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Statistics
Objectives:

 To understand the value of Statistics in acquiring knowledge and making decisions in today's society.

 To learn about the basic theory of Probability, random variable, moments generating function, Probability distribution, reliability
theory, laws of large numbers, correlation and regression, sampling theory, theory of estimation and testing of hypotheses.
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1.3 Keywords

1.4 Self Assessment

1..5 Review Questions
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Objectives

After studying this unit, you will be able to:

 Apply chebyshev’s inequality

 Give example of chebyshev’s inequality

Introduction

We have discussed different methods for obtaining distribution functions of random variables
or random vectors. Even though it is possible to derive these distributions explicity in closed
form in some special situations, in general, this is not the case. Computation of the probabilities,
even when the probability distribution functions are known, is cumbersome at times. For
instance, it is easy to write down the exact probabilities for a binomial distribution with

parameters n = 1000 and p = 
1 .

50
 However computing the individual probabilities involve

factorials for integers of large order which are impossible to handle even with speed computing
facilities.

In this unit, we discuss limit theorems which describe the behaviour of some distributions when
the sample size n is large. The limiting distributions can be used for computation of the
probabilities approximately.

Chebyshev’s inequality is discussed, as an application, weak law of large numbers is derived
(which describes the behaviour of the sample mean as n increases).

1.1 Chebyshev’s Inequality

We prove in this section an important result known as Chebyshev’s inequality. This inequality
is due to the nineteenth century Russian mathematician P.L. Chebyshev.

We shall begin with a theorem.

Richa Nandra, Lovely Professional University
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Chebyshev’s Inequality

NotesTheorem 1: Suppose X is a random variable with mean  and finite variance 2. Then for every
 > 0.

Proof: We shall prove the theorem for continuous r.vs. The proof in the discrete case is very
similar.

Suppose X is a random variable with probability density function f. From the definition of the
variance of X, we have

 = 
+

2 2E [(x – ) ] =  (x – ) f(x)dx.




 

Suppose  > 0 is given. Put 1 . 


 Now we divide the integral into three parts as shown in

Fig. 1.

1 1

1 1

2 2 2 2(x ) f(x)dx (x ) f(x)dx (x ) f(x)dx
    

    

           ...(2)

Figure 1.1

Since the integrand (x – m)2 f(x) is non-negative, from (2) we get the inequality

1

1

2 2 2(x ) f(x)dx (x ) f(x)dx
  

  

       ...(3)

Now for any x  ]–,  – 1], we have x   – 1 which implies that (x – )2  22. Therefore we
get

1 1
2 2 2(x ) f(x)dx f(x)dx

   

 

    

= 
1

2 2 f(x)dx.
 



  

Similarly for x  ] + 1, [ also we have (x – )2  2 2
1   and therefore

1 1

2 2 2
1(x ) f(x)dx f(x)dx

 

   

     
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Notes Then by (3) we get

1

1

2 2 2
1 f(x)dx f(x)dx

  

  

 
     

  
 

i.e.,    
1

1

2
1

1 f(x)dx f(x)dx
  

  

 
  

whenever 2  0.

Now, by applying Property (iii) of the density function given in Sec. 11.3, unit 10, we get

2
1

1


  P[X   – 1] + P[X   + ]

= P[X –   – 1] + P[X –   1]

= P[|X – m|  1]

That is, P[|X – m|  1]  2
1

1


...(4)

Substituting 1 = 



 in (4), we gt the inequality

 
2

2P[|X | 
   



Chebyshev’s inequality also holds when the distribution of X is neither (absolutely)  continuous
nor discrete. We will not discuss this general case here. Now we shall make a remark.

Remark 1: The above result is very general indeed. We need to know nothing about the probability
distribution of the random variable X. It could be binomial, normal, beta or gamma or any other
distribution. The only restriction is that it should have finite variance. In other words the upper
bound is universal in nature. The price we pay for such generality is that the upper bound is not
sharp in general. If we know more about the distribution of X, then it might be possible to get
a better bound. We shall illustrate this point in the following example.

Example 1: Suppose X is N(, 2). Then E(X) =  and Var(X) = 2. Let us compute P[ |X –
|  2].

Here  = 2. By applying Chebychev’s inequality we get

 
2

2

1P |X | 2 .25
4 4


     


Since we know that the distribution of X is normal, we can directly compute the probability.
Then we have

 
XP |X | 2 P | | 2  

       

3
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Chebyshev’s Inequality

Notes
Since 

X  


 has N(0, 1) as its distribution, from the normal distribution table given in the

appendix of Unit 11, we get

XP 2 0.456  
  

 

which is substantially small as compared to the exact value 0.25. Thus in this case we could get
a better upperbound by directly using the distribution.

Let us consider another example.

Example 2: Suppose X is a random variable such that P[X = 1] = 1/2 = P[X = –1]. Let us
compute an upper bound for P[|X – |> ].

You can check that E(X) = 0 and Var(X) = 1. Hence, by Chebyshev’s inequality, we get that

 
2

2P |X | 1.
    



on the other hand, direct calculations show that

   P |X | P |X| 1 1.      

In this example, the upper bound obtained from Chebyshev’s inequality as well as the one
obtained from using the distribution of X are one and the same.

In the first example you can see an application of Chebyshev’s inequality.

Example 3: Suppose a person makes 100 check transactions during a certain period. In
balancing his or her check book transactions, suppose he or she rounds off the check entries to
the nearest rupee instead of subtracting the exact amount he or she has used. Let us find an upper
bound to the probability that the total error he or she has committed exceeds Rs. 5 after 100
transactions.

Let Xi denote the round off error in rupees made for the ith transaction. Then the total error is
X1 + X2 + ..... + X100. We can assume that Xi, 1  i  100 are independent and idelltically distributed

random variables and that each X i has uniform distribution on 1 1, .
2 2

 
  

 We are interested in

finding an upper bound for the  100P |S | 5  where S100 = X1 + ..... + X100.

In general, it is difficult and computationally complex to find the exact distribution. However,
we can use Chebyshev’s inequality to get an upper hound. It is clear that

E(S100) = 100E(X1) = 0

and

var(S100) = 100 var (Xi) = 
100 .
12

since E(X1) = 0 and Var(X1) = 
1 .

12
 Therefore by Chebyshev’s inequality,

4
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Notes
  100

100
Var(S )P |S 0 | 5)

25
  

     = 
100

12 25

     = 
1 .
3

Here are some exercises for you.

The above examples and exercises must have given you enough practise to apply Chebyshev’s
inequality. Now we shall use this inequality to establish an important result.

Suppose X1, X2, ....., Xn are independent and identically distributed random variables having
mean  and variance 2. We define

n

n i
i 1

1X X
n 

 

Then nX  has mean  and variance 
2

.
n


 Hence, by the Chebyshev’s inequality, we get

2

n 2P |X |
n


       

for any  > 0. If n  0, then 
2

2 0
n





 and therefore

 nP |X | 0.    

In other words, as n grows large, the probability that nX  differs from  by more than any given
positive number E, becomes small. An alternate way of stating this result is as follows :

For any  > 0, given any positive number , we a n choose sufficiently large n such that

 nP |X |     

This result is known as the weak law of large numbers. We now state it as a theorem.

Theorem 2 (Weak law of large nombers) : Suppose X1, X2, ....., Xn are i.i.d. random variables with
mean  and finite variance 2.

Let

n

n i
i 1

1X X .
n 

 

Then

nP |X | 0 as n .       

for any E > 0.

5
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Chebyshev’s Inequality

NotesThe above theorem is true even when the variance is infinite but the mean p is finite However
this result does not follow as an application of the Chebyshev’s inequality in this general set up.
The proof in the general case is beyond the scope of this course.

We make a remark here.

Remark 2 : The above theorem only says that the probability that the value of the difference

n|X X|  exceeds any fixed number , gets smaller and smaller for successively large values of n.
The theorem does not say anything about the limiting case of the actual difference. In fact there
is another strong result which talks about the limiting case of the actual values of the differences.
This is the reason why Theorem 2 is called ‘weak law’. We hove not included the stronger result
here since it is beyond the level of this course.

Let us see an example.

Example 4: Suppose a random experiment has two possihle outcomes called success (S)
and Failure (F). Let p he the probability of a success. Suppose the experiment is repeated
independently n times. Let Xi take the value 1 or 0 according as the outcome in the i-th trial of the

experiments is success or a failure. Let us apply Theorem 2 to the set  
n

i j 1X .


We first note that

P[Xi = 1] = p and P[Xi = 0] = 1 – p = q,

for 1  i  n. Also you can check that E(Xi) = p ond var (Xi) = p q for i = 1, ..... n.

Since the mean and the variance are finite, we can apply the weak law of large numbers for the
sequence {X1 : 1  i  n}. Then we have

nSP p 0 as b
n

 
     

 

Sn for every  > 0 where Sn = X1 + X2 + ..... + Xn. Now, what is nS ?
n

 Sn is the number of successes

observed in n trials and therefore nS
n

 is the proportinn of successes in n trials. Then the above

result says that as the number of trials increases, the proportion of successes tends stabilize to
the probability of a success. Of course, one of the basic assumptions behind this interpretation is
that the random experiment can be repeated.

In the next section we shall discuss another limit theorem which gives an approximation to the
binomial distrihution.

1.2 Summary

 Suppose X is a random variable with mean  and finite variance 2. Then for every  > 0.

 The above theorem only says that the probability that the value of the difference n|X X|

exceeds any fixed number , gets smaller and smaller for successively large values of n.
The theorem does not say anything about the limiting case of the actual difference. In fact
there is another strong result which talks about the limiting case of the actual values of the
differences. This is the reason why Theorem 2 is called ‘weak law’. We hove not included
the stronger result here since it is beyond the level of this course.

6
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Notes  Since the mean and the variance are finite, we can apply the weak law of large numbers for
the sequence {X1 : 1  i  n}. Then we have

nSP p 0 as b
n

 
     

 

Sn for every  > 0 where Sn = X1 + X2 + ..... + Xn. Now, what is nS ?
n

 Sn is the number of

successes observed in n trials and therefore nS
n

 is the proportinn of successes in n trials.

Then the above result says that as the number of trials increases, the proportion of successes
tends stabilize to the probability of a success. Of course, one of the basic assumptions
behind this interpretation is that the random experiment can be repeated.

1.3 Keywords

Chebyshev’s inequality is discussed, as an application, weak law of large numbers is derived.

Weak law of large nombers: Suppose X1, X2, ....., Xn are i.i.d. random variables with mean m and
finite variance 2.

1.4 Self Assessment

1. Computation of the probabilities, even when the .................. functions are known, is
cumbersome at times.

(a) Chebyshev’s inequality (b) limiting distributions

(c) (absolutely)  continuous (d) probability distribution

2. The .................. can be used for computation of the probabilities approximately.

(a) Chebyshev’s inequality (b) limiting distributions

(c) (absolutely)  continuous (d) probability distribution

3. .................. is discussed, as an application, weak law of large numbers is derived.

(a) Chebyshev’s inequality (b) limiting distributions

(c) (absolutely)  continuous (d) probability distribution

4. Chebyshev’s inequality also holds when the distribution of X is neither .................. nor
discrete.

(a) Chebyshev’s inequality (b) limiting distributions

(c) (absolutely)  continuous (d) probability distribution

1..5 Review Questions

1. Suppose X is N(, 2). Then E(X) =  and Var(X) = 2. Let us compute P[ |X – |  3].

2. Suppose X is a random variable such that P[X = 1] = 1/2 = P[X = –1]. Let us compute an
upper bound for P[|X – |> 1/2].

3. Suppose a person makes 100 check transactions during a certain period. In balancing his or
her check book transactions, suppose he or she rounds off the check entries to the nearest

7
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Chebyshev’s Inequality

Notesrupee instead of subtracting the exact amount he or she has used. Let us find an upper
bound to the probability that the total error he or she has committed exceeds Rs. 5 after 100
transactions.

Answers: Self Assessment

1. (d) 2.  (b)  3.  (a)  4.  (c)

1.6 Further Readings

Books Introductory Probability and Statistical Applications by P.L. Meyer

Introduction to Mathematical Statistics by Hogg and Craig

Fundamentals of Mathematical Statistics by S.C. Gupta and V.K. Kapoor
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Notes Unit 2: The Weak Law

CONTENTS

Objectives

Introduction

2.1 Summary

2.2 Keywords

2.3 Self Assessment

2.4 Review Questions

2.5 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss the weak laws

 Describe some examples related to weak law

Introduction

James Bernoulli proved the weak law of large numbers (WLLN)around 1700 which was published
posthumously in 1713 in his treatise Ars Conjectandi. Poisson generalized Bernoulli’s theorem
around 1800, and in 1866 Tchebychev discovered the method bearinghis name. Later on one of
his students, Markov observed that Tchebychev’s reasoning can be used to extend Bernoulli’s
theoremto dependent random variables as well.

In 1909 the French mathematician Emile Borel proved adeeper theorem known as the strong law
of large numbers that furthergeneralizes Bernoulli’s theorem. In 1926 Kolmogorov derived
conditions that were necessary and sufficient for a set of mutually independent random variables
to obey the law of large numbers.

2.1 Weak Law of Number

Let Xi be independent, identically distributed Bernoulli randomVariables such that

P(Xi) = p, P(Xi = 0) = 1 – p = q,

and let k = X1 + X2 + ... + Xn represent the number of “successes”in n trials. Then the weak law due
to Bernoulli states that [see Theorem 3-1, page 58, Text]

2

k pqP p
h n

 
    

 
                  ...(18.1)

i.e., the ratio “total number of successes to the total numberof trials” tends to p in probability as
nincreases.

Richa Nandra, Lovely Professional University
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The Weak Law

NotesA stronger version of this result due to Borel and Cantellistates that the above ratio k/n tends to
p not only in probability, but with probability 1. This is the strong law of large numbers (SLLN).

What is the difference between the weak law and the strong law? The strong law of large
numbers states that if {n} is a sequence of positive numbers converging to zero, then

n
n 1

kP p
h





 
     

 
                   ...(18.2)

From Borel-Cantelli lemma [see (2-69) Text], when (13-2) is satisfied the events n
kAn p
h

  
    
 

can occur only for a finitenumber of indices n in an infinite sequence, or equivalently, the events

n
k p
h

 
   

 
 occur infinitely often, i.e., the event k/nconverges to palmost-surely.

Proof: To prove (18.2), we proceed as follows. Since

k p
h
     |k – np |4  4 n4

we have

n
4 4 4 4 4

n
k 0

k k(k np) p (k) n n P p P p
n n

    
             

    


and hence

n
4

n
k 0

4 4

(k np) p (k)
kP p
n n




 

    
 


                  ...(13.3)

where

n
k n k

n i
i 1

n
p (k) P X k p q

k




  
     

   


By direct computation

4 4n n n

i i
k 0 i 1 i 1

(k np)4pn(k) E X np E X p
  

         
          

         
  

4n n n n n

i i k j l
i 1 i 1 k 1 j 1 l 1

E Y E(Y Y Y Y )
    

   
   

   
 

n n n n n
4 3 2 2
i i j i j

i 1 i 1 j 1 i 1 j 1
E(Y ) 4n(n 1) E(Y )E( Y ) 3n(n 1) E(Y )E(Y )

    

      

= n(p3 + q3)pq + 3n(n – 1)(pq)2 [n + 3n(n – 1)]pq

= 3n2pq,      ...(18.4)

10



LOVELY PROFESSIONAL UNIVERSITY

Notes since

p3 + q3 = (p + q)3 – 3p2q – 3pq2 < 1, pq  1 / 2 < 1

Substituting (18.4) also (18.3) we obtain

2 4

k 3pqP p
n n

 
    

 

Let  = 1 /8

1
n

  so that the above integral reads and hence

3 /2
1/8 3 /2 1

n 1 n 1

k 1 1P p 3pq 3pq(1 x dx)
n n n

  


 

 
     

 
  

         = 3pq(1 + 2) = 9pq <  

thus proving the strong law by exhibiting a sequence of positive numbers n = 1/n1/8 that
converges to zero and satisfies (13-2).

We return back to the same question: “What is the difference between the weak law and the
strong law?.

”The weak law states that for every n that is large enough, the ratio 
n

i
i 1

X /n k /n


 
 

 
  is likely

to be near p with certain probability that tends to 1 as nincreases. However, it does not say that
k/n is boundto stay near p if the number of trials is increased. Suppose (18.1) is satisfied for a
given  in a certain number of trials n0. If additional trials are conducted beyond n0, the weak law
does not guarantee that the new k/n is bound to stay near p for such trials. In fact there can be
events for which k/n > p + e, for n > n0 in some regular manner. The probability for such an event
is the sum of a large number of very small probabilities, and the weak law is unable to say
anything specific about the convergence of that sum.

However, the strong law states (through (18.2)) that not onlyall such sums converge, but the
total number of all such events where k/n > p +  is in fact finite! This implies that the probability

k p
n

 
   

 
 of the events as n increases becomes and remains small, since with probability

1 only finitely many violations to the above inequality takes place as n  .

Interestingly, if it possible to arrive at the same conclusion using a powerful bound known as
Bernstein’s inequality that is based on the WLLN.

Bernstein’s inequality : Note that

k p
n
     k > n(p + )

and for any  > 0, this gives e(k – n(p+)) > 1.

Thus

n
k n k

k [n(p )]

nkP p p q
kn



 

  
      

   


            
n

(k n(p )) k n k

k [n(p )]

n
e p q

k
   

 

 
 
 


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            

n
(k n(p )) k n k

k 0

n
e p q

k
   



 
 
 



n
q pn k n k

k 0

nkP p e (pe ) (qe )
kn

   



  
      

   


           =  
nq pne pe qe         ...(18.6)

Since ex  x + ex2 for any real x,

peq + qe–p  p(q + e2q2) + q(–p + e2p2)

        = pe
2q2 + qe

2p2  e
2.                   ...(18.7)

Substituting (18.7) into (18.6), we get

2 n nkP p e .
n

   
    

 

But 2n – n is minimum for  = /2 and hence

2n /4kP p e , 0.
n

  
      

 
     ...(18.8)

Similarly

n 2 /4kP p £ e
n

  
   

 

and hence we obtain Bernstein’s inequality

2n /4kP p £ 2e .
n

  
   

 
     ...(18.9)

Bernstein’s inequality is more powerful than Tchebyshev’s inequalityas it states that the chances
for the relative frequency k /n exceeding its probability p tends to zero exponentially fast as
n  .

Chebyshev’s inequality gives the probability of k /nto lie between and for a specific n. We can
use Bernstein’s inequality to estimate the probability for k /nto lie between and for all large n

Towards this, let

n
ky p p
n

 
       
 

so that

c n 2 /4
n

nP(y ) P p 2e
k

  
     

 
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To compute the probability of the event n

n m
y ,





  note that its complement is given by

c
c

n n
n m n m

y y
 

 

 
 

 
 

and using Eq. (2-68) Text,

2
2

2

m /4
c c n /4
n n /4

n m n mn m

2eP y P(y ) 2e .
1 e

   
 


 

 
   

 
 

This gives

2

2

m /4

n n /4
n m n m

2eP y 1 P y 1
1 e

  


 

    
       

    
    1 as m  

or,

kP p p , for all n m
n

 
       

 
 1 as m  .

Thus k /n is bound to stay near p for all large enough n, in probability,a conclusion already
reached by the SLLN.

Discussion: Let Thus if we toss a fair coin 1,000 times, from the weak law

k 1 1P 0.01 .
n 2 40

 
   

 

Thus on the average 39 out of 40 such events each with 1000 or more trials will satisfy the

inequality k 1 0.1
n 2

 
  

 
 or, it is quite possible that one out of 40 such events may not satisfy it.

As a result if we continue the coin tossing experiment for an additional 1000 moretrials, with k
representing the total number of successes up to the current trial n, for n = 1000  2000, it is quite
possible that for few such n the above inequality may be violated. This is still consistent with the
weak law, but “not so often” says the strong law. According to the strong law such violations can
occur only a finite number of times each with a finite probability in an infinite sequence of trials,
and hence almost always the above inequality will be satisfied, i.e., the sample space of
k/n coincides with that of p as n  .

Next we look at an experiment to confirm the strong law:

Example: 2n red cards and 2n black cards (all distinct) are shuffled together to form a
single deck, and then split into half. What is the probability that each half will contain n red and
n black cards?

13
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Solution: From a deck of 4n cards, 2n cards can be chosen 

4n
2n
 
 
 

 in different ways. To determine

the number of favorable draws of n red and n black cards in each half, consider the unique draw
consisting of 2n red cards and 2n black cards in each half. Among those 2n red cards, n of them

can be chosen in 
2n
n
 
 
 

 different ways; similarly for each such draw there are 
2n
n
 
 
 

 ways of

choosing n black cards. Thus the total number of favorable draws containing n red and n black

cards in each half are 
2n
n
 
 
 

2n
n
 
 
 

 among a total of 
4n
2n
 
 
 

 draws. This gives the desired probability

pn to be

4

n 4

2n 2n
n n (2n!)p .

4n (4n)!(n!)
2n

  
  
   

 
 
 



For large n, using Stingling’s formula we get

Table 2.1

The figure below shows results of an experiment of 100 trials.

14
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Notes Figure 2.1

2.1 Summary

Let Xi be independent, identically distributed Bernoulli randomVariables such that

P(Xi) = p, P(Xi = 0) = 1 – p = q,

and let k = X1 + X2 + ... + Xn represent the number of “successes”in n trials. Then the weak law due
to Bernoulli states that [see Theorem 3-1, page 58, Text]

2

k pqP p
h n

 
    

 
                  ...(18.1)

i.e., the ratio “total number of successes to the total numberof trials” tends to p in probability as
nincreases.

A stronger version of this result due to Borel and Cantellistates that the above ratio k/n tends to
p not only in probability, but with probability 1. This is the strong law of large numbers (SLLN).

2.2 Keywords

Strong law of large numbers: A stronger version of this result due to Borel and Cantellistates
that the above ratio k/n tends to p not only in probability, but with probability 1. This is the
strong law of large numbers (SLLN).

Bernstein’s inequality is more powerful than Tchebyshev’s inequalityas it states that the chances
for the relative frequency k /n exceeding its probability p tends to zero exponentially fast as
n  .

15
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Notes2.3 Self Assessment

1. ............... generalized Bernoulli’s theorem around 1800, and in 1866 Tchebychev discovered
the method bearinghis name.

2. In ............... the French mathematician Emile Borel proved adeeper theorem known as the
strong law of large numbers that further generalizes Bernoulli’s theorem.

3. In ............... Kolmogorov derived conditions that were necessary and sufficient for a set of
mutually independent random variables to obey the law of large numbers.

4. A ............... of this result due to Borel and Cantellistates that the above ratio k/n tends to p
not only in probability, but with probability 1. This is the strong law of large numbers
(SLLN).

5. The strong law of large numbers states that if {en} is a sequence of ............... to zero, then

n
n 1

kP p
h





 
     

 


2.4 Review Questions

1. 2n red cards and 2n black cards (all distinct) are shuffled together to form a single deck,
and then split into half. What is the probability that each half will contain n red and n black
cards?

2. 3n red cards and n black cards (all distinct) are shuffled together to form a single deck, and
then split into half. What is the probability that each half will contain n red and n black
cards?

3. 4n red cards and 4n black cards (all distinct) are shuffled together to form a single deck,
and then split into half. What is the probability that each half will contain n red and n black
cards?

4. n red cards and 2n black cards (all distinct) are shuffled together to form a single deck, and
then split into half. What is the probability that each half will contain n red and n black
cards?

Answers: Self Assessment

1.  Poisson 2.  1909 3.  1926        4.   stronger version

5.  positive numbers converging

2.5 Further Readings

Books Sheldon M. Ross, Introduction to Probability Models, Ninth Edition, Elsevier
Inc., 2007.

Jan Pukite, Paul Pukite, Modeling for Reliability Analysis, IEEE Press on
Engineering of Complex Computing Systems, 1998.
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CONTENTS

Objectives

Introduction

3.1 Strong Law of Large Numbers

3.2 Summary

3.3 Keywords

3.4 Self Assessment

3.5 Review Questions

3.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss the strong law of large number

 Discuss examples related to large number

Introduction

Probability Theory includes various theorems known as Laws of Large Numbers; for instance,
see [Fel68, Hea71, Ros89]. Usually two major categories are distinguished: Weak Laws versus
Strong Laws. Within these categories there are numerous subtle variants of differing generally.
Also the Central Limit Theorems are often brought up in this context.

Many introductory probability texts treat this topic superficially, and more than once their
vague formulations are misleading or plainly wrong. In this note, we consider a special case to
clarify the relationship between the Weak and Strong Laws. The reason for doing so is that I
have not been able to find a concise formal exposition all in one place. The material presented
here is certainly not new and was gleaned from many sources.

In the following sections, X1, X2, ... is a sequence of independent and indentically distributed

random variabels with finite expectation . We define the associated sequence iX  of partial
sample means by

n

i i
i 1

1X X .
n 

 

The Laws of Large Numbers make statements about the convergence of nX  to m. Both laws
relate bounds on sample size, accuracy of approximation, and degree of confidence. The Weak
Laws deal with limits of probabilities involving nX . The Strong Laws deal with probabilities
involving limits of nX . Especially the mathematical underpinning of the Strong Laws requires
a caretful approach ([Hea71, Ch. 5] is an accesible presentation).

Richa Nandra, Lovely Professional University
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Notes3.1 Strong Law of Large Numbers

We are now ready to give Etemadi’s proof of

(7.1) Strong law of large numbers. Let X1, X2, ... be pairwise independent identically distributed
random variables with E | Xi | < . Let EXi =  and Sn = X1 + ... + Xn. Then Sn/n   a.s. as n  .

Proof : As in the proof of weak law of large numbers, we begin by truncating.

(a) Lemma. Let Yk = Kk1(|Xk|k) and Tn = Y1 + ... + Yn. It is sufficient to prove that Tn/n   a.s.

Proof k 1 1 kk 1 0
P(|X | k) P(|X | t)dt E|X | so P(X Yk i.o.)




         = 0. This shows that

|Sn(w) – Tn(w) <  a.s. for all n, from which the desired result follows.

The second step is not so intuitive but it is an important part of this proof and the one given in
Section 1.8.

(b) Lemma. 2
k 1k 1

var(Y )/k 4E|X | .


  

Proof To bound the sum, we observe

k2
k k k 10 0

var(Y ) E(Y ) 2yP(|Y | y)dy 2yP(|X | y)dy


     

so using Fubini’s theorem (since everything is  0 and the sum is just an integral with respect to
counting measure on {1, 2, ....})

2 2 2
k (y k ) 10

k 1 k 1
E(Y )/k k 1 2yP(|X | y)dy

  




 

   

= 2
(y k ) 10

k 1
k 1 2yP(|X | y)dy








 
 

 


Since E|X1| =  10
P(|X | y)dy



 , we can complete the proof by showing

(c) Lemma. If y  0 then 2
k y

2y k 4.




Proof We being with the observation that if m  2 then

2 2 1

m 1
k m

k x dx (m 1)


  




   

When y  1 the sum starts with k = [y] +1  2 so

2

k m
2y k 2y/[y] 4



 

since y/[y]  2 for y  1 (the worst case being y close to 2). To cover 0  y < 1 we note that in this
case

2 2

k y k 2
2y k 2y 1 k 4


 

 

 
   

 
 

The first two steps, (a) and (b) above, are standard. Etemadi’s inspiration was that since

n nX ,n 1, and X ,n 1,    satisfy the assumptions of the theorem of Xn = n nX X ,   we can without
loss of generality suppose Xn  0, As in proof of (6.8) we will prove the result first for a subsequence
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Notes and then use monotonicity to control the values in between. This time however, we let  > 1, and
k(n) = [an]. Chebyshev’s inequality implies that if > 0

2
k(n) k(n) k(n)

n 1 n 1
P(|T ET | k(n)) 2 var(T )/k(n)

 

 

   

= 
k(n)

2 2
m

n 1 m 1
k(n) var(Y )


 

 

  

= 2 2
m

m 1 n:k(n) m
var(Y ) k(n)


 

 

  

where we have used Fubini’s theorem to interchange the two summations (everything is  0).
Now k(n) = [n] and [n]  n/2 for n  1, so summing the geometric series and noting that the
first term is  m-2

n n

n 2 2n 2 1 2

n: m n: m

[ ] 4 4(1 ) m    

   

     

Combining our computations shows

2 1 2 2 2
k(n) k(n) m

n 1 m 1
P(|T ET | k(n)) 4(1 ) E(Y )m

 
   

 

       

by (b). Since  is arbitrary (Tk(n) – ETk(n))/k(n)  0. The dominated convergence theorem implies
EYk  EX1 as k  , so ETk(n)/k(n)  Ex1 and we have shown Tk(n)/k(n)  EX1 a.s. To handle the
intermediate values, we observe that if k(n)  m < k(n + 1)

k(n ) k(n 1)mT TT
k(n 1) m k(n)


 



(here we use Yi  0), so recalling k(n) = [n] we have k(n + 1)/k(n)   and

1 m 1n m

1 EX lim inf Tm /m lim sup T /m EX
 

   


Since  > 1 is arbitrary the proof is complete.

The next result shows that the strong law holds whenever EX i exists.

(7.2) Theorem. Let X1, X2, ... be i.i.d. with iEX =  and iEX < . If Sn = X1 + ... + Xn then Sn/n  
a.s.

Proof Let M > 0 and M
iX = Xi  M. The M

iX  are i.i.d with E| M
iX | <  so if M

iS  = M M
i nX ... X   then

(7.1) implies M M
n iS /n EX .  Since M

i iX X  it follows that

M M
n n in n

lim inf S /n lim S /n EX
 

 

The monotone convergence theorem implies M
i iE(X ) EX     as M, so M

i iEX E(X ) 

M
iE(X )    and we have lim infn

Sn/n   which imlies the desired result.

The rest of this section is devoted to applications of the strong law of large numbers.
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Example: Renewal theory. Let X1, X2, ... be i.i.d. with 0 < Xi < . Let Tn = X1 + ... + Xn and

think of Tn as the time of nth occurence of some event. For a concrete situation consider a diligent
janitor who replaces a light bulb the instant it burns out. Suppose the first bulb is put in at time
0 and let Xi be the lifetime of the ith lightbulb. In this interpretation Tn is the time the nth light
bulb burns out and Nt = sup{n : Tn  t} is the number of light bulbs that have burns out by
time t.

Theorem. If EX1 =    then as t  , Nt/t  1/ a.s. (1/ = 0)

3.2 Summary

 Many introductory probability texts treat this topic superficially, and more than once
their vague formulations are misleading or plainly wrong. In this note, we consider a
special case to clarify the relationship between the Weak and Strong Laws. The reason for
doing so is that I have not been able to find a concise formal exposition all in one place.
The material presented here is certainly not new and was gleaned from many sources.

In the following sections, X1, X2, ... is a sequence of independent and indentically distributed
random variabels with finite expectation m. We define the associated sequence iX  of
partial sample means by

n

i i
i 1

1X X .
n 

 

 Lemma. Let Yk = Kk1(|Xk|k) and Tn = Y1 + ... + Yn. It is sufficient to prove that Tn/n   a.s.

 Lemma. 2
k 1k 1

var(Y )/k 4E|X | .


  

 Lemma. If y  0 then 2
k y

2y k 4.




 Implies M M
n iS /n EX .  Since M

i iX X  it follows that

M M
n n in n

lim inf S /n lim S /n EX
 

 

The monotone convergence theorem implies M
i iE(X ) EX     as M, so M

i iEX E(X ) 

M
iE(X )    and we have lim infn

Sn/n   which imlies the desired result.

3.3 Keywords

Probability Theory includes various theorems known as Laws of Large Numbers.

Strong law of large numbers. Let X1, X2, ... be pairwise independent identically distributed
random variables with E | Xi | < . Let EXi =  and Sn = X1 + ... + Xn. Then Sn/n   a.s. as n  .

3.4 Self Assessment

1. .................. includes various theorems known as Laws of Large Numbers.

2. The Laws of Large Numbers make statements about the convergence of .................. to m.

3. Lemma. 2
kk 1

var(Y )/k


 ..................

4. Lemma. If y  0 then ..................
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Notes 5. The .................. M
i iE(X ) EX     as M, so M

i iEX E(X )   M
iE(X )    and we have lim

infn
Sn/n   which imlies the desired result.

6. If EX1 =    then as t  , Nt/t  1/ a.s. ..................

3.5 Review Questions

1. Discuss the strong law of large number.

2. Discuss examples related to large number.

Answers: Self Assessment

1.  Probability Theory 2.  nX 3.  14E|X |         4.   2
k y

2y k 4




5.  monotone convergence theorem implies 6.  (1/ = 0)

3.6 Further Readings

Books Sheldon M. Ross, Introduction to Probability Models, Ninth Edition, Elsevier
Inc., 2007.

Jan Pukite, Paul Pukite, Modeling for Reliability Analysis, IEEE Press on
Engineering of Complex Computing Systems, 1998.
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CONTENTS
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4.4 Self Assessment

4.5 Review Questions

4.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Define the central limit theorem

 Describe control limit theorem

Introduction

In Binomial distribution with parameters n and p is shown to be approximable by a Poisson
distribution whenever n is large and p is such that np is a constant A z 0. An important limit
theorem, known as the central limit theorem, is studied in Section 14.4. Central limit theorem
essentially states that whatever the original distribution is (as long as it has finite variance), the
sample mean computed from the observations following that distribution has an approximate
normal distribution as long as the sample size (number of observations) is large. An important
special case of this result is that binomial distribution can be approximated by an appropriate
normal distribution for large samples.

4.1 Central Limit Theorem

The Central Limit Theorem (CLT) is one of the most important and useful results in probability
theory. We have already seen that the sum of a finite number of independent normal random
variables is normally distributed. However the sum of a finite number of independent non-
normal random variables need not be normally distributed. Even then, according to the central
limit theorem, the sum of a large number of independent random variables has a distribution
that is approximately normal under general conditions. The CLT provides a simple method of
computing the probabilities for the sum of independent random variables approximately. This
theorem also suggests the reasoning behind why most of the data observed in practice leads to
bell-shaped curves.

Richa Nandra, Lovely Professional University
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Notes Let us now state the main theorem.

Theorem 3 (Central Limit Theorem) : Let X1, X2, ........ be an infinite sequence of independent and
identically distributed random variables with mean p and finite variance 2. Then, for any real
x,

1 nX ... X nP (x) as n
n

    
    

...(5)

where (x) is the standard normal distribution function.

We have omitted the proof because proof of this result involves complex analysis and other
concepts which are beyond the scope of this course. Let us try to understand the above statement

more clearly. Let Sn = X1 + X2 +....+ Xn. Then we know that P nS n x
n

  
  

 represents the

distribution of the random variable nS n
n

 


. Then the theorem says that the distribution of

nS n
n

 


 is approximately a standard normal distribution for sufficiently large n. Therefore the

distribution of Sn will be approximately normal with mean n and variance n2. In other words
the theorem asserts that if X1 + X2 ... + Xn are i.i.d.r. v’ s of any kind (discrete or continuous) with
finite variances, the  Sn = X1 + X2 + .... + Xn will approximately be a normal distribution for
sufficiently large n. The importance of the theorem lies in this fact. This theorem has got many
applications. An important application is to a sequence of Bernoulli random variables.

Normal Approximation to the Binomial Distribution

Let Xi, i  1 be a sequence of i.i.d. random variables such that

P[Xi = 1] = p, P[Xi = 0] = 1 – p

where 0 < p < l.

Observe that Sn = X1 + ...... + Xn has the binomial distribution with parameters n qnd p. You can
check that E(Xi) = p and Var (Xi) = p (1-p) for any i which is finite and positive. An application of
the central limit theorem gives the following result:

For every real x,

Sn npP x f(x) as n .
n [p(1 p)

 
   

  

In other words, for large n

nP[ S np x np(1 p) (x)       ...(6)

where   denotes that the quantities on both sides are approximately equal to each other.

An alternate way of interrupting the above approximation that a binomial distribution tends
to be close to a normal distribution for large n. Let us explain this in mote detail.
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NotesSuppose Sn has binomial distribution with parameters n and p. Then, for 1  r  n,

P[Sn  r] = nS np r npP
np(1 p) np(1 p)

  
 

   

  
r np

np(1 p)
 

 
  



for large n by (2). In general, it is computationally difficult to calculate the exact probability

 
r

n jn
n

j 0

n
P S r p (1 p)

j




 
   

 


when n is large. A close approximation to this probability can be obtained by computing

r np
np(1 p)

 
 
  

where $ is the standard normal distribution function. It has been found from empirical studies
that this approximation is good when n  30 and a better approximation is obtained by applying
a slight correction, namely,

1r np
2

np(1 p)

 
  

 
 

 

Let us illustrate these results by an example.

Example 6: The ideal size of a first year class in a college is 150. It is known from an
earlier data that on the average only 30% of those accepted for admission will actually attend.
Suppose the college admits 450 students. What is the probability that more than 150 first year
students attend the college?

Let us denote by Sn the number of sludents that attend the college when n are admitted. Assuming
that all the students take independent decision of either attending or not attending the college,
we can suppose that S, has the binomial distribution with parameters n and p = 0.3. Here n = 450
and we are interested in finding the

P[Sn  150].

Note that E(Sn) = np = (450) (0.3) = 135 and

Var(Sn) = np(1 – p) = (135)(.7)

Further more

P[Sn  150] = 1 – P[Sn < 150]

         1 – P[Sn  149]
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Notes and

P[Sn  149] = 

1149 135
2

(135)(.7)

 
  

 
 
 

        = (1.59)

Hence

P[Sn  150] = 1 – (1.59)

       = .0559

This shows that the probability that more than 150 first year students attend is less than 6%.
Let us now consider a different type of application of the central limit theorem.

Example 7: Suppose X1, X2 .... is a sequence of i.i.d. random variables each N(0, l). Then
2 2
1 2X ,X ,  ....... is a sequence of i.i.d. random variables each with 2

1X  -distribution.

Note that E( 2
1X ) = 1 and Var ( 2

1X ) = 2 for any i. Hence by central limit theorem we get

2 2
1 nX .... X nP x (x) as n .

2n
   

    
 

But Sn = 2
1X  + ...... + 2

1X  has 2
nX  distribution. What we have shown just now is that if Sn has  2

nX

distribution, then nS n
2n
  has an approximate standard normal distribution for large n. In other

words, for every real x,

nS nP x (x)
2n
 

  
 



for large n whenever S, has Xz -distribution.

We make a remark now.

Remark 3 : The central limit theorem is central to the distribution theory needed for statistical
inferential techniques to he developed in Block 4. You must have noted that the distribution of
individual Xi in CLT could be discrete or continuous. The only condition that is imposed is that
its variance has to be finite. In general, it is not easy to specify the size of n for a good
approximation as it depends on the underlying distribution of {Xi}. However, it is found in
practice that, in most cases, a good approximation is obtained whenever n is greater than or
equal to 30.

We will stop our discussion on limit theorem now, though we shall refer to them off and on in
the next block. Let us now do quick review of what we have covered in this unit.

4.2 Summary

 Obtain Poisson approximation to binomial;

 Discussed the central limit theorem and obtained normal approximation to binomial as
an application.
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NotesAs usual we suggest that you go back to the beginning of the unit and see if you have
achieved the objectives. We have given our solutions to the exercises in the unit in the last
section. Please go through them too. With this we have come to the end of this block.

 The Central Limit Theorem (CLT) is one of the most important and useful results in
probability theory. We have already seen that the sum of a finite number of independent
normal random variables is normally distributed. However the sum of a finite number of
independent non-normal random variables need not be normally distributed. Even then,
according to the central limit theorem, the sum of a large number of independent random
variables has a distribution that is approximately normal under general conditions. The
CLT provides a simple method of computing the probabilities for the sum of independent
random variables approximately. This theorem also suggests the reasoning behind why
most of the data observed in practice leads to bell-shaped curves.

4.3 Keywords

Binomial distribution with parameters n and p is shown to be approximable by a Poisson
distribution whenever n is large and p is such that np is a constant A z 0.

Central Limit Theorem (CLT): The Central Limit Theorem (CLT) is one of the most important
and useful results in probability theory.

4.4 Self Assessment

1. .................. with parameters n and p is shown to be approximable by a Poisson distribution
whenever n is large and p is such that np is a constant A z 0.

2. An important special case of this result is that binomial distribution can be approximated
by an appropriate .................. for large samples.

3. The .................. is one of the most important and useful results in probability theory.

4. The CLT provides a simple method of computing the probabilities for the sum of  ..................
approximately.

4.5 Review Questions

1. If X is binomial with n = 100 and p = 1/2, find an approximation for P[X = 50].

2. Suppose X is binomial with parameters n and p = 0.55. Determine the smallest n for which

X 1P 0.95
n 2
 

   

approximately.

3. If 10 fair dice are rolled, find the approximate probability that the sum of the numbers
observed is between 30 and 40.

4. Suppose X is binomial with n = 100 and p = 0.1. Find the approximate value of P(12  X 
14) using

(a) the normal approximation

(b) the poisson approximation, and

(c) the binomial distribution.
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Notes Answers: Self Assessment

1.  Binomial distribution 2.  normal distribution

3.  Central Limit Theorem (CLT) 4.   independent random variables

4.6 Further Readings

Books Sheldon M. Ross, Introduction to Probability Models, Ninth Edition, Elsevier
Inc., 2007.

Jan Pukite, Paul Pukite, Modeling for Reliability Analysis, IEEE Press on
Engineering of Complex Computing Systems, 1998.
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Objectives

After studying this unit, you will be able to:

 Discuss statistic for various testing of hypotheses problems as well as to derive power
functions

 Explain confidence intervals for parameters of various distributions

 Describe large sample tests.

Introduction

You have been introduced to the problem of testing of hypothesis and also to some basic
concepts of the theory of testing of hypothesis. There you have studied two important procedures
fortesting statistical hypotheses,viz. using Neyman-Pearson Lemma and the likelihood ratio
test. In this unit, you will be exposed to the problem of testing statistical hypotheses involving
the parameters of some important distributions through some selected examples. In this unit,
you will also be exposed to the problem of constructing confidence intervals for parameters of
some important distributions through some selected examples. You will also learn the use of
chi-square test for goodness of fit.

5.1 Some Common Tests of Hypothesis for Normal Populations

We have already described with examples two procedures for testing statistical hypotheses.
In this section we will employ Neyman-Pearson Lamma and likelihood ratio test for testing of
hypothesis related to a normal population.

Example 1: Let X1, . . . , Xm and Y1, . . . , Yn be independent random samples from N (l, 2)
and N (2, 2), respectively. It is desired to obtain a test statistic for testing H0 : 1 = 2 against
1 : 1  2 when 2 ( > 0 ) is unknown.

Richa Nandra, Lovely Professional University
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Notes In order to obtain the test statistic, we use the likelihood ratio test. We have

 = { (1, 2, 2) : – < 1, 2 < , 2 > 0 }

0 = { 1 = 2 =  (say), 2 ) : –  <  < , 2 > 0}

We shall write  = (l, 2, 2)

We have

0

{sup L( |X, Y)
Q





= 
m n

2 2
i 1 i 2m n m n 2

1 122 2

1 1Sup exp (X ) (Y )
2(2 ) ( )

 

  
       

    

 

Under H0, 1 = 2 =  and the maximum likelihood estimate of  is

̂  = 
mX nY

m n



 and of 2 is

2̂  = 
m n

2 2 2
i 1 1 2

1 1

1 mn(X ) (X ) (X Y)
m n (m n)

 
       

  
 

= u (say)

Thus 
0

Sup L ( |X, Y)


 = m n

2

1 1exp (m n)u'
2u'(2pu')



 
   

= 
m n

21 (m n)exp
2 u' 2



  
   

   

Under H1, the maximum likelihood estimates of 1, 2 and 2 are respectively

m n
2 2

i
2 1 1

1 2

(X X) (Y Y)
ˆ ˆ ˆX, Y, u(say)

m n

  

      


 

and

0Q

{sup L( |X, Y)




= 
m n

21 m nexp
2 u 2



   
   

   

The likelihood ratio test is thus

(X, Y) = 
0

{sup L( |X, Y)

{sup L( |X, Y)








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= 
m n

2u
u'

 
 
  

 
 

= 

m n
m n 2

2 2

1 1
m n

2 2 2

1 1

(Xi X) (Yi Y)

mn(Xi X) (Yi Y) (Xi X)
(m n)



 
   

 
 

    
  

 

 

Now under null hypothesis, 1 = 2 = , and t = X Y
1 1S
n m



 
 

 

 follows a Student’s t distributions

with m + n – 2 degrees of freedom, where S2 = 
u(m n)
m n 2



 

Thus

t2 = 
2

m n
2 2

i
1 1

(m n 2)mn(X Y)

(m n) (X X) (Y Y)

  

 
    

 
 

and

(X, Y) = 

m n
2

2
1 c

t1
m n 2



 
 

 
 
   

The likelihood ratio critical region is given by

(X, Y) = 

m n
2

2
1 c

t1
m n 2



 
 

 
 
   

where c is to be determined so that

 
0

S up P (X,Y) c



   

Since (X, Y) is a decreasing function of t2/(m + n – 2) we reject H0

if

2
2 /(m n)t c

(m n 2)



 
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|t| > c1

where c1 is so chosen that

Let c1 = tm + n – 2, /2 in accordance with the diskbution oft under Ho. Thus, the two sided test
obtained is

m n 2, /2
(X Y mn t

S (m n)   






Example 2: Let X1, . . . , Xn, be a random sample from N (, ), p is known and 2 > 0, is
unknown. We wish to obtain a test statistic for testing H0 : 2 – 2

0  against an alternative H1 : 2

= 2
1  ( 2

0  ).

We have

1

n
2

n /2 2
11 1

1 1P (X) exp (Xi )
(2 ) 2

 
    

  


0

n
2

n /2 2
10 0

1 1P (X) exp (Xi )
(2 ) 2

 
    

  


Using Neyman-Pearson Lemma, the test statistic is

T(X) = 1

0

P (X)
k

P (X)








n /2 n
20

i2 2
11 0 1

1 1exp 1/2 (X )
    

     
     



 
n

2 2 2
1 0 i

1
( ) (X ) k    , taking logarithms

 
n

2
i 1

1
(X ) k   , since 2 2

1 0 1,under H  

Here k1 is so determined that

0
P (T,(X) k)   = 


0

n
2

i 1
1

P (X ) k

 
   

 
  = 


0

n
2 2 2

i 0 1 0
1

P (X ) / k /

 
     

 

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Under the null hypothesis, since 2 = 

n
2 2 2
0 i 0

1
, (X ) / }    has a 2

n  distribution (chi-square

distribution with n degrees of freedom). Let 2
n ,   be the upper - probability point of 2

n . The
test statistic is thus

n
2

i
1

(X ) k1    and hence

C0 = 
n

2 2 2
i 0 n ,

1
X| (X ) / c 

 
    

 


On the other hand, if the alternative hypothesis is H1 : 2 = 2
1  ( 2

1  < 2
0 ), then the test statistic is

and hence

n
2

i 2
1

(X ) k 

where 2
n ,1  is the lower  -probability point of the 2 distribution with n degrees of freedom.

Example 3: Let X1, . . . , Xm and Y1, . . . , Yn be independent random samples from N(l, 
2
1 )

and N(2, 
2
2 ). We wish to obtain a test statistic for testing H0 : 

2
1  = 2

2  against H1 : 
2
1   2

2 .

Here  = 2 2 2
1 2 1 2 i 1{( , , , ) : – , 0,i 1,2}           

and 0 = 2 2 2 2 2
1 2 1 2 i 1 2{( , , , ) : – ,i 1,2, 0}               

We shall use 2 2
1 1 2( , , , ).     

Also L (8 | X, Y)

= 
m n m /2 n /2 n n2 2 2

i 1 i 22 2 2 2
1 11 1 1 2

1 1 1 1 1exp (X ) (Y )
2 2 2



      
          

           
 

The maximum likelihood estimates of l, 2, 
2 2
1 2,   are respectively

m n

1 i 2 i
1 1

1 1ˆ ˆX X, Y Y
m n

      

m n
2 2 2 2
1 i 2 i

1 1

1 1(X X) , (Y Y)
m n

      
 

Further, if 2 2 2
1 2 ,      the maximum likelihood estimate of 2 is

m n
2 2 2

i i
1 1

1ˆ (X X) (Y Y)
(m n)

 
     

  
 
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Notes Thus

0Q

Sup L( |X,Y)




= m n
m n m n 22 22

i i
1 1

exp{ (m n)/2}

[2 /(m n)] (X X) (Y Y)




 

 
     

 
 

and

0Q

Sup L( |X,Y)




= m n
m n2 2m /2 n /2 2 2

i i
1 1

exp{ (m n)/2}

(2 /m) (2 /n) (X X) (Y Y)

 

   
      

   
 

= m n
m n2 2m /2 n /2 2 2

i i
1 1

exp{ (m n)/2}

(2 /m) (2 /n) (X X) (Y Y)

 

   
      

   
 

The likelihood ratio test is thus

(X, Y) = 
0

0

Sup L( |X,Y)

Sup L( |X,Y)









= 

m n
m n2 22 2

m /2 n /2 i i
1 1

m n
m n 22 2

i i
1 1

(X X) (Y Y)
m n

m n m n
(X X) (Y Y)



   
    

       
   

    
 

   
 

 

 

Now

m n
m n2 22 2

i i
1 1

m n
m n 22 2

i i
1 1

(X X) (Y Y)

(X X) (Y Y)


   
    

   

 
   

 

 

 

We have

 (X, Y) = 

m /2 m /2

n /2 m /2

m n
m n m n

(m 1) (n 1)1 f 1 (1/f)
(m 1) (m 1)

   
   

    

    
    

    
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NotesThe likelihood ratio test criterion rejects Ho if  (X, Y) < c

It is easy to see that  (X, Y) is a monotonic function of f and h (X, Y) < c is equivalent to f < c l or
f > c. Under H0,

f = 

m
2

i
1
n

2
i

1

(X X) /(m 1)

(Y Y) /(n 1)

 

 





has Snedecar’s F (m – 1, n – 1) distribution, so that c1, c2 can be selected, such that

0

Sup P [ (X,Y) c]



 
 = 

or

P(F  c1) = P(F  c2) = /2

Thus c2 = F(m – l, n – 1, /2) is the upper /2 probability point of F (m – 1, n – 1) distribution and
cl = F (m – 1, n – 1, l – /2) is the lower /2 probability point of F (m - 1, n - 1).

5.2 Confidence Intervals

In you have been briefly exposed to some notions of interval estimation of a parameter. In this
section we discuss in detail the problem of obtaining interval estimates of parameters and
describe, through examples, some methods of constructing interval extimates of parameters.
We may remind you again that an interval estimate is also called a confidence interval or a
confidence set. We first illustrate through small examples the need for constructing confidence
intervals. Suppose X denotes the tensile strength of a copper wire. A potential user may desire
to know the lower bound for the mean of X, so that he can use the wire if the average tensile
strength is not less than say go. Similarly, if the random ‘variable X measures the toxicity of a
drug, a doctor may wish to have a knowledge t of the upper bound for the hean of X in order to
prescribe this dmg. If the random variable X measures the waiting times at the emergency room
of a large city hospital, one may be interested in the mean waiting time at this emergency room.
In this case we wish to obtain both the lower and upper bounds for the waiting time.

In this unit we are concerned with the problem of determining confidence intervals for a
parameter. A formal definition of a confidence interval has been given in Section 15.6. However,
for the sake of completeness we define some terms here.

Let X1, X2, . . . , Xn be a random sample from a population with density (or, mass) function f (x, ),
   R1. The object is to find statistics rL ( X1 . . . . . , Xn ) and rU (X1, . . . , Xn) such that

P

 { (rL (X1,..., Xn)    rU (X1 ,..., Xn)]  1 –  for all    C  R1. The interval L U(r (X),r (X))  is called

a confidence interval and the quantity

inf P

[rL (X1,...,Xn)    rU (X1,....,Xn)]

will be referred to as the confidence co-efficient associated with the random interval.

We now give some examples of construction of confidence intervals.

Example 4: Let X1, X2, . . . , Xn be a random sample from a normal population, N (, 2). We
wish to obtain a (1 – ) level confidence interval for .
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Notes
Let X  = n–1 

n

i
1

X .  Consider the interval (X a,X b).   In order for this to be a (1 – )-level

confidence interval, we must have

P{X a X b} 1       

Thus

b (X ) aP n n n 1
b

   
      
   

Since, 
(X ) n / ~ N(0,1) 


 we can choose a and b to satisfy

b (X ) n aP n n
   
   
    

 = 1 – a

provided that a is known. There are infinitely many such pairs of values (a, b). In Inference
particular, an intuitively reasonable choice is a = b = c , say

In that case

/2
c n Z


 where Z
/2 is the /2 percent point of the standard normal distribution, and the

confidence interval is

/2 /2(X ( / n )Z ,X ( / n )Z )    

The length of the interval is /2(2 / n) Z  Given a and a one can choose n to get a confidence

interval of desired length.

Figure 5.1: Probability density curve of normal distribution with mean m and variance 2/n.
Shows area /2 in each of two talls

If  is unknown, we have from

P{ b X a} 1       
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Notesthat

b (X ) aP n n 1
S S S

   
      
  

It is known that n 1
X ~ t .
S/ n 

  We can choose pairs of values (a, b) using a students t-distribution

with (n – 1) degrees of freedom such

b n X a nP 1
S SSb/ n

   
      
  

In particular, an intuitively reasonable choice is a = b = c say. Then

n 1, /2
c n t

S  

and n 1, /2 n 1, /2(X (S/ n )t ,X (S/ n )t )      is 1 –  level confidence interval for . The length of

the interval is n-1, /2(2S/ n)t ,  which is no longer constant.

Therefore, in this case one cannot choose n to get a fixed length confidence interval of level
1 – . The expected length is, however,

n 1, /2 n 1, /2
2 2 2 (n /2)t Es(S) t

n 1 (n 1)/2)n n   


 

  

which can be made as small as we want by making a proper choice of n for a given  and .

Figure 5.2 : t Values such that there is an area /2 in the right tall and /2 in the
left tall of the distribution.

Example 5: Let X1, X2, . . . , Xn be a random sample, from N(, 2). It is desired to obtain a
confidence interval for 2 when  is unknown.

Consider the interval (aS2, bS2), a, b > 0, S2 = (n – 1)-1 
n

2
i

1
(X X) .  We have

P{ aS2 < 2 < bS2 }  1 – a
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Notes so that

2
1 1

2

SP b a 1  
    
 

It is known that

(n – 1)S2/2 ~ 2
n 1

We can therefore choose pairs of intervals (a, b) from the tables of the chi-square distribution. In
particular we can choose a, b so that

2 2

2 2

S 1 S 1P /2 P .
a b

   
       

    

Then 2
n 1, /2

n 1 x
a  


  and 2

n 1,1 /2
n 1 x

b  


  and the 1 –  level confidence interval for 2 when  is

unknown is

2 2

2 2
n 1, /2 n 1,1 /2

(n 1)S (n 1)S,
   

  
 
   

If however,  is known then (n – 1) S2 is replaced by 
n

2
i

1
(X  – )  and the degrees of freedom of

2 is n instead of n – 1, for 
n

2 2 2
i n

1
(X ) / ~ c . 

Figure 5.3 : Chi-square values such that area 1 – /2 and /2 are to their right.

Example 6: Let X1, . . . , X2 and Y1, . . . , Ym denote respectively independent random
samples from the two independent distributions having respectively the probability density
functions N(1, 2) and N(2, 2). We wish to obtain a confidence interval for 


 – 2.

Consider the interval {(X – Y) – a, (X – Y) + b}.  In order that this is a (1 - ) level confidence
interval, we mbt have

1 2P{(X – Y) – a < – (X – Y) + b} 1 –    
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Noteswhich is the same as

1 2P{ b (X Y) ( ) a} 1          

or

1 2b (X Y) ( ) aP 1
1 1 1 1 1 1
n m n m n m

 
 

     
     

                       

Here  
n m

i i
1 1

1 1X X and Y Y
n m

  

Since 1 2(X Y) ( ) ~ N(0,1).
1 1
n m

    

 
  

 

we can choose a and b to satisfy

1 2b (X Y) ( ) aP 1
1 1 1 1 1 1
n m n m n m

 
 

      
     

                       

provided that  is known. There are infinitely many such pairs of values (a, b). In particular, an

intuitively reasonable choice is a = b = c, say. In that case 
1/2

/2
1 1c/ s Z
n m 

   
   

   
 and the

confidence interval is

1 /2 1 /2

/2 /2
1 1 1 1(X Y) – Z ,(X Y) Z
n m n m 

     
          

     

The length of the intaval is 
1 /21 12

n m
 

  
 

Z
/2. Given  and  one can choose n and m to get a

desired length confidence interval.

If 2 is unknown, we have from

1 2P{– b < (X – Y) ( ) a} 1       

that

1 2b (X Y) ( ) aP 1
1 1 1 1 1 1S S S
n m n m n m

 
 

      
     

                    
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where

n m
2

2 2i i
x y1 1

(X X)2 (Y Y) (n 1)S (m 1)S
(n m 2) n m 2

  
  


   

 

It is known that

1 2
n m 2

(X Y) ( ) ~ t .
1 1S2
n m

 

    

 
 

 

 We can choose pairs of values (a, b) using Student’s t-distribution

with n + m – 2 degrees of freedom such that

1 2b (X Y) ( ) a 1
1 1 1 1 1 1S S S
n m n m n m

 
 

      
     

                    

In particular, an intuitively reasonable choice is a = b = c, say. Then

n m 2, /2
c t

1 1S
n m

  
 

 
 

and 
1/2 1/2

n m 2, /2
1 1 1 1(X Y) S tn m 2,a/2,(X Y) S t
n m n m   

     
           

     

is a 1 –  level confidence interval for 1 – 2.

Example 7: Let X1, . . . , Xn, and Y1, . . . , Ym, n, m > 2, denote respectively independent
random samples from the two distributions having respectively the probability density fundions

2
1 1N( , )  and N 2

2 2N( , ).   We wish to obtain a confidence interval for the ratio 2 2
2 1/   when 1

and 2 are unknown.

Consider the interval 2 2 2 2
2 1 2 1(a S /S , bS /S ) a , b > 0,  where

n m
2 2 2 2
1 i 2 i

1 1

1 1S (X X) ,S (Y Y) ,
(n 1) (m 1)

   
 

 

n m

i i
1 1

1 1X X ,Y Y .
n m

    We have

2 2 2
2 2 2
2 2 2
1 1 1

S SP a b 1
S S

 
     
 

so that

2 2
2 1
2 2
2 1

1 (S /S ) 1P 1
b ( / ) a

  
     

   
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NotesIt is also known that if X and Y are independent 2 random variables with m and n degrees of
freedom respectively, the random variable F = (X/m)/(Y/n) is said to have an F-distribution
with (m, n) degrees of freedom. It is also known that if X has an F (m, n) distribution then l/X has
an F (n, m) distribution, and Fm, n, 1 –  = 1/Fn, m, . Therefore

2 2 2 2
2 2 2 1

(m 1),(n 1)2 2 2 2
1 1 2 1

S / S /S ~ F
S / /  




  

We can therefore choose paris of values (a, b) from the tables of F-distribution. In particular, we
can choose a and b so that

2 2 2 2
2 2 2 2
2 2 2 2
1 1 1 1

(S / ) 1 (S / ) 1P /2 P
(S / ) a (S / ) b

       
       

       

Then m ,n , /2 m ,n ,1 /2
1 1F and F
a b    and the 1 –  level confihnce interval for 2 2

2 1/   is

2 2
2 2

n ,m ,1 /2 n ,m ,1/ /22 2
1 1

S SF , F
S S 

 
  

 

5.3 Summary

 We have already described with examples two procedures for testing statistical hypotheses.
In this section we will employ Neyman-Pearson Lamma and likelihood ratio test for
testing of hypothesis related to a normal population.

 In you have been briefly exposed to some notions of interval estimation of a parameter. In
this section we discuss in detail the problem of obtaining interval estimates of parameters
and describe, through examples, some methods of constructing interval extimates of
parameters. We may remind you again that an interval estimate is also called a confidence
interval or a confidence set. We first illustrate through small examples the need for
constructing confidence intervals. Suppose X denotes the tensile strength of a copper wire.
A potential user may desire to know the lower bound for the mean of X, so that he can use
the wire if the average tensile strength is not less than say go. Similarly, if the random
‘variable X measures the toxicity of a drug, a doctor may wish to have a knowledge t of the
upper bound for the hean of X in order to prescribe this dmg. If the random variable X
measures the waiting times at the emergency room of a large city hospital, one may be
interested in the mean waiting time at this emergency room. In this case we wish to obtain
both the lower and upper bounds for the waiting time.

 In this unit we are concerned with the problem of determining confidence intervals for a
parameter. A formal definition of a confidence interval has been given in Section 15.6.
However, for the sake of completeness we define some terms here.

5.4 Keywords

Confidence interval: Let X1, X2, . . . , Xn be a random sample from a population with density (or,
mass) function f (x, ),    R1. The object is to find statistics rL ( X1 . . . . . , Xn ) and rU (X1, . . . ,
Xn) such that

P

 { (rL (X1,..., Xn)    rU (X1 ,..., Xn)]  1 –  for all    C  R1. The interval L U(r (X),r (X))  is called

a confidence interval.
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Notes 5.5 Self Assessment

1. If the random variable X measures the toxicity of a drug, a doctor may wish to have a
knowledge t of the .................. for the hean of X in order to prescribe this dmg.

2. If the .................. X measures the waiting times at the emergency room of a large city
hospital, one may be interested in the mean waiting time at this emergency room.

5.6 Review Questions

1. Let X 1, X2, . . . , Xn be a random sample from a normal population, N (, 2). We wish to
obtain a (1 – ) level confidence interval for .

2. Let X1, X2, . . . , Xn be a random sample, from N(, 2). It is desired to obtain a confidence
interval for 2 when  is unknown.

3. Let X1, X2, . . . , Xn be a random sample from a normal population, N (, 2). We wish to
obtain a (1 – ) level confidence interval for .

4. Let X1, . . . , X2 and Y1, . . . , Ym denote respectively independent random samples from the
two independent distributions having respectively the probability density functions N(1,
2) and N(2, 2). We wish to obtain a confidence interval for 


 – 2.

5. Let X1, X2, . . . , Xn be a random sample from a normal population, N (, 2). We wish to
obtain a (1 – ) level confidence interval for .

6. Let X1, X2, . . . , Xn be a random sample from a normal population, N (, 2). We wish to
obtain a (1 – )2 level confidence interval for .

Answers: Self Assessment

1.   upper bound 2.   random variable

5.7 Further Readings

Books Sheldon M. Ross, Introduction to Probability Models, Ninth Edition, Elsevier
Inc., 2007.

Jan Pukite, Paul Pukite, Modeling for Reliability Analysis, IEEE Press on
Engineering of Complex Computing Systems, 1998.
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NotesUnit 6: Correlation
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Objectives

After studying this unit, you will be able to:

 Definition of Correlation

 Discuss Scatter Diagram

 Explain Karl Pearson's Coefficient of Linear Correlation

 Discuss Properties of Coefficient of Correlation

 Describe Probable Error of r

Introduction

So far we have considered distributions relating to a single characteristics. Such distributions
are known as Univariate Distribution. When various units under consideration are observed
simultaneously, with regard to two characteristics, we get a Bivariate Distribution. For example,
the simultaneous study of the heights and weights of students of a college. For such data also, we

Sachin Kaushal, Lovely Professional University

42



LOVELY PROFESSIONAL UNIVERSITY

Notes can compute mean, variance, skewness etc. for each individual characteristics. In addition to
this, in the study of a bivariate distribution, we are also interested in knowing whether there
exists some relationship between two characteristics or in other words, how far the two variables,
corresponding to two characteristics, tend to move together in same or opposite directions i.e.
how far they are associated.

The knowledge of this type of relationship is useful for predicting the value of one variable
given the value of the other. It also helps in understanding and analysis of various economic and
business problems. It should be noted here that statistical relations are different from the exact
mathematical relations. Given a statistical relation Y = a + bX, between two variables X and Y,
we can only get a value of Y that we expect on the average for a given value of X. The study of
relationship between two or more variables can be divided into two broad categories:

(i) To determine whether there exists some sort of association between the variables. If so,
what is the degree of association or the magnitude of correlation between the two.

(ii) To determine the most suitable form of the relationship between the variables given that
they are correlated.

The first category relates to the study of 'Correlation' which will be discussed in this chapter and
the second relates to the study of 'Regression', to be discussed in next chapter.

6.1 Definition of Correlation

Various experts have defined correlation in their own words and their definitions, broadly
speaking, imply that correlation is the degree of association between two or more variables.
Some important definitions of correlation are given below:

(i) "If two or more quantities vary in sympathy so that movements in one tend to be accompanied by
corresponding movements in other(s) then they are said to be correlated.”

— L.R. Connor

(ii) "Correlation is an analysis of covariation between two or more variables.”

— A.M. Tuttle

(iii) "When the relationship is of a quantitative nature, the appropriate statistical tool for discovering and
measuring the relationship and expressing it in a brief formula is known as correlation.”

— Croxton and Cowden

(iv) "Correlation analysis attempts to determine the 'degree of relationship' between variables".

— Ya Lun Chou

Correlation Coefficient: It is a numerical measure of the degree of association between two or
more variables.

6.1.1 Scope of Correlation Analysis

The existence of correlation between two (or more) variables only implies that these variables
(i) either tend to increase or decrease together or (ii) an increase (or decrease) in one is accompanied
by the corresponding decrease (or increase) in the other. The questions of the type, whether
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relationship exists between them, are not answered by the study of correlation analysis. If there
is a correlation between two variables, it may be due to any of the following situations:

(i) One of the variable may be affecting the other: A correlation coefficient calculated from
the data on quantity demanded and corresponding price of tea would only reveal that the
degree of association between them is very high. It will not give us any idea about
whether price is affecting demand of tea or vice-versa. In order to know this, we need to
have some additional information apart from the study of correlation. For example if, on
the basis of some additional information, we say that the price of tea affects its demand,
then price will be the cause and quantity will be the effect. The causal variable is also
termed as independent variable while the other variable is termed as dependent variable.

(ii) The two variables may act upon each other: Cause and effect relation exists in this case
also but it may be very difficult to find out which of the two variables is independent. For
example, if we have data on price of wheat and its cost of production, the correlation
between them may be very high because higher price of wheat may attract farmers to
produce more wheat and more production of wheat may mean higher cost of production,
assuming that it is an increasing cost industry. Further, the higher cost of production may
in turn raise the price of wheat. For the purpose of determining a relationship between the
two variables in such situations, we can take any one of them as independent variable.

(iii) The two variables may be acted upon by the outside influences: In this case we might get a
high value of correlation between the two variables, however, apparently no cause and
effect type relation seems to exist between them. For example, the demands of the two
commodities, say X and Y, may be positively correlated because the incomes of the
consumers are rising. Coefficient of correlation obtained in such a situation is called a
spurious or nonsense correlation.

(iv) A high value of the correlation coefficient may be obtained due to sheer coincidence
(or pure chance): This is another situation of spurious correlation. Given the data on any
two variables, one may obtain a high value of correlation coefficient when in fact they do
not have any relationship. For example, a high value of correlation coefficient may be
obtained between the size of shoe and the income of persons of a locality.

6.2 Scatter Diagram

Let the bivariate data be denoted by (Xi, Yi), where i = 1, 2 ...... n. In order to have some idea about
the extent of association between variables X and Y, each pair (Xi, Yi), i = 1, 2......n, is plotted on
a graph. The diagram, thus obtained, is called a Scatter Diagram.

Each pair of values (Xi, Yi) is denoted by a point on the graph. The set of such points (also known
as dots of the diagram) may cluster around a straight line or a curve or may not show any
tendency of association. Various possible situations are shown with the help of given diagrams:
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If all the points or dots lie exactly on a straight line or a curve, the association between the
variables is said to be perfect. This is shown below:

Figure 6.2

A scatter diagram of the data helps in having a visual idea about the nature of association
between two variables. If the points cluster along a straight line, the association between variables
is linear. Further, if the points cluster along a curve, the corresponding association is non-linear
or curvilinear. Finally, if the points neither cluster along a straight line nor along a curve, there
is absence of any association between the variables.

It is also obvious from the above figure that when low (high) values of X are associated with low
(high) value of Y, the association between them is said to be positive. Contrary to this, when low
(high) values of X are associated with high (low) values of Y, the association between them is
said to be negative.

This chapter deals only with linear association between the two variables X and Y. We shall
measure the degree of linear association by the Karl Pearson's formula for the coefficient of
linear correlation.
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Let us assume, again, that we have data on two variables X and Y denoted by the pairs (Xi, Yi),
i = 1,2, ...... n. Further, let the scatter diagram of the data be as shown in figure 22.3.

Let X  and Y  be the arithmetic means of X and Y respectively. Draw two lines X = X  and Y = Y
on the scatter diagram. These two lines, intersect at the point (X ,Y ) and are mutually
perpendicular, divide the whole diagram into four parts, termed as I, II, III and IV quadrants, as
shown.

Figure 6.3

As mentioned earlier, the correlation between X and Y will be positive if low (high) values of X
are associated with low (high) values of Y. In terms of the above figure, we can say that when
values of X that are greater (less) than X  are generally associated with values of Y that are
greater (less) than Y , the correlation between X and Y will be positive. This implies that there
will be a general tendency of points to concentrate in I and III quadrants. Similarly, when
correlation between X and Y is negative, the point of the scatter diagram will have a general
tendency to concentrate in II and IV quadrants.

Further, if we consider deviations of values from their means, i.e., Xi - Xd i  and Yi - Yd i , we
note that:

(i) Both Xi - Xd i  and Yi - Yd i  will be positive for all points in quadrant I.

(ii) Xi - Xd i  will be negative and Yi - Yd i  will be positive for all points in quadrant II.

(iii) Both Xi - Xd i  and Yi - Yd i  will be negative for all points in quadrant III.

(iv) Xi - Xd i  will be positive and Yi - Yd i  will be negative for all points in quadrant IV.

It is obvious from the above that the product of deviations, i.e., Xi - Xd i Yi - Yd i  will be positive
for points in quadrants I and III and negative for points in quadrants II and IV.

Since, for positive correlation, the points will tend to concentrate more in I and III quadrants
than in II and IV, the sum of positive products of deviations will outweigh the sum of negative

products of deviations. Thus,   i iX X Y Y   will be positive for all the n observations.

Similarly, when correlation is negative, the points will tend to concentrate more in II and IV
quadrants than in I and III. Thus, the sum of negative products of deviations will outweigh the

sum of positive products and hence   i iX X Y Y   will be negative for all the n observations.

Further, if there is no correlation, the sum of positive products of deviations will be equal to the

sum of negative products of deviations such that   i iX X Y Y   will be equal to zero.

46



LOVELY PROFESSIONAL UNIVERSITY

Notes
On the basis of the above, we can consider   i iX X Y Y   as an absolute measure of

correlation. This measure, like other absolute measures of dispersion, skewness, etc., will depend
upon (i) the number of observations and (ii) the units of measurements of the variables.

In order to avoid its dependence on the number of observations, we take its average, i.e.,

  i i
1 X X Y Y
n

  . This term is called covariance in statistics and is denoted as Cov(X,Y).

To eliminate the effect of units of measurement of the variables, the covariance term is divided
by the product of the standard deviation of X and the standard deviation of Y. The resulting
expression is known as the Karl Pearson's coefficient of linear correlation or the product moment
correlation coefficient or simply the coefficient of correlation, between X and Y.

 
XY

X Y

Cov X,Yr 
 

.... (1)

or   

   

i i

XY
2 2

i i

1 X X Y Y
nr

1 1X X Y Y
n n

 



 



 

.... (2)

Cancelling 1
n

 from the numerator and the denominator, we get

  

   

i i
XY 2 2

i i

X X Y Y
r

X X Y Y

 


 



 
.... (3)

Consider       i i i i iX X Y Y X X Y Y X X       

i i iX Y X Y    (second term is zero)

i iX Y nXY    iY nY

Similarly we can write   
2 2 2

i iX X X nX   

and            
2 2 2

i iY Y Y nY   

Substituting these values in equation (3), we have

i i
XY 2 2 2 2

i i

X Y nXY
r

X nX Y nY




       



 
.... (4)

i i
i i

XY 2 2
i i2 2

i i

X Y
X Y n

n nr
X Y

X n Y n
n n

  



   
       

   

 


 
 
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  

   

i i
i i

2 2
i i2 2

i i

X Y
X Y

n
X Y

X Y
n n





 

 


 
 

.... (5)

On multiplication of numerator and denominator by n, we can write

  

   

i i i i
XY 2 22 2

i i i i

n X Y X Y
r

n X X n Y Y




 

  

   
.... (6)

Further, if we assume xi =Xi - X  and yi =Yi - Y , equation (2), given above, can be written as

i i

XY
2 2
i i

1 x y
nr

1 1x y
n n




 

.... (7)

      i i
XY 2 2

i i

x y
or r

x y




 
.... (8)

      i i
XY

x y

x y1or r
n


 

 .... (9)

Equations (5) or (6) are often used for the calculation of correlation from raw data, while the use
of the remaining equations depends upon the forms in which the data are available. For example,
if standard deviations of X and Y are given, equation (9) may be appropriate.

Example 1: Calculate the Karl Pearson's coefficient of correlation from the following
pairs of values :

Values of X :  12   9   8   10   11   13   7

Values of Y :  14   8   6     9   11   12   3

Solution.

The formula for Karl Pearson's coefficient of correlation is

  

   

i i i i
XY 2 22 2

i i i i

n X Y X Y
r

n X X n Y Y




 

  

   
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2 2
i i i i i iX Y X Y X Y

12 14 168 144 196
9 8 72 81 64
8 6 48 64 36

10 9 90 100 81
11 11 121 121 121
13 12 156 169 144
7 3 21 49 9

70 63 676 728 651

Here n = 7 (no. of pairs of observations)

   
XY 2 2

7 676 70 63r 0.949
7 728 70 7 651 63

  
 

   

Example 2: Calculate the Karl Pearson's coefficient of correlation between X and Y from
the following data:

No. of pairs of observations n = 8,  
2

iX X = 184,  
2

iY Y =148,

  i iX X Y Y   = 164, X =11   and  Y =10

Solution.

Using the formula, 
  

   

i i
XY 2 2

i i

X X Y Y
r

X X Y Y

 


 



 
, we get

    XY
164r 0.99

184 148
 

Example 3:

(a) The covariance between the length and weight of five items is 6 and their standard
deviations are 2.45 and 2.61 respectively. Find the coefficient of correlation between length
and weight.

(b) The Karl Pearson's coefficient of correlation and covariance between two variables X and
Y is – 0.85 and – 15 respectively. If variance of Y is 9, find the standard deviation of X.

Solution.

(a) Substituting the given values in formula (1) for correlation, we get

XY
6r 0.94

2.45 2.61
 


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X

150.85
3


 

 
  or  sX = 5.88

6.4 Properties of Coefficient of Correlation

1. The coefficient of correlation is independent of the change of origin and scale of
measurements.

In order to prove this property, we change origin and scale of both the variables X and Y.

Let i
i

X Au
h


  and i
i

Y Bv
k


 , where the constants A and B refer to change of origin and

the constants h and k refer to change of scale. We can write

i iX A hu , X A hu    

Thus, we have   i i iX X A hu A hu h u u      

Similarly, i iY B kv , Y B kv    

Thus,  i i iY Y B kv B kv k v v      

The formula for the coefficient of correlation between X and Y is

  

   

i i
XY 2 2

i i

X X Y Y
r

X X Y Y

 


 



 

Substituting the values of  iX X  and  iY Y , we get

   

   

i i
XY 2 22 2

i i

h u u k v v
r

h u u k v v

 


 



 

  

   

i i

2 2
i i

u u v v

u u v v

 


 



 

   XY uvr r

This shows that correlation between X and Y is equal to correlation between u and v,
where u and v are the variables obtained by change of origin and scale of the variables X
and Y respectively.

This property is very useful in the simplification of computations of correlation. On the
basis of this property, we can write a short-cut formula for the computation of rXY :

  

   

i i i i
XY 2 22 2

i i i i

n u v u v
r

n u u n v v




 

  

   
.... (10)

2. The coefficient of correlation lies between - 1 and + 1.

To prove this property, we define

i
i

X

X Xx' 



  and  i

i
Y

Y Yy' 



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
 

2

i2
i 2

X

X X
x'





and  

 
2

i2
i 2

Y

Y Y
y'






or
 

2

i2
i 2

X

X X
x'







   and  

 
2

i2
i 2

Y

Y Y
y'









From these summations we can write 2 2
i ix' y' n  

Also,  r = 
  i i

i i
i i

X Y X Y

1 X X Y Y 1 X X Y Y 1n x' y'
n n

     
    

     


 

Consider the sum xi' + yi'. The square of this sum is always a non-negative number, i.e., (xi'
+ yi')2 ³ 0.

Taking sum over all the observations and dividing by n, we get

 
2

i i
1 x' y' 0
n

    or   2 2
i i i i

1 x' y' 2x' y' 0
n

  

or 2 2
i i i i

1 1 2x' y' x' y' 0
n n n

    

or 1 + 1 + 2r  0  or  2 + 2r  0  or  r  – 1 .... (11)

Further, consider the difference xi' - yi'. The square of this difference is also non-negative,
i.e., (xi' - yi')2 ³ 0.

Taking sum over all the observations and dividing by n, we get

 
2

i i
1 x' y' 0
n

    or   2 2
i i i i

1 x' y' 2x' y' 0
n

  

or 2 2
i i i i

1 1 2x' y' x' y' 0
n n n

    

or 1 + 1 - 2r  0  or 2 - 2r  0  or  r  1 .... (12)

Combining the inequalities (11) and (12), we get - 1  r  1. Hence r lies between -1 and +1.

3. If X and Y are independent they are uncorrelated, but the converse is not true.

If X and Y are independent, it implies that they do not reveal any tendency of simultaneous
movement either in same or in opposite directions. In terms of figure 12.3, the dots of the
scatter diagram will be uniformly spread in all the four quadrants. Therefore,

  i iX X Y Y   or Cov(X, Y) will be equal to zero and hence, rXY = 0. Thus, if X and Y are

independent, they are uncorrelated.

The converse of this property implies that if rXY = 0, then X and Y may not necessarily be
independent. To prove this, we consider the following data :

X 1 2 3 4 5 6 7
Y 9 4 1 0 1 4 9
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  
  i i

i i

X Y1 1 28 28Cov X,Y X Y 112 0
n n 7 7

   
          

 
 . Thus, rXY = 0

A close examination of the given data would reveal that although rXY = 0, but X and Y are
not independent. In fact they are related by the mathematical relation Y = (X - 4)2.

Remarks: This property points our attention to the fact that rXY is only a measure of the
degree of linear association between X and Y. If the association is non-linear, the computed
value of rXY is no longer a measure of the degree of association between the two variables.

Example 4:

Calculate the Karl Pearson's coefficient of correlation from the following data:

Height of fathers ( inches) : 66 68 69 72 65 59 62 67 61 71
Height of sons ( inches) : 65 64 67 69 64 60 59 68 60 64

Solution.

Note: When there is no common factor, we can take h = k = 1 and define ui = Xi - A and vi = Yi - B.

Calculation of r

Height of

fathers X ib g
Height of

sons Yib g ui = X i - 65 v i = Yi - 64 ui v i ui
2 v i

2

66
68
69
72
65
59
62
67
61
71

65
64
67
69
64
60
59
68
60
64

1
3
4
7
0

- 6
- 3
2

- 4
6

1
0
3
5
0

- 4
- 5
4

- 4
0

1
0
12
35
0
24
15
8
16
0

1
9
16
49
0
36
9
4
16
36

1
0
9
25
0
16
25
16
16
0

Total 10 0 111 176 108

Here n = 10. Using formula (10) for correlation, we get

  
 

2 2

10 111 10 0 0.83
10 176 10 10 108 0

  
 

   

Example 5:

(a) Calculate the Karl Pearson's coefficient of correlation from the following data:

(i) Sum of deviations of X values = 5

(ii) Sum of deviations of Y values = 4

(iii) Sum of squares of deviations of X values = 40

(iv) Sum of squares of deviations of Y values = 50
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(vi) No. of pairs of observations = 10

(b) Given the following, calculate the coefficient of correlation :

(i) Sum of squares of deviations of X values from mean = 136

(ii) Sum of squares of deviations of Y values from mean = 138

(iii) Sum of products of deviations of X and Y values from their means = 122.

Solution.

(a) Let ui = Xi - A and vi = Yi - B be the deviations of X and Y values. We are given Sui = 5, Svi =
4, Sui

2 = 40, Svi
2 = 50, Suivi = 32 and n = 10.

Substituting these values in formula (10), we get

XY 2 2

10 32 5 4r 0.704
10 40 5 10 50 4

  
 

   

(b) Using formula (3) for correlation, we get 
122r 0.89

136 138
 

Example 6: Calculate the coefficient of correlation between age group and rate of mortality
from the following data:

Age group : 0-20 20-40 40-60 60-80 80-100
Rate of Mortality : 350 280 540 760 900

Solution.

Since class intervals are given for age, their mid-values shall be used for the calculation of r.

Table for calculation of r

Here n = 5. Using the formula (10) for correlation, we get

XY 2 2

5 158 0 13r 0.95
5 10 0 5 2817 13

  
 

   

Example 7:

Deviations from assumed average of the two series are given below :

Deviations, X series : - 10, - 6, - 4, - 1, 0, + 2, + 1, + 5, + 7, + 11

Deviations, Y series : - 8, - 5, + 4, - 2, - 4, 0, + 2, 0, - 2, + 4

Age
group

M.V .
(X )

Rate of
Mort. (Y ) ui =

X i - 50
20

vi =
Yi - 540
10

ui vi ui
2 vi

2

0 - 20
20 - 40
40 - 60
60 - 80
80 -100

10
30
50
70
90

350
280
540
760
900

- 2
- 1
0
1
2

- 19
- 26

0
22
36

38
26
0
22
72

4
1
0
1
4

361
676
0

484
1296

Total 0 13 158 10 28170 13
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Solution.

Here the values of ui = Xi - A and vi = Xi - B are given.

Table for calculation of r

ui - 10 - 6 - 4 - 1 0 2 1 5 7 11 5
vi - 8 - 5 4 - 2 - 4 0 2 0 - 2 4 - 11

ui vi 80 30 - 16 2 0 0 2 0 - 14 44 128

ui
2 100 36 16 1 0 4 1 25 49 121 353

vi
2 64 25 16 4 16 0 4 0 4 16 149

Here n = 10.

 
XY 2 2

10 128 5 11r 0.609
10 353 5 10 149 11

   
 

   

Example 8:

From the following table, find the missing values and calculate the coefficient of correlation by
Karl Pearson's method :

X : 6   2 10 4 ?

Y : 9  11   ? 8 7

Arithmetic means of X and Y series are 6 and 8 respectively.

Solution.

The missing value in X - series = 5 × 6 – (6 + 2 + 10 + 4) = 30 – 22 = 8

The missing value in Y - series = 5 × 8 – (9 + 11 + 8 + 7) = 40 – 35 = 5

Table for calculation of r

X Y X - X Y - Yd i X - Xd i Y - Yd i X - Xd i2 Y - Yd i2
6
2
10
4
8

9
11
5
8
7

0
- 4
4

- 2
2

1
3

- 3
0
- 1

0
- 12
- 12
0

- 2

0
16
16
4
4

1
9
9
0
1

Total - 26 40 20

Using formula (3) for correlation, we get 
26r 0.92

40 20


  
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Example 9:

Calculate Karl Pearson's coefficient of correlation for the following series :
Price (in Rs) : 10 11 12 13 14 15 16 17 18 19

Demand (in kgs) : 420 410 400 310 280 260 240 210 210 200

Solution.

Table for calculation of r

Price
(X)

Demand
(Y) u =X - 14 v = Y - 310

10
uv u2 v2

10
11
12
13
14
15
16
17
18
19

420
410
400
310
280
260
240
210
210
200

- 4
- 3
- 2
- 1
0
1
2
3
4
5

11
10
9
0

- 3
- 5
- 7
- 10
- 10
- 11

- 44
- 30
- 18
0
0

- 5
- 14
- 30
- 40
- 55

16
9
4
1
0
1
4
9
16
25

121
100
81
0
9
25
49
100
100
121

Total 5 - 16 - 236 85 706

10 236 5 16r 0.96
10 85 25 10 706 256

   
  

   

Example 10:

A computer while calculating the correlation coefficient between two variables, X and Y, obtained
the following results :

n = 25, X = 125, X2 = 650, Y = 100, Y2 = 460, XY = 508.

It was, however, discovered later at the time of checking that it had copied down two pairs of

observations as 
X Y
6 14
8 6

 in place of the correct pairs 
X Y
8 12
6 8

. Obtain the correct value of r.

Solution.

First we have to correct the values of X, X2......etc.

Corrected X = 125 – (6 + 8) + (8 + 6) = 125

Corrected X2 = 650 – (36 + 64) + (64 + 36) = 650

Corrected Y = 100 – (14 + 6) + (12 + 8) = 100

Corrected Y2 = 460 - (196 + 36) + (144 + 64) = 436

Corrected SXY = 508 - (84 + 48) + (96 + 48) = 520

   
2 2

25 520 125 100r 0.67
25 650 125 25 436 100

  
 

   

55



LOVELY PROFESSIONAL UNIVERSITY

Correlation

Notes6.5 Probable Error of r

It is an old measure to test the significance of a particular value of r without the knowledge of
test of hypothesis. Probable error of r, denoted by P.E.(r) is 0.6745 times its standard error. The
value 0.6745 is obtained from the fact that in a normal distribution r 0.6745 S.E.   covers 50%
of the total distribution.

According to Horace Secrist "The probable error of correlation coefficient is an amount which if
added to and subtracted from the mean correlation coefficient, gives limits within which the
chances are even that a coefficient of correlation from a series selected at random will fall.”

Since standard error of r, i.e.,  
2 2

r
1 r 1 rS.E. , P.E. r 0.6745

n n
 

   

6.5.1 Uses of P.E.(r)

(i) It can be used to specify the limits of population correlation coefficient  (rho) which are
defined as r – P.E.(r)  r  r + P.E.(r), where  denotes correlation coefficient in population
and r denotes correlation coefficient in sample.

(ii) It can be used to test the significance of an observed value of r without the knowledge of
test of hypothesis. By convention, the rules are:

(a) If |r| < 6 P.E.(r), then correlation is not significant and this may be treated as a situation of
no correlation between the two variables.

(b) If |r|> 6 P.E.(r), then correlation is significant and this implies presence of a strong
correlation between the two variables.

(c) If correlation coefficient is greater than 0.3 and probable error is relatively small, the
correlation coefficient should be considered as significant.

Example 11: Find out correlation between age and playing habit from the following
information and also its probable error.

Age : 15 16 17 18 19 20
No. of Students : 250 200 150 120 100 80
Regular Players : 200 150 90 48 30 12

Solution.

Let X denote age, p the number of regular players and q the number of students. Playing habit,
denoted by Y, is measured as a percentage of regular players in an age group, i.e., Y = (p/q)×100.

Table for calculation of r

X q p Y u =X - 17 v =Y - 40 uv u2 v 2

15
16
17
18
19
20

250
200
150
120
100
80

200
150
90
48
30
12

80
75
60
40
30
15

- 2
- 1
0
1
2
3

40
35
20
0

- 10
- 25

- 80
- 35

0
0

- 20
- 75

4
1
0
1
4
9

1600
1225
400
0

100
625

Total 3 60 - 210 19 3950
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XY

6 210 3 60r 0.99
6 19 9 6 3950 3600

   
  

   

Probable error of r, i.e.,  
 

21 0.99
P.E. r 0.6745 0.0055

6

 
   

Example 12:

Test the significance of correlation for the values based on the number of observations (i) 10, and
(ii) 100 and r = 0.4 and 0.9.

Solution.

(i) (a) Consider n = 10 and r = 0.4. Thus,  
21 0.4P.E. r 0.6745 0.179

10


    and

6 P.E. = 6 × 0.179 = 1.074. Since |r|< 6 P.E., r is not significant.

(i) (b) Take n = 10 and r = 0.9. Thus, 
21 0.9P.E. 0.6745 0.041

10


    and 6 P.E. = 6 × 0.041 =

0.246. Since |r|> 6 P.E., r is highly significant.

(ii) (a) Take n = 100 and r = 0.4. Thus, 
 21 0.4

6P.E. 6 0.6745 0.34
100


  

Since |r|> 6 P.E., r is significant.

(ii) (b) Take n = 100 and r = 0.9. Thus, 
 21 0.9

6P.E. 6 0.6745 0.077
100


  

Since |r|> 6 P.E., r is significant.

6.6 Correlation in a Bivariate Frequency Distribution

Let the two variables X and Y take respective values Xi, i = 1, 2, ...... m and Yj, j = 1, 2, ...... n. These
values, taken together, will make m´n pairs (Xi,Yj). Let fij be the frequency of this pair. This
frequency distribution can be presented in a tabular form as given below :

Y

X
Y Y Y Y Total

X f f f f f

X f f f f f

X f f f f f

X f f f f f

Total f f f f N

1 2 j n

1 11 12 1j 1n 1

2 21 22 2j 2n 2

i i1 i2 ij in i

m m1 m2 mj mn m

1 2 j n



B

   

 

 
 

     

     
 
 

Here ij i jf f f N     (the total frequency).
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NotesThe formula for correlation can be written on the basis of the formula discussed earlier.

  

   

ij i j i i j j
XY 222 2

i i i i j j j j

N f X Y f X f Y
r

N f X f X N f Y f Y




  

  

   

When we make changes of origin and scale by making the transformations ui =
Xi - A

h
 and

vj =
Yj - B

k
, then we can write

  

   

ij i j i i j j
XY 222 2

i i i i j j j j

N f u v f u f v
r

N f u f u N f v f v




  

  

   

Example 13:

Calculate Karl Pearson's coefficient of correlation from the following data :

Age(yrs)

M arks



B 18 19 20 21 22

20 - 25 3 2
15 - 20 5 4
10 - 15 7 10
5 - 10 3 2
0 - 5 4

Solution.

Let Xi denote the mid-value of the class interval of marks. Various values of Xi can be written as
22.5, 17.5, 12.5, 7.5 and 2.5.

Further, let ui = (Xi - 12.5) ÷ 5. Various values of ui would be 2, 1, 0, - 1 and - 2.

Similarly, let Yj denote age. Various values of Yj are 18, 19, 20, 21 and 22.

Assuming vj = Yj - 20, various values of vj would be - 2, - 1, 0, 1 and 2.

We shall use the values of ui and vj in the computation of r.
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Substituting various values in the formula for r, we get

 40 44 6 12 1832r 0.903
40 50 36 40 56 144 1964 2096

    
   

   

Examples 14:

Given the following data, compute the coefficient of correlation r, between X and Y.

Y
30-50 50-70 70-90 Total

X
0-5 10 6 2 18
5-10 3 5 4 12

10-15 4 7 9 20
Total 17 18 15 50





Solution.

Note: Instead of doing the computation work in a single table, as done in example 13, it can be
split into the following steps:

Taking mid-values of the class intervals, we have

Mid-values (X) :  2.5 7.5 12.5

Mid-values (Y) :  40  60   80

Let i
i

X 7.5u
5


  and i
i

Y 60v
20




 various u values are :  - 1   0   1

and various v values are :  - 1   0   1

59



LOVELY PROFESSIONAL UNIVERSITY

Correlation

Notes(i) Calculation of SSfijuivj

\  Sfijuivj = 13

(ii) Calculation of Sfiui and Sfiui
2 (iii) Calculation of Sfj'vj and Sfj'vj

2

2 2
i i i i i i j j j j j ju f f u f u v f f v f v
1 18 18 18 1 17 17 17
0 12 0 0                                0 18 0 0
1 20 20 20 1 15 15 15

Total 50 2 38 Total 50 2 32

  

   



Substituting these values in the formula of r, we have

 50 13 2 2 654r 0.376
50 38 4 50 32 4 1896 1596

   
  

   

6.7 Merits and Limitations of Coefficient of Correlation

The only merit of Karl Pearson's coefficient of correlation is that it is the most popular method
for expressing the degree and direction of linear association between the two variables in terms
of a pure number, independent of units of the variables. This measure, however, suffers from
certain limitations, given below :

1. Coefficient of correlation r does not give any idea about the existence of cause and effect
relationship between the variables. It is possible that a high value of r is obtained although
none of them seem to be directly affecting the other. Hence, any interpretation of r should
be done very carefully.

2. It is only a measure of the degree of linear relationship between two variables. If the
relationship is not linear, the calculation of r does not have any meaning.

3. Its value is unduly affected by extreme items.

4. If the data are not uniformly spread in the relevant quadrants (see - Fig 12.3), the value of
r may give a misleading interpretation of the degree of relationship between the two
variables. For example, if there are some values having concentration around a point in
first quadrant and there is similar type of concentration in third quadrant, the value of r
will be very high although there may be no linear relation between the variables.

5. As compared with other methods, to be discussed later in this chapter, the computations of
r are cumbersome and time consuming.
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Notes 6.8 Spearman's Rank Correlation

This is a crude method of computing correlation between two characteristics. In this method,
various items are assigned ranks according to the two characteristics and a correlation is computed
between these ranks. This method is often used in the following circumstances:

(i) When the quantitative measurements of the characteristics are not possible, e.g., the results
of a beauty contest where various individuals can only be ranked.

(ii) Even when the characteristics is measurable, it is desirable to avoid such measurements
due to shortage of time, money, complexities of calculations due to large data, etc.

(iii) When the given data consist of some extreme observations, the value of Karl Pearson's
coefficient is likely to be unduly affected. In such a situation the computation of the rank
correlation is preferred because it will give less importance to the extreme observations.

(iv) It is used as a measure of the degree of association in situations where the nature of
population, from which data are collected, is not known.

The coefficient of correlation obtained on the basis of ranks is called 'Spearman's Rank Correlation'
or simply the 'Rank Correlation'. This correlation is denoted by  (rho).

Let Xi be the rank of i th individual according to the characteristics X and Yi be its rank according
to the characteristics Y. If there are n individuals, there would be n pairs of ranks (Xi, Yi), i = 1, 2,
...... n. We assume here that there are no ties, i.e., no two or more individuals are tied to a
particular rank. Thus, Xi's and Yi's are simply integers from 1 to n, appearing in any order.

The means of X and Y, i.e.,  n n 11 2 n n 1X Y n 2n 2
  

   
 . Also,

X Y
n n n n n n

n
n n

2 2 2
2 2 2 2 21 ( 1) 1 ( 1)(2 1) ( 1) 1

[1 2 ]
4 6 4 12

 
     

         
 

Let di be the difference in ranks of the i th individual, i.e.,

di = Xi - Yi    i iX X Y Y     X Yd i
Squaring both sides and taking sum over all the observations, we get

   i i id X X Y Y
22     

  

              i i i iX X Y Y X X Y Y
22

2        

Dividing both sides by n, we get

      i i i i id X X Y Y X X Y Y
n n n n

2221 1 1 2
         

         X Y Cov X Y2 2 2 ,     X Cov X Y22 2 ,   X Y

2 2d i

       X X Y X X X
2 2 2 22 2 2 2 2 1                

 

X Y

Cov X,Y


 

 
 

 

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From this, we can write i

X

d
n

2

2
1

1
2




  


      
 

i i i

X

d d d
or

n n n n n

2 2 2

2 2 2

61 1 12
1 1 1

22 1 1



        

 

  

Note: This formula is not applicable in case of a bivariate frequency distribution.

Example 15:

The following table gives the marks obtained by 10 students in commerce and statistics. Calculate
the rank correlation.

Marks in Statistics
Marks in Commerce

: 35 90 70 40 95 45 60 85 80 50
: 45 70 65 30 90 40 50 75 85 60

Solution.

Calculation Table

From the above table, we have id2 16.

  Rank Correlation  1
6 di

2

n n2 1e j
1 6 16

10 99
0.903

6.9 Coefficient of Correlation by Concurrent Deviation Method

This is another simple method of obtaining a quick but crude idea of correlation between two
variables. In this method, only direction of change in the concerned variables are noted by
comparing a value from its preceding value. If the value is greater than its preceding value, it is
indicated by a '+' sign; if less, it is indicated by a '-' sign and equal values are indicated by '=' sign.
All the pairs having same signs, i.e., either both the deviations are positive or negative or have
equal sign ('='), are known as concurrent deviations and are indicated by '+' sign in a separate
column designated as 'concurrences'. The number of such concurrences is denoted by C. Similarly,
the remaining pairs are marked by '-' sign in another column designated as 'disagreements'. The

coefficient of correlation, denoted by rC, is given by the formula C
C D

r
D

2  
    

, where C
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Notes denotes the number of concurrences and D (= number of observations - 1) is the number of pairs
of deviation.

Note:

(i) The sign of rC is taken to be equal to the sign of 
2C - D

D
F
H

I
K .

(ii) When 
C D

D
2  

  
 is negative, we make it positive for the purpose of taking its square

root. However, the computed value will have a negative sign.

(iii) The sign of rC will be positive when 
C D

D
2  

  
 is positive.

(iv) This method gives same weights to smaller as well as to the larger deviations.

(v) This method is suitable only for the study of short term fluctuations because it does not
take into account the changes in magnitudes of the values.

Example 18:

The following table gives the marks obtained by 11 students of a class in micro and macro-
economics papers. Calculate the coefficient of correlation by concurrent deviation method.

Roll No. : 1 2 3 4 5 6 7 8 9 10 11
Marks in
Micro - economics : 80 45 55 56 58 60 65 68 70 75 85

Marks in
Macro - economics : 82 56 50 48 60 62 64 65 70 74 90

Solution.

Let D1 and D2 denote deviations from the preceding marks in micro and macro economics
respectively.

Calculation Table

Roll No. Marks in Micro -
economics D1

Marks in Macro -
economics D2

Concurr -
ences

Disagree -
ments

1
2
3
4
5
6
7
8
9
10
11

80
45
55
56
58
60
65
68
70
75
85

-
+
+
+
+
+
+
+
+
+

82
56
50
48
60
62
64
65
70
74
90

-
-
-
+
+
+
+
+
+
+

+

+
+
+
+
+
+
+

-
-

Total 8 2

Here C = 8 and the no. of pairs of deviation D = 10.

Now, 
C D

D
2 16 10

0.6
10

 
   which is positive,  Cr 0.6 0.77 
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NotesThis value indicates the presence of a very high positive correlation between the marks obtained
in two papers.

Example 19:

Find out the coefficient of correlation by concurrent deviation method from the following
information:

Number of pairs of deviations = 96

Number of concurrent deviations = 32

Solution.

We are given C = 32 and D = 96

Now, 
C D

D
2 64 96 1

96 3
 

    which is negative,   Cr
1

0.577
3

   

6.10 Summary

 One of the variable may be affecting the other: A correlation coefficient calculated from
the data on quantity demanded and corresponding price of tea would only reveal that the
degree of association between them is very high. It will not give us any idea about
whether price is affecting demand of tea or vice-versa. In order to know this, we need to
have some additional information apart from the study of correlation. For example if, on
the basis of some additional information, we say that the price of tea affects its demand,
then price will be the cause and quantity will be the effect. The causal variable is also
termed as independent variable while the other variable is termed as dependent variable.

 The two variables may act upon each other: Cause and effect relation exists in this case
also but it may be very difficult to find out which of the two variables is independent. For
example, if we have data on price of wheat and its cost of production, the correlation
between them may be very high because higher price of wheat may attract farmers to
produce more wheat and more production of wheat may mean higher cost of production,
assuming that it is an increasing cost industry. Further, the higher cost of production may
in turn raise the price of wheat. For the purpose of determining a relationship between the
two variables in such situations, we can take any one of them as independent variable.

 The two variables may be acted upon by the outside influences: In this case we might get a
high value of correlation between the two variables, however, apparently no cause and
effect type relation seems to exist between them. For example, the demands of the two
commodities, say X and Y, may be positively correlated because the incomes of the
consumers are rising. Coefficient of correlation obtained in such a situation is called a
spurious or nonsense correlation.

 A high value of the correlation coefficient may be obtained due to sheer coincidence
(or pure chance): This is another situation of spurious correlation. Given the data on any
two variables, one may obtain a high value of correlation coefficient when in fact they do
not have any relationship. For example, a high value of correlation coefficient may be
obtained between the size of shoe and the income of persons of a locality.

 Let the bivariate data be denoted by (Xi, Yi), where i = 1, 2 ...... n. In order to have some idea
about the extent of association between variables X and Y, each pair (Xi, Yi), i = 1, 2......n, is
plotted on a graph. The diagram, thus obtained, is called a Scatter Diagram.
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Notes  Each pair of values (Xi, Yi) is denoted by a point on the graph. The set of such points (also
known as dots of the diagram) may cluster around a straight line or a curve or may not
show any tendency of association.

 It can be used to specify the limits of population correlation coefficient  (rho) which are
defined as r – P.E.(r)  r  r + P.E.(r), where  denotes correlation coefficient in population
and r denotes correlation coefficient in sample.

 It can be used to test the significance of an observed value of r without the knowledge of
test of hypothesis. By convention, the rules are:

 If |r| < 6 P.E.(r), then correlation is not significant and this may be treated as a
situation of no correlation between the two variables.

 If |r|> 6 P.E.(r), then correlation is significant and this implies presence of a strong
correlation between the two variables.

 If correlation coefficient is greater than 0.3 and probable error is relatively small,
the correlation coefficient should be considered as significant.

6.11 Keywords

Correlation: It is an analysis of covariation between two or more variables.

Correlation Coefficient: It is a numerical measure of the degree of association between two or
more variables.

Scatter diagram: A scatter diagram of the data helps in having a visual idea about the nature of
association between two variables. If the points cluster along a straight line, the association
between variables is linear.

6.12 Self Assessment

1. Fill in the blanks :

(i) Coefficient of correlation is a measure of the strength of the ........ relationship between
two variables.

(ii) Coefficient of correlation is ........ of the change of origin and scale.

(iii) Coefficient of correlation between sale of woolen garments and the day temperature
is likely to be ........

(iv) Coefficient of correlation lies between ........ and ........ .

(v) Correlation between number of accidents and number of babies born in different
years is termed as ........ correlation.

(vi) If two variables X and Y are such that their difference (X – Y) is always equal to 25.
The correlation between X and Y is ........ and positive.

2. Examine the validity of the following statements giving necessary proofs and reasons for
your answer:

(i) If rXY = 0, then X and Y are always independent.

(ii) If the sum of squares of the difference in ranks of 8 pairs of observations is 126, then
the rank correlation coefficient is 0.5.
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Notes(iii) If u + 3x = 5, 2y - v = 7 and rxy = 0.12, then ruv = 0.12.

(iv) If 2x - u = 8, y - 3v = 10 and rxy = 0.8, then ruv = 0.8.

(v) If 
2
id  = 33 and n = 10 then r = 0.8.

6.13 Review Questions

1. (a) Define correlation between two variables. Distinguish between positive and
negative correlation. Illustrate by using diagrams.

(b) Define the concept of covariance. How do you interpret it?

2. Define correlation and discuss its significance in statistical analysis. Does it signify 'cause
and effect' relationship between the two variables?

3. (a) What do you understand by the coefficient of linear correlation? Explain the
significance and limitations of this measure in any statistical analysis.

(b) Write down an expression for the Karl Pearson's coefficient of linear correlation.
Why is it termed as the coefficient of linear correlation? Explain.

4. (a) Describe the method of obtaining the Karl Pearson's formula of coefficient of
linear correlation. What do positive and negative values of this coefficient indicate?

(b) Does a zero value of Karl Pearson's coefficient of correlation between two variables
X and Y imply that X and Y are not related? Explain.

5. Define product moment coefficient of correlation. What are the advantages of the study of
correlation?

6. Show that the coefficient of correlation, r, is independent of change of origin and scale.

7. Prove that the coefficient of correlation lies between - 1 and +1.

8. "If two variables are independent the correlation between them is zero, but the converse
is not always true". Explain the meaning of this statement.

9. What is Spearman's rank correlation? What are the advantages of the coefficient of rank
correlation over Karl Pearson's coefficient of correlation?

10. Distinguish between the Spearman's coefficient of rank correlation and Karl Pearson's
coefficient of correlation. Explain the situations under which Spearman's coefficient of
rank correlation can assume a maximum and a minimum value. Under what conditions
will Spearman's formula and Karl Pearson's formula give equal results?

11. Explain the method of calculating coefficient of correlation by Concurrent Deviation
Method.

12. Write short notes on:

(i) Positive and negative correlation.

(ii) Linear and non-linear correlation.

(iii) Probable error of correlation.

(iv) Scatter diagram.
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Notes 13. Compute Karl Pearson's coefficient of correlation from the following data :

X
Y

: 8 11 15 10 12 16
: 6 9 11 7 9 12

14. Calculate Karl Pearson's coefficient of correlation between the marks obtained by 10
students in economics and statistics.

Roll No
Marks in eco
Marks in stat

. : 1 2 3 4 5 6 7 8 9 10
. : 23 27 28 29 30 31 33 35 36 39
. : 18 22 23 24 25 26 28 29 30 32

15. Find Karl Pearson's coefficient of correlation from the following data and interpret its
value.

Wages (Rs)

Cost of Living (Rs)

: 100 101 103 102 100 99 97 98 96 95

: 98 99 99 97 95 92 95 94 90 91

16. Find the coefficient of correlation between X and Y. Assume 69 and 112 as working origins
for X and Y respectively.

X
Y

: 78 89 96 69 59 79 68 61
: 125 137 156 112 107 136 123 108

17. The distribution of population (in thousand) and blind persons according to various age
groups is given in the following table. Find out correlation between age and blindness.

Age groups - - - - - - - -
Population

No. of  Blind

: 0 10 10 20 20 30 30 40 40 50 50 60 60 70 70 80
: 100 60 40 36 24 11 6 3
: 55 40 40 40 36 22 18 15

18. Find out the coefficient of correlation from the following data :

X
Y

: 300 350 400 450 500 550 600 650 700
: 1600 1500 1400 1300 1200 1100 1000 900 800

19. Calculate the coefficient of correlation of the following figures relating to the consumption
of fertiliser (in metric tonnes) and the output of food grains (in metric tonnes) in a district.
Comment on your result.

Output of Output ofChemical Chemical

Fertiliser used food grains Fertiliser used food grains

100 1000 170 1360

110 1050 180 1420

120 1080 190 1500

130 1150 200 1600

140 1200 210 1650

150 1220 220 1650

160 1300 230 1650
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NotesAnswers: Self Assessment

1. (i) linear (ii) independent (iii) negative (iv) – 1, + 1 (v) spurious or nonsense (vi) perfect

2. (i) invalid (ii) invalid (iii) invalid (iv) valid (v) valid.

6.14 Further Readings

Books Sheldon M. Ross, Introduction to Probability Models, Ninth Edition, Elsevier
Inc., 2007.

Jan Pukite, Paul Pukite, Modeling for Reliability Analysis, IEEE Press on
Engineering of Complex Computing Systems, 1998.
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7.1.1 Line of Regression of Y on X

7.1.2 Line of Regression of X on Y

7.1.3 Correlation Coefficient and the two Regression Coefficients

7.2 Regression Coefficient in a Bivariate Frequency Distribution

7.3 The Coefficient of Determination

7.3.1 The Coefficient of Non-Determination

7.4 Mean of the Estimated Values
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7.9 Review Questions
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Objectives

After studying this unit, you will be able to:

 Define Two Lines of Regression

 Explain Regression Coefficient in a Bivariate Frequency Distribution

 Discuss The Coefficient of Determination

 Describe Mean of the Estimated Values

 Explain Mean and Variance of 'ei' values

Sachin Kaushal, Lovely Professional University
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NotesIntroduction

If the coefficient of correlation calculated for bivariate data (Xi, Yi), i = 1,2, ...... n, is reasonably
high and a cause and effect type of relation is also believed to be existing between them, the next
logical step is to obtain a functional relation between these variables. This functional relation is
known as regression equation in statistics. Since the coefficient of correlation is measure of the
degree of linear association of the variables, we shall discuss only linear regression equation.
This does not, however, imply the non-existence of non-linear regression equations.

The regression equations are useful for predicting the value of dependent variable for given
value of the independent variable. As pointed out earlier, the nature of a regression equation is
different from the nature of a mathematical equation, e.g., if Y = 10 + 2X is a mathematical
equation then it implies that Y is exactly equal to 20 when X = 5. However, if Y = 10 + 2X is a
regression equation, then Y = 20 is an average value of Y when X = 5.

The term regression was first introduced by Sir Francis Galton in 1877. In his study of the
relationship between heights of fathers and sons, he found that tall fathers were likely to have
tall sons and vice-versa. However, the mean height of sons of tall fathers was lower than the
mean height of their fathers and the mean height of sons of short fathers was higher than the
mean height of their fathers. In this way, a tendency of the human race to regress or to return to
a normal height was observed. Sir Francis Galton referred this tendency of returning to the
mean height of all men as regression in his research paper, "Regression towards mediocrity in
hereditary stature". The term 'Regression', originated in this particular context, is now used in
various fields of study, even though there may be no existence of any regressive tendency.

7.1 Two Lines of Regression

For a bivariate data (Xi, Yi), i = 1,2, ...... n, we can have either X or Y as independent variable. If X
is independent variable then we can estimate the average values of Y for a given value of X. The
relation used for such estimation is called regression of Y on X. If on the other hand Y is used for
estimating the average values of X, the relation will be called regression of X on Y. For a
bivariate data, there will always be two lines of regression. It will be shown later that these two
lines are different, i.e., one cannot be derived from the other by mere transfer of terms, because
the derivation of each line is dependent on a different set of assumptions.

7.1.1 Line of Regression of Y on X

The general form of the line of regression of Y on X is YCi = a + bXi ,  where YCi denotes the
average or predicted or calculated value of Y  for a given value of X = Xi. This line has two
constants, a and b. The constant a is defined as the average value of Y when X = 0. Geometrically,
it is the intercept of the line on Y- axis. Further, the constant b, gives the average rate of change
of Y per unit change in X, is known as the regression coefficient.

The above line is known if the values of a and b are known. These values are estimated from the
observed data (Xi, Yi), i = 1,2, ...... n.

Note It is important to distinguish between YCi and Yi. Where as Yi is the observed
value, YCi is a value calculated from the regression equation.

Using the regression YCi = a + bXi, we can obtain YC1, YC2, ...... YCn corresponding to the X values
X1, X2, ...... Xn respectively.  The difference between the observed and calculated value for a
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Notes particular value of X say Xi is called error in estimation of the i th observation on the assumption
of a particular line of regression. There will be similar type of errors for all the n observations.
We denote by ei = Yi - YCi (i = 1,2,.....n), the error in estimation of the i th observation. As is
obvious from figure 23.1, ei will be positive if the observed point lies above the line and will be
negative if the observed point lies below the line. Therefore, in order to obtain a figure of total
error, ei's are squared and added. Let S denote the sum of squares of these errors, i.e.,

( )
n n

i i Ci
i i

S e Y Y
22

1 1= =

= = -å å .

Figure 7.1

Note The regression line can, alternatively, be written as a deviation of Yi from Yci
i.e. Yi – Yci = ei or Yi = Yci + ei or Yi = a + bXi + ei. The component a + bXi is known as the
deterministic component and ei is random component.

The value of S will be different for different lines of regression. A different line of regression
means a different pair of constants a and b. Thus, S is a function of a and b. We want to find such
values of a and b so that S is minimum. This method of finding the values of a and b is known as
the Method of Least Squares.

Rewrite the above equation as S = S(Yi - a - bXi)2   ( YCi = a + bXi).

The necessary conditions for minima of S are

(i) S
a

0
¶

¶
=  and (ii) S

b
0

¶

¶
= , where S

a
¶

¶
 and S

b
¶

¶
 are the partial derivatives of S w.r.t. a and b

respectively.

Now  ( )
n

i i
i

S
Y a bX

a 1
2 0

¶

¶ =

= - - - =å

( )
n n n

i i i i
i i i

or Y a bX Y na b X
1 1 1

0
= = =

- - = - - =å å å

n n

i i
i i

or Y na b X
1 1= =

= +å å .... (1)
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Also,  ( )( )

n

i i i
i

S
Y a bX X

b 1
2 0

¶

¶ =

= - - - =å

( ) ( )
n n

i i i i i i i i
i i

or X Y aX bX X Y aX bX2 2

1 1
2 0

= =

- - - = - - =å å

n n n

i i i i
i i i

or X Y a X b X2

1 1 1
0

= = =

- - =å å å

n n n

i i i i
i i i

or X Y a X b X2

1 1 1= = =

= +å å å .... (2)

Equations (1) and (2) are a system of two simultaneous equations in two unknowns a and b,
which can be solved for the values of these unknowns. These equations are also known as
normal equations for the estimation of a and b. Substituting these values of a and b in the
regression equation YCi = a + bXi, we get the estimated line of regression of Y on X.

Expressions for the Estimation of a and b.

Dividing both sides of the equation (1) by n, we have

i iY b Xna
n n n

= +
å å or      Y a bX= + .... (3)

This shows that the line of regression YCi = a + bXi passes through the point X ,Yd i .

From equation (3), we have   a =Y - bX .... (4)

Substituting this value of a in equation (2), we have

( )i i i iX Y Y bX X b X2= - +å å å

i i iY X bX X b X2= - +å å å inXY b nX b X2 2.= - + å

or ( )i i iX Y nXY b X nX2 2- = -å å

or i i

i

X Y nXY
b

X nX2 2
-

=
-

å

å
.... (5)

Also, ( )( )i i i iX Y nXY X X Y Y- = - -å å   (See Chapter 12)

and ( )i iX nX X X
22 2- = -å å


( )( )

( )
i i

i

X X Y Y
b

X X
2

- -
=

-

å

å

.... (6)

or i i

i

x y
b

x2=
å

å
.... (7)

where xi and yi are deviations of values from their arithmetic mean.
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( )( )

( )

( )i i

Xi

X X Y Y Cov X Ynb
X X

n

22

1
,

1 s

- -

= =

-

å

å

.... (8)

The expression for b, which is convenient for use in computational work, can be written from
equation (5) is given below:

i i
i i

i
i

X Y
X Y n

n nb
X

X n
n

2
2

- ×

=
æ ö

- ç ÷è ø

å å
å

å
å

( )( )

( )

i i
i i

i
i

X Y
X Y

n
X

X
n

2
2

-

=

-

å å
å

å
å

Multiplying numerator and denominator by n, we have

( )( )

( )
i i i i

i i

n X Y X Y
b

n X X
22

-
=

-

å å å

å å
.... (9)

To write the shortcut formula for b, we shall show that it is independent of change of origin but
not of change of scale.

As in case of coefficient of correlation we define

ui =
Xi - A

h
and vi =

Yi - B
k

or Xi = A + hui and  Yi = B + kvi

 X =A+hu and  Y =B+kv

also Xi - Xd i = h ui - ub g   and  Yi - Y = k vi - vb g
Substituting these values in equation (6), we have

( )( )

( )
i i

i

hk u u v v
b

h u u
22

- -
=

-

å

å

( )( )

( )
i i

i

k u u v v

h u u
2

- -
=

-

å

å

   
( )( )

( )
i i i i

i i

n u v u vk
h n u u

22

é ù-
ê ú=
ê ú-ë û

å å å

å å
.... (10)

(Note: if h = k they will cancel each other)

Consider equation (8),  b = Cov X ,Ya f
s X

2

Writing ( ) X YCov X Y r, .s s= , we have X Y

X

r
b 2

.s s

s
= Y

X
r
s

s
= ×

73



LOVELY PROFESSIONAL UNIVERSITY

Regression Analysis

NotesThe line of regression of Y on X, i.e YCi = a + bXi can also be written as

YCi =Y - bX +bXi   or YCi - Y = b Xi - Xd i .... (11)

or ( ) ( )Y
Ci i

X
Y Y r X X

s

s
- = × - .... (12)

7.1.2 Line of Regression of X on Y

The general form of the line of regression of X on Y is  XCi = c + dYi , where XCi denotes the
predicted or calculated or estimated value of X for a given value of Y = Yi and c and d are
constants. d is known as the regression coefficient of regression of X on Y.

In this case, we have to calculate the value of c and d so that

S' = (Xi - XCi)2 is minimised.

Figure 7.2               Figure 7.3

                    

As in the previous section, the normal equations for the estimation of c and d are

Xi = nc + dYi .... (13)

and    XiYi = cSYi + dYi
2 .... (14)

Dividing both sides of equation (13) by n, we have X = c+dY .

This shows that the line of regression also passes through the point ( )X Y, . Since both the lines

of regression passes through the point X ,Yd i , therefore X ,Yd i  is their point of intersection as
shown in Figure 23.3.

We can write  c =X - dY .... (15)

As before, the various expressions for d can be directly written, as given below.

i i

i

X Y nXY
d

Y nY2 2
-

=
-

å

å
.... (16)

or
( )( )

( )
i i

i

X X Y Y
d

Y Y
2

- -
=

-

å

å

.... (17)

or       
i i

i

x y
d

y2=
å

å
.... (18)
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( )( )

( )
( )i i

Yi

X X Y Y Cov X Yn

Y Y
n

22

1
,

1 s

- -

= =

-

å

å
.... (19)

 Also
( )( )

( )
i i i i

i i

n X Y X Y
d

n Y Y
22

-
=

-

å å å

å å
.... (20)

This expression is useful for calculating the value of d. Another short-cut formula for the
calculation of d is given by

( )( )

( )
i i i i

i i

n u v u vh
d

k n v v
22

é ù-
ê ú=
ê ú-ë û

å å å

å å
.... (21)

where ui =
Xi - A

h
 and vi =

Yi - B
k

Consider equation (19)

( ) X Y X

YY Y

Cov X Y r
d r2 2

, s s s

ss s
= = = × .... (22)

Substituting the value of c from equation (15) into line of regression of X on Y we have

( ) ( )Ci i Ci iX X dY dY or X X d Y Y= - + - = - .... (23)

( ) ( )X
Ci i

Y
or X X r Y Y

s

s
- = × - .... (24)

Remarks: It should be noted here that the two lines of regression are different because these
have been obtained in entirely two different ways. In case of regression of Y on X, it is assumed
that the values of X are given and the values of Y are estimated by minimising (Yi - YCi)2 while
in case of regression of X on Y, the values of Y are assumed to be given and the values of X are
estimated by minimising (Xi - XCi)2. Since these two lines have been estimated on the basis of
different assumptions, they are not reversible, i.e., it is not possible to obtain one line from the
other by mere transfer of terms. There is, however, one situation when these two lines will
coincide. From the study of correlation we may recall that when r = ±1, there is perfect correlation
between the variables and all the points lie on a straight line. Therefore, both the lines of
regression coincide and hence they are also reversible in this case. By substituting r = ±1 in
equation (12) or (24) it can be shown that the lines of regression in both the cases become

i i

Y X

Y Y X X
s s

æ ö æ ö- -
= ±ç ÷ ç ÷

è øè ø
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NotesFurther when r = 0, equation (12) becomes YCi =Y  and equation (24) becomes XCi =X . These
are the equations of lines parallel to X-axis and Y-axis respectively. These lines also intersect at
the point X ,Yd i  and are mutually perpendicular at this point, as shown in figure 23.4.

Figure 7.4

7.1.3 Correlation Coefficient and the two Regression Coefficients

Since Y

X
b r

s

s
= ×  and X

Y
d r

s

s
= ×  ,  we have

Y X

X Y
b d r r r2.

s s

s s
= × =  or r = b.d . This shows that correlation coefficient is the geometric

mean of the two regression coefficients.

Remarks:

The following points should be kept in mind about the coefficient of correlation and the regression
coefficients :

(i) Since 
X Y

Cov X Y
r

( , )
s s

= ,   
( )

X

Cov X Y
b 2

,

s
=   and 

( )

Y

Cov X Y
d 2

,

s
=  , therefore the sign of r, b and

d will always be same and this will depend upon the sign of Cov (X, Y).

(ii) Since bd = r2 and 0 £ r2 £ 1, therefore either both b and d are less than unity or if one of them
is greater than unity, the other must be less than unity such that 0 £ b.d £ 1 is always true.

Example 1:

Obtain the two regression equations and find correlation coefficient between X and Y from the
following data :

X
Y

: 10 9 7 8 11
: 6 3 2 4 5
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Calculation table

X Y XY X 2 Y 2

10
9
7
8

11

6
3
2
4
5

60
27
14
32
55

100
81
49
64

121

36
9
4

16
25

45 20 188 415 90

(a) Regression of Y on X

( )( )

( )

n XY X Y
b

n X X 22

-
=

-

å å å

å å
 

( )2
5 188 45 20

0.8
5 415 45

´ - ´
= =

´ -

Also, X = 45
5
= 9  and Y = 20

5
= 4

Now a =Y - bX = 4 - 0.8 × 9 = - 3.2

  Regression of Y on X is YC = - 3.2 + 0.8X

(b) Regression of X on Y

( )( )

( )

n XY X Y
d

n Y Y 22

-
=

-

å å å

å å
 

( )2
5 188 45 20

0.8
5 90 20

´ - ´
= =

´ -

Also, c =X - dY = 9 - 0.8 × 4 = 5.8

  The regression of X on Y is XC = 5.8 + 0.8Y

(c) Coefficient of correlation r b d. 0.8 0.8 0.8= = ´ =

Example 2:

From the data given below, find :

(a) The two regression equations.

(b) The coefficient of correlation between marks in economics and statistics.

(c) The most likely marks in statistics when marks in economics are 30.

Marks in Eco.  :  25  28  35  32  31  36  29  38  34  32

Marks in Stat. :  43  46  49  41  36  32  31  30  33  39

Solution.

77



LOVELY PROFESSIONAL UNIVERSITY

Regression Analysis

NotesCalculation table

Marks in Eco .
( X )

Marks in Stat
( Y ) u X v Y uv u v

Total

2 2
.

= - = -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- -

31 41

25
28
35
32
31
36
29
38
34
32

43
46
49
41
36
32
31
30
33
39

6
3
4
1
0
5
2
7
3
1

2
5
8
0
5
9
10
11
8
2

12
15
32
0
0
45
20
77
24
2

36
9
16
1
0
25
4
49
9
1

4
25
64
0
25
81
100
121
64
4

10 30 123 150 488

From the table, we have

X  and Y
10 30

31 32 41 38.
10 10

= + = = - =

(a) The lines of regression

(i) Regression of Y on X

( )( )

( )

n uv u v
b

n u u 22

1230 300
0.66

1500 100
- - +

= = = -
--

å å å

å å

a =Y - bX  = 38 + 0.66 × 32 = 59.26

  Regression equation is

YC = 59.26 - 0.66X

(ii) Regression of X on Y

( )( )

( )

n uv u v
d

n v v 22

1230 300
0.23

4880 900
- - +

= = = -
--

å å å

å å

c X dY= - = + ´ =32 0 23 38 4088. .

  Regression equation is

XC = 40.88 – 0.23Y

(b) Coefficient of correlation

r b d 0.66 0.23 0.39= × = - - ´ - = -

Note that r, b and d are of same sign.

(c) Since we have to estimate marks in statistics denoted by Y, therefore, regression of Y on X
will be used. The most likely marks in statistics when marks in economics are 30, is given
by

YC = 59.26 - 0.66 × 30 = 39.33
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Example 3:

Obtain the two lines of regression from the following data and estimate the blood pressure
when age is 50 years. Can we also estimate the blood pressure of a person aged 20 years on the
basis of this regression equation? Discuss.

Age (X)  (in years)     :   56   42    72   39    63    47     52    49   40    42    68    60

Blood Pressure (Y) : 127  112  140  118  129  116  130  125  115  120  135  133

Solution.

Calculation table

X Y u =X - 52 v =Y - 125 uv u2 v 2

56
42
72
39
63
47
52
49
40
42
68
60

127
112
140
118
129
116
130
125
115
120
135
133

4
- 10

20
- 13

11
- 5

0
- 3
- 12
- 10

16
8

2
- 13

15
- 7

4
- 9

5
0

- 10
- 5
10
8

8
130
300

91
44
45
0
0

120
50

160
64

16
100
400
169
121
25
0
9

144
100
256
64

4
169
225
49
16
81
25
0

100
25

100
64

Total 6 0 1012 1404 858

From the table, we have

X = 52+ 6
12

= 52.5 and Y =125

(a) Regression of Y on X

( )( )

( )

n uv u v
b

n u u 22

-
=

-

å å å

å å ( )2
12 1012 6 0

0.72
12 1404 6

´ - ´
= =

´ -

a Y bXAlso 125 0.72 52.5 87.2= - = - ´ =

  The line of regression of Blood pressure (Y) on Age (X) is

YC = 87.2 + 0.72X

(b) Regression of X on Y

( )( )

( )

n uv u v
d

n v v 22

-
=

-

å å å

å å

12 1012 6 0
1.18

12 858 0
´ - ´

= =
´ -

 c X dYAlso 52.5 1.18 125 95= - = - ´ = -

  Line of regression of Age (X) on Blood pressure (Y) is

XC = - 95 + 1.18Y
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Notes(c) (i) To estimate blood pressure (Y) for a given age, X = 50 years, we shall use regression
of Y on X

YC = 87.2 + 0.72×. 50 = 123.2

(ii) The estimate of blood pressure when age is 20 years

YC = 87.2 + 0.72×. 20 = 101.6

It should be noted here that this estimate is wrong because the blood pressure of a
normal person cannot be less than 110.

This result reflects the limitations of regression analysis with regard to estimation
or prediction. It is important to note that the prediction, based on regression line,
should be done only for those values of the variable that are not very far from the
range of the observed data, used to derive the line of regression. The prediction
from a regression line for a value of the variable that is far away from the observed
data is likely to give inconsistent results like the one obtained above.

Example 4:

A panel of judges P and Q graded seven dramatic performances by independently awarding
marks as follows :

Performance
Marks by P
Marks by Q

: 1 2 3 4 5 6 7
: 46 42 44 40 43 41 45
: 40 38 36 35 39 37 41

The eighth performance which Judge Q could not attend, was awarded 37 marks by Judge P. If
Judge Q had also been present, how many marks would be expected to have been awarded by
him to eighth performance?

Solution.

Let us denote marks awarded by the Judge P as X and marks awarded by the Judge Q as Y. Since
we have to estimate marks that would have been awarded by Judge Q, we shall fit a line of
regression of Y on X to the given data.

Calculation table

X Y u =X - 43 v =X - 37 uv u2 v2

46
42
44
40
43
41
45

40
38
36
35
39
37
41

3
- 1

1
- 3

0
- 2

2

3
1

- 1
- 2

2
0
4

9
- 1
- 1

6
0
0
8

9
1
1
9
0
4
4

9
1
1
4
4
0

16
Total 0 7 21 28 35

From the table, we have

X = 43 and Y = 37 +
7
7
= 38

Further,  ( )( )

( )

n uv u v
b

n u u 22

7 21 0
0.75

7 28 0
- ´ -

= = =
´ --

å å å

å å

a Y bXAlso 38 0.75 43 5.75= - = - ´ =

80



LOVELY PROFESSIONAL UNIVERSITY

Notes  YC = 5.75 + 0.75X is the fitted line of regression.

Estimate of Y when X = 37

YC = 5.75 + 0.75 × 37 = 33.5 marks

 It is expected that the Judge Q would have awarded 33.5 marks to the eighth performance.

Example 5:

Find out the regression coefficients of Y on X, X on Y and correlation coefficient between X and
Y on the basis of the following data :

XY = 350, X = 50, Y = 60, n = 10, Variance of X = 4 and Variance of Y = 9.

Solution.

Regression coefficient of Y on X is given by

X

XY X Y
n n nb 2

350 50 60
10 10 10 1.25

4s

æ ö æ ö æ ö æ ö
- -ç ÷ ç ÷ ç ÷ ç ÷è ø è ø è ø è ø

= = =

å å å

Regression coefficient of X on Y is given by

Y

XY X Y
n n nd 2

35 30
0.55

9s

æ ö æ ö
- ç ÷ ç ÷è ø è ø -

= = =

å å å

Coefficient of correlation between X and Y is given by

r 1.25 0.55 0.83= ´ =

Example 6:

The following results were worked out from scores in statistics and mathematics in a certain
examination :

Scores in Statistics X Scores in Mathematics Y
Mean
Standard Deviation

( ) ( )
39.5 47.5
10.8 17.8

Karl Pearson's correlation coefficient between X and Y = 0.42. Find both the regression lines. Use
these lines to estimate the value of Y when X = 50 and the value of X when Y = 30.

Solution.

(a) Regression of Y on X

Regression coefficient Y

X
b r

17.8
0.42 0.69

10.8
s

s
= × = ´ =

and a Y bX 47.5 0.69 39.5 20.24= - = - ´ =

 The line of regression of Y on X is YC = 20.24 + 0.69X,
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Notesand the predicted value of Y when X = 50, is given by

YC = 20.24 + 0.69 ´  50 = 54.74.

(b) Regression of X on Y

Regression coefficient X

Y
d r

10.8
0.42 0.25

17.8
s

s
= × = ´ =

and c X dY 39.5 0.25 47.5 27.62= - = - ´ =

  The line of regression of X on Y is XC = 27.62 + 0.25Y

and the predicted value of X when Y = 30 is given by

XC = 27.62 + 0.25 ´  30 = 35.12

Example 7:

For a bivariate data, you are given the following information :

(X - 58) = 46 (X - 58)2 = 3086

(Y - 58) = 9 (Y - 58)2 = 483

(X - 58)(Y - 58) = 1095.

Number of pairs of observations = 7. You are required to determine (i) the two regression
equations and (ii) the coefficient of correlation between X and Y.

Solution.

Let u = X - 58 and v = Y - 58. In terms of our notations, we are given  u = 46, u2 = 3086, v = 9,
v2 = 483,  uv = 1095  and  n = 7.

Now  X Y
46 9

58 64.7 and 58 59.29
7 7

= + = = + =

(a) For regression equation of Y on X, we have

( )
b 2

7 1095 46 9
0.37

7 3086 46

´ - ´
= =

´ -

a Y bXand 59.29 0.37 64.57 35.40= - = - ´ =

  The line of regression of Y on X is given by

YC = 35.40 + 0.37X

(b) For regression equation of X on Y, we have

( )
d 2

7 1095 46 9
2.20

7 483 9

´ - ´
= =

´ -

c X dYand 64.57 2.2 59.29 65.87= - = - ´ = -

  The line of regression of X on Y is given by

XC = - 65.87 + 2.2Y
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Notes (c) The coefficient of correlation

r b d 0.37 2.2 0.90= × = ´ =

Example 8:

Find the means of X and Y variables and the coefficient of correlation between them from the
following two regression equations :

3Y - 2X - 10 = 0

2Y - X - 50 = 0

Solution.

(a) The means of X and Y

We know that both the lines of regression intersect at the point X ,Yd i . The simultaneous
solution of the given equations will give the mean values of X and Y as

X =130 and Y = 90 respectively.

(b) Correlation Coefficient

Let us assume that the first equation be regression of Y on X. Rewriting this equation as  3Y

= 2X + 10 Y X
2 10

or .
3 3

= +

  The corresponding regression coefficient, b = 2
3

Further, assuming the second equation as regression of X on Y, we can rewrite this equation
as  X = 2Y - 50.

 The regression coefficient, d = 2

Since b.d 
2 4

2
3 3

= × =  > 1, therefore, our assumptions regarding the two regression lines

are wrong.

Now we reverse these assumptions and assume that the first equation is regression of X on
Y and second the regression of Y on X.

  The first equation can be written as 2X = 3Y - 10 X Y
3

or 5
2

= - , so that the corresponding

regression coefficient is d =
3
2

. Further, the second equation can be written as 2Y = X + 50

Y X
1

or 25
2

= + , so that the corresponding regression coefficient is b = 1
2

. Since b.d

3 1 3
1

2 2 4
= ´ = < , our assumption is correct.

Also   r2 = b.d = 
3
4

      r = 3
4
=0.87
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Notes7.2 Regression Coefficient in a Bivariate Frequency Distribution

As in case of calculation of correlation coefficient (see § 12.6), we can directly write the formula
for the two regression coefficients for a bivariate frequency distribution as given below :

( )( )
( )

ij i j i i j j

i i i i

N f X Y f X f Y
b

N f X f X
22

- ¢
=

-

åå å å

å å

or, if we define i
i

X A
u

h
-

=  and j
j

Y B
v

k

-
= ,

 
( )( )
( )

ij i j i i j j

i i i i

N f u v f u f vk
b

h N f u f u
22

é ù- ¢
ê ú=
ê ú-
ë û

åå å å

å å

( )( )

( )
ij i j i i j j

j j j j

N f X Y f X f Y
d

N f Y f Y
22

Similarly,   
- ¢

=

-¢ ¢

åå å å

å å

( )( )

( )
ij i j i i j j

j j j j

N f u v f u f vh
d

k N f v f v
22

or  
é ù

- ¢
ê ú

= ê ú
-¢ ¢ê úë û

å å å

å å

Example 12:

By calculating the two regression coefficients obtain the two regression lines from the following
data:

Y

X



B 0 - 5 5 - 10 10 - 15

0 - 10 2 5 7
10 - 20 1 3 2
20 - 30 8 4 0

Solution.

The mid points of X-values are 5, 15, 25.

X
u

15
Let  

10
-

= ,    Corresponding u-values become - 1, 0, 1

Similarly, the mid-points of Y-values are 2.5, 7.5, 12.5

Y
v

7.5
Let  

5
-

= ,    Corresponding v-values become - 1, 0, 1
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Notes Calculation Table

From the table N = 32 (total frequency)

(a) Regression of Y on X

Regression Coefficient (here h = 10 and k = 5)

b
32 13 2 2 416 45 1

 0.25
32 26 4 10 832 4 2

- ´ - ´ - -é ù
= ´ = ´ = -ê ú´ - -ë û

Also, 
( )

X
10 2

15 14.73
32

-
= + =  and 

( )
Y

5 2
7.5 7.19

32

-
= + =

  a =Y - bX  = 7.19 + 0.25 ´  14.73 = 10.87

Hence, the regression of Y on X becomes YC = 10.87 - 0.25X

(b) Regression of X on Y

Regression coefficient d
420 10

1.32
32 20 4 5
-é ù

= ´ = -ê ú´ -ë û

Also,  c =X - dY  =14.73 + 1.32 ´  7.19 = 24.22

Hence, the regression of X on Y becomes XC = 24.22 – 1.32Y

7.3 The Coefficient of Determination

We recall that in the line of regression YC = a + bX, X is used to estimate the value of Y. Further,
the estimate of Y, independently of X, is given by a constant. Let this constant be A. Thus, we can
write YC = A.

Given the observations Y1, Y2, ...... Yn, A will be the best estimate of Y if ( )
n

i
i

S Y A
2

1=
= -å  is

minimum.

The necessary condition for minimum of S is S
A

0
¶

¶
= .

i . e . 2 Y A 0 or Y nA 0 or A Yi i, -( ) = -åå = = .

u v –1 0 1 fi fiui fiui
2 fijuivj

–1
0

1

fj¢

fj¢vj¢

fj¢vj¢
2

22
05 –7 14 –14 14 –5

0
1

0
3

0
2 6 0 0 0

–8
8 04 00 12 12 12 –8

11 12 9 32 –2 26 –13

–11 0 9 –2

11 0 9 20

7
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Notes The best estimate (an estimate having minimum sum of squares of errors) of Y, independently

of X, is given by CY Y= .

Remarks: If X and Y are independent variables, the two lines of regression are YC =Y  and
XC =X .

Very often, when we use X for the estimation of Y, we are interested in knowing how far the use
of X enables us to explain the variations in Y values from Y  or, in other words, how much of the
variations in Y, from Y , are being explained by the regression equation YCi = a + bXi ? To answer
this question, we write

Yi - Y =Yi - YCi +YCi - Y   (Subtracting and adding YCi)

      or Yi - Y = Yi - YCic h+ YCi - Yd i
Squaring both sides and taking sum over all the observations, we have

( ) ( ) ( ) ( )( )i i Ci Ci i Ci CiY Y Y Y Y Y Y Y Y Y
2 22

2- = - + - + - -å å å å ....(1)

Consider the product term

( )( ) ( ){ } ( ){ }i Ci Ci i i iY Y Y Y Y Y b X X b X X2 2 é ù- - = - - - -
ë û

å å

( )( ) ( )i i ib Y Y X X b X X
222 2= - - - -å å

( ) ( )i ib X X b X X
2 22 22 2 0= - - - =å å

Thus, equation (1) becomes

( ) ( ) ( )i i Ci CiY Y Y Y Y Y
2 22

- = - + -å å å .... (2)

From the above figure, we note that YCi - Y  is the deviation of the estimated value from Y .
This deviation has occurred because X and Y are related by the regression equation YCi = a + bXi,
so that the estimate of Y is YCi when X = Xi. Similar type of deviations would occur for other

values of X. Thus, the magnitude of the term ( )CiY Y
2

-å  gives the strength of the relationship,

YCi = a + bXi, between X and Y or, equivalently, the variations in Y that are explained by the
regression equation.

Figure 23.5
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Notes The other term Yi - YCi gives the deviation of i th observed value from the regression line and

thus the magnitude of the term ( )i CiY Y
2

-å gives the variations in Y about the line of regression.

These variations are also known as unexplained variations in Y.

Adding the two types of variations, we get the magnitude of total variations in Y. Thus, equation
(2) can also be written as

Total variations in Y = Unexplained variations in Y + Explained variations in Y.

Dividing both sides of equation (2) by ( )iY Y
2

-å , we have

( )

( )

( )

( )
Cii Ci

i i

Y YY Y

Y Y Y Y

22

2 21
--

= +

- -

åå

å å

.... (3)

or 1 = Proportion of unexplained variations + Proportion of variations explained by the regression
equation.

The proportion of variation explained by regression equation is called the coefficient of
determination.

Thus, the coefficient of determination ( )

( )
Ci

i

Y Y

Y Y

2

2

-
=

-

å

å

( )

( )

( )( )

( ) ( )

i ii

i i i

X X Y Yb X X
r

Y Y X X Y Y

222
2

2 22

é ù- -- ë û
= = =

- - -

åå

å å å

This result shows that the coefficient of determination is equal to the square of the coefficient of
correlation, i.e., r2 gives the proportion of variations explained by each regression equation.

Remarks:

(i) It should be obvious from the above that it is desirable to calculate the coefficient of
correlation prior to the fitting of a regression line. If r2 is high enough, the fitted line will
explain a greater proportion of the variations in the dependent variable. A low value of r2

would, however, indicate that the proposed fitting of regression would not be of much
use.

(ii) The expression for the coefficient of determination for regression of X on Y can be written

in a similar way. Here we can write 
( )

( )
Ci

i

X X
r

X X

2

2
2

-
=

-

å

å
.

7.3.1 The Coefficient of Non-Determination

The proportion of unexplained variations is also termed as the coefficient of non-determination.
It is denoted by k2, where k2 = (1 - r2). The square root of k2 is termed as the coefficient of

alienation, i.e., ( )k r21= - .
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Notes
Example 13:

Comment on the following statements :

(i) The two regression coefficients of bivariate data are 0.7 and 1.4.

(ii) A correlation coefficient r = 0.8, between the two variables X and Y, implies a relationship
twice as close as r = 0.4.

Solution.

(i) This statement implies that r2 = 0.7 × 1.4 = 0.98, i.e., a linear regression fitted to the data
would explain 98% of the variations in the dependent variable.

(ii) The given statement is wrong. Since r = 0.8 implies that a regression fitted to the data
would explain 64% of the variations in the dependent variable while r = 0.4 implies that
the proportion of such variations is only 16%. Thus, r = 0.8 implies a relation that is four
times as close as r = 0.4.

Example 14:

The correlation coefficient between two variables is found to be 0.8. Explain the meaning of this
statement.

Solution.

The given statement implies that :

(i) Two variables are highly correlated.

(ii) There is positive association between them, i.e., an increase in value of one is accompanied
by the increase in value of the other and vice-versa.

(iii) A linear regression fitted to the data would explain 64% of the variations in the dependent
variable.

7.4 Mean of the Estimated Values

We may recall that YC and XC are the estimated values from the regressions of Y on X and X on
Y respectively.

Consider the regression equation YCi - Y = b Xi - Xd i .

Taking sum over all the observations, we get

( ) ( )Ci iY Y b X X 0- = - =å å

Ci
Ci C

Y
Y nY Y Y

n
0 orÞ - = = =

å
å .... (1)

Similarly, it can be shown that XC =X .

This implies that the mean of the estimated values is also equal to the mean of the observed
values.
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Notes 7.5 Mean and Variance of 'ei' values

(i) M ean of ei values

We know that   ei = Yi - YCi.

Taking sum over all the observations, we have

( )i i Ci i Cie Y Y Y Y 0= - = - =å å å å   [from equation (1)]

  Mean of ei values is equal to zero.

(ii) Variance of ei values

The variance of ei values, in case of regression of Y on X, is given by

( ) ( )Y X i i CiS e Y Y
n n

2 22
.

1 1
0= - = -å å .... (2)

[Note that ( )i CiY Y
2

-å is the magnitude of unexplained variation in Y]

( ) ( )Y X i iS Y Y b X X
n

22
.

1 é ù= - - -
ë ûå

( ) ( ) ( )( )i i iiY Y b X X Y Yb X X

n n n

2 22 2- - --
= + -
å åå

Y X X Y Xb b b b2 2 2 2 2 2 22s s s s s= + - × = -

( )Y Y Yr r2 2 2 2 21s s s= - = -

Similarly, it can be shown that the mean of e'i (= Xi - XCi) values, in case of regression of X on Y,
is also equal to zero. Further, their variance, i.e.,

( )X Y XS r2 2 2
. 1s= -

Alternatively equation (2) can be written as

( ) a b= - = - -é ùå å å åë ûY X i ci i i i i i
1 1

S Y Y Y Y Y X Y. n n
2 2

Similarly, we can write

c d= - -é ùå å åë ûX Y i i i i
1

S X X X Y. n
2 2

Remarks:

The above expressions for the variance are based on the following:

å(Yi – Yci)2 = å(Yi – Yci)(Yi – Yci)

= å(Yi – Yci)Yi – å(Yi – Yci)Yci

It can be shown that the last term is zero.
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Notes     å(Yi – Yci)Yci  = å[(Yi – Y ) –b(Xi – X )][ Y  + b(Xi – X )]

    = Y å(Yi – Y ) – b Y å(Xi – X ) + bå(Xi – X )(Yi – Y ) – b2å(Xi – X )2

    = 0 – 0 + b2å(Xi – X )2 – b2å(Xi – X )2 = 0

7.5.1 Standard Error of the Estimate

The standard error of the estimate of regression is given by the positive square root of the
variance of ei values.

The standard error of the estimate of regression of Y on X or simply the standard error of the

estimate of Y is given as, Y X YS r2
. 1s= - .

Similarly, X Y XS r2
. 1s= -  is the standard error of the estimate X.

According to the theory of estimation, to be discussed in Chapter 21, an unbiased estimate of the
variance of ei values is given by

( )i i
Y X Y

e en n
s r

n n n n

2 2
2 2 2

. 1
2 2 2

s= = × = × -
- - -

å å

 The standard errors of the estimate of Y and that of X are written as

( )
( )

( )
( )Y X Y X Y X

n n
s r s r

n n
2 2

. .1   and  1   respectively.
2 2

s s= - = -
- -

Example 15:

From the following data, compute (i) the coefficient of correlation between X and Y, (ii) the
standard error of the estimate of Y :

x y xy N2 224 42 30 10= = = =å å å , where x X X= -  and y Y Y= - .

Solution.

The coefficient of correlation between X and Y is given by

xy
r

x y2 2

30
0.94

24 42
= = =

å

å å

The standard error of the estimate of Y is given by (n < 30)

( ) ( )
Y X

r y
s

n

2 2 2

.

1 1 0.94 42
0.79

2 8

- - ´
= = =

-

å

Example 16: For 100 items, it is given that the regression equations of Y on X and X on Y
are 8X – 10Y + 66 = 0 and 40X – 18Y = 214 respectively. Compute the arithmetic means of X and
Y and the coefficient of determination. If the standard deviation of X is given to be 3, compute
the standard error of the estimate of Y.
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Notes Solution.

(a) The means of X and Y

Since the lines of regression pass through the point X ,Yd i , the simultaneous solution of
the given regression equations would give the mean values of X and Y as X =13,Y =17

(b) The coefficient of determination

We assume that 8X - 10Y + 66 = 0 is the regression of Y on X and 40X - 18Y = 214 is the

regression of X on Y. Thus, the respective regression coefficients b and d are given by 
8

10

and 
18
40

.

 The coefficient of determination r2 = b.d 
8 18

0.36
10 40

= ´ =

(c) The standard error of the estimate of Y

We know that Y X Ys r2
. 1s= - . To find sY we use the relation Y

X
b r

s

s
= × .

Also  r2 9
25

=  \  r
3
5

=  Thus, X
Y

b
r

. 8 5
3 4

10 3
s

s = = ´ ´ =

Hence,  Y Xs . 4 1 0.36 3.2= - =

7.6 Summary of Formulae

I. Regression of Y on X

1. Regression coefficient XY nX Y
b

X nX2 2

-
=

-

å

å

( )( )

( )

n XY X Y

n X X 22

-
=

-

å å å

å å

Also  b  
( )

X

Cov X Y
2

,

s
= Y

X
r
s

s
= ×

2. Change of scale and origin

( )( )

( )

n uv u vX A Y B k
u v b

h h h n u u 22
If  and ,  then .

é ù-- -
ê ú= = =
ê ú-ë û

å å å

å å

3. Constant term   a =Y - bX

4. Alternative form of regression equation

( ) ( )Y
C C

X
Y Y X X or Y Y r X X

s

s
- = - - = × -
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Notes5. Regression coefficient in bivariate frequency distribution

( )( )
( )

ij i j i i j j

i i i i

N f u v f u f vk
b

h N f u f u
22

é ù- ¢
ê ú=
ê ú-
ë û

åå å å

å å

6. Standard Error of the estimate

Y X Ys r2
. 1s= -  for large n ( i.e., n > 30)

        
( ) ( )iY Y r

n

2 21

2

- -
=

-

å
 for small n

II. Regression of X on Y

1. Regression Coefficient XY nX Y
d

Y nY2 2

-
=

-

å

å

( )( )

( )

n XY X Y

n Y Y 22

-
=

-

å å å

å å

( ) X

YY

Cov X Y
r2

, s

ss
= = ×

2. Change of scale and origin

( )( )

( )

n uv u vX A Y B h
u v d

h h k n v v
If  and ,  then .22

é ù-- - å å å
ê ú= = =
ê ú-å åë û

3. Constant term  c =X - dY

4. Alternative form of regression equation

X X d Y Y or X X r Y YC C
X

Y

- = - - = -d i d i.
s

s

5. Regression coefficient in a bivariate frequency distribution

( )( )

( )
ij i j i i j j

j j j j

N f u v f u f vh
d

k N f v f v
22

é ù
- ¢

ê ú
= ê ú

-¢ ¢ê úë û

åå å å

å å

6. Standard error of the estimate

X Y Xs r2
. 1s= -   for large n ( i.e., n > 30)

        
( ) ( )iX X r

n

2 21

2

- -
=

-

å
  for small n
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Notes III. Relation of r with b and d

Y X

X Y
b d r r r2s s

s s
´ = × × × =

r b dor = ´

7.7 Keywords

Coefficient of correlation: If the coefficient of correlation calculated for bivariate data (Xi, Yi),
i = 1,2, ...... n, is reasonably high and a cause and effect type of relation is also believed to be
existing between them, the next logical step is to obtain a functional relation between these
variables.

Term regression: The term regression was first introduced by Sir Francis Galton in 1877.

Independent variable: For a bivariate data (Xi, Yi), i = 1,2, ...... n, we can have either X or Y as
independent variable.

7.8 Self Assessment

1. Fill in the blanks :

(i) The two regression coefficients are of ........ sign.

(ii) If a regression coefficient is negative then the correlation between the variables
would also be ........

(iii) The coefficient of determination is a real number lying between ........  and ........ .

(iv) Regression analysis is used to study ........ between the variables.

(v) If correlation between two variables is zero, the two regression lines are ........ to
each other and if it is equal to ± 1, the two lines are the ........ .

(vi) The smaller is the angle between the two lines of regression, the ........ is correlation
between the variables.

(vii) If r  ± 1, the two regression lines are ........ .

7.9 Review Questions

1. Distinguish between correlation and regression. Discuss least square method of fitting
regression.

2. What do you understand by linear regression ? Why there are two lines of regression?
Under what condition(s) can there be only one line ?

3. Define the regression of Y on X and of X on Y for a bivariate data (Xi, Yi), i = 1, 2, ...... n. What
would be the values of the coefficient of correlation if the two regression lines (a) intersect
at right angle and (b) coincide?

4. (a) Show that the proportion of variations explained by a regression equation is r2

(b) What is the relation between Total Sum of Squares (TSS), Explained Sum of Squares
(ESS) and Residual Sum of squares (RSS). Use this relationship to prove that the
coefficient of correlation has a value between –1 and +1.

Hint: See § 23.3
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Regression Analysis

Notes5. Write a note on the standard error of the estimate.

6. " The regression line gives only a 'best estimate' of the quantity in question. We may
assess the degree of uncertainty in this estimate by calculating its standard error ". Explain.

7. Given a scatter diagram of a bivariate data involving two variables X and Y. Find the

conditions of minimisation of ( )CY Y
2

-å  and hence derive the normal equations for the

linear regression of Y on X. What sum is to be minimised when X is regressed on Y? Write
down the normal equation in this case.

8. Explain, fully, the meaning of regression of one variable Y on another variable X. Discuss
the method of least squares for fitting a linear regression of the form Y = a + bX. Write

down the normal equations and show that Y

X
b r

s

s
= × , where the symbols have their usual

meaning.

9. Show that the coefficient of correlation is the geometric mean of the two regression
coefficients.

10. What is the method of least squares ? Show that the two lines of regression obtained by
this method are irreversible except when r = ± 1. Explain.

11. Show that, in principle, there are always two lines of regression for a bivariate data. Prove
that the coefficient of correlation between two variables is either + 1 or - 1 when the two
lines are identical and is zero when they are perpendicular.

12. Fit a linear regression of Y on X to the following data :

X
Y

: 1 2 3 4 5 6 7 8
: 65 80 45 86 178 205 200 250

13. Obtain the two lines of regression from the following data and show them on a graph.
Also construct a scatter diagram of the data.

Age of husband X
in years

Age of wife Y
in years

( )
: 23 27 28 28 28 30 30 33 35 38

( )
( )

: 18 20 22 27 21 29 27 29 28 29
( )

14. The following table gives the information on the years of education (X) of nine farmers
and annual yields per acre (Y) on their farms :

X
Y

: 0 2 4 6 8 10 12 14 16
: 4 4 6 10 10 8 12 8 6

(a) Find the regression equation of yield per acre on education and give an economic
interpretation to it.

(b) What is the magnitude of the 'explained variation' in the dependent variable? Find
the coefficient of correlation from it.
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Notes 15. The following table gives the data relating to purchases and sales. Obtain the two regression
equations by the method of least squares and estimate the likely sales when purchases
equal 100.

Purchases
Sales

: 62 72 98 76 81 56 76 92 88 49
: 112 124 131 117 132 96 120 136 97 85

Answers: Self Assessment

1. (i) same (ii) negative (iii) 0 and 1 (iv) dependence (v) perpendicular, coincident (vi) more
(vii) irreversible.

7.10 Further Readings

Books Sheldon M. Ross, Introduction to Probability Models, Ninth Edition, Elsevier
Inc., 2007.

Jan Pukite, Paul Pukite, Modeling for Reliability Analysis, IEEE Press on
Engineering of Complex Computing Systems, 1998.
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NotesUnit 8: Sampling Distributions
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Objectives

After studying this unit, you will be able to:

 Distinction Between Parameter and Statistic

 Sampling Distribution of Sample Mean

 Sampling Distribution of the Number of Successes

Introduction

A theoretical probability distribution is constructed on the basis of the specification of the
conditions of a random experiment. In contrast to this, if the construction of the probability
distribution is based upon the random experiment of obtaining a sample from a population, the
resulting distribution is termed as a sampling distribution.

As we know that the main aim of obtaining a sample from a population is to draw certain
conclusions about it. The process of drawing such conclusions, known as 'Statistical Inference', is
based upon the rules or the framework provided by various sampling distributions.

It may be recalled here that simple random sampling is a procedure of obtaining a sample of
size n from a population of size N such that each combination of n units has an equal chance of
being selected as a sample. This definition also implies that every unit of the population has an
equal chance of being selected in the sample.

Richa Nandra, Lovely Professional University
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Notes The above definition of random sampling holds in both the situations, i.e., in simple random
sampling with replacement (srswr) and in simple random sampling with out replacement (srswor).

8.1 Distinction between Parameter and Statistic

Let P1, P2 ...... PN denote the observations on N units of a population and X1, X2 ...... Xn be a simple
random sample of size n from it.

A parameter is a measure computed from the observation of the population. For example :

Population Mean ( )
 NP P P
N

1 2   
m

+ + +
= ,

Population Variance ( ) ( )iPN
22 1

s m= -å , etc. are parameters.

In a similar way, a statistics is a measure computed from the observations of a sample. For
example:

Sample Mean ( )
 nX X X

X
n

1 2   + + +
= ,

Sample Variance ( ) ( )iS X X
n

22 1
= -å , etc. are statistic.

Formally, a parameter is any function of population values while a statistic is a function of
sample values.

Very often, the values of various parameters are unknown and these are estimated by the
corresponding statistic. For example, sample mean X  is used as an estimator of population
mean m, sample standard deviation S is used as an estimator of population standard deviation s,
etc. The difference between a statistic and the corresponding parameter is known as sampling
error. For example, the sampling error in estimation of m is X  - m. It may be noted that the
sampling error is an error caused by pure chance factors.

When we take a random sample X1, X2 ...... Xn from a population P1, P2 ...... PN, the first sample
observation X1 could be any one of the N population observations P1, P2 ...... PN. We know that

the probability of selection of any one of the population observation is 
N
1

 and therefore, we

can regard X1 as a random variable which can take values P1, P2 ...... PN each with probability 
1
N

.

Further, ( )  N iE X P P P P
N N N N1 1 2
1 1 1 1

  m= × + × + + × = =å  and

Variance of X1 = E(X1 - m)2

( ) ( ) ( ) ( ) N iP P P P
N N

22 2 2 2
1 2

1 1
  m m m m sé ù= - + - + + - = - =å

ë û

In a similar way, X2, X3 ...... Xn are all random variables, each with mean m and variance s2. The
magnitude of covariance between any two of these variables, say Xi and Xj, will depend upon
whether the sampling is with or without replacement.

In the case of sampling with replacement, X1, X2 ...... Xn would be statistically independent and
the Cov(Xi, Xj) = 0 for i  j.
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Sampling Distributions

NotesIn the case of sampling without replacement, we can write

Cov(Xi, Xj) = E(Xi - m)(Xj - m) ( )( )
N N

r s rs
r s

s r

P P p
1 1,
 m m

= =


= - - ×å å ,

where prs is the joint probability that the rth unit of population is drawn at the ith draw and the

sth unit of population is drawn at the jth draw. We note that 
( )rsp N N

1
1

=
-

. Thus, we have

( ) ( )( )
( )

N N

i j r s
r s

s r

Cov X X P P
N N1 1,

1
,  

1
m m

= =


= - - ×
-

å å

( )
( ) ( )

N N

r s
r s

s r

P P
N N 1 1,

1
 

1
m m

= =


= - -
-

å å

( )
( ) ( ) ( )

N N

r s r
r s

P P P
N N 1 1

1
 

1
m m m

= =

é ù
= - - - -ê ú- ë û

å å

( )
( ) ( )

N

r r
r

P P
N N 1

1
 0

1
m m

=

é ù= - - -ë û-
å

( )
( )

( ) ( )

N

r
r

P N
N N N N N

2
2 2

1

1 1
1 1 1

s
m s

=

= - - = - × = -
- - -

å

8.2 Sampling Distribution of Sample Mean

We know that 
 nX X X

X
n

1 2   + + +
= . In the previous section we have shown that if the

sample is random, then each of the Xi's are random variable with mean m and variance s2. Since
X  is a linear combination of these random variables, therefore, it is also a random variable with

mean equal to ( ) ( ) ( ) ( ) nE X E X E X E X n
n n1 2
1 1

  m mé ù= + + + = × =ë û  and variance  equal to

( ) ( )
 nX X X

Var X E X E
n

2
2 1 2   

m m
+ + +é ù

= - = -ê ú
ë û

( )
( )

 n
i

X X X n
E E X

n n

2
21 2

2

  1m
m

é ù+ + + -
é ù= = -åê ú ë û

ê úë û

( ) ( )( )i i j
i j

E X X X
n

2
2

1
m m m



é ù
= - + - -ê ú

ê úë û
å åå

( ) ( )( )i i j
i j

E X E X X
n

2
2

1
m m m



é ù
= - + - -ê ú

ê úë û
å åå
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Notes

( )i j
i j

n Cov X X
n

2
2

1
,s



é ù
= +ê ú

ê úë û
åå

Case I. If the sample is drawn with replacement, then X1, X2 ...... Xn are independent random
variates and hence, Cov(Xi, Xj) = 0. Thus, we have

( )
n

Var X
nn

2 2

2 .
s s

= =

Case II. If the sample is drawn without replacement, then

 ( )i jCov X X
N

2

,
1

s
= -

-
, therefore,

( ) ( )
N n

Var X n n n
N N nn

2 2
2

2
1

1
1 1

s s
s

é ù -
= - - = ×ê ú

- -ë û

We note that if N   (i.e., population becomes large), 
N n
N

1
1

-


-
 and therefore, in this case

also, ( )Var X
n

2s
= .

Remarks:

1. The standard deviation of a statistic is termed as standard error. The standard error of X ,

to be written in abbreviated form as S.E. Xd i , is equal to 
n
s

, when sampling is with

replacement and it is equal to 
N n
Nn 1

s -
×

-
, when sampling is without replacement.

2. S.E. Xd i  is inversely related to the sample size.

3. The term 
N n
N 1
-

-
 is termed as finite population correction (fpc). We note that fpc tends to

become closer and closer to unity as population size becomes larger and larger.

4. As a general rule, fpc may be taken to be equal to unity when sample size is less than 5%
of population size, i.e., n < 0.05N.

Example 1: Construct a sampling distribution of the sample mean for the following
population when random samples of size 2 are taken from it (a) with replacement and (b)
without replacement. Also find the mean and standard error of the distribution in each case.

Population Unit
Observation

 : 1 2 3 4
: 22 24 26 28

Solution.
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NotesThe mean and standard deviation of population are

22 24 26 28
25 and

4
m

+ + +
= =

( ) ( ) ( ) ( )
( )

2 2 2 2
222 24 26 28

25 5 2.236
4

s
+ + +

= - = =  respectively.

(a) When random samples of size 2 are drawn, we have 4 2 = 16 samples, shown below :

Sample No. Sample Values X
1 22, 22 22
2 22, 24 23
3 22, 26 24
4 22, 28 25
5 24, 22 23
6 24, 24 24
7 24, 26 25
8 24, 28 26
9 26, 22 24

10 26, 24 25
11 26, 26 26
12 26, 28 27
13 28, 22 25
14 28, 24 26
15 28, 26 27
16 28, 28 28

Since all of the above samples are equally likely, therefore, the probability of each value
of X  is 

1
16

. Thus, we can write the sampling distribution of X  as given below:

X 22 23 24 25 26 27 28 Total 

p Xd i 1
16

2
16

3
16

4
16

3
16

2
16

1
16

1

The mean of X , i.e.,

( )X E X
1 2 3 4 3

22 23 24 25 26
16 16 16 16 16
2 1

                      27 28 25
16 16

m = = ´ + ´ + ´ + ´ + ´ +

´ + ´ =

Further, ( ) ( ) ( )XS E X E X E X
22. . s é ù= = -

ë û
, where

       ( ) ( )E X2 2 2 2 2 2 2 21
22 23 2 24 3 25 4 26 3 27 2 28

16
= + ´ + ´ + ´ + ´ + ´ +

               = 627. 5

Thus, X n
2627.5 25 2.5  which is equal to .

s
s = - =

(b) When random samples of size 2 are drawn without replacement, we have 4C2  samples,
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Notes shown below:

Sample No Sample Values X .  
1 22, 24 23
2 22, 26 24
3 22, 28 25
4 24, 26 25
5 24, 28 26
6 26, 28 27

Since all the samples are equally likely, the probability of each value of X  is 
1
6

. Thus, we
can write the sampling distribution of X  as

X Total

p X

23 24 25 26 27
1

6

1

6

2

6

1

6

1

6
1

 

d i

Further, ( ) [ ]X E X
1

23 24 25 2 26 27 25.
6

m = = + + ´ + + =

To find S.E. Xd i , we first find E X 2e j  given by

( )E X2 2 2 2 2 21 3760
23 24 2 25 26 27 626.67.

6 6
é ù= + + ´ + + = =ë û

Thus, X
2626.67 25 1.67 1.292.s = - = =

Alternatively, X
N n
N n

2 4 2 5
1.67 1.292.

1 3 2
s

s
- -

= × = ´ = =
-

8.2.1 Nature of the Sampling Distribution of Mean

It can be deduced that when a random sample X1, X2 ...... Xn is obtained from a normal population
with mean m and standard deviation s, then each of the Xi's are also distributed normally with
mean m and standard deviation s.

By the use of additive (or reproductive) property of normal distribution, it follows that the
distribution of X , a linear combination of X1, X2 ...... Xn, will also be normal. As shown in the

previous section, the mean and standard error of the distribution would be m and 
n
s

 respectively.

Remarks: Since normal population is often a large population, the fpc is always taken equal to
unity.

The nature of the sampling distribution of X , when parent population is not normal, is provided
by Central Limit Theorem. This theorem states that:

If X1, X2 ...... Xn is a random sample of size n from a non-normal population of size N with mean
m and standard deviation s, then the sampling distribution of X  will approach normal distribution
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Notes

with mean m and standard error 
N n

or
N nn

2

1
s sæ ö-

×ç ÷
ç ÷-è ø

 as n becomes larger and larger.

Remarks: As a general rule, when n ³ 30, the sampling distribution of X  is taken to be normal for
practical purposes.

Application of the Sampling Distribution

Decisions by various government and non-government agencies are made on the basis of sample
results. For example, a sales manager may take a sample of quantities purchased of its product
to predict sales. A government agency may take a sample of residents to assess the effect of a
certain welfare program etc. Thus, in order to draw reliable conclusions, we must have a sound
knowledge regarding the sample. An extremely common and quite useful knowledge about the
sample is given by the sampling distribution of the relevant statistic.

An important application of sampling distribution is to determine the probability of the statistic
lying in a given interval.

8.2.2 Sampling Distribution of the Difference Between two Sample
Means

Let there be two populations of sizes N1 and N2, means m1 and m2 and standard deviations s1 and
s2 respectively. Let X1 be the mean of the random sample of size n1 obtained from the first
population and X2  be the mean of the random sample of size n2 obtained from the second
population. Thus, we can regard X1 and X2  as two independent random variables with means
m1 and m2 and standard errors as

 
N n

or
N nn

2
1 1 1 1

1 11 1
s sæ ö-

×ç ÷
ç ÷-è ø

 and 
N n

or
N nn

2
2 2 2 2

2 22 1
s sæ ö-

×ç ÷
ç ÷-è ø

 respectively.

Further, their difference, X1 - X2 , will also be a random variable with mean
=E X1 - X2d i =E X1d i - E X2d i =m1 - m2  and standard error

( ) ( ) ( )Variance X X Var X Var X1 2 1 2= - = +

n n

2 2
1 2

1 2

s s
= + when both the samples are drawn using srswr) or

N n N n
N n N n

2 2
1 1 1 2 2 2

1 1 2 21 1
s s- -

= × + ×
- -

 (when both the samples are drawn using srswor).

Remarks:

1. When both the populations are normal, then X1 - X2  will be distributed normally with

mean  m1 - m2 and standard error 
n n

2 2
1 2

1 2

s s
+ .
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Notes 2. Using Central Limit Theorem, the above result will also hold for a non-normal population
when both n1 and n2 > 30 and fpc is approximately equal to unity, i.e., ni < 0.05 Ni

(for i = 1, 2).

8.3 Sampling Distribution of the Number of Successes

Let p denote the proportion of successes in population, i.e.,

Number of successes in population
Total number of units in population

    
     

p =

Let us take a random sample of n units from this population and let X denote the number of
successes in the sample. Thus, X is a random variable with mean np and standard error

( ) ( )
N n

n or n
N

1 1
1

p p p p
æ ö-

- × -ç ÷-è ø

If sampling is done with replacement, then X is a binomial variate with mean np and standard

error ( )n 1p p- . Using central limit theorem, we can say that the distribution of the number

of successes will approach a normal variate with mean np and standard error ( )n 1p p-  or

( )
N n

n
N

1
1

p p
-

× -
-

 for sufficiently large sample. The sample size is said to be sufficiently large

if both n p and n(1 - p) are greater than 5.

8.3.1 Sampling Distribution of Proportion of Successes

Let 
X

p
n

=  be the proportion of successes in sample. Since X is a random variable, therefore, p

is also a random variable with mean

( )
( )E X

E p
n

= =  
n
n
p

p=  and standard error

( )
( ) ( )n

Var X
nn n2 2

1 11 p p p p- -
= = =  (when srswr)

or = 
( )N n

N n
1

1
p p--
×

-
 (when srswor)

As in the previous section, the sampling distribution of p will also be normal if both n p and
n(1 - p) are greater than 5.

Example 2: There are 500 mangoes in a basket out of which 80 are defective. If obtaining
a defective mango is termed as a success, determine the mean and standard error of the proportion
of successes in a random sample of 10 mangoes, drawn (a) with replacement and (b) without
replacement.
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NotesSolution.

It is given that 
80 4
500 25

p = = . Therefore, ( )E p
4

25
p= =  and

(a) S.E.(p) ( )n
4 21

1 10 1.159
25 25

p p= - = ´ ´ =  (srswr)

(b) S.E.(p) 
500 80 4 21

10 1.063
499 25 25
-

= ´ ´ ´ =  (srswor)

Example 3: 20% under graduates of a large university are found to be smokers. A sample
of 100 students is selected at random. Construct the sampling distribution of the number of
smokers. Also find the probability that the number of smokers in the sample is greater than 25.

Solution.

It is given that 
20 1

100 5
p = = . Since sample size, n = 100, is large, the number of successes X will

be distributed normally with mean 
1

100 20
5

´ =  and standard error 
1 4

100 4
5 5

´ ´ = .

Further, ( ) ( )P X P z P z
25 20

25 1.25 0.1056.
4
-æ ö

> = > = > =ç ÷è ø

8.3.2 Sampling Distribution of the Difference of two Proportions

Let p1 be proportion of successes in a random sample of size n1 from a population with proportion
of successes = p1 and p2 be the proportion of successes in a random sample of size n2 from second
population with proportion of successes = p2. Assuming that the sample sizes are large, we can
write

( )
p N

n
1 1

1 1
1

1
~ ,

p p
p
æ ö-
ç ÷
ç ÷è ø

 and  
( )

p N
n

2 2
2 2

2

1
~ ,

p p
p
æ ö-
ç ÷
ç ÷è ø

Thus, their difference (p1 - p2) will be distributed normally with mean = p1 - p2 and standard error

( ) ( )
n n

1 1 2 2

1 2

1 1p p p p- -
+ .

Note: The above result will hold when we ignore fpc and the sample size, n1 and n2, is greater
than 5 divided by the minimum of p1, (1 - p1), p2 and (1 - p2).

Some other Sampling Distributions

We have seen that the sampling distributions of mean and proportion of successes are normal.
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Notes Apart from normal distribution, there are certain other probability distributions that are useful
in sampling theory. These distributions are:

1. Chi - square ( )2c  distribution.

2. Student's t - distribution.

3. Snedecor's F - distribution.

8.4 Summary

 Let P1, P2 ...... PN denote the observations on N units of a population and X1, X2 ...... Xn be a
simple random sample of size n from it.

A parameter is a measure computed from the observation of the population. For example:

Population Mean ( )
 NP P P
N

1 2   
m

+ + +
= ,

Population Variance ( ) ( )iPN
22 1

s m= -å , etc. are parameters.

In a similar way, a statistics is a measure computed from the observations of a sample. For
example:

Sample Mean ( )
 nX X X

X
n

1 2   + + +
= ,

Sample Variance ( ) ( )iS X X
n

22 1
= -å , etc. are statistic.

 The standard deviation of a statistic is termed as standard error. The standard error of X ,

to be written in abbreviated form as S.E. Xd i , is equal to 
n
s

, when sampling is with

replacement and it is equal to 
N n
Nn 1

s -
×

-
, when sampling is without replacement.

 S.E. Xd i  is inversely related to the sample size.

 The term 
N n
N 1
-

-
 is termed as finite population correction (fpc). We note that fpc tends to

become closer and closer to unity as population size becomes larger and larger.

8.5 Keywords

Theoretical probability: A theoretical probability distribution is constructed on the basis of the
specification of the conditions of a random experiment.

Parameter: A parameter is any function of population values while a statistic is a function of
sample values.
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Notes8.6 Self Assessment

1. State whether the following statements are True or False:

(i) Mean of the sample means is equal to population mean.

(ii) Random variable of a sampling distribution is called a statistic.

(iii) The sampling distribution of X  is normal if the drawn samples are of size 20.

(iv) When population is large, the finite population correction (fpc) is negligible, i.e.,
approximately equal to zero.

(v) In order that a statistic t follows a t - distribution, the sample should have been
obtained from a normal population.

8.7 Review Questions

1. Explain the concept of sampling distribution of a statistics.

2. Find the mean and standard error of sample mean in (a) Simple random sampling with
replacement, (b) Simple random sampling without replacement.

3. Distinguish between:

(a) Parameter and Statistic.

(b) Sampling distribution and Probability distribution.

(c) Standard deviation and Standard error.

4. (a) Distinguish between sampling with replacement and sampling without replacement.
How many random samples of size n can be drawn from a population consisting N
items if the sampling is done (i) with replacement, (ii) without replacement?

(b) What is the variance of the sample mean if sampling is done (i) with replacement (ii)
without replacement?

(c) Under what conditions do the answers in (b) approach each other?

5. If Xi (i = 1, 2, ..... n) are n independent normal variates with respective mean mi and standard
deviation si, then show that the variate u = åXi is normally distributed with mean åmi and
variance åsi

2.

Answers: Self Assessment

1. (i) T (ii) T (iii) F (iv) F (v) T

8.8 Further Readings

Books Sheldon M. Ross, Introduction to Probability Models, Ninth Edition, Elsevier
Inc., 2007.

Jan Pukite, Paul Pukite, Modeling for Reliability Analysis, IEEE Press on
Engineering of Complex Computing Systems, 1998.
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Notes Unit   : Chi - Sqaure ( 2) Distribution

CONTENTS

Objectives

Introduction

9.1 Chi - Square  Distribution

9.1.1 Sampling Distribution of Variance

9.2 Summary

9.3 Keywords

9.4 Self Assessment

9.5 Review Questions

9.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss Chi - Square (2) Distribution

 Describe some examples related to Chi - Square

Introduction

When sampling is done with replacement, each unit of the population has a probability of its

selection equal to 
1
N

. Further, there are Nn possible samples that are equally likely, and therefore,

the probability of selection of each sample is 
1

Nn .

When sampling is done without replacement, the units are either drawn one by one, without
replacement, or all the n units are selected in one attempt. We know that the permutations of N
objects taking n at a time is NPn  and this becomes the number of ordered samples. Corresponding

to this, the number of unordered samples will be NCn, each with probability 
1

NCn
 . In this case

also, the probability of selection of a unit at any draw is 
1
N

. For example, the probability of

selection of a unit at the first draw = 
1
N

, the probability of its selection at the second draw is

N - 1
N

× 1
N - 1

= 1
N

 and so on, the probability of its selection at the rth draw is

N N N r
  

N N N r N r N
1 2 1 1 1

1 2 1
- - - +

× × × =
- - + - +

Richa Nandra, Lovely Professional University
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Chi - Sqaure ( 2) Distribution

Notes
.1 Chi - Square ( )2  Distribution

We know that if X is a random variate distributed normally with mean m and standard deviation

s, then 
X

z
m

s

-
=  is a standard normal variate. Square of z, i.e., 

( )X
z

2
2

2

m

s

-
=  if distributed as

2 - variate with one degree of freedom and is written as 
2
1 . Further, the value of 

2
1 , a

squared value, will lie between 0 to , for z lying between -  to . Since most of the z-values are

close to zero, the probability density of 2  will be highest near zero. The 2  distribution with
one degree of freedom is shown in Figure 25.1.

Generalising the above result, we can say that if X1, X2 ...... Xn are n independent normal variates
each with mean mi and standard deviations si, i = 1, 2, ...... n, respectively, then the sum of squares

( )i i
i

i

X
z

2
2

2

m

s

-
=å å  is a 2  variate with n degrees of freedom, i.e., n

2 . Thus, we can say that

n
2  is sum of squares of n independent standard normal variate.

Features of 
2  Distribution

1. The distribution has only one parameter, i.e., number of degrees of freedom or d.f.
(in abbreviated form) which is a positive integer.

2. We may note that as the d.f. increases, the height of the probability density function
decreases. The distribution is positively skewed and the skewness decreases as d.f.  increases.
For large values of d.f., the distribution approaches normal distribution. The curves for
various d.f. are shown in figure 20.1.

3. The mean of n
2 , i.e., E nn

2d i = and its variance = 2n, where n = d.f.

9

Figure 9.1
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Notes 4. Additive property

The sum of two independent 
2  variates is also a 

2  variate with degrees of freedom
equal to the sum of their individual degrees of freedom.

If n
2  and m

2  are two independent random variates with n and m degrees of freedom

respectively, then n m
2 2 +  is also a 

2  variate with n + m degrees of freedom.

Remarks:

1. The degrees of freedom is defined as the number of independent random variables. If n is
the number of variables and k is the number of restrictions on them, the degrees of
freedom are said to be n - k.

2. On the basis of the definition of degrees of freedom, given above, we can say that

n
i

i

X X
2

1 s=

æ ö-
ç ÷
è ø

å  is a 
2  variate with (n - 1) degrees of freedom. It may be pointed out here

that one degree of freedom is reduced because for a given value of X , the number of
independent variables is (n - 1).

.1.1 Sampling Distribution of Variance

Using 
2 -distribution, we can construct the sampling distribution of ( )iS X X

n
22 1

= -å .

Let X 1, X2 ...... Xn be a random sample of size n from a normal population with mean m and
variance s2. We can write

( ) ( )i iX X X Xm m- = - + -

Squaring both sides and taking sum over all the n observations, we get

( ) ( ) ( ) ( )( )
n n n n

i i i
i i i i

X X X X X X X
2 22

1 1 1 1
2m m m

= = = =

- = - + - + - -å å å å

     ( ) ( ) ( ) ( )
n n

i i
i i

X X n X X X X
2 2

1 1
2m m

= =

= - + - + - -å å

We note that the last term is zero. Therefore, we have

( ) ( ) ( )
n n

i i
i i

X X X n X
2 22

1 1
m m

= =

- = - + -å å

Dividing both sides by s2, we get

( ) ( ) ( )
n n

i i
i i

X X X n X
22 2

1 1
2 2 2

m m

s s s

= =

- - -
= +

å å

9
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Chi - Sqaure ( 2) Distribution

Notes

or
( ) ( ) ( )

n n

i i
i i

X X X X

n

2 2 2

1 1
2 2 2 /

m m

s s s

= =

- - -
= -

å å

n n
2 2 2

1 1   -= - =

Thus, 
( )iX X nS

 or 

2
2

2 2s s

-å
 is a 

2 -variate with (n - 1) d.f.

Mean and Standard Error of S2

Since the random variable 
nS2

2s
 is a 

2 -variate with (n - 1) d.f.,

therefore ( )nS n
E n  or E S n

2
2

2 21 1
s s

é ù
= - = -ê ú

ë û
.

Thus, we have ( ) n
E S

n
2 21

s
-

= ×

Further, if we define ( )is X X
n

22 1
1

= -
-

å  so that 
n

s S
n

2 2

1
= ×

-
, we have

( ) ( )n n n
E s E S

n n n
2 2 2 21

1 1
s s

-
= × = × × =

- -
 (See Remarks 2 below).

To find variance of S2, we make use of the fact that variance of 
nS2

2s
 is 2(n - 1). This implies that

( ) ( ) ( )
nS n n

E n n  or E S n
n

2 22 2
2 2

2 4
1

1 2 1 2 1s
s s

é ù -æ ö
- - = - - × = -ê ú ç ÷è øë û

  ( )
( )

( )
( )n n

E S E S   or  Var S
n n

22 2 4 2 4
2 2

2 1 2 1
s s

- -
é ù- = × = ×
ë û

Further, 
n

s S
n

2 2variance of  variance of 
1

æ ö
= ×ç ÷è ø-

. This gives

( )
( )

( )
( )

( )nn n
Var s Var S

nnn n

2 2
2 2 4 4

2 2 2

2 1 2
11 1

s s
-

= × = ´ × = ×
-- -

Remarks:

1. The distributions of c2 and S2 are based upon the assumption that the parent population is
normal. If the parent population is not normal, it is not possible to comment upon the
nature of the distribution of the above statistics.
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Notes 2. It will be discussed in the following chapter that when expected value of a statistic equals
the value of parameter, it is said to be an unbiased estimate of the parameter.

Problem 1

The Acme Battery Company has developed a new cell phone battery. On average, the battery
lasts 60 minutes on a single charge. The standard deviation is 4 minutes.

Suppose the manufacturing department runs a quality control test. They randomly select 7
batteries. The standard deviation of the selected batteries is 6 minutes. What would be the
chi-square statistic represented by this test?

Solution

We know the following:

 The standard deviation of the population is 4 minutes.

 The standard deviation of the sample is 6 minutes.

 The number of sample observations is 7.

To compute the chi-square statistic, we plug these data in the chi-square equation, as shown
below.

x2 = [ ( n – 1 ) * s2 ] / s2

x2 = [ ( 7 – 1 ) * 62 ] / 42 = 13.5

where x2 is the chi-square statistic, n is the sample size, s is the standard deviation of the sample,
and s is the standard deviation of the population.

Problem 2

Let’s revisit the problem presented above. The manufacturing department ran a quality control
test, using 7 randomly selected batteries. In their test, the standard deviation was 6 minutes,
which equated to a chi-square statistic of 13.5.

Suppose they repeated the test with a new random sample of 7 batteries. What is the probability
that the standard deviation in the new test would be greater than 6 minutes?

Solution

We know the following:

 The sample size n is equal to 7.

 The degrees of freedom are equal to n - 1 = 7 - 1 = 6.

 The chi-square statistic is equal to 13.5 (see Example 1 above).

Given the degrees of freedom, we can determine the cumulative probability that the chi-square
statistic will fall between 0 and any positive value. To find the cumulative probability that a
chi-square statistic falls between 0 and 13.5, insert the values in formula then result is the
cumulative probability: 0.96.

This tells us that the probability that a standard deviation would be less than or equal to 6
minutes is 0.96. This means (by the subtraction rule) that the probability that the standard
deviation would be greater than 6 minutes is 1 – 0.96 or .04.
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Chi - Sqaure ( 2) Distribution

Notes.2 Summary

 We know that if X is a random variate distributed normally with mean m and standard

deviation s, then 
X

z
m

s

-
=  is a standard normal variate. Square of z, i.e., 

( )X
z

2
2

2

m

s

-
=

if distributed as 2 - variate with one degree of freedom and is written as 
2
1 . Further, the

value of 
2
1 , a squared value, will lie between 0 to , for z lying between -  to . Since

most of the z-values are close to zero, the probability density of 2  will be highest near

zero. The 2  distribution with one degree of freedom is shown in Figure 25.1.

Generalising the above result, we can say that if X1, X2 ...... Xn are n independent normal
variates each with mean mi and standard deviations si, i = 1, 2, ...... n, respectively, then the

sum of squares 
( )i i

i
i

X
z

2
2

2

m

s

-
=å å  is a 2  variate with n degrees of freedom, i.e., n

2 .

Thus, we can say that n
2  is sum of squares of n independent standard normal variate.

 Since the random variable 
nS2

2s
 is a 

2 -variate with (n - 1) d.f.,

therefore ( )nS n
E n  or E S n

2
2

2 21 1
s s

é ù
= - = -ê ú

ë û
.

Thus, we have ( ) n
E S

n
2 21

s
-

= ×

Further, if we define ( )is X X
n

22 1
1

= -
-

å  so that 
n

s S
n

2 2

1
= ×

-
, we have

( ) ( )n n n
E s E S

n n n
2 2 2 21

1 1
s s

-
= × = × × =

- -
 (See Remarks 2 below).

.3 Keywords

Standard normal variate: if X is a random variate distributed normally with mean m and

standard deviation s, then 
X

z
m

s

-
=  is a standard normal variate.

Distribution: The distribution has only one parameter, i.e., number of degrees of freedom or d.f.
(in abbreviated form) which is a positive integer.

9

9
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Notes .4 Self Assessment

1. Fill in the blanks:

(i) The positive square root of variance of a sampling distribution is known as ...... .

(ii) The standard error of X  varies ...... with standard deviation and ...... with sample
size.

(iii) The sampling distribution of proportion would be approximately normal when n is
greater than or equal to ...... .

(iv) The mean and variance of a 2 -variate depend upon its ...... .

.5 Review Questions

1. We are given the fact that 30% of all patients admitted to a medical clinic fail to pay their
bills and the bills are eventually forgiven. If the clinic treats 2000 different patients over a
period of one year, what is the expected number of bills that would have to be forgiven. If
X is the number of forgiven bills in the group of 2000 patients, find the variance and
standard deviation of X. What can you say about the probability that X will exceed 700?

2. A random sample of 10 observations is to be taken from a normal population with variance
equal to 16. What is the probability of obtaining a sample with variance greater than 20?

Hint : Use 
2 - distribution.

3. Two independent random samples of sizes 15 and 12 are taken from a normal population.
Find the probability that the ratio of their variances is greater than 3. Assume that the
variance of the sample of size 15 is greater than the variance of the other.

Answers: Self Assessment

1. (i) standard error (ii) directly, inversely (iii) 50 (iv) parameter

.6 Further Readings

Books Sheldon M. Ross, Introduction to Probability Models, Ninth Edition, Elsevier
Inc., 2007.

Jan Pukite, Paul Pukite, Modeling for Reliability Analysis, IEEE Press on
Engineering of Complex Computing Systems, 1998.

9
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Notes              : T - Distributions

CONTENTS

Objectives

Introduction

10.1 The Student's T-Distribution

10.2 T test

10.3 Summary

10.4 Keywords

10.4 Self Assessment

10.5 Review Questions

10.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss T - Distribution

 Explain example of T - Distribution

Introduction

In last unit you have studied about chi-square. This unit will provide you information related to
T - Distribution.

.1 The Student's T-Distribution

Let X1, X2 ...... Xn be n independent random variables from a normal population with mean m and
standard deviation s (unknown).

When s is not known, it is estimated by s, the sample standard deviation ( )is X X
n

21
1

æ ö
= -ç ÷-è ø

å .

In such a case we would like to know the exact distribution of the statistic 
X
s n/

m-
 and the answer

to this is provided by t - distribution.

W.S. Gosset defined t statistic as 
X

t
s n/

m-
=  which follows t - distribution with (n - 1) degrees of

freedom.

Richa Nandra, Lovely Professional University
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T - Distributions

NotesFeatures of t- distribution

1. Like 
2c - distribution, t - distribution also has one parameter n = n - 1, where n denotes

sample size. Hence,  this distribution is known if n is known.

2. Mean of the random variable t is zero and standard deviation is 
2

n

n -
, for n > 2.

3. The probability curve of t - distribution is symmetrical about the ordinate at t = 0. Like a
normal variable, the t variable can take any value from -  to .

4. The distribution approaches normal distribution as the number of degrees of freedom
become large.

5. The random variate t is defined as the ratio of a standard normal variate to the square root

of 
2c - variate divided by its degrees of freedom.

To show this we can write  
( )X nX

t
ss n/

mm --
= =

Dividing numerator and denominator by s, we get

( ) ( ) ( )

( )i

X XX n

n nt s s X X

n

2 2 2

2

/ /

/ 1
1

m mm

s ss

s
s

s

- --

= = =

-
×

-

å

 

( )

n

X

Standard Normal Variaten

variate
n

2 2
1

  /

-
1

m

s

c c-

-

= =

-

Figure 10.1
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Notes .2 T test

Acme Corporation manufactures light bulbs. The CEO claims that an average Acme light bulb
lasts 300 days. A researcher randomly selects 15 bulbs for testing. The sampled bulbs last an
average of 290 days, with a standard deviation of 50 days. If the CEO’s claim were true, what is
the probability that 15 randomly selected bulbs would have an average life of no more than 290
days?

Note There are two ways to solve this problem, using the T Distribution Calculator.
Both approaches are presented below. Solution A is the traditional approach. It requires
you to compute the t score, based on data presented in the problem description. Then, you
use the T Distribution Calculator to find the probability. Solution B is easier. You simply
enter the problem data into the T Distribution Calculator. The calculator computes a t
score “behind the scenes”, and displays the probability. Both approaches come up with
exactly the same answer.

Solution A

The first thing we need to do is compute the t score, based on the following equation:

t = [ x – m ] / [ s / sqrt( n ) ]

t = ( 290 – 300 ) / [ 50 / sqrt( 15) ] = –10 / 12.909945 = – 0.7745966

where x is the sample mean, ì is the population mean, s is the standard deviation of the sample,
and n is the sample size.

Now, we are ready to use the T Distribution Calculator. Since we know the t score, we select
“T score” from the Random Variable dropdown box. Then, we enter the following data:

 The degrees of freedom are equal to 15 – 1 = 14.

 The t score is equal to – 0.7745966.

The calculator displays the cumulative probability: 0.226. Hence, if the true bulb life were 300
days, there is a 22.6% chance that the average bulb life for 15 randomly selected bulbs would be
less than or equal to 290 days.

Solution B:

This time, we will work directly with the raw data from the problem. We will not compute the
t score; the T Distribution Calculator will do that work for us. Since we will work with the raw
data, we select “Sample mean” from the Random Variable dropdown box. Then, we enter the
following data:

 The degrees of freedom are equal to 15 - 1 = 14.

 Assuming the CEO’s claim is true, the population mean equals 300.

 The sample mean equals 290.

 The standard deviation of the sample is 50.

The calculator displays the cumulative probability: 0.226. Hence, there is a 22.6% chance that the
average sampled light bulb will burn out within 290 days.

10
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T - Distributions

NotesProblem 2

Suppose scores on an IQ test are normally distributed, with a mean of 100. Suppose 20 people are
randomly selected and tested. The standard deviation in the sample group is 15. What is the
probability that the average test score in the sample group will be at most 110?

Solution:

To solve this problem, we will work directly with the raw data from the problem. We will not
compute the t score; the T Distribution Calculator will do that work for us. Since we will work
with the raw data, we select “Sample mean” from the Random Variable dropdown box. Then,
we enter the following data:

 The degrees of freedom are equal to 20 - 1 = 19.

 The population mean equals 100.

 The sample mean equals 110.

 The standard deviation of the sample is 15.

We enter these values into the T Distribution Calculator. The calculator displays the cumulative
probability: 0.996. Hence, there is a 99.6% chance that the sample average will be no greater than
110.

.3 Summary

 Let X1, X2 ...... Xn be n independent random variables from a normal population with mean
m and standard deviation s (unknown).

When s is not known, it is estimated by s, the sample standard deviation

( )is X X
n

21
1

æ ö
= -ç ÷-è ø

å . In such a case we would like to know the exact distribution of

the statistic 
X
s n/

m-
 and the answer to this is provided by t - distribution.

W.S. Gosset defined t statistic as 
X

t
s n/

m-
=  which follows t - distribution with (n - 1)

degrees of freedom.

 Like 
2c - distribution, t - distribution also has one parameter n = n - 1, where n denotes

sample size. Hence,  this distribution is known if n is known.

 Mean of the random variable t is zero and standard deviation is 
2

n

n -
, for n > 2.

 The probability curve of t - distribution is symmetrical about the ordinate at t = 0. Like a
normal variable, the t variable can take any value from -  to .

 The distribution approaches normal distribution as the number of degrees of freedom
become large.

 The random variate t is defined as the ratio of a standard normal variate to the square root

of 
2c - variate divided by its degrees of freedom.

10
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Notes .4 Keywords

Mean: Mean of the random variable t is zero and standard deviation is 
2

n

n -
, for n > 2.

T - distribution: The probability curve of t - distribution is symmetrical about the ordinate at t
= 0. Like a normal variable, the t variable can take any value from -  to .

.4 Self Assessment

1. State whether the following statements are true or false:

(i) Both, t and 
2c  distributions depend only one parameter.

(ii) Total number of samples of size 4, with replacement, from a population of 15 units
is 1365.

(iii) F - statistic is equal the ratio of two 
2c  variates.

(iv) In sampling with replacement if N = n, the standard error of X is equal to zero.

(v) c2 - distribution depends upon two parameters.

.5 Review Questions

1. A population consists of 4 families consisting of 2, 3, 4 and 5 children. By considering all
possible random samples of size two, with replacement, find mean and standard error of
X . Show that S.E. of X  depends upon the sample size.

2. If X1, X2, X3 is a simple random sample of size three from a large population with mean
5 and variance 4, evaluate the expected value and standard error of the statistics T = (2X1 +
X2 – 3X3).

3. If X1, X2 and X3 constitute a random sample of size 3 from a normal population with mean

m and the variance s2, find the efficiency of 
+ +X X X1 2 32

4
 relative to 

X X X1 2 3

3
+ +

.

4. The diameter of a component produced on a semi-automatic machine is known to be
distributed normally with mean of 10 mm. and a standard deviation of 0.1 mm. If we pick
up a random sample of size 25, what is the probability that the sample mean will be
between 9.95 and 10.05 mm?

5. It is known that 10% of the bolts manufactured by a factory are defective. If a random
sample of 100 bolts is chosen at random from a day's production, construct the sampling
distribution of (i) the number of defective bolts, (ii) the proportion of defective bolts.

6. The mean and standard deviation of per capita consumption of wheat in rural and urban
areas of Delhi are estimated to be 450 gms, 75 gms and 410 gms, 100 gms respectively.
Assuming that the per capita consumption of wheat is distributed normally, construct the
sampling distribution of the difference between two sample means obtained from random
samples of sizes 80 and 60 from rural and urban populations respectively.

10

10

10
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T - Distributions

NotesAnswers: Self Assessment

1. (i) T (ii) F (iii) T (iv) F (v) T

.6 Further Readings

Books Sheldon M. Ross, Introduction to Probability Models, Ninth Edition, Elsevier
Inc., 2007.

Jan Pukite, Paul Pukite, Modeling for Reliability Analysis, IEEE Press on
Engineering of Complex Computing Systems, 1998.
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Notes Unit 11: F-distribution

CONTENTS

Objectives

Introduction

11.1 Snedecor's F- Distribution

11.2 Summary

11.3 Keywords

11.4 Self Assessment

11.5 Review Questions

11.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Define F - distribution

 Discuss F - distribution examples

Introduction

In the last unit you studied about samples distribution and T - Distribution. This unit provides
you information related to F - distribution.

11.1 Snedecor's F- Distribution

Let there be two independent random samples of sizes n1 and n2 from two normal

populations with variances s1
2 and s2

2 respectively. Further, let ( )
22

1 1 1
1

1
1 is X X

n
= -

-
å  and

( )
22

2 2 2
2

1
1 is X X

n
= -

-
å  be the variances of the first sample and the second samples respectively.

Then F - statistic is defined as the ratio of two 
2c - variates. Thus, we can write

( )
( )

( )
( )

1

2

2 2 2
1 1 1 1

12 2
1 1 1
2 2 2

1 2 2 2
222
222

1
/ 1

1
1

/ 1
1

n

n

n s s
n

n
F

n s s
n

n

c
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NotesFeatures of F- distribution

1. This distribution has two parameters n1 (= n1 - 1) and n2 (= n2 - 1).

2. The mean of F - variate with n1 and n2 degrees of freedom is 2

2 2
n

n -
 and standard error is

( )
( )
1 22

2 1 2

2 2
2 4

n nn

n n n

+ -æ ö
ç ÷- -è ø

.

We note that the mean will exist if n2 > 2 and standard error will exist if n2 > 4. Further, the
mean > 1.

3. The random variate F can take only positive values from 0 to . The curve is positively
skewed, as shown in Fig. 20.3

4. For large values of n1 and n2, the distribution approaches normal distribution. This
behaviour is shown in the following figure.

5. If a random variate follows t-distribution with n degrees of freedom, then its square
follows F-distribution with 1 and n d.f. i.e. t2

n
 = F1,n

6. F and c2 are also related as F
n1, n2

 = 1

1

( )nc

n

2

 as n2  

Example 1: Suppose you randomly select 7 women from a population of women, and 12
men from a population of men. The table below shows the standard deviation in each sample
and in each population.

Population Population standard deviation Sample standard deviation 

Women 30 35 

Men 50 45 

 Compute the f statistic.

Solution A: The f statistic can be computed from the population and sample standard deviations,
using the following equation:

f = [ s1
2/s1

2 ] / [ s2
2/s2

2 ]

where s1 is the standard deviation of population 1, s1 is the standard deviation of the sample
drawn from population 1, s2 is the standard deviation of population 2, and s1 is the standard
deviation of the sample drawn from population 2.

As you can see from the equation, there are actually two ways to compute an f statistic from
these data. If the women’s data appears in the numerator, we can calculate an f statistic as
follows:

f = ( 352 / 302 ) / ( 452 / 502 ) = (1225 / 900) / (2025 / 2500) = 1.361 / 0.81 = 1.68

For this calculation, the numerator degrees of freedom v1 are 7 - 1 or 6; and the denominator
degrees of freedom v2 are 12 - 1 or 11.

On the other hand, if the men’s data appears in the numerator, we can calculate an f statistic as
follows:

f = ( 452 / 502 ) / ( 352 / 302 ) = (2025 / 2500) / (1225 / 900) = 0.81 / 1.361 = 0.595
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Notes For this calculation, the numerator degrees of freedom v1 are 12 – 1 or 11; and the denominator
degrees of freedom v2 are 7 – 1 or 6.

When you are trying to find the cumulative probability associated with an f statistic, you need
to know v1 and v2. This point is illustrated in the next example.

Example 2: Find the cumulative probability associated with each of the f statistics from
Example 1, above.

Solution: To solve this problem, we need to find the degrees of freedom for each sample. Then,
we will use the F Distribution Calculator to find the probabilities.

 The degrees of freedom for the sample of women is equal to n – 1 = 7 – 1 = 6.

 The degrees of freedom for the sample of men is equal to n – 1 = 12 – 1 = 11.

Therefore, when the women’s data appear in the numerator, the numerator degrees of freedom
v1 is equal to 6; and the denominator degrees of freedom v2 is equal to 11. And, based on the
computations shown in the previous example, the f statistic is equal to 1.68. We plug these
values into the F Distribution Calculator and find that the cumulative probability is 0.78.

On the other hand, when the men’s data appear in the numerator, the numerator degrees of
freedom v1 is equal to 11; and the denominator degrees of freedom v2 is equal to 6. And, based
on the computations shown in the previous example, the f statistic is equal to 0.595. We plug
these values into the F Distribution Calculator and find that the cumulative probability is 0.22.

Figure 28.3

11.2 Summary

 Let there be two independent random samples of sizes n1 and n2 from two normal

populations with variances s1
2 and s2

2 respectively. Further, let ( )
22

1 1 1
1

1
1 is X X

n
= -

-
å

and ( )
22

2 2 2
2

1
1 is X X

n
= -

-
å  be the variances of the first sample and the second samples

respectively. Then F - statistic is defined as the ratio of two 
2c - variates. Thus, we can

write
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F-distribution

Notes This distribution has two parameters n1 (= n1 - 1) and n2 (= n2 - 1).

 The mean of F - variate with n1 and n2 degrees of freedom is 2

2 2
n

n -
 and standard error is

( )
( )
1 22

2 1 2

2 2
2 4

n nn

n n n

+ -æ ö
ç ÷- -è ø

.

We note that the mean will exist if n2 > 2 and standard error will exist if n2 > 4. Further, the
mean > 1.

 The random variate F can take only positive values from 0 to . The curve is positively
skewed, as shown in Fig. 20.3

 For large values of n1 and n2, the distribution approaches normal distribution. This
behaviour is shown in the following figure.

 If a random variate follows t-distribution with n degrees of freedom, then its square
follows F-distribution with 1 and n d.f. i.e. t2

n
 = F1,n

11.3 Keywords

The random variate: The random variate F can take only positive values from 0 to . The curve
is positively skewed.

F-distribution: If a random variate follows t-distribution with n degrees of freedom, then its
square follows F-distribution with 1 and n d.f. i.e. t2

n
 = F1,n

11.4 Self Assessment

1. Fill in the Blanks:

(1) The mean and standard error of a F-variate depend upon its ...... parameters.

(ii) The sum of squares of standard normal variates is a ...... variate.

(iii) If N = 8 and n = 3, the number of samples without replacement is equal to ...... .

(iv) The ratio of two sample variances follows F - distribution when the variances of
their parent population are ...... .

(v) In sampling without replacement if N = n, the standard error of X  is equal to ...... .

(vi) Both 2c  and F-distributions are ...... skewed distributions.

11.5 Review Questions

1. Define F distribution and discuss feature of F distribution.

2. Two random samples of sizes 100 and 150 are drawn from two different normal populations.
Find mean and standard error of the statistic F.

3. Suppose you randomly select 8 women from a population of women, and 10 men from a
population of men. The table below shows the standard deviation in each sample and in
each population.
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Notes Population Population standard deviation Sample standard deviation 

Women 40 45 

Men 60 35 

 Compute the f statistic.

4. Find the cumulative probability associated with each of the f statistics. Suppose you
randomly select 6 women from a population of women, and 10 men from a population of
men. The table below shows the standard deviation in each sample and in each population.

Population Population standard deviation Sample standard deviation 

Women 30 35 

Men 50 45 

 5. Suppose you randomly select 8 women from a population of women, and 12 men from a
population of men. The table below shows the standard deviation in each sample and in
each population.

Population Population standard deviation Sample standard deviation 

Women 30 35 

Men 60 35 

 Compute the f statistic.

Answers: Self Assessment

1. (i) two (ii) c2 (iii) 56 (iv) equal (v) zero (vi) positively.

11.6 Further Readings

Books Sheldon M. Ross, Introduction to Probability Models, Ninth Edition, Elsevier
Inc., 2007.

Jan Pukite, Paul Pukite, Modeling for Reliability Analysis, IEEE Press on
Engineering of Complex Computing Systems, 1998.
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Estimation of Parameters: Criteria for Estimates

NotesUnit 12: Estimation of Parameters: Criteria for Estimates

CONTENTS

Objectives

Introduction

12.1 Theory of Estimation

12.2 Point Estimation

12.2.1 Unbiasedness

12.2.2 Consistency

12.2.3 Efficiency

12.2.4 Sufficiency

12.2.5 Methods of Point Estimation

12.3 Interval Estimation

12.3.1 Determination of an Approximate Sample Size for a Given Degree of Accuracy

12.3.2 Confidence Interval for Population Standard Deviation

12.4 Summary

12.5 Keywords

12.6 Self Assessment

12.7 Review Questions

12.8 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss Theory of Estimation

 Explain Point Estimation (Properties of Good Estimators)

 Describe Interval Estimation

Introduction

Estimation: It is a procedure by which sample information is used to estimate the numerical
magnitude of one or more parameters of the population. A function of sample values is called an
estimator (or statistic) while its numerical value is called an estimate. For example  is an estimator
of population mean m. On the other hand if  for a sample, the estimate of population mean is
said to be 50.

Richa Nandra, Lovely Professional University
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Notes 12.1 Theory of Estimation

Let X be a random variable with probability density function (or probability mass function)
f(X ; 1, 2, .... k), where 1, 2, .... k are k parameters of the population.

Given a random sample X1, X2, ...... Xn from this population, we may be interested in estimating
one or more of the k parameters 1, 2, ...... k. In order to be specific, let X be a normal variate so
that its probability density function can be written as N(X : , ). We may be interested in
estimating m or s or both  on the basis of random sample obtained from this population.

It should be noted here that there can be several estimators of a parameter, e.g., we can have any
of the sample mean, median, mode, geometric mean, harmonic mean, etc., as an estimator of

population mean . Similarly, we can use either ( )
21

iS X X
n

= -å  or ( )
21

1 is X X
n

= -
-
å  as

an estimator of population standard deviation s. This method of estimation, where single statistic
like Mean, Median, Standard deviation, etc. is used as an estimator of population parameter, is
known as Point Estimation. Contrary to this it is possible to estimate an interval in which the
value of parameter is expected to lie. Such a procedure is known as Interval Estimation. The
estimated interval is often termed as Confidence Interval.

12.2 Point Estimation

As mentioned above, there can be more than one estimators of a population parameter. Therefore,
it becomes necessary to determine a good estimator out of a number of available estimators. We
may recall that an estimator, a function of random variables X1, X2, ...... Xn, is a random variable.
Therefore, we can say that a good estimator is one whose distribution is more concentrated
around the population parameter. R. A. Fisher has given the following properties of a good
estimators. These are:

(i) Unbiasedness  (ii) Consistency  (iii) Efficiency (iv) Sufficiency.

12.2.1 Unbiasedness

An estimator t (X1, X2, ...... Xn) is said to be an unbiased estimator of a parameter q if E( t ) = .

If E( t )  q, then t is said to be a biased estimator of . The magnitude of bias = E( t ) – . We have

seen in § 20.2 that ( )E X = , therefore, X  is said to be an unbiased estimator of population mean

m. Further, refer to § 20.4.1, we note that ( )2 21
,

n
E S

n


-
= × where ( )

22 1
.iS X X

n
= -å  Therefore,

S2 is a biased estimator of s2. The magnitude of bias 2 21 1
1 .

n
n n

 
-æ ö

= - = -ç ÷è ø

Contrary to this, if we define ( )
22 1

,
1 is X X

n
= -

-
å  we have seen in § 20.4.1 that E(s2) = 2. Thus,

s2 is an unbiased estimator of s2. Also from § 20.3.1 we note that E(p) = , therefore, p is an
unbiased estimator of .

12.2.2 Consistency

It is desirable to have an estimator, with a probability distribution, that comes closer and closer
to the population parameter as the sample size is increased. An estimator possessing this property
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Notesis called a consistent estimator. An estimator tn(X1, X2, ...... Xn) is said to be consistent if its
probability distribution converges to  as n  .

Symbolically, we can write P(tn  ) = 1 as n   Alternatively, tn is said to be a consistent
estimator of q if E(tn)  q and Var(tn)  0, as n  .

We may note that X  is a consistent estimator of population mean m because ( )E X =  and

( )
2

0 as .Var X n
n


=  

Note: An unbiased estimator is necessarily a consistent estimator.

12.2.3 Efficiency

Let t1 and t2 be two estimators of a population parameter q such that both are either unbiased or
consistent. To select a good estimator, from t1 and t2, we consider another property that is based
upon its variance.

If t1 and t2 are two estimators of a parameter q such that both of them are either unbiased or
consistent, then t1 is said to be more efficient than t2 if Var(t1) < Var(t2). The efficiency of an
estimator is measured by its variance.

For a normal population, we know that both the sample mean and median are unbiased estimator

of population mean. However, their respective variances are 
2

n


 and 
2

2 n
 
× , where 2 is

population variance. Since 
2 2

2n n
  

< × , therefore, sample mean is said to be efficient estimator

of population mean.

Remarks: The precision of an estimator = 1/ S. E. of estimator.

An estimator having minimum variance among all the estimators of a population parameter is
termed as Most Efficient Estimator or Best Estimator. If an estimator is unbiased and best, then
it is termed as Best Unbiased Estimator. Further, if the best unbiased estimator is a linear
function of the sample observations, it is termed as Best Linear Unbiased Estimator (BLUE).
It may be pointed out here that sample mean is best linear unbiased estimator of population
mean.

Cramer Rao Inequality:

This inequality gives the minimum possible value of the variance of an unbiased estimator. If t
is an unbiased estimator of parameter q of a continuous population with probability density
function f(X, q), then

( )
( )

2

1

log  ,
Var t

f X
nE

¶ 

¶

³
æ ö
ç ÷è ø

12.2.4 Sufficiency

An estimator t is said to be a sufficient estimator of parameter  if it utilises all the information
given in the sample about . For example, the sample mean X  is a sufficient estimator of 
because no other estimator of  can add any further information about .
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Notes Let X1, X2, ...... Xn be a random sample of n independent observations from a population with
p.d.f. (or p.m.f.) given by f(X; 1, 2), where q1 and q2 are two parameters. The joint probability
distribution of X1, X2, ...... Xn, denoted by L(X; 1, 2) is given by :

L(X; 1, 2) = f(X1; 1, 2) × f(X2; 1, 2) × ...... × f(Xn; 1, 2)

An estimator t is said to be sufficient for q1 if the conditional p.d.f. (or p.m.f.) of X1, X2, ...... Xn

given t is independent of q1, i.e.,

( ) ( ) ( )
( )

( )1 1 2 2 1 2 1 2
1 2

1

; , ; ,  .... ; ,
, ,  .... 

,
n

n

f X f X f X
h X X X

g t
     



´ ´ ´
= , where g(t, q1) is p.d.f.

(or p.m.f.) of t and h is a function of sample values that is independent of 1. We may note that
each of the functions g(t, 1) and h(X1, X2, ...... Xn) may or may not be function of 2.

Alternatively, we can write the sufficiency condition as

f(X1; 1, 2) × f(X2; 1, 2) × ...... × f(Xn; 1, 2) = g(t, q1) × h(X1, X2, ...... Xn), which implies that if the
joint p.d.f. (or p.m.f.) of X1, X2, ...... Xn can be written as a function of t and 1 multiplied by a
function independent of 1, then t is sufficient estimator of 1.

Sufficient estimators are the most desirable but are not very commonly available. The following
points must be noted about sufficient estimators:

1. A sufficient estimator is always consistent.

2. A sufficient estimator is most efficient if an efficient estimator exists.

3. A sufficient estimator may or may not be unbiased.

Example 1: If X1, X2, ...... Xn is a sample of n independent observations from a normal
population with mean m and variance s2, show that X  is a sufficient estimator of m but

( )
22 1

iS X X
n

= -å  is not sufficient estimator of s2.

Solution.

The probability density function of a normal variate is given by

( )
( )

2
2

1
21

; ,
2

X
f X e


 

 

- -

=

Thus, the joint probability density function of X1, X2, ...... Xn is given by

f X f X f X e

X

n

n
i

i

n

1 2

2

2

1
1

2

1
2

; , ; , ; ,     
 




b g b g b g´ ´ ´ =
F
HG

I
KJ

- -å FH IK
= ....  

We can write  ( ) ( )i iX X X X - = - + - .

Squaring both sides and taking sum over n observations, we get

( ) ( ) ( ) ( )( )
2 22

2i i iX X X X X X X  - = - + - + - -å å å å

       ( ) ( ) ( ) ( )
2 2

2i iX X n X X X X = - + - + - -å å
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Notes
       ( ) ( )

2 2

iX X n X = - + -å (last term is zero)

       ( )
22nS n X = + -

Therefore, we can write  ( ) ( )
22 2

2 2 2

1
2 2 2i

n n
X S X 

  
- - = - - -å .

Hence ( ) ( ) ( )1 2; , ; ,  .... ; ,nf X f X f X     ´ ´ ´

( ) ( )
2 22 2

2 2 2 22 2 2 21 1
2 2

n nn n n n
S X X S

e e e
 

   

   

- - - - - -æ ö æ ö
= = ´ç ÷ ç ÷è ø è ø

( ) ( )2, , ,g X h S  = ´

Since h is independent of m, therefore X  is a sufficient estimator of . However, S2 is not
sufficient estimator of 2 because g is not independent of .

Further, if we define ( )
22 1

,iS X
n

= -å  then

( ) ( ) ( )
2

22
1 2

1
; , ; ,  .... ; ,

2

n n
S

nf X f X f X e      
 

-æ ö
´ ´ ´ = ç ÷è ø

Thus, the newly defined S2 becomes a sufficient estimator of 2. We note that h(X1, X2, ...... Xn) =
1 in this case.

The above result suggests that if m is known, then we should use ( )
22 1

iS X
n

= -å  rather than

( )
22 1

iS X X
n

= -å  because former is better estimator of s2.

12.2.5 Methods of Point Estimation

Given various criteria of a good estimator, the next logical step is to obtain an estimator possessing
some or all of the above properties.

There are several methods of obtaining a point estimator of the population parameter. For
example, we can use the method of maximum likelihood, method of least squares, method of

minimum variance, method of minimum 
2c , method of moments, etc. We shall, however, use

the most popular method of maximum likelihood.

Method of Maximum Likelihood

Let X1, X2, ...... Xn be a random sample of n independent observations from a population with
probability density function (or p.m.f.) f(X; ), where  is unknown parameter for which we
desire to find an estimator.

Since X1, X2, ...... Xn are independent random variables, their joint probability function or the
probability of obtaining the given sample, termed as likelihood function, is given by
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Notes
L = f(X1 ; ) . f(X2 ; ) . ...... . f(Xn ; ) = ( )

1

;
n

i
i

f X 
=

Õ .

We have to find that value of q for which L is maximum. The conditions for maxima of L are :
2

20 and 0.
dL d L
d d 

= <  The value of q satisfying these conditions is known as Maximum Likelihood

Estimator (MLE).

Generalising the above, if L is a function of k parameters 1, 2, ...... k, the first order conditions

for maxima of L are: 
1 1

 ...... 0
k

L L L¶ ¶ ¶

¶ ¶ ¶
= = = .

This gives k simultaneous equations in k unknowns 1, 2, ...... k, and can be solved to get
k maximum likelihood estimators.

Sometimes it is convenient to work using logarithm of L. Since log L is a monotonic
transformation of L, the maxima of L and maxima of log L occur at the same value.

Properties of Maximum Likelihood Estimators

1. The maximum likelihood estimators are consistent.

2. The maximum likelihood estimators are not necessarily unbiased. If a maximum likelihood
estimator is biased, then by slight modifications  it can be converted into an unbiased
estimator.

3. If a maximum likelihood estimator is unbiased, then it will also be most efficient.

4. A maximum likelihood estimator is sufficient provided sufficient estimator exists.

5. The maximum likelihood estimators are invariant under functional transformation, i.e., if
t is a maximum likelihood estimator of , then f(t) would be maximum likelihood estimator
of f().

Example 2: Obtain a maximum likelihood estimator of p (the proportion of successes) in

a population with p.m.f. given by ( ) ( );  1 n Xn X
Xf X C  

-
= - , where X denotes the number of

successes in a sample of n trials.

Solution.

Since ( )1 n Xn X
XC  

-
-  is the probability of X successes out of n trials, therefore, this is also the

likelihood function. Thus, we can write ( ) 1 n Xn X
XL C  

-
= - .

Taking logarithm of both sides, we get

( ) ( )log log log log 1n
XL C X n X = + + - -

Differentiating w.r.t. p, we get

log
0 0

1
d L X n X
d  

-
= + - =

-
for maxima of L.
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Notesor X(1- p) - (n - X)p = 0

This gives ˆ X
n

 = , where   denotes an estimator of p.

It can also be shown that 
2

2

log
0

d L
d

<  when ˆ X
n

 = .

Example 3: Obtain the maximum likelihood estimator of the parameter m of the Poisson
distribution.

Solution.

Let X1, X2, ...... Xn be a random sample of n independent observations from the given population.
Therefore, we can write

( )

1 2

1 2

. . . .
 ...... 

! ! ! !

in
XXm X m X m nm

n i

e m e m e m e m
L

X X X X

- - - - å
= ´ ´ ´ =

Õ

Taking logarithm of both sides, we get

( )log log log !i iL nm X m X= - + -å å

Differentiating w.r.t. m, we get

log ˆ0  i iX Xd L
n m X

dm m n
= - + = Þ = =

å å

Thus, sample mean is MLE of parameter m.

Example 4: For a normal population with parameter  and 2, obtain the maximum
likelihood estimators of the parameters.

Solution.

The probability density function of normal distribution is

( )
( )

2

2
1
21

; ,
2

X

f X e


 
 

-
-

=

Given a random sample of n independent observations, the likelihood function L is given by

( )
1

; ,
n

i
i

L f X  
=

=Õ .

Taking logarithm of both sides, we get

( )

( )

2

2
1

22
2

1 1 1
log log log

22 2

X

iL e X


 
   

-
-æ ö

= = - -ç ÷
ç ÷è ø

å å å
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Notes
         ( )

2

2

1 1
log log 2

2 2 iX  


æ ö
= - - - -ç ÷è øå å

        ( )
2

2

1
log log 2

2 2 i

n
n X  


= - - - -å .... (1)

(i) MLE of m

( ) ( )2

log 1
2 0  or  0 

2 i i

L
X X

¶
 

¶ 
= × - = - =å å ˆ  iX X

n
Þ = =

å

(ii) MLE of s2

Rewriting equation (1) as a function of s2, we get

( )
22

2

1
log log log 2

2 2 2 i

n n
L X  


= - - - -å


( )

( )
2

22
2 2 4

log
0  or  0

2 2
i

i

XL n
n X

¶
 

¶  

-
= - + = - + - =

å
å

( )
2

2ˆ  i

n
X




Þ =
-å

12.3 Interval Estimation

Using point estimation, it is possible to provide a single quantity as an estimator of a parameter.
Any point estimator, even if it satisfies all the characteristics of a good estimator, has a limitation
that it provides no information about the magnitude of errors due to sampling. This problem is
taken care of by the method of interval estimation, that gives a range of the estimator of the
parameter.

The method of interval estimation is based upon the sampling distribution of an estimator. The
standard error of the estimator is used in the construction of an interval so that the probability
of the parameter lying within the interval can be specified.

Given a random sample of n observations X1, X2, ...... Xn, we can find two values l1 and l2 such that
the probability of population parameter q lying between l1 and l2 is (say) h. Using symbols, we
can write P(l1 £ q £ l2) = h.

Such an interval is termed as a Confidence Interval for q and the two limits l1 and l2 are termed
as Confidential or Fiducial Limits. The percentage probability or confidence is termed as the
Level of Confidence or Confidence Coefficient of the interval. For example, the level of confidence
of the above interval is 100h%. The level of confidence implies that if a large number of random
samples are taken from a population and confidence intervals are constructed for each, then
100h% of these intervals are expected to contain the population parameter q. Alternatively, a 100
h% confidence interval implies that we are 100 h% confident that the population parameter q lies
between l1 and l2.

As compared to point estimation, the interval estimation is better because it takes into account
the variability of the estimator in addition to its single value and thus, provides a range of
values. Unlike point estimation, interval estimation indicates that estimation is an uncertain
process.
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NotesThe methods of construction of confidence intervals in various situations are explained through
the following examples.

Confidence Interval for Population Mean

Example 5: Construct 95% and 99% confidence intervals for mean of a normal population.

Solution.

Let X1, X2, ...... Xn be a random sample of size n from a normal population with mean m and
standard deviation s.

We know that sampling distribution of X  is normal with mean m and standard error 
n
 .

Therefore, 
/
X

z
n




-
=  will be a standard normal variate.

From the tables of areas under standard normal curve, we can write

P[- 1.96  z  1.96] = 0.95  or  P[- 1.96  
/
X

n




-   1.96] = 0.95 .... (1)

The inequality  - 1.96  
/
X

n




-  can be written as

1.96   or   1.96X X
n n
 

 -  -  + .... (2)

Similarly, from the inequality 
/
X

n




-   1.96, we can write

  1.96X
n


 ³ - .... (3)

Combining (2) and (3), we get

  1.96   1.96X X
n n
 

-   +

Thus, we can write equation (1) as

  1.96   1.96 0.95P X X
n n
 


æ ö

-   + =ç ÷è ø

This gives us a 95% confidence interval for the parameter m. The lower limit of   is 1.96X
n


-

and the upper limit is 1.96X
n


+ . The probability of m lying between these limits is 0.95 and

therefore, this interval is also termed as 95% confidence interval for .

In a similar way, we can construct a 99% confidence interval for m as

  2.58   2.58 0.99P X X
n n
 


æ ö

-   + =ç ÷è ø
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Thus, the 99% confidence limits for m are 2.58X

n


± .

Remarks: When s is unknown and n < 30, we use t value instead of 1.96 or 2.58 and use S in place
of s.

Confidence Interval for Population Proportion

Example 6: Obtain the 95% confidence limits for the proportion of successes in a binomial
population.

Solution.

Let the parameter p denote the proportion of successes in population. Further, p denotes the
proportion of successes in n (³ 50) trials. We know that the sampling distribution of p will be

approximately normal with mean p and standard error ( )1
n

 - .

Since p is not known, therefore, its estimator p is used in the estimation of standard error of p,

i.e., ( )
( )1

. .
p p

S E p
n

-
=

Thus, the 95% confidence interval for p is given by

( ) ( )1 1
1.96 1.96 0.95

p p p p
P p p

n n


æ ö- -
-   + =ç ÷

ç ÷è ø

This gives the 95% fiducial limits as 
( )1

1.96
p p

p
n

-
± .

Example 7: In a newspaper article of 1600 words in Hindi, 64% of the words were found
to be of Sanskrit origin. Assuming that the simple sampling conditions hold good, estimate the
confidence limits of the proportion of Sanskrit words in the writer's vocabulary.

Solution.

Let p be the proportion of Sanskrit words in the writer's vocabulary. The corresponding
proportion in the sample is given as p = 0.64.

  ( )
0.64 0.36 0.48

. . 0.012
1600 40

S E p
´

= = =

We know that almost whole of the distribution lies between 3s limits. Therefore, the confidence
interval is given by

P[p - 3S.E.(p)  p  p + 3 S.E.(p)] = 0.9973

Thus, the 99.73% confidence limits of p are 0.604 (= 0.64 - 3 ´  0.012) and 0.676 (= 0.64 + 3 ´  0.012)
respectively.

Hence, the proportion of Sanskrit words in the writer's vocabulary are between 60.4% to 67.6%.
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Example 8: A random sample of 500 pineapples was taken from a large consignment and

65 were found to be bad. Estimate the proportion of bad pineapples in the consignment and
obtain the standard error of the estimator. Deduce that the percentage of bad pineapples in the
consignment almost certainly lies between 8.5 and 17.5.

Solution.

Let p be the proportion of bad pine apples in the large consignment. Its estimate based on the

sample is 65ˆ 0.13
500

p = =  with ( )
0.13 0.87ˆ. . 0.015

500
S E p

´
= =

Thus, the 99.73% confidence limits of p are  0.13 ± 3 × 0.015, i.e., 0.085 and 0.175. Hence, the
proportion of bad pineapples in the given consignment almost certainly lies between 8.5% and
17.5%.

Remarks: The width of a confidence interval can be controlled in two ways:

(i) By adjusting the sample size: More is the sample size the narrower will be the interval.

(ii) By adjusting the level of confidence: Lower the level of confidence the narrower will be
the interval.

12.3.1 Determination of an Approximate Sample Size for a Given
Degree of Accuracy

Let us assume that we want to find the size of a sample to be taken from the population such that
the difference between sample mean and the population mean would not exceed a given value,
say Î, with a given level of confidence. In other words, we want to find n such that

( ) 0.95 (say)P X -  Î = .... (1)

Assuming that the sampling distribution of X  is normal with mean m and . .XS E
n


= , we can

write

1.96 1.96 0.95  or  1.96 0.95
/ /
X X

P P
n n
 

 

æ öæ ö- -
-   =  =ç ÷ç ÷è ø è ø

or  1.96 0.95P X
n



æ ö

-  × =ç ÷è ø
.... (2)

Comparing (1) and (2), we get

2 2

2

1.96 3.84
1.96   or  n

n
  æ ö

Î= × = =ç ÷è øÎ Î

Remarks:

1. The sample size required with a maximum error of estimation, Î and with a given level of

confidence is 
2 2

2

z
n


=

Î
, where z is the value of standard normal variate for a given level of

confidence and 2 is the variance of population.
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Notes 2. For a given level of confidence and 2, n is inversely related to Î2, the square of the

maximum error of estimation. This implies that to reduce  to 
k
Î

Î , the size of the sample

must be k2 times the original sample size.

3. The lesser the magnitude of Î, the more precise will be the interval estimate.

Example 9: What should be the sample size for estimating mean of a normal population
if the probability that sample mean differs from population mean by not more than 30% of
standard deviation is 0.99.

Solution.

Let n be the size of the sample. It is given that

( )0.30 0.99P X -  = .... (1)

Assuming that the sampling distribution of X  is normal with mean m and . .XS E
n


= , we can

write

2.58 0.99P X
n



æ ö

-  =ç ÷è ø
 (from table of areas) .... (2)

Comparing (1) and (2), we get

22.58
0.30 2.58     73.96  or  74 (approx.)

0.30
n

n



æ ö

= Þ = =ç ÷è ø

Example 10: A survey of middle class families of Delhi is proposed to be conducted for
the estimation of average monthly consumption (in Rs) per family. What should be the size of
the sample so that the average consumption is estimated within a range of Rs 300 with 95% level
of confidence. It is known that the standard deviation of the consumption in population is Rs
1,600.

Solution.

Let n denote the size of the sample to be drawn. With usual notations, we want to find n such that

( )300 0.95P X -  = .... (1)

Assuming that the sampling distribution of X  is normal with mean m and . .XS E
n


= , we can

write 1.96 0.95P X
n



æ ö

-  =ç ÷è ø

or 1.96 1600
0.95P X

n


´æ ö
-  =ç ÷è ø

.... (2)
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NotesComparing (1) and (2), we get

21.96 1600 1.96 1600
300   or  109.3

300
n

n
´ ´æ ö

= = =ç ÷è ø

Since this value is greater than 109, therefore, the size of the sample should be 110.

12.3.2 Confidence Interval for Population Standard Deviation

Let ( )
21

iS X X
n

= -å  be the sample standard deviation of a random sample of size n drawn

from a normal population with standard deviation s. It can be shown that the sampling distribution

of S is approximately normal, for large values of n, with mean s and standard error 
2n
 . Thus,

/ 2
S

z
n





-
=  can be taken as a standard normal variate.

Example 11: A random sample of 50 observations gave a value of its standard deviation
equal to 24.5. Construct a 95% confidence interval for population standard deviation .

Solution.

It is given that S = 24.5 and n = 50 (large). We know that ( ). .
2

S E S
n


= . Since s is not known, we

use its estimate based on sample. Thus, we can write ( )
24.5

. . 2.45
2 100
S

S E S
n

= = = .

Hence 95% confidence interval for s is given by

24.5 – 1.96 ´  2.45    24.5 + 1.96 ´  2.45  or  19.7    29.3

Note More examples on confidence intervals are given later with the questions on
test of significance.

12.4 Summary

 Let X be a random variable with probability density function (or probability mass function)
f(X ; 1, 2, .... k), where 1, 2, .... k are k parameters of the population.

Given a random sample X1, X2, ...... Xn from this population, we may be interested in
estimating one or more of the k parameters 1, 2, ...... k. In order to be specific, let X be a
normal variate so that its probability density function can be written as N(X : , ). We
may be interested in estimating m or s or both  on the basis of random sample obtained
from this population.

It should be noted here that there can be several estimators of a parameter, e.g., we can
have any of the sample mean, median, mode, geometric mean, harmonic mean, etc., as an
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estimator of population mean . Similarly, we can use either ( )

21
iS X X

n
= -å  or

( )
21

1 is X X
n

= -
-
å  as an estimator of population standard deviation s. This method of

estimation, where single statistic like Mean, Median, Standard deviation, etc. is used as an
estimator of population parameter, is known as Point Estimation. Contrary to this it is
possible to estimate an interval in which the value of parameter is expected to lie. Such a
procedure is known as Interval Estimation. The estimated interval is often termed as
Confidence Interval.

 The maximum likelihood estimators are consistent.

 The maximum likelihood estimators are not necessarily unbiased. If a maximum likelihood
estimator is biased, then by slight modifications  it can be converted into an unbiased
estimator.

 If a maximum likelihood estimator is unbiased, then it will also be most efficient.

 A maximum likelihood estimator is sufficient provided sufficient estimator exists.

 The maximum likelihood estimators are invariant under functional transformation, i.e., if
t is a maximum likelihood estimator of , then f(t) would be maximum likelihood estimator
of f().

12.5 Keywords

Estimation: It is a procedure by which sample information is used to estimate the numerical
magnitude of one or more parameters of the population.

Cramer Rao Inequality: This inequality gives the minimum possible value of the variance of an
unbiased estimator.

Estimator: An estimator t is said to be a sufficient estimator of parameter  if it utilises all the
information given in the sample about .

12.6 Self Assessment

1. State whether the following statements are True or False:

(i) Sample mean is an unbiased estimator of population mean.

(ii) Sample standard deviation is an unbiased estimator of population standard deviation.

(iii) An estimator whose variance tends to zero as sample size tends to infinity is called
a consistent estimator.

(iv) An efficient estimator may or may not be unbiased.

(v) A sufficient estimator is always consistent.

(vi) The width of the confidence interval depends upon the level of significance as well
as on the sample size.
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1. A random sample of 400 farms in certain year revealed that the average yield per acre of
sugarcane was 925 kgs with a standard deviation of 88 kgs.

(a) Determine the 95% confidence interval for the population mean.

(b) What should be the size of the sample if the width of 95% confidence interval
estimate of m is not more than 15?

Hint : (a) See example 5, (b) Î = 15/2.

2. A random sample of 100 sale receipts of a firm showed that its average sales per customer
are Rs 250 with a standard deviation of Rs 50 (assume that there is one receipt for each
customer).

(a) Determine the 99% confidence interval for the mean sales.

(b) How does the width of the confidence interval change if sample size is 400 instead?

(c) How many sale receipts should be included in the sample in order that a 98%
confidence interval has a maximum error of estimation equal to Rs 10.

Hint: (a) z = 2.58 and since s is not known, use S as its estimate. (b) Sample size is inversely
related to the width of Confidence interval. (c) z = 2.33.

3. A survey revealed that 30% of the persons of a state are suffering from a particular disease.
How many persons should be included in the sample so that the maximum width of the
95% confidence interval of proportion of persons suffering from the disease is 0.15 units?

Hint : 
2

2

z pqn =
Î

.

4. A random sample of size 64 has been drawn from a population with standard deviation 20.
The mean of the sample is 80. (i) Calculate 95% confidence limits for the population mean.
(ii) How does the width of the confidence interval changes if the sample size is 256 instead?

Hint :  is given to be 20.

5. In a random sample of 100 articles taken from a large batch of articles, 10 are found to be
defective. Obtain a 95% confidence interval for the true proportion of defectives in the
batch.

Hint : See example 6.

6. A random sample of size 10 from a normal population gives the values 64, 72, 65, 70, 68, 71,

65, 62, 66, 67. If it is known that the standard error of the sample mean is 0.7 , find 95%
confidence limits for the population mean. Also find the population variance.

Hint : 0.7 .
n


=

Answers: Self Assessment

1. (i) T (ii) F (iii) F (iv) T (v) T (vi) T
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Notes 12.8 Further Readings

Books Sheldon M. Ross, Introduction to Probability Models, Ninth Edition, Elsevier
Inc., 2007.

Jan Pukite, Paul Pukite, Modeling for Reliability Analysis, IEEE Press on
Engineering of Complex Computing Systems, 1998.
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NotesUnit 13: Method of Least Square
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Objectives

After studying this unit, you will be able to:

 Discuss Method of Least Squares

 Describe Method of Selected Points and Method of Semi-Averages

 Explain Seasonal Variations

Introduction

A series of observations, on a variable, recorded after successive intervals of time is called a time
series. The successive intervals are usually equal time intervals, e.g., it can be 10 years, a year, a
quarter, a month, a week, a day, an hour, etc. The data on the population of India is a time series
data where time interval between two successive figures is 10 years. Similarly figures of national
income, agricultural and industrial production, etc., are available on yearly basis.

It should be noted here that the time series data are bivariate data in which one of the variables
is time. This variable will be denoted by t. The symbol Yt will be used to denote the observed
value, at point of time t, of the other variable. If the data pertains to n periods, it can be written
as (t, Yt), t = 1, 2, .... n.

Sachin Kaushal, Lovely Professional University
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Notes 13.1 Method of Least Squares

This is one of the most popular methods of fitting a mathematical trend. The fitted trend is
termed as the best in the sense that the sum of squares of deviations of observations, from it, are
minimised. We shall use this method in the fitting of following trends:

1. Linear Trend

2. Parabolic Trend

3. Exponential Trend

13.1.1 Fitting of Linear Trend

Given the data (Yt, t) for n periods, where t denotes time period such as year, month, day, etc., we
have to find the values of the two constants, a and b, of the linear trend equation Yt = a + bt.

Using the least square method, the normal equation for obtaining the values of a and b are :

Yt = na + bt and

tYt = at + bt2

Let X = t - A, such that X = 0, where A denotes the year of origin.

The above equations can also be written as

Y = na + bX

XY = aX + bX2

(Dropping the subscript t for convenience).

Since SX = 0, we can write 
Y

a
n

=
å  and 2

XY
b

X
=
å
å

Note: The procedure for calculation of the two constants is slightly different for even and odd
number of observations. This distinction will become obvious from the following two examples.

Example:

Fit a straight line trend to the following data and estimate the likely profit for the year 1986.
Also calculate various trend values.

: 1977 1978 1979 1980 1981 1982 1983

: 60 72 75 65 80 85 95
( )

Year
Profit
in lacs of Rs

Solution.
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Years t Y X t XY X Trend Values

Total

( )

.

.

.

.

.

.
.

= 













1980

1977
1978
1979
1980
1981
1982
1983

60
72
75
65
80
85
95

3

2

1

0
1
2
3

180

144

75

0
80
170
285

9
4
1
0
1
4
9

6142
66 28
7114
76 00
8086
8572
9058

532 0 136 28

2

From the table we can write 
532

76
7

a = =  (n = 7, the no. of observations)

and b = =
136
28

4.86

Thus, the fitted line of trend is  Y = 76 + 4.86X

Note: It is very important to provide the following details for any trend equations:

(i) The year of origin, (ii) unit of X and (iii) the nature of Y values such as annual figures, monthly
figures or monthly averages, quarterly figures or quarterly averages, etc. Thus, the appropriate
way of writing the trend equation would be : Y = 76 + 4.86X, where (i) year of origin = 1st July
1980 (the year in which X = 0), (ii) unit of X = 1 year and (iii) Y's are annual figures of profits.

Calculation of trend values

Trend value of a particular year is obtained by substituting the associated value of X in the trend
equation. For example, X = - 3 for 1977, therefore, trend for 1977 is Y = 76 + 4.86   (- 3) = 61.42

Alternatively, trend values can be calculated as follows:

We know that a is the trend value in the year of origin and b gives the rate of change per unit of
time. Thus, the trend for 1980 = 76, for 1979 = 76 - 4.86 = 71. 14, for 1978 = 71.14 - 4.86 = 66.28 and
for 1977 = 66.28 - 4.86 = 61.42, etc. Similarly, trend for 1981 = 76 + 4.86 = 80.86, for 1982 = 80.86 +
4.86 = 85.72, etc.

Prediction of trend for a year

Using the trend equation we can predict a trend value for a year which doesn't belong to the
observed data. To predict the value for 1986, the associated value of X = 6. Substituting this in the
trend equation we get Y = 76 + 6   4.86 = Rs 105.16 lacs.

Remarks: The prediction of trend is only valid for periods that are not too far from the observed
data.

Example 8: Fit a straight line trend, by the method of least squares, to the following data.
Assuming that the same rate of change continues, what would be the predicted sales for 1993?

: 1987 1988 1989 1990 1991 1992
( '000 ) : 15 17 20 21 23 24
Year

Sales in Rs
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Notes Solution.

We note that n is even in the given example.

Calculation Table

2( ) ( ) 1989.5 2

1987 15 2.5 5 75 25 15.45
1988 17 1.5 3 51 9 17.27
1989 20 0.5 1 20 1 19.09
1990 21 0.5 1 21 1 20.91
1991 23 1.5 3 69 3 22.73
1992 24 2.5 5 120 5 24.55

120 0 64 70

Year t Sales Y d t X d XY X TrendValues

Total

=  =

  

  

  

From the above table, we can write

a = 120
6

= 20  and b = 64
70

= 0.91

  The fitted trend line is Y = 20 + 0.91 X

Year of origin : Middle of 1989 and 1990 or 1st Jan. 1990

Unit of X : 
1
2

 year  (Since X changes by 2 units in one year)

Nature of Y values : Annual figures of sales.

Calculation of trend values

Trend for 1989 = 20 - 0.91 = 19.09

Trend for 1988 = 19.09 - 2   0.91 = 17.27

Trend for 1990 = 20 + 0.91 = 20.91

Trend for 1991 = 20.91 + 2   0.91 = 22.73, etc.

To predict the sales for 1993, we note that X = 7

Thus, the predicted sales = 20 + 7   0.91 = Rs 26.37 (thousand).

Shifting of Origin of a Trend Equation

Let Y = a + bX  be the equation of linear trend, with 1985 as the year of origin and unit of X equal
to 1 year.

To shift origin of the above equation, say to 1990, we proceed as follows : The associated value
of X for 1990 is 5. Thus, the trend for 1990 = a + 5b. We know that a linear trend equation is given
by Y = trend value in the year of origin + bX. Thus, we can write the trend equation, with origin
at 1990, as  Y = a + 5b + bX = a + b (X + 5). This implies that the required equation can be obtained
by replacing X by X + 5 in the original trend equation.

Similarly, the trend equation with 1984 as origin can be written as  Y = a + b (X - 1) = (a - b) + bX.

Further, if the unit of X is given to be half year, the trend equation with 1990 as the year of origin
can be written as Y = a + b (X + 10) = (a + 10b) + bX.
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Example 9:

Given the following trend equations:

(a) Y = 50 + 3X,  with 1985 as the year of origin and unit of X = 1 year. Shift the origin to 1991.

(b) Y = 100 + 2.5 X,  with origin at the middle of 1987 and 1988 and unit of X = 
1
2

 year. Shift the

origin to (i) 1988 and (ii) 1992.

Solution.

(a) Replacing X by X + 6, in the trend equation, we get

Y = 50 + 3(X + 6) = 68 + 3X, the required trend equation.

(b) (i) For shifting origin to 1988 (i.e., middle of 1988), we have to replace X by X + 1. (note

that X = 1 for 1
2

 year)

  Y = 100 + 2.5(X + 1) = 102.5 + 2.5X

(ii) Replace X by X + 9, to get the required equation

  Y = 100 + 2.5(X + 9) = 122.5 + 2.5X

Conversion of Annual Trend Equation into Monthly trend Equation

Usually a trend is fitted to the annual figures because the fitting of a monthly trend is time
consuming. However, monthly trend equations are often obtained from annual trend equations.

Let the annual trend equation be  Y = a + bX, where Y denotes annual figures and the unit of X =
1 year.

To obtain the monthly trend equation, we have to convert the constants a and b into monthly
values.

Thus, when a denotes an annual value, 
12
a  would give the value of the corresponding constant

for the monthly equation.

Further, the value of b denotes the annual change in Y per unit of X, i.e., per year. Therefore 
12
b

would be the monthly (average) change in Y per year. Thus, the equation 
12 12
a b

Y X= + , denotes

a monthly average equation, where Y denotes monthly average for the year and unit of X = 1
year.

In a similar way, the value 
12 12 144

b b
=


 would denote the monthly change in Y per month.

Thus, ,
12 144
a b

Y X= +  is the monthly trend equation, where Y denotes monthly figures and the

unit of X = 1 month.
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A quarterly trend equation can also be obtained in a similar way. We can write ,

4 4
a b

Y X= +  as

the quarterly average equation and ,
4 16
a b

Y X= +  as the quarterly trend equation.

Example 10: The equation for yearly sales (in '000 Rs) of a commodity with 1st July, 1971,
as origin is Y = 91.6 + 28.8X.

(i) Determine the trend equation to give monthly trend values with 15th January, 1972, as
origin.

(ii) Calculate the trend values for March, 1972 to August, 1972.

Solution.

(i) The monthly trend equation with 1st July, 1971, as origin is given by 91.6 28.8
12 144

Y X= +  =

7.63 + 0.2X, where unit of X is one month.

To shift the origin to 15th January, 1972, we replace X  by X + 6.5 in the above equation.
Note that the associated value of X for 15th January, 1972, is 6.5. Thus, the required equation
is Y = 7.63 + 0.2(X + 6.5) = 8.93 + 0.2X

(ii) Calculation of trend values

Trend value for March, 1972 = 8.93 + 0.2   2 = Rs 9.33

Trend value for April, 1972 = 9.33 + 0.2 = Rs 9.53

Trend value for May, 1972 = 9.53 + 0.2 = Rs 9.73

Trend value for June, 1972 = 9.73 + 0.2 = Rs 9.93

Trend value for July, 1972 = 9.93 + 0.2 = Rs 10.13

Trend value for August, 1972 = 10.13 + 0.2 = Rs 10.33.

Example 11:

Convert the following into annual trend equation :

Y = 350 + 3X  with origin = I - II Quarter, 1986, unit of X = one quarter and Y denotes quarterly
production.

Solution.

Important Note : To convert a quarterly (or monthly) equation into an annual equation, it is
necessary to first shift the origin to the middle of the year.

In the given example, since the middle of the year lies a quarter ahead, we shall replace X by X
+ 1 in the above equation. Thus, the quarterly equation with middle of the year as origin is  Y =
350 + 3(X +1) = 353 + 3X.

Then, the annual trend equation can be written as

Y = 353   4 + 3   16X = 1412 + 48X
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Example 12: Convert the following annual trend equation, for the production of cloth in

a factory, into monthly average equation and predict the monthly averages for 1988 and 1989.

Y = 96 + 7.2X,  with origin = 1986, unit of X = 1 year and Y denotes annual cloth production in '000
metres.

Solution.

The average monthly equation is given by

96 7.2
12 12

Y X= +  = 8 + 0.6 X, where origin = 1986, unit of X = 1 year and Y denotes monthly average

production in the year.

The predicted values of Y are  8 + 0.6   2 = 9.2 thousand metres for 1988 and 9.2 + 0.6 = 9.8
thousand metres for 1989.

13.1.2 Fitting of Parabolic Trend

The mathematical form of a parabolic trend is given by Yt = a + bt + ct2 or  Y = a + bt + ct2

(dropping the subscript for convenience). Here a, b and c are constants to be determined from
the given data.

Using the method of least squares, the normal equations for the simultaneous solution of a, b,
and c are :

Y = na + bt + ct2

tY = at + bt2 + ct3

t2Y = at2 + bt3 + ct4

By selecting a suitable year of origin, i.e., define X = t - origin such that X = 0, the computation
work can be considerably simplified. Also note that if X = 0, then X3 will also be equal to zero.
Thus, the above equations can be rewritten as:

SY = na + cSX2 .... (i)

SXY = bSX2 .... (ii)

SX2Y = aSX2 + cSX4 .... (iii)

From equation (ii), we get 2

XY
b

X
=
å
å

.... (iv)

Further, from equation (i), we get 
2Y c X

a
n


=
å å .... (v)

And from equation (iii), we get 
( )( )
( )

2 2

24 2

n X Y X Y
c

n X X


=



å å å

å å
.... (vi)

Thus, equations (iv), (v) and (vi) can be used to determine the values of the constants a, b and c.
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Example 13: Fit a parabolic trend Y = a + bt + ct2 to the following data, where t denotes

years and Y denotes output (in thousand units).
t : 1981 1982 1983 1984 1985 1986 1987 1988 1989
Y : 2 6 7 8 10 11 11 10 9
Also compute the trend values. Predict the value for 1990.

Solution.

Calculation Table

t Y X t XY X Y X X X Trend Values

Total

= 

























1985

1981
1982
1983
1984
1985
1986
1987
1988
1989

2
6
7
8
10
11
11
10
9

4

3

2

1

0
1
2
3
4

8

18

14

8

0
11
22
30
36

32
54
28
8
0
11
44
90
144

16
9
4
1
0
1
4
9
16

64

27

8

1

0
1
8
27
64

256
81
16
1
0
1
16
81
256

2 28
502
7 22
888
10 00
1058
10 62
1012
9 08

74 0 51 411 60 0 708

2 2 3 4

.
.
.
.
.
.
.
.
.

From the above table, we can write

51
0.85

60
b = =

( )
2

9 411 60 74
0.27

9 708 60
c

  
= = 

 

( )  
= =a
74 0.27 60

10.0
9

  The fitted trend equation is  Y = 10.0 + 0.85X – 0.27X2,

with origin = 1985 and unit of X = 1 year.

Various trend values are calculated by substituting appropriate values of X in the above equation.
These values are shown in the last column of the above table.

The predicted value for 1990 is given by

Y = 10.0 + 0.85   5 - 0.27   25 = 7.5

Example 14: The prices of a commodity during 1981-86 are given below. Fit a second
degree parabola to the following data. Calculate the trend values and estimate the price of the
commodity in 1986.

: 1981 1982 1983 1984 1985 1986
: 110 114 120 138 152 218

Year
Price
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Calculation Table

2 2 4( ) Pr ( ) 2( 1983.5)
1981 110 5 550 2750 25 625 114.40
1982 114 3 342 1026 9 81 109.12
1983 120 1 120 120 1 1 116.08
1984 138 1 138 138 1 1 135.28
1985 152 3 456 1368 9 81 166.72
1986 218 5 1090 5450 25 625 210.40

8

Year t ice Y X t XY X Y X X Trend Values= 

 

 

 

52 0 672 10852 70 1414

From the above table, we get

672
9.6

70
b = = , 

( )
2

6 10852 70 852
1.53

6 1414 70
c

  
= =

 
 and 852 1.53 70

124.15
6

a
 

= =

  The equation of parabolic trend is  Y = 124.15 + 9.6X + 1.53X2, with year of origin = 1983.5 or

1st January, 1984  and the unit of X = 1
2

 year.

The calculated trend values are shown in the last column of the above table.

The price of the commodity in 1986 is obtained by substituting X = 5, in the above equation.

Thus,  Y = 124.15 + 9.5   5 + 1.53   25 = 210.4

13.1.3 Fitting of Exponential Trend

The general form of an exponential trend is Y = a.bt, where a and b are constants to be determined
from the observed data.

Taking logarithms of both sides, we have  logY = log a + t log b.

This is a linear equation in log Y and t and can be fitted in a similar way as done in case of linear
trend. Let A = log a and B = log b, then the above equation can be written as log Y = A + Bt.

The normal equations, based on the principle of least squares are

log Y = nA + B t

and tlog Y = At + B t2.

By selecting a suitable origin, i.e., defining X = t - origin, such that SX = 0, the computation work

can be simplified. The values of A and B are given by logY
A

n
=
å   and 

2

logX Y
B

X
=
å
å

respectively.

Thus, the fitted trend equation can be written as  log Y = A + BX

or   Y = Antilog [A + BX] = Antilog [log a + X log b]

      = Antilog [log a.bX] = a.bX.
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Example 15:

Fit a simple exponential trend to the following data and calculate the trend values. Also estimate
the trend for 1992.

: 1985 1986 1987 1988 1989

: 100 105 112 120 130
(  )

Year
Sales
Rs Crores

Solution.

Calculation Table

2( ) ( ) 1987

2 4.0000 41985 100 2.0000 1.9955
1 2.0212 11986 105 2.0212 2.0241
0 0.0000 01987 112 2.0492 2.0527
1 2.0792 11988 120 2.0792 2.0813
2 4.2278 41989 130 2.1139 2.1099

log of
Trend

Year t Sales Y X t logY XlogY X Trend
Values

Values
= 

 

 

98.97
105.71
112.90
120.59
128.80

0 0.285810.2635 10Total

From the above table, we get

10.2635
2.0527

5
A = =   and 0.2858

0.0286
10

B = =

Further, a = antilog 2.0527 = 112.90 and b = antilog 0.0286 = 1.07

Thus, the fitted trend equation is Y = 112.90(1.07)X

Origin : 1st July, 1987, unit of X = 1 year.

The trend values, computed by the equation Y = antilog [2.0527 + 0.0286X], are written in the last
column of the above table. Further, the trend for 1992 is obtained by substituting X = 5, in the
above equation.

  Y = antilog[2.0527 + 0.0286   5] = antilog[2.1957] = 156.93.

Remarks: The exponential trend equation plotted on a semilogarithmic graph is a straight line.

Example 16:

Fit an exponential trend Y = a.bt to the following data :

( ) : 1941 1951 1961 1971 1981 1991

: 31.9 36.1 43.9 54.8 68.3 84.4
( )

Census Year t
Population of
India in Crores

Predict the population for 2001.
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Calculation Table

Census
Year t

Population
Y X

t
Y X Y X

Total

=














1966

1941
1951
1961
1971
1981
1991

319
361
439
54 8
683
84 4

5
3
1
1
3
5

15038
15575
16425
17388
18344
19263

75190
4 6725
16425
17388
55032
9 6315

25
9
1
1
9
25

0 102033 30395 70

2
( )

log log

.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
. .

5

From the above table, we get 10.2033
1.70

6
A = =  and 3.0395

0.043
70

B = =

Further, a = antilog 1.70 = 50.12 and b = antilog 0.043 = 1.10

Thus, the fitted trend equation is Y = 50.12(1.10)X,

Origin : 1st July, 1966 and unit of X = 5 years.

The trend values can be computed by the equation Y = antilog [1.70 + 0.043X]. Further, the
prediction of population for 2001 is obtained by substituting X = 7, in the above equation.

  Y = antilog[1.70 + 0.043   7] = antilog[2.001] = 100.2 crores

13.1.4 Merits and Demerits of Least Squares Method

Merits

1. Given the mathematical form of the trend to be fitted, the least squares method is an
objective method.

2. Unlike the moving average method, it is possible to compute trend values for all the
periods and predict the value for a period lying outside the observed data.

3. The results of the method of least squares are most satisfactory because the fitted trend
satisfies the two important properties, i.e., (i) S(Yo - Yt) = 0 and (ii) S(Yo - Yt)2 is minimum.
Here Yo denotes the observed value and Yt denotes the calculated trend value.

The first property implies that the position of fitted trend equation is such that the sum of
deviations of observations above and below this is equal to zero. The second property
implies that the sum of squares of deviations of observations, about the trend equation,
are minimum.

Demerits

1. As compared with the moving average method, it is a cumbersome method.

2. It is not flexible like the moving average method. If some observations are added, then the
entire calculations are to be done once again.

3. It can predict or estimate values only in the immediate future or past.

4. The computation of trend values, on the basis of this method, doesn't take into account the
other components of a time series and hence not reliable.
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Notes 5. Since the choice of a particular trend is arbitrary, the method is not, strictly, objective.

6. This method cannot be used to fit growth curves, the pattern followed by the most of the
economic and business time series.

13.2 Summary

 Given the data (Yt, t) for n periods, where t denotes time period such as year, month, day,
etc., we have to find the values of the two constants, a and b, of the linear trend equation
Yt = a + bt.

Using the least square method, the normal equation for obtaining the values of a and b
are:

Yt = na + bt and

tYt = at + bt2

Let X = t - A, such that X = 0, where A denotes the year of origin.

The above equations can also be written as

Y = na + bX

XY = aX + bX2

(Dropping the subscript t for convenience).

Since SX = 0, we can write 
Y

a
n

=
å  and 2

XY
b

X
=
å
å

 Unlike the moving average method, it is possible to compute trend values for all the
periods and predict the value for a period lying outside the observed data.

 The results of the method of least squares are most satisfactory because the fitted trend
satisfies the two important properties, i.e., (i) S(Yo - Yt) = 0 and (ii) S(Yo - Yt)2 is minimum.
Here Yo denotes the observed value and Yt denotes the calculated trend value.

The first property implies that the position of fitted trend equation is such that the sum of
deviations of observations above and below this is equal to zero. The second property
implies that the sum of squares of deviations of observations, about the trend equation,
are minimum.

 It is not flexible like the moving average method. If some observations are added, then the
entire calculations are to be done once again.

 It can predict or estimate values only in the immediate future or past.

 The computation of trend values, on the basis of this method, doesn't take into account the
other components of a time series and hence not reliable.

13.3 Keywords

The fitted trend is termed as the best in the sense that the sum of squares of deviations of
observations, from it, are minimised.

Parabolic trend: The mathematical form of a parabolic trend is given by Y t = a + bt + ct2 or
Y = a + bt + ct2 (dropping the subscript for convenience). Here a, b and c are constants to be
determined from the given data.
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1. Fill in the blanks:

(i) Series of figures arranged in chronological order is known as ........ .

(ii) ........ is that irreversible movement which continues in the same direction for a
considerable period of time.

(iii) The trend equation fitted by the method of least squares is known as the equation of
........ fit.

(iv) In case of ........ trend, the successive observations differ by a constant number.

(v) In the case of an exponential trend, the successive observations differ by a constant
........ .

(vi) In the case of linear trend Y = a + bX, a is termed as the ........ value in the year of ..........

13.5 Review Questions

1. Determine the trend and short-term fluctuations, assuming additive model, from the
following data by calculating 3 yearly moving averages. The figures of profit are in
Rs '000.

 
Years : 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
Profits : 34 46 52 55 58 61 58 61 64 55

2. Calculate the long-term trend and short-term oscillations, assuming multiplicative model,
with a three-year period from the following data on output (in tonnes) of tea.

Year Output Year Output
1969 1632 1973 2620
1970 1557 1974 3120
1971 1652 1975 3236
1972 2100 1976 3562

3. Construct a four-year moving average from the following data on the consumption
(in '000 bales) of imported cotton in India.

Year : 1920 1930 1940 1950 1960 1970 1980
Consumption : 129 131 106 91 95 84 93

4. Determine trend values by method of moving average if the observations, given below,
are known to have a business cycle of 4 years.

Year : 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
Values : 41 61 55 48 53 67 62 60 67 73 78 76 84

5. Assuming five-yearly cycle, determine trend of bank clearings (in Rs crores) by moving
average method:

Years : 1 2 3 4 5 6 7 8 9 10 11 12
Bank Clearings : 53 79 76 66 69 94 105 87 79 104 97 92

6. Find trend of the following series using a three-year weighted moving average with
weights 1, 2, 1.

Year : 1 2 3 4 5 6 7
Value : 2 4 5 7 8 10 13
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CONTENTS

Objectives

Introduction

14.1 Test of Hypothesis concerning Correlation Coefficient

14.1.1 Test of Hypothesis Concerning Significance of Correlation Coefficient

14.1.2 Test of Hypothesis concerning Correlation Coefficient using Fisher's Z test

14.1.3 Test Concerning Equality of Correlations in two Populations

14.2 Uses of c2 test

14.2.1 c 2 - test as a Goodness of Fit

14.2.2 c2 - test as a Test for Independence of Two Attributes

14.3 Summary

14.4 Keywords

14.5 Self Assessment

14.6 Review Questions

14.7 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss Test of Hypothesis Concerning Significance of Correlation Coefficient

 Describe Test of Hypothesis concerning Correlation Coefficient using Fisher's Z test

 Explain Test Concerning Equality of Correlations in two Populations

Introduction

In last unit you have studied about hypothesis concerning standard deviation. In this unit you
will go through 2 - test hypothesis.

14.1 Test of Hypothesis concerning Correlation Coefficient

Let  be coefficient of linear correlation in a bivariate normal population and r be its estimator
based on a sample of n observations (Xi, Yi).

14.1.1 Test of Hypothesis Concerning Significance of Correlation
Coefficient

Here we have to test whether  is different from zero. Accordingly, H0 and Ha are  = 0 and
  0 respectively.

Richa Nandra, Lovely Professional University
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Notes For small samples, the test statistic can be obtained from the sampling distribution of b. We note
that if r = 0, then b would also be zero.

Therefore, 
( ) ( ) 2 2

1 2 2
. . . . 1 1

Y Y X

X X Y

b S S S n n
r r r

S E b S S E b S S r r
- -

= × × = × × =
- -

 will follow t - distribution with

(n - 2) d.f. Hence, 2

2
1
n

r
r
-

-
 can be taken as the test statistic. We note that ( )

21
. .

2
r

S E r
n
-

=
-

.

Therefore, 100(1 - a)% confidence limits of r can be written as r ± ta/2 S.E.(r).

Example 1: A random sample of 11 pairs of observations from a bivariate normal
population gave r = 0.29. Test the significance of correlation in population.

Solution.

We have to test H0 :  = 0 against Ha :   0.

2

9
0.29 0.91.

1 0.29calt = =
-

The value of t from tables at 5% level of significance and 9 d.f. is 2.26. Thus, there is no evidence
against H0.

14.1.2 Test of Hypothesis concerning Correlation Coefficient using
Fisher's Z test

This test is applicable whether n is small or large. If r is correlation in sample, then its Fisher's

Z transformation is given by 1 1
log

2 1e
r

Z
r

+
=

-
.

Further, if r is correlation in population, its Fisher's Z transformation, denoted by x, is given by

1 1
log

2 1e


x


+
=

-

Fisher has shown that the sampling distribution of Z is approximately normal with mean x and

standard error 1
3n -

. Thus, ( ) ( )3 ~ 0,1 .Z n Nx- -

Note: Since the values of Z and x are defined using e as the base of the logarithms, it is necessary
to convert them into logarithms with base 10 for calculation purposes. Accordingly, we write

10 10
10

1 1 1 1 1 1 1
log log log 10 log

2 1 2 1 2 1 loge e

r r r
Z

r r r e
+ + +

= = ´ = ´
- - -

   10 10

1 1 1
2.3026 log 1.1513log

2 1 1
r r
r r

+ +
= ´ ´ =

- -

Similarly, we have 10

1
1.1513log

1


x


+
=

-
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Example 2: If the correlation of 10 pairs of observations (X, Y) is 0.96, test the hypothesis

that correlation in population is 0.99.

Solution.

We have to test H0 :  = 0.99 against Ha :  0.99

Further,

10 10

1 0.96
1.1513log 1.1513log 49 1.1513 1.6902 1.9459

1 0.96
Z

+
= = = ´ =

-
 and

10 10

1 0.99
1.1513log 1.1513log 199 1.1513 2.2989 2.6464

1 0.99
x

+
= = = ´ =

-

The test statistic is 3 1.9459 2.6464 7 1.8563.z Z nx= - - = - =

Since this value is less than 1.96, there is no evidence against H0 at 5% level of significance.

14.1.3 Test Concerning Equality of Correlations in two Populations

Let there be two independent random samples of sizes n1 and n2 from two normal populations
with correlations 1 and 2 respectively. Let r1 and r2 be the correlations computed from the
respective samples.

If Z1, Z2, x1 and x2 denote Fisher's transformation of r1, r2, r1 and 2 respectively, then

1 1
1

1
~ ,

3
Z N

n
x
æ ö
ç ÷

-è ø
 and 2 2

2

1
~ ,

3
Z N

n
x
æ ö
ç ÷

-è ø

 1 2 1 2
1 2

1 1
~ ,

3 3
Z Z N

n n
x x
æ ö

- - +ç ÷
- -è ø

( )1 2

1 2

or ~ 0,1
1 1

3 3

Z Z
N

n n

-

+
- -

 under H0 : 1 = 2

Example 3: The correlation coefficients 0.89 and 0.85 were computed from two independent
samples of sizes 12 and 16 respectively. Test whether they can be regarded to have come from
two bivariate populations with different correlation coefficients?

Solution.

We shall test H0 : 1 = 2 against Ha : 1  2.

Now 1 10 10

1.89
1.1513log 1.1513log 17.18 1.1513 1.2350 1.42

0.11
Z = = = ´ =

and  2 10 10

1.85
1.1513log 1.1513log 12.33 1.1513 1.0911 1.26

0.15
Z = = = ´ =
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 The test statistic is 1.42 1.26 9 13

0.16 0.369.
221 1

9 13

z
- ´

= = ´ =

+

Since this value is less than 1.96, there is no evidence against H0 at 5% level of significance. Thus,
the given samples provide no evidence of different correlations in two populations.

14.2 Uses of 2 test

In addition to the use of 2 in tests of hypothesis concerning the standard deviation, it is used as
a test of goodness of fit and as a test of independence of two attributes. These tests are explained
in the following sections.

14.2.1  2 - test as a Goodness of Fit

2 - test can be used to test, how far the fitted or the expected frequencies are in agreement with
the observed frequencies. We know that for large values of n, the sampling distribution of X, the
number of successes, is normal with mean np and variance np(1 - ). Thus,

( )
( )~ 0,1 .

1

X n
z N

n



 

-
=

-

Further, square of z is a c2 - variate with one degree of freedom. We can write

( )

( )
( )

( )

( )
( )

2
22 1

1 1
1 1

X n
z X n

n n
  

  
   

é ù- - +
= = - = - +ê ú

- -ë û


    ( )
( )

( ) ( )

( )

2 2
2 1 1

1 1
X n X n

X n
n n n n

 


   

é ù - -
= - + = +ê ú

- -ë û
        .... (1)

We can write ( )

( )

( )

( )

( ) ( )[ ]
( )

22 2 1
1 1 1

X n nX n X n n n
n n n

 

  

- + -- - + -
= =

- - -

    
( ) ( )[ ]

( )

( ) ( )[ ]
( )

2 2
1

1
n X n n X E n X

n E n X




- - - - - -
= =

- -

Similarly   ( ) ( )[ ]
( )

22 X E XX n
n E X





--
= .

Thus, equation (1) can be written as 
( )[ ]

( )

( ) ( )[ ]
( )

2 2

2 X E X n X E n X
z

E X E n X
- - - -

= +
-

Here X denotes the observed number of successes and (n - X) the observed number of failures.

Let O1, E1 denote the observed and  expected number of successes respectively and O2, E2 denote
the observed and expected number of failures respectively.


( ) ( )

2 2
1 1 2 22

1 2

O E O E
z

E E
- -

= +  is a 2 - variate with 1 d.f.
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NotesAlso we note that O1 + O2 = E1 + E2 = n.

The above result can be generalised for a manifold classification. If a population is divided into
k mutually exclusive classes with observed and expected frequencies as O1, O2, ...... Ok and E1, E2,

...... Ek respectively, then ( )
2

2

1

k
i i

i i

O E
E


=

-
=å  is a c2 - variate with (k - 1) d.f. Here again we have

1 1

 (total frequency).
k k

i i
i i

O E N
= =

= =å å

Example 40: 300 digits were chosen from a table of numbers and the following frequency
distribution was obtained :

Digit : 0 1 2 3 4 5 6 7 8 9
Frequency : 26 28 33 32 28 37 33 30 30 23

Test the hypothesis that the digits are uniformly distributed over the table.

Solution.

When H0 is true, the expected frequency of each digit would be 30.

      2 21
30 iO N = -å

 ( )2 2 2 2 2 2 2 2 2 21 26 28 33 32 28 37 33 30 30 23 300 4.8
30

= + + + + + + + + + - =

The value of 2 from table for 5% level of significance and 9 d.f. is 16.92. Since the calculated value
is less than tabulated, there is no evidence against H0. Thus, the distribution of numbers over the
table may be treated as uniform.

Example 41: A sample analysis of examination results of 200 M.B.A.'s was made. It was
found that 46 students had failed, 68 secured a third division, 62 secured a second division and
the rest were placed in the first division. Are these figures commensurate with the general
examination result which is in the ratio of 2 : 3 : 3 : 2 for the various categories, respectively?
(Given : Table value of chi-square for 3 d.f. at 5% level of significance is 7.81.)

Solution.

H0 : The students in various categories are distributed in the ratio 2 : 3 : 3 : 2.

The expected number of students, under the assumption that H0 is true, are :

expected number of failures 
( )

2 200 40
2 3 3 2

= ´ =
+ + +

,

expected number of third divisioners 
3 200 60

10
= ´ = ,

expected number of second divisioners 
3 200 60

10
= ´ =  and

expected number of first divisioners 
2 200 40

10
= ´ = .
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Thus, we have 

( ) ( ) ( ) ( )
2 2 2 2

2 46 40 68 60 62 60 24 40 8.44.
40 60 60 40
- - - -

 = + + + =

Since this value is greater than the tabulated value,  7.81, for 3 d.f. and 5% level of significance,
H0 is rejected.

Example 42: A survey of 320 families with 5 children each revealed the following
distribution:

No.of boys : 5 4 3 2 1 0
No.of girls : 0 1 2 3 4 5
No.of families : 14 56 110 88 40 12

Is the result consistent with the hypothesis that male and female births are equally probable?

Solution.

Assuming that H0 (i.e., male and female births are equally probable) is true, the expected number

of families having r boys (or equivalently 5 - r girls) is given by 
5

5 51320 10
2r r rE C Cæ ö

= ´ = ´ç ÷
è ø

. On

substituting r = 5, 4, 3, 2, 1, 0, the respective expected frequencies are 10, 50, 100, 100, 50 and 10.

 
( ) ( ) ( ) ( )

2 2 2 2
2 14 10 56 50 110 100 88 100

10 50 100 100
- - - -

 = + + +
( ) ( )

2 240 50 12 10 7.16.
50 10
- -

+ + =

The value from table for 5 d.f. at 5% level of significance is 11.07, which is greater than the
calculated value. Thus, there is no evidence against H0.

Example 43:

The record for a period of 180 days, showing the number of electricity failures per day in Delhi
are shown in the following table :

. : 0 1 2 3 4 5 6 7
. : 12 39 47 40 20 17 3 2

No of failures
No of days

Determine, by using c2 - test, whether the number of failures can be regarded as a Poisson
variate?

Solution.

We have to test H0 : No. of failures is a Poisson variate against Ha : No. of failures is not a Poisson
variate.

The mean of the Poisson distribution is

0 12 1 39 2 47 3 40 4 20 5 17 6 3 7 2 2.5
180

m ´ + ´ + ´ + ´ + ´ + ´ + ´ + ´
= =
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NotesThe computations of 2 are done in the following table :

( )
2

2.5

0

1

2

3

4

.
.( ) .( )

0 12 0.52180 14.76
1 39 0.112.5 36.94
2 47 0.012.5/2 46.17
3 40 0.062.5/3 38.48

2.5/4 24.054 20 0.6
2.5/5 12.025 17

7.586 5

i i

i i i

Expected ObservedNo of O E
families freq E freq O E

e
E

E
E
E
E

by differenceor more

-

-

´ =

´ =

´ =

´ =

´ =

´ =

=
2

8
2.06
0.88

180 4.32Total  =

The value of 2 from table at 5% level of significance and 5 d.f. is 11.07. Since the calculated value
is less than the tabulated value, there is no evidence against H0.

14.2.2 2 - test as a Test for Independence of Two Attributes

Let us assume that a population is classified into m mutually exclusive classes, A1, A2, ...... Am,
according to an attribute A and each of these m classes are further classified into n mutually
exclusive classes, like AiB1, AiB2, ...... AiBn , etc., according to another attribute B.

If Oij is the observed frequency of AiBj , i.e., (AiBj) = Oij, the above classification can be expressed
in form of following table, popularly known as contingency table.

( )

( )

( )

( ) ( ) ( )

1 2

1 11 12 1 1

2 21 22 2 2

1 2

1 2

n

n

n

m m m mn m

n

B
B B B Total

A
A O O O A
A O O O A

A O O O A
Total B B B N








   



Assuming that A and B are independent, we can compute the expected frequencies of each cell,

i.e., 
( )( )i j

ij

A B
E

N
= . Thus, 

( )
2

2

1 1

m n ij ij

i j ij

O E
E= =

-
 =åå  would be a c2 - variate with (m - 1)(n - 1) d.f.

Remarks : The expected frequencies of some cells may be obtained by the application of the
above formula while the remaining cell frequencies can be obtained by subtraction. The minimum
number of cell frequencies, that must be computed by the use of the formula, is equal to the
degrees of freedom of the c2 statistic.

Example 44: The employees in 4 different firms are distributed in three skill categories
shown in the following table. Test the hypothesis that there is no relationship between the firm
and the type of labour. Let the level of significance be 5%.
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24 24 23 49

- 32 60 37 51

24 56 40 80

Firm
A B C D

Type of labour

Skilled

Semi skilled

Manual





Solution.

H0 : There is no relation between the firm and the nature of labour.

Calculation of Expected Frequencies

  

80 120 140 120 100 120 180 120
120500 500 500 500

19.2 33.6 24.0 43.2
80 180 140 180 100 180 180 180

- 180500 500 500 500
28.8 50.4 36.0 64.8

80 200 140 200
500 500
32.0 56.

Firm
A B C D Total

labour

Skilled

Semi skilled

Manual





´ ´ ´ ´

= = = =

´ ´ ´ ´

= = = =

´ ´

= =

100 200 180 200
200500 500

0 40.0 72.0
80 140 100 180 500Total

´ ´

= =

We note that the totals of corresponding rows or columns are same for the observed as well as
the expected frequencies.

From the observed and the expected frequencies, we get c2 = 12.81. Further, the value of c2 from
the table for (4 - 1)(3 - 1) = 6 d.f. and 5% level of significance is 12.59. Since the calculated value is
greater than the tabulated value H0 is rejected.

Example 44: Samples of household income were taken from four cities. Test whether the
cities are homogeneous with regard to the distribution of income?

  
( )

3000 10 15 15 10 50
3000-5000 5 10 15 10 40

5000 15 15 10 20 60
30 40 40 40 150

Cities
A B C D Total

Income Rs

Under

Over
Total





Solution.

H0 : Various cities are homogeneous with regard to the distribution of income.
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NotesComputation of Expected Frequencies

( )

3000 10.00 13.33 13.33 13.33 50
3000-5000 8.00 10.67 10.67 10.67 40

5000 12.00 16.00 16.00 16.00 60
30 40 40 40 150

Cities
A B C D Total

Income Rs

Under

Over
Total





Note that the expected frequencies for city A, under various income groups, are computed as

30 50 30 40 30 6010.00, 8.00 and 12.00.
150 150 150
´ ´ ´

= = =  Other frequencies have also been computed in

a similar manner.

Using the observed and expected frequencies, the value of c2 = 8.28.

Further, the value of X2 from tables for 6 d.f. at 5% level of significance is

Since the calculated value is less than the tabulated value, there is no evidence against H 0.

The value of 2 for a 2 ´  2 Contingency table

For a 2 ´  2 contingency table,

a b a b
c d c d

a c b d a b c d N

+

+

+ + + + + =

, the value of 2 can be directly computed with the use of the

following formula :

( )

( )( )( )( )

2
2 N ad bc

a b a c b d c d
-

 =
+ + + +

Yate's correction for continuity

We know that c2 is a continuous random variate but the frequencies of

various cells of a contingency table are integers. When N is large, the distribution of 
( )

2O E
E
-

å

is approximately c2. However, the corrections for continuity are required when N is small. Yates
has suggested the following corrections for continuity in a 2 × 2 contingency table :

 If ad > bc, reduce a and d  by 
1
2

 and increase b and c  by 
1
2

. Similarly, If ad < bc, increase a and

d by 
1
2

 and decrease b and c  by 
1
2

.Thus, the contingency tables in the two situations become

1 1
2 2
1 1
2 2

a b

c d

- +

+ -

 and  

1 1
2 2
1 1
2 2

a b

c d

+ -

- +

 respectively.
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The value of c2 can now be obtained as 
( )( )( )

2

2 2
( )

NN ad bc

a b a c b d c d

æ ö
- -ç ÷

è ø =
+ + + +

.

Brand and Snedecor formula for a 2 ´ r Contingency table

For a 2 ´×r contingency table,

1 2

1 1 2

2 1 2

1 2

r

r

r

r

A
A A A Total

B
B a a a a
B b b b b

Total n n n N










, the value of c2 can be directly computed by the use of the following

formula :

2 2 2
2

1

r
i

i i

N a a
ab n N=

æ ö
 = -ç ÷

è ø
å  with (r - 1) d.f.

Example 46: In a recent diet survey, the following results were obtained in an Indian
city:

.
1236 164 1400

- 564 36 600
1800 200 2000

No of families Hindus Muslims Total
Tea takers
Non tea takers

Total

Discuss whether there is any significant difference between the two communities in the matter
of taking tea? Use 5% level of significance.

Solution.

The null hypothesis to be tested can be written as H0 : There is no difference between the two
communities in the matter of taking tea.

Using the direct formula, we have 
( )

2
2 2000 1236 36 164 564 15.24.

1400 1800 200 600
´ - ´

 = =
´ ´ ´

The value of c2 from table for 1 d.f. and 5% level of significance is 3.84. Since the calculated value
is greater than the tabulated value, H0 is rejected.

Example 47: A certain drug is claimed to be effective in curing cold. In an experiment on
160 persons with cold, half of them were given the drug and the remaining half  were given
sugar pills. The patients' reactions to the treatment are recorded in the following table :

52 10 18 80
44 10 26 80
96 20 44 160

Helped Harmed No effect Total
Drug
Sugar pills
Total

Test the hypothesis that the drug is no better than the sugar pills for curing cold.
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NotesSolution.

H0: The drug is not effective in curing cold

Using the Brandt and Snedecor formula, we have

2 2 2 2
2 160 160 52 10 18 80 2.12.

80 80 96 20 44 160
æ ö´

 = + + - =ç ÷
´ è ø

This value is less than the tabulated value (= 5.99) for 2 d.f. and 5% level of significance. Thus,
there is no evidence against H0.

14.3 Summary

 Here we have to test whether  is different from zero. Accordingly, H0 and Ha are  = 0 and
  0 respectively.

For small samples, the test statistic can be obtained from the sampling distribution of b.
We note that if r = 0, then b would also be zero.

Therefore, 
( ) ( ) 2 2

1 2 2
. . . . 1 1

Y Y X

X X Y

b S S S n n
r r r

S E b S S E b S S r r
- -

= × × = × × =
- -

 will follow t - distribution

with (n - 2) d.f. Hence, 2

2
1
n

r
r
-

-
 can be taken as the test statistic. We note that

( )
21

. .
2
r

S E r
n
-

=
-

. Therefore, 100(1 - a)% confidence limits of r can be written as r ± ta/2

S.E.(r).

 Let there be two independent random samples of sizes n1 and n2 from two normal
populations with correlations 1 and 2 respectively. Let r1 and r2 be the correlations
computed from the respective samples.

If Z1, Z2, x1 and x2 denote Fisher's transformation of r1, r2, r1 and 2 respectively, then

1 1
1

1
~ ,

3
Z N

n
x
æ ö
ç ÷

-è ø
 and 2 2

2

1
~ ,

3
Z N

n
x
æ ö
ç ÷

-è ø

 1 2 1 2
1 2

1 1
~ ,

3 3
Z Z N

n n
x x
æ ö

- - +ç ÷
- -è ø

( )1 2

1 2

or ~ 0,1
1 1

3 3

Z Z
N

n n

-

+
- -

 under H0 : 1 = 2

14.4 Keywords

Fisher’s test: It is applicable whether n is small or large. If r is correlation in sample, then its

Fisher's Z transformation is given by 1 1
log

2 1e
r

Z
r

+
=

-
.

2 - test: It can be used to test, how far the fitted or the expected frequencies are in agreement
with the observed frequencies.
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Notes 14.5 Self Assessment

1. Let  be coefficient of ................... in a bivariate normal population and r be its estimator
based on a sample of n observations (Xi, Yi).

2. Let there be two ................... samples of sizes n 1 and n2 from two normal populations with
correlations 1 and 2 respectively. Let r1 and r2 be the correlations computed from the
respective samples.

3. In addition to the use of 2 in tests of hypothesis concerning the standard deviation, it is
used as a test of ................... and as a test of independence of two attributes. These tests are
explained in the following sections.

 ................... can be used to test, how far the fitted or the expected frequencies are in agreement
with the observed frequencies.

14.6 Review Questions

1. We want to decide whether a cubic die is balanced or not. For this purpose the die is
thrown 300 times and various outcomes are recorded. If the observed frequencies of the
six faces, namely 1, 2, 3, 4, 5 and 6 are 35, 40, 32, 60, 68 and 65 respectively, can we conclude
that the die is unbiased?

Hint : The expected frequency of each face under H0 is 50.

2. Four coins are tossed 320 times and the number of heads obtained were recorded as
follows :

No. of heads : 0 1 2 3 4
Frequency : 15 102 108 68 27

Can we regard all the coins as unbiased?

Hint : Find expected frequencies of the number of heads on the assumption that the coins
are unbiased.

3. Three dice were thrown 80 times and the number of times 2, 4 or 6 was obtained, were
recorded as given below:

No. of dice showing 2,4 or 6 : 0 1 2 3
Frequency : 8 28 32 12

Test the hypothesis that all the three dice are fair.

Hint : Under H0, the probability of success, i.e., getting 2 or 4 or 6 on a die is 0.5. If r denotes
the number of dice giving successes in a throw, we have p ra f = 4Cr0.54 .

4. The health department of municipal corporation of a city believes that 14% persons of the
city are smokers as well as drinkers, 30% are drinkers while 40% are smokers. In a random
sample of 150 persons, it was found that 24 persons were smokers as well as drinkers, 21
were only drinkers and 36 were only smokers. Do the above data support the belief of the
department. Use 5% level of significance.

Hint : Use the figures of belief, given in percentages, to find the expected frequencies.
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2 - Test Hypothesis

Notes5. A normal distribution was fitted to the distribution of new business brought by 100
insurance agents with the following results:

New business ('000Rs) : 10-20 20-30 30-40 40-50 50-60
Observed Frequency : 10 20 33 22 15
Expected Frequency : 9 22 32 25 12

Test the goodness of fit of the distribution.

Hint : The degrees of freedom of the 2 statistic would be 4.

Answers: Self Assessment

1.  linear correlation        2.   independent random

3.  goodness of fit        4.  2 - test

14.7 Further Readings

Books Sheldon M. Ross, Introduction to Probability Models, Ninth Edition, Elsevier
Inc., 2007.

Jan Pukite, Paul Pukite, Modeling for Reliability Analysis, IEEE Press on
Engineering of Complex Computing Systems, 1998.
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Notes 7. From the following data calculate the 4-yearly moving average and determine the trend
values. Find short-term fluctuations, assuming multiplicative model, and indicate their
composition. Plot the original data and the trend values on a graph.

       
Year : 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
Value : 50.0 36. 5 43.0 44. 5 38. 9 38.1 32.6 41.7 41.1 33.8

Answers: Self Assessment

1. (i) time series (ii) trend (iii) best (iv) linear (v) proportion (vi) trend, origin.

14.6 Further Readings

Books Sheldon M. Ross, Introduction to Probability Models, Ninth Edition, Elsevier
Inc., 2007.

Jan Pukite, Paul Pukite, Modeling for Reliability Analysis, IEEE Press on
Engineering of Complex Computing Systems, 1998.
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Hypothesis Testing

NotesUnit 15: Hypothesis Testing

CONTENTS

Objectives

Introduction

15.1 Test of Hypothesis

15.2 Tests of Hypothesis Concerning Mean

15.2.1 Test of Hypothesis Concerning Population Mean (s being known)

15.2.2 Test of Hypothesis Concerning Population Mean (s being unknown)

15.2.3 Test of Hypothesis Concerning Equality of two Population Means

15.2.4 Paired t - Test

15.3 Tests of Hypothesis concerning Proportion

15.3.1 Test of Hypothesis that Population Proportion is p0

15.3.2 Test of Hypothesis Concerning Equality of Proportions

15.5 Summary

15.6 Keywords

15.7 Self Assessment

15.8 Review Questions

15.9 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss Hypothesis Testing

 Explain Hypothesis Concerning Mean

Introduction

A hypothesis is a preconceived idea about the nature of a population or about the value of its
parameters. The statements like the distribution of heights of students of a university is normally
distributed, the number of road accidents per day in Delhi is 10, etc., are some examples of a
hypothesis.

The test of a hypothesis is a procedure by which we test the validity of a given statement about
a population. This is done on the basis of a random sample drawn from it.

The hypothesis to be tested is termed as Null Hypothesis, denoted by H0. This hypothesis asserts
that there is no difference between population and sample in the matter under consideration.
For example, if H0 is that population mean  = 0, then we regard the random sample to have
been obtained from a population with mean m0.

Corresponding to any H0, we always define an Alternative Hypothesis. This hypothesis, denoted
by Ha, is alternate to H0 , i.e., if H0 is false then Ha is true and vice-versa.

Sachin Kaushal, Lovely Professional University
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Notes 15.1 Test of Hypothesis

In order to illustrate the procedure of testing a null hypothesis, let us assume that the life of
electric bulbs of a company is distributed normally with standard deviation of 150 hours and we
want to test the null hypothesis that the mean life of bulbs is 1600 hours against the alternative
hypothesis that the mean life is not 1600 hours.

Assuming that H0 is true, we can construct a sampling distribution of X , the mean life of bulbs
in the sample. If a random sample of 100 bulbs is taken from this population, we know that the

distribution of X  will be normal with mean m = 1600 hours and standard error, 150
. . 15

10XS E = =

hours. Further, we know that for a normal distribution

1600
2 2 0.9544

15
X

P
æ ö-
- £ £ =ç ÷è ø

or ( )1600 2 15 1600 2 15 0.9544P X- ´ £ £ + ´ =

or ( )1570 1630 0.9544P X£ £ =

This result shows that the likelihood of getting a random sample, from the given population,
with mean lying between 1570 and 1630 hours is 95.44% or equivalently, the likelihood of
getting a random sample having its mean either less than 1570 or more than 1630 hours is only
4.56%. Thus, a random sample with its mean lying outside these limits is highly unlikely under
the assumption that null hypothesis is true.

However, if the mean computed from the drawn sample is found to lie outside these limits, it
may imply that either null hypothesis is false or the rare event, with probability = 4.56%, has
occurred.

Thus, if we decide to reject the null hypothesis whenever the computed sample mean falls
outside the above limits, the probability of our decision being wrong is only 4.56% or 0.0456.

Two Types of Errors

The decision of acceptance or rejection of a null hypothesis is made on the basis of a sample from
a population and hence, an element of uncertainty is always involved in making such decisions.
Two types of errors are likely to be committed in the procedure of testing a hypothesis. These
are Type I and Type II errors. Type I error is committed when a true null hypothesis is rejected.
The probability of this error is termed as the Level of Significance of the test and will be denoted
by a. The probability of committing an error is also termed as its size. Note that size of type I
error, i.e., a = 0.0456, in the above example.

Contrary to this, type II error is committed when a false null hypothesis is accepted. The
probability of type II error is denoted by b. To understand the meaning of type II error, we
assume that the true value of m is 1620 instead of the hypothesised value of 1600 hours. If the
standard deviation is same, the value of b is given by P (1570 £ X  £ 1630) when m = 1620 or P

- -
£ £

æ ö
ç ÷è ø

z
1570 1620 1630 1620

15 15
= P(–3.33 £ Z £ 0.67) = 0.4996 + 0.2486 = 0.7482

169



LOVELY PROFESSIONAL UNIVERSITY

Hypothesis Testing

NotesThe two types of errors are shown by the following figure.

Figure 15.1

It is obvious, from the above figure, that it is not possible to simultaneously control both types
of errors because a decrease in probability of committing one type of error is accompanied by
the increase in probability of committing the other type of error. Further, we may note that
farther the true value of parameter from the hypothesised value, smaller would be the size of
type II error, b. The graph of various values of m against b is known as the Operating Characteristic
Surve.

In the procedure of testing a hypothesis, the probability or size of type I error, i.e., a is specified
in advance. Usually we take a = 0.05 ( i.e., 5%) or 0.01 (i.e., 1%). Also see remarks (1) given at the
end of this section.

Power of a Test

The power of a test is defined as the probability of rejecting a false null hypothesis. Since b is the
probability of accepting a false hypothesis,  the power of test is given by 1 - b. More precisely, we
can write

Power of a test = P [Rejecting H0/H0 is false] = 1 – b

Since the value of  depends upon the true value of population parameter ( in the above
example), the relationship between various values of m and 1 -  is termed as power function, as
shown in Figure 31.2.

Figure 15.2

Critical Region and One Tailed versus Two Tailed Tests

Let H0 :  = 0 against Ha :   0, where 0 denotes some specified value of population mean m.
For example, 0 = 1600, in the example considered above.
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If we decide to have a = 0.05, we know that for a standard normal variate P[- 1.96 £ z £ 1.96] =
1 - 0.05 = 0.95, the procedure of testing of hypothesis can be outlined as:

Reject H0 if the computed value of z from the sample . .,   
/cal

X
i e z

n


s

æ ö-
=ç ÷è ø

 lies outside the interval

(- 1.96, 1.96) and accept it otherwise.

In terms of figure, the portion of z axis covering the interval (- 1.96, 1.96), i.e, A to B is termed as
the Acceptance Region and its remaining portions, which lie to the left of point A and to the right
of point B, are termed as the Region of Rejection or Critical Region (C.R.).

Figure 15.3

The specification of the critical region for a test depends upon the nature of the alternative
hypothesis and the value of . For example, Ha :   0, this implies that m may be less or greater
than 0. Thus, the critical region is to be specified on both tails of the curve with each part
corresponding to half of the value of a. A test having critical region at both the tails of the
probability curve is termed as a two tailed test.

Further, if Ha :  > 0 or  < 0, the critical region is to be specified only at one tail of the
probability curve and the corresponding test is termed as a one tailed test. These situations are
shown in the following figures.

The values of the random variable separating the acceptance region from critical region are
termed as critical value(s). For example, za/2 and za, shown above, are critical values. Similarly,
for a normal distribution the critical values for a two tailed test are - 1.96 and 1.96 for  = 0.05 or
- 2.58 and 2.58 for  = 0.01 and the corresponding value for a one tailed test is ± 1.645 or ± 2.33
depending upon whether a = 0.05 or 0.01.

Figure 15.4
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1. Out of the two types of errors, the type I error is considered to be more serious.
Consequently, the probability of type I error is fixed at a low value (often 0.05 or lower).
Thus, when the computed value of a statistic falls in the critical region, implying thereby
that the probability of H0 being true is low or equivalently the probability of H0 being
false is high, we reject H0. However, if the computed value of statistics lies in the acceptance
region, it would not be appropriate to say that the probability of H0 being true is very
high because the probability of accepting a false H0 (the value of b) may also be high. Thus,
accepting H0 only implies that the sample information does not provide any evidence of
H0 being false. Because of this nature of the tests of hypothesis, the conclusion "accept H0"
is often replaced by "do not reject H0" or "there is no evidence against H0 on the basis of
available sample information", etc.

2. The tests of hypothesis are also known as the Tests of Significance. We know that if the
sample result is highly unlikely, H0 is rejected because the sample result is significantly
different from the hypothesised value. Alternatively, it implies that the observed difference
between the computed and the hypothesised value is not attributable due to chance or
fluctuations of sampling.

15.2 Tests of Hypothesis Concerning Mean

These tests can be divided into two broad categories depending upon whether s, the population
standard deviation, is known or not.

15.2.1 Test of Hypothesis Concerning Population Mean (s being known)

This test is applicable when the random sample X1, X2, ...... Xn is drawn from a normal population.
We can write

H0 :  = 0 (specified)  against Ha :   0 (two tailed test)

The test statistic ( )~ 0,1
/

X
N

n


s

- . Let the value of this statistic calculated from sample be denoted

as .
/cal

X
z

n


s

-
=  The decision rule would be :

Reject H0 at 5%(say) level of significance if zcal > 1.96. Otherwise, there is no evidence against
H0 at 5% level of significance.

Example 12: A manufacturer claims that the average mileage of scooters of his company
is 40 kms/litre. A random sample of 20 scooters of the company showed an average mileage of
42 kms/litre. Test the claim of the manufacturer on the assumption that the mileage of scooter
is normally distributed with a standard deviation of 2 kms/litre.

Solution.

Here, we have to test H0 :  = 40 against Ha :   40.

42 40
4.47.

/ 2/ 20cal

X
z

n


s

- -
= = =

Since zcal > 1.96, is rejected at 5% level of significance.
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1. If the manufacturer claims that the average mileage is more than 40 kms/litre rather than
equal to 40 kms/litre, we have to use a one tailed test. Now we shall test H0 :  = 40 against

Ha :  > 40 and zcal would be defined as .
/cal

X
z

n


s

-
=  Since this value is also equal to 4.47

and lies in the critical region, we reject at 5% level of significance. This implies that the
claim of the manufacturer may be taken as correct.

2. In one tailed tests the alternative hypothesis is expressed as a strict inequality and the null
hypothesis as a weak inequality or simply equality.

3. The decision rule can also be specified in terms of prob or  p-value of the observed sample
result. The p-value is the smallest level of significance at which the null hypothesis can be
rejected. We define p-value

2
/

X
P z

n


s

æ ö-
= ³ç ÷

è ø
, for a two tailed test,

/
X

P z
n


s

æ ö-
= ³ç ÷è ø

, when Ha : m > m0 and

/
X

P z
n


s

æ ö-
= £ç ÷è ø

, when Ha : m < m0

The decision rule is : If p-value < , reject H0.

In the above example p -value is approximately equal to zero when Ha is either   40 or
 > 40, therefore H0 is rejected. However, if Ha is taken as  < 40, the p -value is almost
equal to unity  and consequently H0 would be accepted.

4. As per the central limit theorem, even if the parent population is not normal, the sampling
distribution of z will be approximately normal when n > 30.

Example 13: A filling machine at a soft drink factory is designed to fill bottles of 200 ml
with a standard deviation of 10 ml. A sample of 50 bottles was selected at random from the filled
bottles and the volume of soft drink was computed to be 198 ml per bottle. Test the hypothesis
that the mean volume of soft drink per bottle is not less than 200 ml.

Solution.

Here n > 30, therefore, the sampling distribution of mean volume of soft drink per bottle will be
normal.

We have to test H0 :  ³ 200 against Ha :  < 200.

It is given that 198X =  and s = 10.

Thus, the test static is 0 198 200
1.41

/ 10/ 50cal

X
z

n


s

- -
= = = -

Since this value is greater than - 1.645, zcal lies in the acceptance region. Hence, there is no
evidence against H0 at 5% level of significance.
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Alternatively, a null hypothesis can be tested by computing critical sample mean CX  for a
given standard error and the level of significance.

(i) Let H0:  = 0 against Ha:   0

If a = 0.05, then CX  = 0 ± 1.96
n

s

If 0 – 1.96 
n

s
 < X  <  + 1.96 

n

s
, we accept H0.

(ii) Let H0:  £ 0 against Ha:  > 0 (Right tailed test)

If a = 0.05 then CX  = 0 + 1.645 
n

s

If X  > CX , we reject H0.

In the above example,

H0:  ³ 200 against  < 200 (Left tailed test)

 CX  = 200 – 1.645 ´ 
10

50
 = 197.67

It is given that X  = 198. Since CX X> , we accept H0 at 5% level of significance.

15.2.2 Test of Hypothesis Concerning Population Mean (s being
unknown)

When s is not known,  we use its estimate computed from the given sample. Here, the nature of
the sampling distribution of X  would depend upon sample size n. There are the following two
possibilities:

(i) If parent population is normal and n < 30 (popularly known as small sample case), use

t - test. The unbiased estimate of s in this case is given by 
( )

2

.
1

iX X
s

n

-
=

-

å

Also, like normal test, the hypothesis may be one or two tailed.

(ii) If n ³ 30 (large sample case), use standard normal test. The unbiased estimate of s in this

case can be taken as 
( )

2

,
iX X

S
n

-
=
å  since the difference between n and n - 1 is

negligible for large values of n. Note that the parent population may or may not be
normal in this case.

Example 14: The yield of alfalfa from six test plots is 2.75, 5.25, 4.50, 2.50, 4.25 and 3.25
tonnes per hectare. Test at 5% level of significance whether this supports the contention that true
average yield for this kind of alfalfa is 3.50 tonnes per hectare.
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We note that s is not given and n = 6  (< 30),    t - test is applicable.

Using sample information we have

2.75 5.25 4.50 2.50 4.25 3.25
3.75.

6
X

+ + + + +
= =

To calculate s, we define ( )
3.75

3.75 4
0.25

i
i i

X
u X

-
= = - ´

2

2.75 5.25 4.50 2.50 4.25 3.25
4 6 3 5 2 2

16 36 9 25 4 4

i

i

i

X
u

u

- - -

From the above table 2 94iu =å . Therefore, 
94

0.25 1.085
6 1

s = =
-

We have to test H0 : m = 3.50 against Ha : m ¹ 3.50.

The test statistic 0

/
X
s n

-
 ~ t - distribution with (n - 1) d.f.

Thus, 
3.75 3.50

0.564
1.085/ 6calt

-
= =

Further, the critical value of t, from table at 5% level of significance and with 5 d.f. is 2.571. Since
tcal is less than this value, there is no evidence against at 5% level of significance.

Example 15: Daily sales figures of 40 shopkeepers showed that their average sales and
standard deviation were Rs 528 and Rs 600 respectively. Is the assertion that daily sales on the
average is Rs 400, contradicted at 5% level of significance by the sample?

Solution.

Since n > 30, standard normal test is applicable. It is given that n = 40, X  = 528 and S = 600.

We have to test H0 :  = 400 against Ha :   400.

528 400
1.35.

600/ 40calz
-

= =

Since this value is less than 1.96, there is no evidence against H0 at 5% level of significance.
Hence, the given assertion is not contradicted by the sample.
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Notes15.2.3 Test of Hypothesis Concerning Equality of two Population Means

If random samples are obtained from each of the two normal populations, refer to § 20.2.2, the
sampling distribution of the difference of their means is given by

2 2
1 2

1 2 1 2
1 2

~ , .X X N
n n
s s

 
æ ö

- - +ç ÷
è ø

Case I. If s1 and s2 are known, use standard normal test.

(a) To test H0 : 1 = 2 against Ha : 1 2 (two tailed test), the test statistic is

( ) ( )1 2 1 2 1 2

2 2 2 2
1 2 1 2

1 2 1 2

cal

X X X X
z

n n n n

 

s s s s

- - - -
= =

+ +

 under H0.

This value is compared with 1.96 (2.58) for 5% (1%) level of significance.

(b) To test H0 : 1 £ 2 against Ha : 1 > 2 (one tailed test), the test statistic is 1 2
2 2
1 2

1 2

cal
X X

z

n n
s s

-
=

+

,

and the critical value for 5% (1%) level of significance is 1.645 (2.33).

(c) To test H0 : 1 ³ 2 against Ha :1 < 2 (one tailed test), the test statistic, i.e., zcal is same as in
(b) above, however, the critical value for 5% (or 1%) level of significance is - 1.645
(or - 2.33).

Case II. If s1 and s2 are not known, their estimates based on samples are used. This category of
tests can be further divided into two sub-groups.

1. Small Sample Tests (when either n1 or n2 or both are less than or equal to 30). To test
H0 : 1 = 2, we use t - test. The respective estimates of s1 and s2 are given by

( )
2

1 1 1
1 1

1 11 1
iX X n

s S
n n

-
= =

- -

å
 and 

( )
2

2 2 2
2 2

2 21 1
iX X n

s S
n n

-
= =

- -

å

This test is more restrictive because it is based on the assumption that the two samples are
drawn from independent normal populations with equal standard deviations, i.e., s 1 =
s 2 = s  (say). The pooled estimate of s , denotes by s, is defined as

( ) ( )
2 2

2 2
1 1 2 2 1 1 2 2

1 2 1 22 2
i iX X X X n S n S

s
n n n n

- + - +
= =

+ - + -

å å ( ) ( )2 2
1 1 2 2

1 2

1 1
2

n s n s
n n

- + -
=

+ -

(a) To test H0 : m1 = m2 against Ha : m1 ¹ m2 (two tailed test), the test statistic is

1 2 1 2 1 2 1 2
2 2

1 2

1 21 2

1 1cal

X X X X X X n n
t

s n ns s s
n nn n

- - -
= = = ´

+
++

, which follows t -

distribution with (n1 + n2 - 2) d.f.
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Notes This value is compared with the value of t from tables, to be denoted as ta/2(n1 + n2 -
2), at 100a% level of significance with (n1 + n2 - 2) d.f.

(b) To test H0 : 1 £ 2 against Ha : 1 > 2 (one tailed test), the test statistic is

( )1 2 1 2

1 2
cal

X X n n
t

s n n

-
= ´

+
. This value is compared with ta(n1 + n2 - 2) from

tables.

(c) To test H0 : 1 ³ 2 against Ha : 1 < 2 (one tailed test), the test statistic, i.e., tcal is same
as in (b) above. This value is compared with - ta(n1 + n2 - 2).

2. Large Sample Tests (when both n1 and n2 is greater than 30)

In this case s1 and s2 are estimated by their respective sample standard deviations S1 and S2.

The test statistics for two and one tailed tests are 
1 2

2 2
1 2

1 2

cal

X X
z

S S
n n

-
=

+

 and zcal =
X1 - X2

S1
2

n1
+S2

2

n2

respectively. The remaining procedure is same as in case I above.

Remarks:

1. 100(1 - a)% confidence limits for m1 - m1 are given by ( )1 2
1 2 /2 . . .

X X
X X z S E -

- ±

If X1 - X2  ~ t - distribution, za/2 is replaced by ta/2(n1 + n2 - 2).

2. If the two sample are drawn from populations with same standard deviations, i.e.,

s1 = s2 = s (say), then ( )1 2
1 2

1 1
. .

X X
S E

n n
s

-
= +  for problems covered under case I and

( )1 2
1 2

1 1
. .

X X
S E S

n n-
= +  for problems covered under case II, large sample tests. S is a

pooled estimate of s, is given by

( ) ( )
2 2

2 2
1 1 2 2 1 1 2 2

1 2 1 2

i iX X X X n S n S
S

n n n n

- + - +
= =

+ +

å å

Example 16: An investigation of the relative merits of two kinds of flashlight batteries
showed that a random sample of 100 batteries of brand X lasted on the average 36.5 hours with
a standard deviation of 1.8 hours, while a random sample of 80 batteries of brand Y lasted on the
average 36.8 hours with a standard deviation of 1.5 hours. Use a level of significance of 1% to test
whether the observed difference between average life times is significant.

Solution.

Let X and Y denote the life time of flashlight batteries of type X and type Y respectively and let
X and Y be their respective population means.

It is given that   36.5X = ,  SX = 1.8,  nX = 100, 36.8Y = ,  SY = 1.5,  nY = 80.
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NotesWe have to test H0 :  X = Y against Ha :  X  Y.

Since sample sizes are large (> 30), it is a large sample case.

The test statistic is 
2 2

36.5 36.8 0.3
1.219

0.2461.8 1.5
100 80

calz
-

= = =

+

Since this value is less than 2.58, there is no evidence against H0 at 1% level of significance and
thus, the observed difference between average life times cannot be regarded as significant.

Example 17: Measurements performed on random samples of two kinds of cigarettes
yielded the following results on their nicotine content (in mgs)

Brand A : 21.4, 23.6, 24.8, 22.4, 26.3

Brand B : 22.4, 27.7, 23.5, 29.1, 25.8

Assuming that the nicotine content is distributed normally, test the hypothesis that brand B has
a higher nicotine content than brand A.

Solution.

We have to test H0 : A ³ B against Ha : A < B.

Note that the rejection of H0 would imply that brand B has a higher nicotine content than
brand A.

The means of the two samples are

21.4 23.6 24.8 22.4 26.3
23.7

5AX
+ + + +

= =

and
22.4 27.7 23.5 29.1 25.8

25.7.
5BX

+ + + +
= =

Also ( ) ( )
2 2

14.96 31.30Ai A Bi BX X  and X X- = - =å å

The pooled estimate of s is 
14.96 31.30

2.40
5 5 2

s
+

= =
+ -

Thus, the test statistic is 
( )23.7 25.7 5 5

1.318.
2.40 5 5calt
- ´

= ´ = -
+

The critical value of t at 5% level of significance and 8 d.f. is - 1.86. Since tcal is greater than this
value, it lies in the region of acceptance and hence, there is no evidence against at 5% level of
significance. Thus, the nicotine content in brand B is not higher than in brand A.

Example 18: Two salesmen A and B are working in a certain district. From a sample
survey conducted by the head office, the following results were obtained. State whether there is
any significant difference in the average sales between the two salesmen:

178



LOVELY PROFESSIONAL UNIVERSITY

Notes

. 20 18
( ) 170 205

( ) 20 25

A B
No of Sales
Average Sales in Rs
Standard deviation in Rs

Solution.

Since n1, n2 < 30, it is a small sample case.

We have to test H0 : A = B against Ha : A  B.

Assuming that the two samples have come from the same population with S.D. s, we find its
pooled estimate as

2 2 2 2
1 1 2 2

1 2

20 20 18 25
23.12

2 36
n S n S

s
n n

+ ´ + ´
= = =

+ -

Also
170 205 20 18

4.66.
23.12 20 18calt
- ´

= =
+

 This value is highly significant, therefore, H0 is rejected

at 5% level of significance.

Example 19: The mean life of a random sample of 10 light bulbs was found to be 1456
hours with a S.D. of 423 hours. A second sample of 17 bulbs chosen at random from a different
batch showed a mean life of 1280 hours with S.D. of 398 hours. Is there a significant difference
between the mean life of the two batches?

Solution.

Note that the two samples have been obtained from the same population with unknown s.

We have to test H0 : m1 = m2 against Ha : m1 ¹ m2.

It is given that  1 1456,X =   S1 = 423,  n1 = 10,  2 1280,X =   S2 = 398,  n2 = 17.

The pooled estimate of s is 
2 210 423 17 398

423.42
10 17 2

s
´ + ´

= =
+ -

Therefore 
1456 1280 10 17

1.04
423.42 10 17calt
- ´

= ´ =
+

The value of t from table at 5% level of significance and with 25 d.f. is 2.06. Since tcal is less than
this value, there is no evidence against H0. Hence, the observed difference in mean life of bulbs
of the two batches can be regarded as due to fluctuations of sampling.

When the Hypothesized Difference is not Zero

Let H0: m1 £ m2 + k against Ha: m1 > m2 + k, where k is constant. The above can also be written as.

H0: m1 – m2 £ k against Ha: m1 – m2 > k

Thus we can write

X X1 2–  ~ N 
2 2
1 2

1 2

,k
n n

s s
+

æ ö
ç ÷
è ø
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or Zcal = 1 2

2 2
1 2

1 2

X X k

n n
s s

- -

+

 under H0.

In a similar way, we can write the expressions for tcal under different situations.

Example 20: A sample of 100 electric bulbs of 'Philips' gave a mean life of 1500 hours
with a standard deviation of 60 hours. Another sample of 100 electric bulbs of "HMT" gave a
mean life of 1615 hours with a standard deviation of 80 hours. Can we conclude that the mean
life of 'HMT' bulbs is greater then that of 'Philips' bulbs by 100 hours?

Let X1  = 1615, S1 = 80, n1 = 100, X2  = 1500, S2 = 60, n2 = 100.

We can write

H0: 1 £ 2 + 100 against Ha: 1 > 2 + 100

Zcal = 
2 2

1615 1500 100

80 60
100 100

- -

+

 = 1.5

Since Zcal < 1.645, we accept H0 at 5% and say that the difference in mean life of 'HMT' bulbs and
that of 'Philips' bulbs is less than or equal to 100 hours.

15.2.4 Paired t - Test

This test is used in situations where there is a pairing of observations (X1i, X2i), like marks
obtained by students of a class in two subjects, performance of the patients before and after the
administration of a drug, etc. We define di = X1i - X2i, the difference in the observations for the i
th item.

Then, we compute id
d

n
=
å  and 

( )
2

2 2

1 1
i i

d

d d d nd
s

n n

-å -å
= =

- -

As before, we can test H0 : 1 = 2 against Ha : 1  2 (two tailed test) or H0 : 1 £ (or ³) 2 against
Ha : 1 > (or <) 2 (one tailed test).

The test statistic ~ -distribution
/ dd

d d n
t t

ss n
= =  with (n - 1) d.f.

Example 21: Eleven students of B.Com. (Hons) were given a test in economic analysis.
They were imparted a month's special coaching and a second test was held at the end of it. The
result were as follows :

 . : 1 2 3 4 5 6 7 8 9 10 11
  1  : 36 40 36 34 46 32 38 46 40 38 42
  2  : 40 44 40 40 46 40 34 48 38 44 36

Student No
Marks in st Test
Marks in nd Test

Do the marks give an evidence that the students have benefited by extra coaching?
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We have to test H0 : 1 = 2 against Ha : 1  2.

Note that H0 implies that students have not benefited by the extra coaching.

Let X1 and X2 denote the marks in 1st and 2nd tests respectively.

Calculation of d  and sd

2

 . : 1 2 3 4 5 6 7 8 9 10 11
: 4 4 4 6 0 8 4 2 2 6 6

: 40 44 40 40 46 40 34 48 38 44 36
i

i

Student No
d

d

- - - - - - -

From the above table, we can write 
222  and  244i id d= - =å å

Thus, 
22 244 11 4

2  and  4.47
  11 10dd s
- - ´

= = - = =

Further, 
2 11

1.48
4.47calt

- ´
= = . The value of t at 5% level of significance and 10 d.f. is 2.228.

Therefore,  the sample information provides no evidence that students have benefited by extra
coaching.

Example 22: A random sample of heights of 20 students gave a mean of 68 inches with
S.D. of 3 inches. Test the hypothesis that mean height in population is 70 inches under the
assumption that the heights are normally distributed. Also construct a 95% confidence interval
for the population mean.

Solution.

We have to test H0 : 1 = 70 against Ha : 1  70.

It is given that n = 20, X =68  and S = 3.

The unbiased estimate of s.d. is 
20

3 3.08
1 19

n
s S

n
= = =

-
.

 
3.08

. . 0.688.
20X

s
S E

n
= = =

Alternatively, we can directly write

1 3
. . 0.688.

1 1 19X

s n S
S E S

nn n n
= = ´ = = =

- -

Thus, 68 70 19
2.906

3calt
- ´

= =

This value is greater than 2.093, the value of t from tables at 5% level of significance and 19 d.f.
Thus, H0 is rejected.
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Thus, the 95% confidence limits for m are given by 
3

68 2.093 68 1.44
19

± ´ = ± , i.e., 66.56 and

69.44 inches.

Example 23: Ten individuals are chosen at random from a normal population and their
weights (in kgs) are found to be 63, 63, 66, 67, 68, 69, 70, 70, 71, 71. In the light of this data, discuss
the suggestion that the mean height in the population is 66 inches.

Solution.

We have to test H0 :  = 66 against Ha :   66.

From the given data, we can compute X =67.8  and  s = 3.01.

  
( )67.8 66.0 10

1.89.
3.01calt
-

= =

This value is less than 2.262, the value of t from tables for 9 d.f. at 5% level of significance. Thus,
there is no evidence against H0.

15.3 Tests of Hypothesis concerning Proportion

Like the tests concerning sample mean, the null hypothesis to be tested would be either  = 0 ,
i.e., the proportion of successes in population is 0 or 1 = 2, i.e., two populations have the same
proportion of successes. These tests are based upon the sampling distribution of p, the proportion
of successes in sample and the sampling distribution of p1 - p2, the difference between two
sample proportions.

15.3.1 Test of Hypothesis that Population Proportion is 0

The null hypothesis to be tested is H0 :  = 0 against Ha :  0 for a two tailed test and  > or
< 0  for a one tailed test. The test statistic is

( )
( )

( )
0

0
0 00 0

11
cal

p n
z p

n




  

-
= = -

--

Remarks: The 100(1 - a)% confidence limits for p are p ± za/2S.E.(p).

Example 24: A wholesaler in apples claims that only 4% of the apples supplied by him
are defective. A random sample of 600 apples contained 36 defective apples. Test the claim of the
wholesaler.

Solution.

We have to test H0 : £ 0.04 against Ha :  > 0.04.

It is given that 
36

0.06
600

p = =  and n = 600.
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 ( )

600
0.06 0.04 2.5

0.04 0.96calz = - =
´

This value is highly significant in comparison to 1.645, therefore, H0 is rejected at 5% level of
significance.

Example 25: The manufacturer of a spot remover claims that his product removes at least
90% of all spots. What can be concluded about his claim at the level of significance a = 0.05, if the
spot remover removed only 174 of the 200 spots chosen at random from the spots on clothes
brought to a dry cleaning establishment?

Solution.

We have to test H0 :  ³ 0.9 against Ha : p < 0.9.

It is given that 
174

0.82
200

p = =  and n = 200.

 ( )
200

0.82 0.90 3.77
0.9 0.1calz = - = -

´

Since this value is less than - 1.645, H0 is rejected at 5% level of significance. Thus, the sample
evidence does not support the claim of the manufacturer.

Example 26: 470 heads were obtained in 1,000 throws of an unbiased coin. Can the
difference between the proportion of heads in sample and their proportion in population be
regarded as due to fluctuations of sampling?

Solution.

We have to test H0 :  = 0.5 against Ha :   0.5.

It is given that 
470

0.47
1000

p = =  and n = 1000.


1000

0.47 0.50 1.897.
0.5 0.5calz = - =

´

Since this value is less than 1.96, the coin can be regarded as fair and thus, the difference between
sample and population proportion of heads are only due to fluctuations of sampling.

15.3.2 Test of Hypothesis Concerning Equality of Proportions

The null hypothesis to be tested is H0 : 1 = 2 against Ha : 1  2 for a two tailed test and 1 > or
< 2  for a one tailed test.

The test statistic is ( )
( )( )

1 2
1 2

1 21cal
n n

z p p
n n 

= -
- +

 under the assumption that 1 = 2 = , where

 is known. Often population proportion p is unknown and it is estimated on the basis of

samples. The pooled estimate of , denoted by p, is given by 1 1 2 2

1 2

.
n p n p

p
n n
+

=
+
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Thus, the test statistic becomes ( )

( )( )
1 2

1 2
1 2

.
1cal

n n
z p p

p p n n
= -

- +

Remarks: 100(1 - )% confidence limits of (1 - 2) can be written as

(p1 - p2) ± za/2 S.E.(p1 - p2)

Example 27: In a random sample of 600 persons from a large city, 450 are found to be
smokers. In another sample of 900 persons from another large city, 450 are smokers. Do the data
indicate that the cities are significantly different with respect to the prevalence of smoking? Let
the level of significance be 5%.

Solution.

We have to test H0 : 1 = 2 against Ha : 1   2.

It is given that n1 = 600, n2 = 900, X1 = X2 = 450.

 1 2
1 2

1 2

450 450
0.75  and  0.50

600 900
X X

p p
n n

= = = = = =

The pooled estimate of p, i.e., 
450 450

0.6
600 900

p
+

= =
+

Thus, 
600 900

0.75 0.50 9.682
0.6 0.4 1500calz

´
= - =

´ ´

This value is highly significant, therefore, H0 is rejected. Thus, the given samples indicate that
the two cities are significantly different with regard to the prevalence of smoking.

Example 28: A company is considering two different television advertisements for the
promotion of a new product. Management believes that advertisement A is more effective than
advertisement B. Two test market areas with virtually identical consumer characteristics are
selected ; advertisement A is used in one area and advertisement B is used in the other area. In a
random sample of 60 customers who saw the advertisement A, 18 tried the product. In a random
sample of 100 customers who saw advertisement B,  22 tried the product. Does this indicate that
advertisement A is more effective than advertisement B, if a 5% level of significance is used?

Solution.

We have to test H0 : A £ B against Ha : A > B.

It is given that nA = 60, XA = 18, nB = 100 and XB = 22.

Thus, 
18 22

0.30  and  0.22.
60 100A Bp p= = = =

Also, the pooled estimate of p, i.e., 
18 22

0.25.
160

p
+

= =

 ( )
60 100

0.30 0.22 1.131
0.25 0.75 160calz

´
= - =

´ ´
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Notes Since this value is less than 1.645, there is no evidence against H 0 at 5% level of significance.
Thus, the sample information provides no indication that advertisement A is more effective
than advertisement B.

Remarks:

As in the variable case, we can also test the hypothesis 1 = 2 + k. Since 1  2, pooling of
proportions is not allowed for the computations of standard error of p1 – p2. The standard error
in this case is

1 1 2 2

1 2

(1 ) (1 )p p p p

n n

- -
+

15.5 Summary

 A hypothesis is a preconceived idea about the nature of a population or about the value of
its parameters. The statements like the distribution of heights of students of a university
is normally distributed, the number of road accidents per day in Delhi is 10, etc., are some
examples of a hypothesis.

 The test of a hypothesis is a procedure by which we test the validity of a given statement
about a population. This is done on the basis of a random sample drawn from it.

 The hypothesis to be tested is termed as Null Hypothesis, denoted by H0. This hypothesis
asserts that there is no difference between population and sample in the matter under
consideration. For example, if H0 is that population mean  = 0, then we regard the
random sample to have been obtained from a population with mean m0.

 Corresponding to any H0, we always define an Alternative Hypothesis. This hypothesis,
denoted by Ha, is alternate to H0 , i.e., if H0 is false then Ha is true and vice-versa.

 If the manufacturer claims that the average mileage is more than 40 kms/litre rather than
equal to 40 kms/litre, we have to use a one tailed test. Now we shall test H0 :  = 40 against

Ha :  > 40 and zcal would be defined as .
/cal

X
z

n


s

-
=  Since this value is also equal to 4.47

and lies in the critical region, we reject at 5% level of significance. This implies that the
claim of the manufacturer may be taken as correct.

 In one tailed tests the alternative hypothesis is expressed as a strict inequality and the null
hypothesis as a weak inequality or simply equality.

 The decision rule can also be specified in terms of prob or  p-value of the observed sample
result. The p-value is the smallest level of significance at which the null hypothesis can be
rejected. We define p-value

15.6 Keywords

Hypothesis: A hypothesis is a preconceived idea about the nature of a population or about the
value of its parameters.

Power of a test: The power of a test is defined as the probability of rejecting a false null hypothesis.
Since b is the probability of accepting a false hypothesis,  the power of test is given by 1 - b. More
precisely, we can write

Power of a test = P [Rejecting H0/H0 is false] = 1 – b
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1. Fill in the blanks:

(i) The reciprocal of standard error of an estimator is ...... .

(ii) ...... tailed test is used when H0 is  ³ or £ 0.

(iii) For testing H0 :  = 0 or 1 = 2 (s known), we always use ...... normal test.

(iv) When s1 = s2 = s is not known, we compute its ...... estimate from sample.

(v) The 2 - test is used to test H0 : s = s0 only in case of a ...... sample.

(vi) The test of hypothesis regarding equality of standard deviations makes use of ......
statistics.

(vii) The test of goodness of fit or of independence is always a ...... tailed test.

(viii) When sample (from normal population) sizes are small and s1 and s2 are not known,
the sampling distribution of the difference of sample means follows t - distribution
under the assumption that ...... .

(ix) The existence of a strong linear relationship between two variables implies that the
regression coefficient is ...... .

(x) Yate's correction for continuity is needed when sample size is ...... .

15.8 Review Questions

1. Certain motor oil is packed in tins holding 5 litres each. The filling machine can maintain
this but with a S.D. of 0.15 litre. Two samples of 36 tins each are taken from the production
line. If the sample means are 5.20 and 4.95 litres respectively, can we be 99% sure that the
sample have come from a population of 5 liters?

Hint : Check whether the two sample means lie in the interval 5
2 58 015

6
±

´. .
or not.

2. The Industrial Placement Unit of Unisex Polytechnic believes that the average salary paid
to the students during their industrial year is Rs 2,800. A sample of 17 of its own students
reveals that their average salary is Rs 2,860 with a S.D. of Rs 105. Does this evidence
suggest that the countrywide average salary is higher than Rs 2,800? Let the level of
significance be 5%.

Hint : Use one tailed test.

4. In a survey of buying habits, 400 women shoppers are chosen at random in super market
A located in a certain section of the city. Their average weekly food expenditure is Rs 250
with a S.D. of Rs 40. For 400 women shoppers chosen at random in super market B in
another section of the city, the average weekly food expenditure is Rs 220 with a S.D. of
Rs 55. Test at 1% level of significance whether the average weekly food expenditure of the
population of shoppers are equal?

Hint : Apply two tailed test to test the hypothesis regarding equality of means. Also note
that both the samples are large.
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Notes 5. Samples of two types of electric bulbs were tested for length of life (in hours) and the
following data were obtained :

Type I Type II
Sample size

Mean of the sample
S D of the sample

  
      9     8

   1235 1125
      30    35. .

Test, at 5% level of significance, whether the difference in sample means is significant?

Hint : Use small sample test, i.e., t-test.

6. A company selects 9 salesmen at random and their sales figures for the previous month
are recorded. These salesmen then undergo a course devised by a business consultant and
their sales figures for the following month are compared as shown in the following table.
Has the training course caused an improvement in the salesmen's ability? Let the level of
significance be 5%.

Previous Month 75 90 94 85 100 90 69 70 64
Following Month 77 101 93 92 105 88 73 76 68

Hint : Use paired t-test to test H0 : 1 ³ 2 against Ha : 1 < 2.

7. A trader wants to compare the delivery times for two suppliers A and B. The trader wishes
to continue with his current supplier A if his mean delivery time is less than or equal to
that of supplier B, otherwise will switch over to B. He has obtained the following two
independent samples for the above purpose :

Supplier A : n1 = 40, 1X 10 days= , S1 = 3 days

Supplier B : n2 = 30, 2X 8 days= , S2 = 4 days.

Answers: Self Assessment

1. (i) precision (ii) one (iii) standard (iv) pooled (v) small (vi) F (vii) one (viii) s1 = s2

(ix) significant (x) small.

15.9 Further Readings

Books Sheldon M. Ross, Introduction to Probability Models, Ninth Edition, Elsevier
Inc., 2007.

Jan Pukite, Paul Pukite, Modeling for Reliability Analysis, IEEE Press on
Engineering of Complex Computing Systems, 1998.
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NotesUnit 16: Hypothesis Concerning Standard Deviation
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16.1 Test of Hypothesis Concerning Population Standard Deviation (n 30)

16.2 Test of Hypothesis Concerning Population Standard Deviation (Large Sample)

16.3 Test of Hypothesis Concerning the Equality of Standard Deviations (Small Samples)

16.4 Test of Hypothesis Concerning Equality of Standard Deviations (large samples)
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16.6 Keywords

16.7 Self Assessment

16.8 Review Questions

16.9 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss Hypothesis concerning population standard deviation (n  30)

 Describe Hypothesis concerning population for large sample.

Introduction

In last unit you have studied about hypothesis testing. In this unit you will be studying about
hypothesis concerning standard deviation.

These tests can be divided into two broad categories depending upon whether the size of the
sample is large or small.

16.1 Test of Hypothesis Concerning Population Standard Deviation
(n   30)

Refer to § 20.4.1, the statistic 
( )

2
2

2 2
iX X nS

 or 
s s

-å  is a 
2c - variate with (n - 1) degrees of freedom.

Under H0 : s = s0 (or s2 = s0
2), 

2

2
0

nS
s

 would be a 
2c - variate with (n - 1) degrees of freedom.

Sachin Kaushal, Lovely Professional University
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Example 1: A random sample of 20 bulbs from a large lot revealed a standard deviation

of 150 hours. Assuming that the life of bulbs follow normal distribution, test the hypothesis that
the standard deviation of the population is 130 hours.

Solution.

We have to test H0 : s = 130 against Ha : s  130 (two tailed test).

The test statistics, under H0 is 
2

2
2

20 150
26.63

130calc
´

= = .

Figure 16.1

From the table of 
2c  at 5% level of significance and 19 degrees of freedom, the critical values

are A1 = 8.91 and A2 = 32.9. Since 
2
calc  lies in the acceptance region, there is no evidence against

H0.

Remarks: To write (1 - a)% confidence interval for s2, we write

P(A1  c2  A2) = 1 - a  or  
2

1 22 1
nS

P A A a
s

æ ö
  = -ç ÷è ø

The inequality 
2

1 2

nS
A

s
  can be written as 

2
2

1

nS
A

s  . Similarly, we can write 
2

2

2

.
nS
A

s  Thus,

the (1 - a)% confidence interval for s2 is given by

nS nS
P

A A

2 2
2

2 1

1 .s a
æ ö

  = -ç ÷è ø

Example 2: The standard deviation of a random sample of 25 units, taken from a normal
population with s = 8.5, was calculated to be 10.8. Test the hypothesis that the observed value of
standard deviation is significantly higher than the population standard deviation.

Solution.

We have to test H0 : s= 8.5 against Ha : s > 8.5. (one tailed test)

The test statistic is 
2

2
2

25 10.8
40.36.

8.5calc
´

= =
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Notesc2 from tables at 5% level of significance and 24 d.f. is 36.4. Since this value is less than the
calculated value, H0 is rejected. Thus, the observed value of standard deviation is significantly
higher than the population standard deviation.

16.2 Test of Hypothesis Concerning Population Standard Deviation
 (Large Sample)

It can be shown that for large samples (n > 30), the sampling distribution of S is approximately

normal with mean s and standard error 
2n
s

. Thus,

 
( )

( )
2

~ 0,1
S n

z N
s

s

-
= .

Alternatively, using Fisher's approximation, we can say that when n > 30, the statistic 22c

follows a normal distribution with mean 2n  and standard error unity. Thus 
22 2z nc= -

can be taken as standard normal variate for sufficiently large values of n.

Example 3: In a random sample of 300 units, the standard deviation was found to be 8.5.
Can it reasonably be regarded as to have come from a population with standard deviation equal
to 9.0?

Solution.

We have to test H0 : s = 9.0 against Ha : s  9.0 (two tailed test).

It is given that S = 8.5 and n = 300 (large).

Thus, the test statistic is 
8.5 9.0 600

1.36.
9.0calz

-
= =

Since this value is less than 1.96, there is no evidence against H 0 at 5% level of significance.

Note: The same value of z is obtained by the use of the statistic 22 2z nc= - .

We can write

2 2

2 2

2 2 300 8.5
2 600 1.36

9.0cal
nS

z n
s

´ ´
= - = - =

If s is unknown it is estimated by S. The 95% confidence limits for s are

1.96
1.96 1

2 2
S

S   or  S
n n

æ ö
± ±ç ÷è ø

.
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Example 4: The standard deviation of a random sample of size 81 was found to be 12. Test

the hypothesis that population standard deviation is greater than 10.

Solution.

We have to test H0 : s £ 10 against Ha : s > 10.

( )12 10
2 81 2.55.

10
z

-
= ´ =

Since this value is greater than 1.645, H 0 is rejected. Hence, the sample information supports the
contention that s is greater than 10.

16.3 Test of Hypothesis Concerning the Equality of Standard
 Deviations (Small Samples)

We have to test H0 : s1 = s2 against s1 > s2. Refer to § 20.6, the statistic 
2 2
1 1
2 2
2 2

/
/

s
F

s
s

s
= , would

become 
2
1
2
2

s
s

 under H0, follows F - distribution with n1 (= n1 - 1) and n2 (= n2 - 1) degrees of

freedom.

Remarks:

1. We can write ( )
2

2 12 2 21
1 1 1 1 1

1 1 1 1

1 1
1 1 1

i
i i

Xn
s X X S X

n n n n

æ ö
= - = = -ç ÷

- - - è ø

å
å å  and

( )
2

2 22 2 22
2 2 2 2 2

2 2 2 2

1 1
1 1 1

i
i i

Xn
s X X S X

n n n n

æ ö
= - = = -ç ÷

- - - è ø

å
å å .

2. In the variance ratio 
2
1
2
2

,
s

F
s

=  we take, by convention the largest of the two sample

variance as s1
2. Thus, this test is always a one tailed test with critical region at the right

hand tail of the F - curve.

3. The 100(1 - a)% confidence limits for the variance ratio 
2
1
2
2

,
s

s
 are given by

2 2 2
1 1 1
2 2 2

/2 1 /22 2 2

1 1
1 .

s s
P

F Fs sa a

s
a

s -

é ù
×   × = -ê ú

ê úë û

Example 5: Two independent samples of sizes 10 and 12 from two normal populations
have their mean square deviations about their respective means equal to 12.8 and 15.2 respectively.
Test the equality of variances of the two populations.
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We have to test H0 : s1 = s2 against s1 > s2.

It is given that S1
2 = 15.2, S2

2 = 12.8, n1 = 12 and n2 = 10.

The unbiased estimates of respective population variances are

2
1

12 10
15.2 16.58 12.8 14.22.

11 9
2
2s   and  s= ´ = = ´ =

Thus, 
16.58

1.166.
14.22calF = =

The value of F from tables at 5% level of significance with 11 and 9 d.f. is 3.10. Since this value is
greater than Fcal, there is no evidence against H0.

Example 6: The increase in weight (in 100 gms) due to food A and food B given to two
independent samples of children was recorded as follows. Test whether (i) mean weights and (ii)
standard deviations of the two samples are equal.

Sample I  : 6, 12, 10, 14, 12, 12, 10, 7, 5, 7.

Sample II : 9, 11, 8, 5, 6, 12, 7, 13, 10.

Solution.

We shall first test H0 : s1 = s2 against s1 > s2.

The means of the samples are 1 2
95 81

9.5 9.0
10 9

X  and X= = = = , respectively.

We can write 

2 2
2 2 2

1 1 1
ki kik k

k k k
k k k k

X Xn n
s X X

n n n n

æ ö
= - = -ç ÷

- - -è ø

å å
 (k = 1, 2)

Thus, we have 2 2
1

987 10
9.5 9.39

9 9
s = - ´ =  and 2 2

2
789 9

9 7.50.
8 8

s = - ´ =

Further, the test statistic is 
9.39

1.25.
7.50

F = =

The critical value of F at 5% level of significance and (9,8) d.f. is 3.39, therefore, there is no
evidence against H0. Hence, s1 and s2 may be treated as equal.

To test H0 : 1 = 2 against Ha ; 1  2, we note that samples are small,  t-test is to be used. Since
s1 = s2 = s (say), its unbiased estimate is

( ) ( )2 2
1 1 2 2

1 2

1 1 9 9.39 8 7.50
2.92.

2 10 9 2
n s n s

s
n n

- + - ´ + ´
= = =

+ - + -

The test statistic is 
1 2 1 2

1 2

9.5 9.0 10 9
0.37.

2.92 10 9cal

X X n n
t

s n n

- - ´
= = =

+ +
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Notes The critical value of t at 5% level of significance and 17 d.f. is 2.11. Since this value is greater than
the calculated, there is no evidence against H0. Thus, we conclude that the two samples may be
regarded to have drawn from a population with same means and same standard deviations.

16.4 Test of Hypothesis Concerning Equality of Standard Deviations
 (Large Samples)

It can be shown that when sample sizes are large, i.e., n1, n2 > 30, the sampling distribution of the

statistic S1 - S2 is approximately normal with mean s1 - s2 and standard error 
2 2
1 2

1 2

.
2 2n n
s s

+

Therefore 
( ) ( )

( )1 2 1 2

2 2
1 2

1 2

~ 0,1

2 2

S S
z N

n n

s s

s s

- - -
=

+

or 1 2

1 2

1 1
2 2

S S
z

n n
s

-
=

+

 under H0 : s1 = s2 = s.

Very often s is not known and is estimated on the basis of sample. The pooled estimate of s is

2 2
1 1 2 2

1 2

n S n S
S

n n
+

=
+

.  Thus, the test statistic becomes

1 2 1 2 1 2

1 2

1 2

2
.

1 1
2 2

cal
S S S S n n

z
S n n

S
n n

- -
= = ´

+
+

Example 7: The standard deviation of a random sample of the heights of 500 individuals
from country A was found to be 2.58 inches and that of 600 individuals from country B was found
to be 2.35 inches. Do the data indicate that the standard deviation of heights in country A is
greater than that in country B?

Solution.

We have to test H0 : s1 = s2 against Ha : s1 > s2.

It is given that S1 = 2.58, n1 = 500, S2 = 2.35 and n2 = 600.

The pooled estimate of s is 
2 2500 2.58 600 2.35

2.46
1100

S
´ + ´

= =

The test statistic is 
2.58 2.35 600000

2.17
2.46 1100calz
-

= ´ =

Since this value is greater than 1.645, H0 is rejected at 5% level of significance. Thus, the sample
evidence indicates that the standard deviation of heights in country A is greater.
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Notes16.5 Summary

 We can write ( )
2

2 12 2 21
1 1 1 1 1

1 1 1 1

1 1
1 1 1

i
i i

Xn
s X X S X

n n n n

æ ö
= - = = -ç ÷

- - - è ø

å
å å  and

( )
2

2 22 2 22
2 2 2 2 2

2 2 2 2

1 1
1 1 1

i
i i

Xn
s X X S X

n n n n

æ ö
= - = = -ç ÷

- - - è ø

å
å å .

 In the variance ratio 
2
1
2
2

,
s

F
s

=  we take, by convention the largest of the two sample

variance as s1
2. Thus, this test is always a one tailed test with critical region at the right

hand tail of the F - curve.

 The 100(1 - a)% confidence limits for the variance ratio 
2
1
2
2

,
s

s
 are given by

2 2 2
1 1 1
2 2 2

/2 1 /22 2 2

1 1
1 .

s s
P

F Fs sa a
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16.6 Keywords

F - distribution: If H0 : s1 = s2 against s1 > s2. Refer to § 20.6, the statistic 
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s

 under H0, follows F - distribution with n1 (= n1 - 1) and n2 (= n2 - 1) degrees of

freedom.

16.7 Self Assessment

Fill in the blanks:

1. These tests can be divided into two broad categories depending upon whether the .................
of the sample is large or small.

2. If H0 : s1 = s2 against s1 > s2. Refer to § 20.6, the statistic 
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F
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2
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s
s

under H0, follows ................. with n1 (= n1 - 1) and n2 (= n2 - 1) degrees of freedom.

3. In the ................. 
2
1
2
2

,
s

F
s

=  we take, by convention the largest of the two sample variance as

s1
2. Thus, this test is always a one tailed test with critical region at the right hand tail of the

F - curve.
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4. The 100(1 - a)% ................. for the variance ratio 
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16.8 Review Questions

1. Test the hypothesis that s = 8, given that S = 10 for a random sample of size 51. Also
construct 95% confidence interval for s.

Hint : Use a two tailed normal test.

2. A random sample of size 10 from a normal population gave the following observations :
169, 173, 171, 177, 161, 163, 174, 168, 172, 165.

Test the hypothesis that population variance is 25.

Hint : Use a two tailed c2 test.

3. The following two samples are drawn from two normal populations. Test at 5% level of
significance whether their variance can be regarded as equal?

Sample I  : 60, 65, 71, 74, 76, 82, 85, 57.

 Sample II : 61, 66, 67, 85, 78, 63, 85, 86, 88, 91.

Hint : Use F - test.

4. Can the following two samples obtained from two normal populations, be regarded to
have same variances?

Sample No. Sample Size Sample Variance
1 15 20
2 25 35

Test at 10% level of significance.

Hint : Use F - test.

5. Two independent random samples, one of 12 observations with mean 15 and sum of
squares of deviations from mean equal to 135 and another of 16 observations with mean
22 and sum of squares of deviations from mean equal to 250, were obtained from two
normal populations. Test at 5% level of significance whether the two samples can be
regarded to have come form the same population?

Hint : Test s1 = s2 and 1 = 2 an in example 34.

6. The following figures relate to the number of units produced per shift by two workers
A and B for a number of days:

A : 19, 22, 24, 27, 24, 18, 20, 19 and 25.

B : 26, 37, 40, 35, 30, 30, 40, 26, 30, 35 and 45.

Can it be inferred that A is more stable worker compared to B? Answer using 5% level of
significance.

Hint : Use F - test.
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Hypothesis Concerning Standard Deviation

Notes7. In one sample of 10 observations from a normal population, the sum of squares of the
deviations of sample values from their mean is 100.4 and in another sample of 12
observations from another normal population, the sum of squares of the deviations of
sample values from their mean is 115.5. Test at 5% level whether the two normal populations
have the same variance?

Hint : Use F - test.

8. In a test given to two groups of students, the marks obtained were as follows:

Group A : 18, 20, 36, 50, 49, 36, 34, 49, 41.

Group B : 29, 28, 26, 35, 30, 44, 46.

Assuming that the marks obtained follows normal distribution, examine at 5% level of
significance whether the two groups of students can be regarded to have come from
populations with same standard deviation?

Hint : Use F - test.

Answers: Self Assessment

1.  size        2.  F - distribution   3.  variance ratio          4.  confidence limits

16.9 Further Readings

Books Sheldon M. Ross, Introduction to Probability Models, Ninth Edition, Elsevier
Inc., 2007.

Jan Pukite, Paul Pukite, Modeling for Reliability Analysis, IEEE Press on
Engineering of Complex Computing Systems, 1998.
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