| T=* |=m—% ..(3
ax( ax) m8t2 ©)

where m is the mass per unit length of the chain. In this case the tension T is given by
T = mgx --(4)

Hence we have

) ay 0’y
a(mgxajﬂ”a? ..(5)

Or, differentiating and dividing both members by the common factor m, we have

ax2 ox = gatZ (6)
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Figure 18.2

As in the case of the tightly stretched string, let us assume

y(x, )= ev(x) -(7)

Substituting this into (6), we obtain
Xx—s+—+—0v=0 -(8)

This equation resembles Bessel’s differential equation. Changing the variable x to Z by the
relation:

2 4m%x
zZ = s e)
reduces (8) to
zzi&za—%zzv:o --(10)
0Z 0Z
whose general solution is
v=AJ,(Z)+BY,(Z) (1)

where J,(Z),Y,(Z) are Bessel functions of first and second kind.

In order to satisfy the condition that the displacement of the string y remain finite when x = 0, we
must place

B=0 .(12)

Accordingly, in terms of the original variable x, we have the solution

v:AIO[Zw\/;J ..(13)
8

for the function v.

So far, the value of ® is undetermined. In order to determine it, we make use of the boundary
condition

v=0:atx=s ..(14)
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This leads to the equation

0= Alo(m\/a ..(15)

Now, for a non-trivial solution, A cannot be equal to zero, and hence we have

ol 20 |5 |=0
I[ w\/;] ...(16)

If we let

—20 |2
u w\/; .(17)

we must find the roots of the equation

Jo(u)=0 ...(18)
If we consult a table of Bessel functions, we find that the first three zeros of the Bessel function

Jo (u) are given by the values

2.405,5.52, 8.654

Accordingly the various possible values of o are given by

2405 [g _552 [g _ 8.654 \/g
W, = IR W, = >\ w3 = > s etc. ..(19)

To each value of ® we associate a characteristic function or eigenfunction v, of the form

=A 0 2 n ﬁ
v, = A,] [ o \/;] ..(20)

Since the real and imaginary parts of the assumed solution (7) are solutions of the original
differential equation, we can construct a general solution of (6) satisfying the boundary conditions
by summing the particular solutions corresponding to the various possible values of n in the
manner

~ x .
y(x,b)= Z}Io [an\/;](f\n cosw,t+B,sinw,f) .(21)

where the quantities A and B are arbitrary constants to be determined from the boundary
conditions of the problem. In the case under consideration there is no initial velocity imparted
to the chain; hence

(%lzo =0 (22)

This leads to the condition
B,=0 ..(23)

At t=0we have

yO(x)z iQAn]O(an\/iJ (24)
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That is, we must expand the arbitrary displacement y (x) into a series of Bessel functions to
zeroth order. To do this, we can make use of the results of unit 13. It is shown there that an
arbitrary function of F(x) may be expanded in a series of the form

F(x)=Y A,Jo(u,x) .(25)
n=1
where the quantities u _are successive positive roots of the equation
J,(u)=0 ...(26)
The coefficient A are then given by the equation

2 1
A, = mJ‘O z]o(unz)F(z)dz -(27)

To make use of this result to obtain the coefficients of the expansion (24), it is necessary to
introduce the variable

2= \/% .(28)

In view of (17) and (18), eq. (24) becomes

yam=yduﬂ=Fc»=§fAJamz) 29

This is the form (25), and the arbitrary constants are determined by (27).

The determination of the possible frequencies and modes of oscillation of a hanging chain is of
historical interest. It appears to have been the first instance where the various normal modes of
a continuous system were determined by Daniel Bernoulli (1732).

Self Assessment

1.  Find the relations between I, m , n and k so that
V(x,y,z, t) = Aexp[i(lx +my +nz+ kct)] + Bexp [—i(lx +my +nz+ kct)J
is the solution of wave equation

1 9%V
VIV =5
c? of?

18.1.1 Solution of One Dimensional Wave Equation

We shall now solve one dimensional wave equation under some boundary conditions. Let f{(x)
and g(x) be the initial deflection and initial velocity of the string and the string is stretched
between two points (0, 0), (L, 0). Hence for the wave equation

Pu 1% )
T -0
u(0, t) =0,

and u(L, t) =0, for all ¢, and initial conditions ...(ii)
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u(x, 0) = flx) ...(iii)

and (aa—ttll:o =g(x) ..(iv)

It is obvious from the equation (i), that u is a function of x and . Therefore we suppose that the
solution of equation is of the form by

u(x, t) = X(x)T(#)
or u(x, ) =XT(say) (V)
where X is a function of x only and T is that of ¢ only.

Substituting this solution in (i), we have

Now L.H.S. is a function of the independent variable x, while R.H.S. is a function of independent
variable t. Therefore both sides cannot be equal unless both reduce to a constant value. Hence

2
X 12 .%.%:0 or M2or —A?
X~ ¢

Therefore in the three cases, we have

2 2
X eT
dx dt
2 2
d—i(—kzX=0, d—}f—xzﬁ:o,
dx dt
2 2
X ax =0, X 2T =0
dx dt
The general solutions in the above three cases are
(@) X=Ax+B, T=Ct+D
(b) X = AeAx + Be*kx’ T= Ce}‘“ + De—?»ct

() X= Acoshx+Bsinix,  T= coshct+DsinAct
Using boundary conditions and the solution (a), we have
u(0, ) =X0) T(t) =0
and u(L, t)=X()T(t)=0
which gives either T(¢) = 0 or X(0) = X(L)=0
But T(t) # 0 otherwise we get
u(x, )=0
Therefore X(0) = X(L) =0
Using this in solution (a), we have
X0)=B=0
and X(L)=AL+B=0

Giving A = B = 0. Hence X(x) = 0 and therefore u (x, ) = 0 which is absurd. This proves that (a)
cannot be solution of the wave equation (i).
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Now from solution (b) using boundary conditions
X0)=A+B=0
and X(L) = Ae™ +Be™™ =0
Giving A — B =0, so that X(x) = 0 therefore 0 which is absurd.
Hence (a) and (b) are not the solutions of wave equation (i). The third solution (c) is periodic (in

time). Therefore the solution is u(x,t) = (AcosAx + BsinAx)(C cosAct + DsinAct) = 0. Using the

boundary conditions (i) and (ii), we have
u(0,t) = A(Ccoshct+ DsinAct) =0.

Hence A=0

and u(L,t)=BsinAL(CcosAct+ DsinAct) = 0.

this gives sinA; = 0

or  AL=nm

_hn

A
or L

wheren=1, 2, 3....., (i.e. a + ive integer).

Hence the solution of equation (i) satisfying boundary conditions is

nmct ) . nmx
...(vii)

nmct .
u, (x,t)= (Cn cos——+ D, sin—— |sin
L L
Now using initial conditions (iii) and (iv), we have

t, (1,0) = C, sin " = £ (x)

By —nmc . nmct  nmc nnct |sinnmx
and — = C,sin——+——D, cos——
ot J_, L L L L L

nme nmx
=——D sin— = ¢(x).
. Dusin——=g(x)

Clearly these will not be satisfied if we take only a single term as our solution. The equation
(i) is a linear and homogeneous therefore the sum of different solutions will still be a solution.

This instead of (vii), the solution may be taken as

u(x,t)= Z(C” cos%d +D, sin%d)sinnLﬂ ...(viii)

n=1

Therefore using initial conditions

u(x,0)= ij sinnTnx = f(x)

dy QO ATC . ANX
P = 7D _—
and (Bt 1:0 ; [ Dasin—r <(x)
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L.H.S. can be considered as the Fourier since expansion of the R.H.S. Hence Notes

I fx sm—dx - (ix)

and —— ,J. sm— dx - (x)

These values completely satisfy the solution (viii). Thus u (x, t) given by (viii) with the coefficients
(iv) and (x) is the solution of the above equation that satisfies the conditions (i), (ii), (iii) and (iv).

18.1.2 Two Dimensional Wave Equation

As another example leading to the solution of the wave equation, let us consider the oscillations of
a flexible membrane. Let us suppose that the membrane has a density of m gms. per cn?and that
it is pulled evenly around its edge with a tension of T dynes per cm. length of edge. If the

membrane is perfectly flexible, this tension will be distributed evenly throughout its area, that is,
the material on opposite sides of any line segment dx is pulled apart with a force of T dx dynes.

Figure 18.3

f Tdx

Td Td
¢ Y Y

¢ Tdx

Let u is the displacement of the membrane from its equilibrium position. u is then clearly a
function of time and of the position on the membrane of the point in question.

If we use rectangular co-ordinates to locate the point, u will be a function of x, y and t. Let us
consider an element dx dy of the membrane shown in the figure 23.3.

If we refer to the analogous argument for the string, we see that the new force normal to the
surface of the membrane due to the pair of tensions Tdy is given by

Jou Ju 32
Td 22 dxd )
y[(ax jd (ax) } Friiad (i)
The net normal force due to the pair Tdx by the same reasoning is
- (aj (auJ P
% y+dy % oy* ...(ii)

The sum of these forces is the net force on the element and is equal to the mass of the element
times its acceleration. That is, we have

*u  9*u *u
Tdy |:az + ay}d xdy = m? dxdy ...(iii)

*u 0% 1 0%u )
or $+@_?¥ - (iv)
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where ¢=,/—
m

Equation (iv) is the wave equation for membrane.
Solution of Two Dimensional Wave Equation

Let us now obtain the solution of the two dimensional wave equation. In the last section we have
derived that the oscillations of a perfectly flexible membrane stretched to a uniform tension T
are governed by the two dimensional wave equation. Here in this equation u(x, y, t) is the
deflection of the membrane.

Let f(x, y) be the initial deflection and g (x, y) be the initial velocity of the membrane.

Therefore the boundary conditions and initial conditions are

Figure 18.4

YA

C B

b

O a A > X
u(O,y,t) =0
u(eyt)=01 ¢, (i)
u(x,0,¢)=0
u(x,b,t)=0

and  u(x,y,0)=f(x,y)

dy . .
= = g(x,y) respectively. ...(ii)
0t Jizg

It is obvious that u is a function of x, y and ¢. Hence we suppose that the solution of the equation
is of the form

u(x,y,t)= X ()Y (y)T (1)

or u (x,y, t) = XYT(say) ...(iii)

where X is a function of x only, Y is that of y only and T is that of f only.

Substituting this solution in wave equation

Pu  *u 1 *u

- 4= —,
ox> 8y2 c? o
we have

1 10°T 10°X  19°Y
TT

1
_ L R —
A2 To? Xoxt Y ay2
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L.H.S. is purely a function of t and R.H.S. is a function of x and y. Hence both sides will be equal Notes
2
only when both reduce to some constant value. Again in R.H.S. the sum of two terms X and
19°X

X oy’ cannot be equal to a constant unless each of these is constant.

Thus we have following three possibilities

1 0°T _ 102X _ 10%Y

T a2 Yy ~ A 2 Y 77_0/
@ T ot X ox* Y oy’ :

10T ., 10*X ., 1%

b —_—= , —_— , —_—= }\2’
() T ot? Xox2 "V vyt 7
where A? =A%+ A2 and
1 0°T ,  10°X , 19% )
Str=-a?, 295=2, 0=,
© T o X ox* oy gy ?

where again A% = A2 + 23
The general solution in above three cases are
X=Ax+B;, Y=Ay+B,, T=A;t+B;, ..(iv)
X = A"+ Be ™, Y = A,2e" + B,2¢ Y and T = Aye” + Bye ™ (V)
X = A cosix + B sinkx
Y = A, cosh,x + B, sinA,x

T = A5 cos(CAt) + By sin(CAt) c (Vi)

From the boundary conditions (i) it is clear that (iv) and (v) are not the solution of the wave
equation. Therefore (vi) must be required solution which is periodic in time. Hence we have

u(x,y,t)=(A; cosh x + By sink,x)(A, cos,y + B, sinA,y)(A; coscht + By sincAt) ...(vii)
Using the boundary condition (i), we get

u(0,y,t) = A; (A, cosh,y + B, sin,y)(A; coscAt + By sincht) = 0

A =0

u(a,y,t) =B, sinha(A, cosA,y + B, sinA,y)(A; coscAt + By sincht) = 0;

Sinda=0

or Ma=mn

A=— (m=1,2,3,..)
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Similarly using other boundary condition, we get
AZ:Oand}»zz% (n=1,23,..)

Now (vii) becomes

. MWX . NT
umn(x,y,t)z(Amncos}»mnt-kB sinA,,,t)x xsin . smTy ...(viii)

2 2
where A=A, =7 (m + an
a~ b

Since the wave equation is linear and homogeneous, therefore sums of any number of different
solution will still be a solution.

Thus instead of (viii) an appropriate solution of u(x,y,t) is

— . . mMnx ., Nm
x y/ 2 2 mn COS )‘mnt + an SIH()‘mnt))SIH L sin by (IX)
1=1n=1

a

2 2
where A>=2% =m (m+an
a b

Now using the initial conditions (ii), we have

(x,,0) ZZA'"” sm—smmby fxy).

m=1n=1

This series is called the double Fourier series of f (x,y) therefore.

Apn L Oj.y o X, y sm sm y dxdy

and ( ) 2 2 C}\'WHl mn Sln*Sln n:y g(x/y) (X)
t=0  m=1n=1
Therefore,
ch mn mn = I OJ. 0 X y Sln ”ny dxdy
x=0dy=
@ b . mMmX . Nm '
or B, = Py ,IxzoJ.yzog(x,y)sm%sm%dxdy (x)

Hence the solution of two dimensional wave equation is given by (ix) with the coefficients (x)
and (xi) satisfying all the conditions (i) and (ii).

18.1.3 The Vibrations of a Circular Membrane

In the case of the circular membrane we naturally have recourse to polar co-ordinates with the
origin at the centre. In this case the equation of motion obtained in Cartesian co-ordinates must
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be transformed to polar co-ordinates, we may write the basic equation of motion of the membrane
in the form.

1 0%u
Viu= 232 where y2is Laplacian operator in two dimensions. ..(i)
Transforming this equation to polar co-ordinates, we have

o Tou 1) Fu "
o2 ror r*00%) o

Let f(r,0) be the initial displacement and g(r,0) the initial velocity of the membrane. Therefore

the function u(r,0,t) is required to satisfy (ii) and all the boundary and initial conditions, i.e.

Boundary Condition
u(a,0,t)=0 (-m<0<ml=0) ..(iii)
Initial Condition
M(T,e,0)=f(1’,e) (IV)
ou
and (—) =¢(r,0) 0<r<a, -n<0<n (V)
ot )y

since u is a function of r, 8 and ¢, we suppose the solution of equation (ii) as
u(r,0,t)=R(r)©(0)T(t)

or  u(r,0,t)=RO(T)say (Vi)

Using the solution (ii) we have

11d°T 1d4°R 11dR_ 11d°0©

=——t———+
Tc*d? Rdr* r R dr 0 do?

L.HS. is a function of t and R.H.S. is a function of r and 8, hence both sides will be equal only
when both reduce to a constant.

Hence

1 dT 1d4°R 1 dR 1 d°

el N WO R ...(vii
AT d? Rdr* Rrdr 7?0 do? i)

where —A? is any constant. We separate the variable in equation (vii) and write

1de_
772:_”'
0 doe
thus we get
2 2
ﬂzﬂl&r 22 -2 IR =0 ..(viii)
dr= rdr r
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d*e
02 u?0=0. ---(ix)
d*T
Tt AT =0. (%)

Equation (ix) has the solution of the form
0 = Ae*™® ()
Substituting new variable s = Ar in equation (vii), we have
2 2
‘;;;+1‘ZI:+(1—‘:2]R=0
which is Bessel’s equation whose general solution is

R= Cl]u (S) + CZYu (S)
or  R=CyJ,(Ar)+CyY, (Ar)

But since the deflection of the membrane is always finite while Y, becomes infinite as r — 0
hence we cannot use ¥, and must choose C, = 0.

Now using boundary condition (iii)
u(a,0,t)=R(a)©(0)T(t)
R(a)=0
Otherwise if ©(0)=0 or T(#)=0, u=0
R(a)=GJu(r a)=0
or Jy(Aa)=0 (xdi)

Let Aly, AW, be the positive root of (xii),
The corresponding solution of (viii)
T = Auncoseiunt + Bunsin CAunt
Thus we get the general solution as
u(r,0,t)= Z E(Aw cosCA,,t + By, sin )\uni})eii“‘a]u (}»W,r) . (xiii)
u=1n=1

which satisfies the boundary condition (iii).

Considering the solution of the wave equation (ii) which are radially symmetric i.e. when the
solution is independent of 6, we get the general solution as

oo

u(r,t)= Z(A” cosCA,t + B, sinCA,t) Jo (A,r) (xiv)

n=1
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when A, A,...are the positive roots of the equation
Jo(ha)=0
From (xii) and initial condition (iv) when t = 0, we have

u(r,0)= iA"IO (A,r)=f(r)

n=1
u(r,0) becomes f(r) when independent of 0.

Hence A must be the coefficients of Fourier Bessel series which represent f{r) in terms of J, (A1)

i.e.

2 a
A, :WL 1f (r)Jo (h,r)dr, r=1,2,.. (xV)

The initial condition (v) gives

(%120 - icann Jo(A,r)=g(r)

n=1

[(r,8) becomes g(r)when independent of 6]

Again using Fourier Bessel series, we get

2 a
ch,B, = WL’ rg(r)Jo (h,r)dr

2 a
" aZ]S ()\’na)C}\‘n JO rg(r)]o ()\'"r)dr (XVI)

Hence (xiv) is the solution of the wave equation with the coefficients given by the equations (xv)
and (xvi) which is radially symmetric.

D, Alembert’s Solution of Wave Equation

Given wave equation is

u_ o

ol -

Let us introduce two independent variables v and w given by

v=x+ct B
and { } ...(if)
w=x-ct
v ow
—=1land —=1
0x an 0x

ou _oJu du Jw Jdu

Therefore, =— .
eretore dx dv dx Jdx ox
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_ou  dw

Pu 9 (au) (8 0 )(au aw)
Now —=—|—|=| —+— || —+-—
ox~  oJx\odx dv oJdw )\ dv Jw

u _ du ou  o*u

= 4+
0v  Jdw
0 o0 0
ie, —=—
dx Jdv Jw

=—+ +t—
oxr v’ dvdw  Jdw?

Again %zc and a—w— —c

ot

ou Ou ou Ou Jw (au 8u)
_ouou ouow_ [ou_ou
dv  Jw

ot v ot dw ot
ait_cz(i_ij(al_al)
o v dwNow ow

2 2 2
=62(8u_2 o“u +8uJ

> T ovdw 0w
Substituting from (iii) and (iv) in (i), we get

=Cz(32“ 5 0%u . 82u]

3 T ovdw  ow*

,[ 9%u u
=C ) +2 + w7
v Jvdw  Jdw

%u _
Jdvdw

Integrating with respect to w, we get

ou _

5_1:(0)

where F(v) is an arbitrary function of v.

Integrating this with respect to v, we get

u=0(v)+¥(w).

where J-f(v)dv =®(v)
and ¥(w) is an arbitrary function of w.

u(x,t)=0(x+ct)+¥(x—ct)

This is known as D, Alembert’s Solution of the wave equation (i).
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Notes

' Example 1: A string is stretched between the fixed points (0, 0) and (1, 0) and released at
rest from the positions u = A sin mx. Find the formula for its subsequent displacement u(x, t).

Solution: Here the variation of the string is governed by one dimensional wave equation

u_ o

T
Boundary conditions are u(0,¢)=0
and u(1,4)=0
Initial conditions are u(x,0)= Asinmx

ou
d — | =0
an @Jﬂ

Hence, we have

u(x,t)= ch cosnmct sinnmx

n=1

1
where C,= 2J Asinmxsinnnx dx
0

C,, C,, C,,... are all zero, since R.H.S. vanish for all these values

1
and C, = ZIAsin nx sinmx dx
0

1
= A.[ (1-cos2mx)dx

Hence u(x,t)=c, cos(cmt)sinmx
= Acoscrt sinmx
' Example 2: Find the deflection u(x, y, t) of a square membrane with g =p=1and c=1, if
the initial velocity is zero and the initial deflection is
f(x,y)=Asinnx sin’ my

Solution: Equation governing the deflection of the membrane is

u | *u  u
FTea P
Y
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Boundary Conditions

u(O,y,t)zO
u(Ly,t)=0
u(x,0,t)=0
u(x,1,¢)=0

Initial Conditions

u(x,y,0)= f(x,y) = Asinmxsinn’y

ou
ou =0
and (at jf:()

Now u(x,y,t) = ZZA’"" COs A, t sinmmx sinnmy

m=1n=1

SinceC=1,a=1,b=1
and A2, =A2 (m2 +n2)

11
where A, = 4“. f(x,y)sinmnm.sinnydxdy
00
11
= 4A“.sin nx sin mnmx.sin® my sin nydxdy.
00

clearly A1 =A,3=A =A,5=..0

11
and A,,= 4Ajjsin nxsin mmx.sin? 2mydxdy.
00

1
= 2AJ~ sin mx sin mmxdx.
0

Now Ay =Agp =Ay=..=0

1

and Ap, =24 f sin? mvdx = A
0

Hence we have

u(x,y,t)= Ay, coshy,tsinmx2my
= Acos~/5mtsin mxsin 2my, as all coefficients
Vanish except A, =n? (12 + 22).

or Ap=+5m

Self Assessment

2. Solve one dimensional wave equation
Pu_ 10
ox* c* o
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with the boundary equations

u(0,4)=0
u(L,t)=0
u(x,0)=0

@7) _g(¥)

18.2 Boundary Value Problems (Heat Conduction or Diffusion)

Derivation of the Equation of Heat Conduction

In applied mathematics the partial differential equation

WV _pevry
ot

where F? is a constant and y2 is the Laplacian operator governs the temperature distribution V
in homogeneous solids.

To prove this, we know that the role of flow of heat in a homogeneous solid across the surface

aV

is =K on ber unit area, where V is the temperature and K a constant called the thermal

9
conductivity, N denotes the differentiation along the normal. Taking an element of the solid

at the point P (x, y, z) as a rectangular parallelepiped with P centre and edges parallel to the co-
ordinate axes, of lengths dx, dy and dz, we find that the rate of flow of heat into the element is

KV?Vdxdydz

But the element is gaining heat at the rate
oV
C——dxdyd
PTor e

where p is the density and C the specific heat. Thus, if there is no gain of heat in the element other
than by conduction, we have

WV _ vy
ot
where C*= c£ (i)
o)

If heat is being produced at (x,¥,z) in any other way, a term must be added to the right hand side
of (i).

18.2.1 Variable Heat Flow in One Dimension

If we consider the heat flow in a long thin bar or wire of constant cross-section and homogeneous
material which is along x-axis A and is perfectly insulated, so that the heat flows in the x-
direction only, V depends only on x and t and therefore the heat equation becomes.
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CAEY 4 .
o F ...()

Equation (i) is known as one dimensional heat equation.
Now we shall find out the solution of equation (i) under different initial and boundary conditions.

Case I: Let L is length of the rod whose ends are kept at zero temperature and whose initial
temperature is f{x).

The boundary conditions are

V(0,t)=0 (i)

V(L,t)=0forall ...(iii)
The initial conditions are

V(x,0)= f(x) O<x<L o (iv)
Let the solution of equation (i) is of the form

Vi(x,t)=X(x)T(¢)

Vv =XT(say) (V)
where X is a function of x only and T is that of t only.
Substituting this solution in equation (i), we get

14X _ 14T

X dx*  *T dt

since L.H.S. is a function of x and R.H.S. is a function of ¢, hence both sides will be equal only
when both reduces to same constant. Therefore

2
ld—fz%d—]—=00r}»20r—k2
X dx® c°tdt

and hence in these three cases, we have

d’x dT

= —=0
(a) o 0 and =0,
a2x ., dT .,
el = — A\t =0,
(b) 2 A°X=0 and it c
X ., dT .5,
= = — + A% =0
(©) 2 +A°X=0 and i c

The general solution in these three cases are

(i) X=Ax+B T=c

.. 2
(i) X =A™ +Be™ T=cd et
(iii) X = AcosAx+ Bsin\x, T= Ce_LZCZ,
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If we use the boundary conditions (ii) and (iii) we observe that (i) and (ii) do not constitute the Notes
solution as they give A = B = 0i.e. X =0 and hence V (x, t) = 0, which is absurd.

Using boundary conditions (ii) and (iii) the solution (iii) gives.

X(0)=A=0and X(L)=0+BsinAL =0.

Now B %0 otherwise X =0 and hence V (x,t)=0.
Therefore
sinAL=0

or AL =nm

A=—,n=1,2,3,...
or I

Hence for each value of n.
LAl _2.2.2,,12
V, (x,t)=B,sin—xe " " /L
L

are solution of (i) satisfying the given boundary condition. Therefore for each value of n, we
take the solution as

= Conm _,2.2.2,,.2 .
or Vn(x,t)=Zanmfx.e nimtett/L (Vi)
n=1

Using initial condition, we have
- nm
V(x,0)= ) B,sin—x= f(x
(5.0)= 35,50 x= £ (1)
which gives

L
2 . Nm
B :ZJ.F(x)sme.dx ..(vii)

n
0

Thus (vi) with coefficient (vii) is the solution of one dimensional heat equation in (i).

Case II: Let L be the length of a uniform wire whose end x = 0 is kept at 0 temperature and other
end x = L is kept at constant temperature f, and we have to obtain the temperature function of the
wire as t increases, the initial temperature being ¢,.

Hence boundary conditions are
V(0,¢)=0 ...(viii)

V(L,t)=t, forall ¢ - (ix)
and initial condition is

V(x,0)=¢ (X)
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Let the solution of heat equation be
V(x,t)=XT o (xi)

where X is a function of x only and T that of f only.

Substituting this solution in (i) as we have done in Case I, we get the following three solutions:

(i) X=Ax+B T=C
(i) X=Ae™ +Be™ T= Cg"zczf
(iii) X = AcosAx+ BsinAx T =Ce ¥ c

Hence (ii) does not constitute the solution of (i), since in this case V (x,#) = XT increase indefinitely
with time, which is not the case. (iii) is also inadequate to give complete solution since in this
case temps tends to zero as t tends to infinity. Hence the complete solution must be a compilation
of (i) and (iii) Therefore

V(x,t)=Vy(x)+V,(x,t) < (xid)

where V_(x) denotes the temperature distribution after a long period of time when the rod has
reached a steady state of temperature distribution, V, (x, ) denotes the transient effects which die

down with the passage of time. These two must be the solutions of the types (i) and (iii)
respectively.

It is obvious that when the end x = 0 is maintained at temperature V = 0 and the end x = L at
V = t, ultimately there will be uniform gradation of temperature.

Therefore V,(x)= %Ox.

(xii) then becomes
V&ﬂ=%&+%&i)

with the help of (viii), (ix) and (x) the boundary and initial conditions for V,(x,t)are as follows:
V(0,£)=V,(0,£)=0 ...(xiii)
V(L,t)=ty+V,(L,t)=t,

or V,(L#)=0

and V(x,O)zthx+Vt (x,0)=t o (xiV)

t
or V,(x,0)=t —foﬂﬁ (xV)
Therefore let us take

v, (x,t):(A'coskx+B‘sin)»x)e’k2€2t w(xvi)
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In this result by making use of (xiii), we get
V,(0,t)= A'e =0
A'=0

Then making use of (xiv) in (xvi), we get
V,(L,t)=B'sin AL =0
sinAL =0

or AL =nm

or )L:T n=1,23,.)

Therefore a solution for V,(x,t) is

Conm _,2,2.2
B, smee ¥omtett/ly (n =1,2,3,.)

Now adding the solutions for different n the general solution may be written as
N nm 2.2
V. (x,t)= Y B sin—x.e ¥ " /L2
r( ) Z n L
In this result if we use (xv), we get

V,(x,0)=t, ——x—ZBn sm—x

L

which gives B, = gj(ti - tfox)sinﬂxdx
L 0 L L

Integrating by parts, we get

—[t n(t —t,)]

Therefore

v, (x x+= Z[t—— t—t)‘*”“/Lsin"Lﬂ]

Here if the initial temperature of the wire is zero then, we get

Vi (x/f)Z\/?{x'i'iZ(—l) el smn:x}

n=1

..(xvii)

...(xviii)

...(xix)

Case I1I: Let there is a bar of infinite length (i.e. extending up to infinity on both sides) which is
insulated laterally. Then we have to find out the solution of heat equation (1) if the initial

temperature of the bar is f(x).
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In this case there is no boundary condition and the initial condition is

V(x,0)= f(x) (-eo < x <o) o (X%)
Again we assume the solution of equation (xi) as

V(x,t)=XT.

Proceeding as in the last two cases, we get the three solutions and here we find that (i) and (ii) do
not constitute the solution. Hence we take here the third solution (iii), i.e.

) 2,2,
X =Acospx+Bsinpxand T=Cye™* 7
Here we have taken the constant as —p?* instead of A2

Hence V(x,t,p) = XT = (Ccospx + Dsinpx)e_cz’”z‘ e (xxi)

Since f(x) is not periodic here, therefore we will use Fourier integrals and not Fourier series.
Also, we may consider C and D as functions of p

write C=C(p), D=D(p).

Now since the heat equation is linear and homogeneous, we have

V(x,t)= J.:V(x,t,p)dp

or V(xt)= J.:[C(p)cospx + D(p)sinpx]e‘czpztdp . (xxii)

(xxiii) is the solution of (i) provided this integral exists and can be differentiated w.r.t. ,x, and
w.r.t. t,.

Using the initial condition (xx), we get

V(x,0)= [ [C(p)cospx + D(p)sinpx]dp = X (x)
C(p)== [ f(R)sinprd

and D(p):%f_if(k)sinpkd%;
Ve =2 ] [ £ acos(pr—pie " an iy

- %J.wa(k)[Iowe’czpztcos(x - A)p.dp}d?»

The change of the order of integration is justified, since inner integral exists and after changing
the order of integration resulting integral also exists.

Solving the inner integral by using the substitution cp+/t =s and using the well known integral

o b2

2
_[e‘s cos 2bsds =
0
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we get V(x,t) = N%I:f(}\)e—(x—xﬂ/%%d}»

Tt

A—x

2et

Putting =w, so that dx = —2c/tdw, we have

V(x,t)= % J' f (x + 2wt )e‘”’2f’w o (xxiii)

which is the required solution.

Case 1V: Let there be a bar of length L which is perfectly insulated. Both endsi.e. x=0and x =L
are also perfectly insulated and the initial temperature of the bar is

V(x,0)=f(x)

. . aV .
The flux of heat across the faces x =0 and x = L is proportional ¢, o at the end, since these ends
x
are insulated. In this case the boundary conditions are

)

aV(O,t): 0 —.(xxiv)
%V(L,t): 0 o (xxv)

and the initial condition is

V(x,0)= f(x) (0<x<L) we(xxvi)
Proceeding as in Case I, here also we get three solutions. Solution (ii) is inadmissible as in this
V = XT increases indefinitely with time. The solution (iii) by itself is inadequate since in this case

the temperature will tend to zero as t tends to infinity. Therefore general solution will consist of
the solution of (i) and (iii).

Using boundary condition (xxiv) in solution (i), i.e.
X=Ax+Band T=C

or V=A'x+B

we get A'=0.

Therefore V = B' is one of the solution of (i). Considering solution (iii) i.e.
X =Acoshx+BsinAx, T = Ce’}‘zc2’

or V(x,t):(C‘cos)»x+D'sin7\x)e‘7”252t

Using boundary condition (xxiv) and (xxv), we get

D'=0
and ‘/\:”L—“ (1=1,2,3,....)
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Therefore for each value of 1, we have a solution of (i) of the type
2,22, /2
V(x,t)=A, cosnL—nxe_” Ment/L
Hence the complete solution of (i) is

= A _232.24/12
V(xt)=B+Y A, cos——xe"" Y ...(xxvii)

n=1

Using the initial condition (xxvi), we have

RS nmx
V(x,O):f(x)=B+2An COSde <o (xxViii)

n=1

If we integrate both sides w.r.t. x between the limits 0 to L, we have

1
B'= Z_[[f(x)dx < (xxiX)
nmx
Also if we multiply both sides of (xxviii) by cos—— and then integrate w.r.t. x between 0 to
L, we have
2 nmx
An = Z-([f(x)cosde ...(XXX)
B, can also be written in a better way as
L
1
B'= 3 ;‘; £ (x)dx
127 n
= E.Z.([f(x)cos—dex
1
=—A
5%
Hence complete solution of (i) to be given by
1 S nmx _,2,2.2
V(x,t):EA0 +2An cos——e e o (xxxi)
n=1
2 nmx
A, == f(x)cos——dx . (xxxii
where A, I _([ £ (x)cos T o (xxxii)

Self Assessment

3. The heat equation is given by
2
K| |- ou
ox ot
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show that the function

1 -x?
U (x,t) = —=exp| —
(x,t) \/feXp(élxtj
is also the solution of heat equation.
18.2.2 Heat Flow in Two Dimensional Rectangular System

To illustrate the solution of the two dimensional diffusion equation, let us consider the following
problem.

Figure 18.5
Y
t=0
A
:
0le—: >X

A thin rectangular plate whose surface is impervious to heat flow has at f = 0 an arbitrary
distribution of temperature. Its four edges are kept at zero temperature. It is required to determine
the subsequent temperature of the plate as t increases.

Let the plate extend from x = 0 to x = a and from y = 0 to y = b. Expressing the problem
Mathematically, we must solve the equation

Fwl vl

L[*V *V) oV
c 72+ > |=
ox~  dy

Subject to the boundary conditions

forall £. ...(ii)

The initial conditions are

V(x,y,0)=F(x,y) for 0<x<a,0<y<b

V(x,y,0)=0 ..(iii)
To solve equation (i) assume a solution of the form

V(x,y,t)=e"X(x)Y(y)= e XY (say). (iv)
where X is a function of x only and Y is function of y only. Substituting (iv) in (i) we get

14°X _1d4°%Y 0

X2 Ty 2T

Xdx® Ydy c

L =T = )2,
or < + v)
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We have now succeeded in separating the variables since the left hand member of (v) is
a function of Y only and hence both members of (v) are equal to a constant which we have
called A%

0
Let =~} =W then ..(vi)

the solutions are
X = Ay sinux + B; cospx
X = A,sinAx + B, cosAx ..(vii)

And A’s and B’s are arbitrary constants. Now, to satisfy the boundary conditions (ii), it is obvious
that there cannot be any cosine forms present so that we must have

B, =B, =0

Also we must have

sinpa=0
and sinAb=0
b
which gives M= e m=0,1,2,.....
and 7»=% n=0,1,2,....

From (vi) we find that

O =€° {(TT + (”b“ﬂ ...(viii)

Hence for all value of m and n we find a particular solution of (i) that satisfies the boundary
conditions (ii) of the form

- . MUX ., NT
V =B,,e " sm—smTy
a

If we sum over all possible values of m and n construct the general solution

V= 2 2 B,,,e mnt sinm—msin% ..(ix)

m=1n=1 a

Using initial conditions (iii), we get

oo

. _ mmx . nmy
F(x,y):mz=1 2 B, sin—=sin—= (%)
Multiplying both sides of (x) by
. ITX . STy
sstmT .(x)
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and integrating w.r.t. x and y from x = 0 and y =0 to y = b, because of the orthogonality properties
of the sin 0 all the terms in the summation vanish except the term for which m = rand n = s and

we obtain the result.
B _4 j } F(x )sinm—xsinkﬂdxd
= S Yy 1 b Y
This determines the arbitrary constants of the general solution (ix)

Three Dimensional Heat Flow

The heat equation in three dimensions is given by

2 2 2
B—V=C2V2V=c2 a—‘g+a—‘2/+a—‘2/
ot ox®  Jdy° oz

k
where ¢ =—

cp

Consider now a slab of dimensions g, b, ¢, the boundary conditions are

V(O,y,z,t)zO,

V(a,y,z,t)zO,

V(x,0,z,t)=0,
and

V(x,b,zt)=0,

V(x,y,O,t) =0,

V(x,y,c,t) =0,

for all ¢.
V(x,y,2,0)=F(x,y,z) for 0<x<a, 0<y<band0<z<c.
To solve equation (i) we assume as usually a solution of the form
V(x,y,z,t)=e "X (x)Y(y)Z(z)
and then find the solutions similar to the case of two dimensions.

18.2.3 Temperature Inside a Circular Plate

...(iii)

.(iv)

Consider a thin circular plate whose faces are impervious to heat flow and whose circular edge

is kept at zero temperature. At t = 0 the initial temperature of the plate is a function f(r) of the

distance r from the center of the plate only. It is required to find the temperature u (r, t). Let the

radius of the plate be a.

The equation of heat conduction is

ou 22
—=hV
ot !
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It is clear that the temperature u must be a function of r and ¢ only (due to symmetry). So using
cylindrical co-ordinates, we have

ou ., ?u 10du

E—h (a;fz+rat»J, O<r<a (11)
The boundary condition is

u=0atr=a ...(1ii)

The initial condition is

u(r,0)=f(r) ..(iv)
To solve eq. (ii), let us assume

u=e"o(r) (V)

Substituting in eq. (ii), we obtain

_mv(r)=h2(8r2+rarj .. (vi)

Rewriting (vi) in the form

v v mr ..
r?-‘-g*—hjv:o ...(Vll)

Let k2 =m/h? ... (viii)
and ¢ = kr, we have from (vii)

P+ o= (i%)

which has the same form as Bessel’s differential equation for n = 0. Hence the general solution of
(ix) is
v=AJ, (kr)+ BY,(kr) (X

where A and B are arbitrary constants. Now since the temperature must remain finite at r =0, the
arbitrary constant B in (X) must be equal to zero. We thus have

v=AJ,(kr) (i)

Since the boundary r = g, of the plate is maintained at zero temperature for all values of t, we
must have

Jo(ka)=0 ...(xii)
Thus only those values of k are allowed that satisfy equation (xii). Let these values be

k;(i=1,2,3,..). Equation (viii) gives the following values for m:
m; = (k) ...(xii)
A particular solution of (v) that satisfies the boundary condition is
a2
=Ae " gy (k)

U;
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The general solution is obtained by summing over all values of i.e.

= 5
u= ZAZ'E i Jo (ki) o (xiv)
i=1

where the arbitrary constants A, must be obtained from the initial conditionsi.e. att =0, u = f (7).
Putting ¢ = 0 in (xiv), we have

f(r)= iAiIO (kir) . (xv)

Here A, are now obtained as

2 a
Ar=—————|rf()]o(kir)dr, i=1,2,.... i
az]l(k,va)z‘[[ 0 ..(xvi)

' Example 1: Determine the solution of one dimensional heat equation under the following
boundary and initial conditions:

v(0,t)=V(L,t)=0 t>0
and V(x,0)=x 0 <x <L where L is the length of the bar.
Solution: Proceeding as before for Case I; we have

nmx e—nzﬂ:zazt/L2
L

V(x,t)= ZBn sin

n=1
2 0 i
where B, = —Ix. sin nm xdx
L L

Integrating by parts, we get

2L
B, =——cosnmn
nm

oo

2Ll . NMX 202,24 /12
Therefore V(x,t):—E—Cosnn51n4 e n°ncat/L
T n

n=1

' Example 2: A rectangular plate bounded by the lines x =0, y = 0, x =4, y = b has an initial
distribution of temperature given by.

. TX . TY
V(x,y,0)= Asin—sin—
(xy ) s 2 s b

The edges are kept at zero temperature and the plane faces are impervious to heat. Find V at any
point and at a time.

Solution: We have the heat equation as

a2V N 22V _12v
9x> 8y2 c? ot
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Let us put the solution as

< _2 . mn_ . nn
V(x,y,t)= ZZA”'” e Pl sin—uxsin—y
a

m=1n=1

where

ab
4 . Mx . MYy . MAX . NTY
and A, =—||Asin—sin—=sin——sin—=dx d
mn ab-([-([ sim 2 sin b s 2 sin b Yy

4A | v . mmx| T nm
=— J- sin = sin 2% f sin—ysin—dy dx
ab 2, @ a |l b b

1
for n =2,3, 4, ... the inner integral vanishes and for n =1, the value of the integral is 5 we have

oy

2
Therefore V(x,y,t)=Ae™* Mt gin M i Y,
a

This give the temperature of the plate at any point and time.

' Example 3: Find the temperature u(x,t) of a slab whose ends x = 0 and x = L are kept at
temperature zero and whose initial temperature f(x) is given by

flx)=A when0<x<%

f(x)=0 when%<x<L

Solution: Let L be the length of the slab whose ends are kept at zero temperature and whose
initial temperature is f(x).

The boundary conditions are
u(0,t)=0

u(L,t)=0 for all t. e (A)

The initial conditions are

L
u(x,0)= f(x)=A when 0<x<§

=f(x)=0 when%<x<L ...(Az)
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Let the solution of the heat equation

ou 0%
=2,
dx

ot
is of the form
u(x,t) = X(x)T(t)
where X is a function of x only and T is that of ¢ only.

Substituting in (1), we get

1eX_ 1T
X dx* T dP?

.0

Since L.H.S. is a function of x only and R.H.S. is a function of t only, both sides will be equal if

they are constant i.e. equal to —A?

ldzl 14T _ A2
X dx® 3T dt
Thus
2
d—}f +A*X =0
dx
and
aT L 21 =0
dt

The solutions of equations (4) are

X =AcosAx+Bsinix; T = Ce Mt
using boundary conditions (A,), the solution (5) gives
X(0)=0=Aand X(L)=0+BsinAL=0
Now B # 0 hence
sinAL=0
or AM=nn, forn=1,23,...
ie.A=nn/L

Hence for each value of n

. nm 222 .2
Mn(x’t):Bn SIH(T'X)E et ntt/ L

.(4)

.8

are solution of equation (i) satisfying the given boundary conditions (A,). So the general solution

is

_nzcznzf

u(x, )= Y u,(x,t)= Y B, sin”Lﬂe 2
n=1

n=1

.9
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The coefficients B, are given by

L
B, =%IO f(x)smnTnxdx
Ceos™™ ]
2A (L/2 . nmx 2A L
=— sin—dx=—=——-—"=
L Jo L L (nmn/L)

or

B, = %[1 - cosﬂ]
nm 2L

= %(2 sin’ E)
nmw 4L

= ﬁsin2 (@)
o 4L ...(10)

Thus the solution (9) becomes

—n2n2c2t

sin? (ﬂ)
u(x,t)= %Eiﬁsin(%)e 2 .(11)

n

n=1

So the solution of equation (i) subject to the conditions (A,) and (A,) is given by equation (11).

Self Assessment

4. Find the solution of heat equation.
P’V 9V _9v
I R
dx®  dy® dt

Subject to the boundary conditions

V =0 when f = 400, when x=0orx =/ and when y =0 or /.

Also initially

V(x,y,0)= f(x,y)

18.3 Summary

° Wave equation is written in Cartesian co-ordinates, cylindrical co-ordinates and spherical
polar co-ordinates.
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° It is shown that depending upon the nature of the process the suitable wave equation can Notes
be set up and solved.

° One dimensional wave equation suits in most problems. So the solution of wave equation
in one dimension is solved.

° Two dimensional wave equation depending upon the symmetry of the problem is solved
both in rectangular and circular cases. Also heat conduction is studied.

18.4 Keywords

Heat Conduction: It is an other process that occurs in so many processes. Diffusion process is
very very similar to conduction process.

Wave Motion: It can be obtained in mechanical vibrations, electrical vibrations and other
processes.

18.5 Review Questions

1. Show that the solution of the wave equation

1 i(rzauj_ 1 0%

P2arl ar) oo

can be of the form
1
u(r,t) ==[t(r — at) + F(r + at)]
r

where fand F are arbitrary functions.

2. Solve the one dimensional wave equation
Pu_ 1
ox?  c*dr?

with the boundary conditions

u(0,t)=0

for all ¢
u(l,t):O} ora

and

u(x, 0) = A sin 2nx

3&} o
9t )iy

3. Solve the heat equation in one dimension:

ou_ 0V _
ot ox’

subject to the conditions
u(0, t) =u(m, t) =0
and V(x, 0) = sin 3x
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Notes 4. Find the temperature u(x, t) in a slab whose ends x = 0 and x = L are kept at temperature
zero and whose initial temperature F(x) is given by

fx)=A when0<x<%

=0 when%L<x<L.

Answers: Self Assessment

1. P+m?+n? =k?
C nmct nmx
,8)=» D, sin| — |sin| —
2. u(x,t) ; sm( L )sm( L )
where
2 | nmx
D, =—| g(x)sin| — |d
=2 [ g(wpsin "2

4. Vix,y,t)= Z A, sianmsinn—?y et

where

%= 752(7112 +n2) and

1ol
A, = lizjx=o L:o f(x,y)sin UL sin%dxdy
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