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Abstract AlgebraII

Objectives:

 To learn about the structure as group, ring and field.

 To gain knowledge about homomorphisms, isomorphisms, cosets, quotient groups, and the isomorphism theorems,
rings, ideals, ring homeomorphisms, isomorphisms and its theorems.

 To learn about fields, quotient fields and field extensions Galois Theory also.
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Notes Unit 1 : The Field of Quotient Euclidean Domains
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1 .2 Field of Quotients

1 .3 Summary

1 .4 Keywords

1 .5 Review Questions

1.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss whether an algebraic system is an integral domain or not

 Define and identify prime ideals and maximal ideals

 Prove and use simple properties of integral domains and fields

 Construct or identify the field of quotients of an integral domain

Introduction

Finally, we shall see how to construct the smallest field that contains a given integral domain.
This is essentially the way that Q is constructed from Z. We call such a field the field of quotients
of the corresponding integral domain.

In this unit, we have tried to introduce you to a lot of new concepts. You may need some time to
grasp them. Take as much time as you need. But by the time you finish it, make sure that you
have attained the knowledge of following topics.

1 .1 Prime and Maximal Ideals

In �Z� we know that if p is a prime number and p divides the product of two integers a and b, then
either p divides a or p divides b. In other words, if ab  pZ, then either a  pZ or b  pZ. Because
of this property we say that pZ is a prime ideal, a term we will define now.

Definition: A proper ideal P of a ring R is called a prime ideal of R if whenever ab  P for a, b 
R, then either a  P or b  P.

You can see that {0} is a prime ideal of Z because ab  {0}  a  {0} or b  {0}, where a,b  Z.

Richa Nandra, Lovely Professional University
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Unit 1 : The Field of Quotient Euclidean Domains

NotesAnother example of a prime ideal is

Example: Let R be an integral domain. Show that I = ((0, x) | x  R) is a prime ideal of R x R.

Solution: Firstly, you know that I is an ideal of R x R. Next, it is a proper ideal since I  R x R.
Now, let us check if I is a prime ideal or not. For this let (a

1
, b

1
), (a

2
, b

2
)  R x R such that (a

1
, b

1
)

(a
2
, b

2
)  I. Then (a

1
a

2
, b

1
b

2
) = (0, x) for some x  R

 a
1
a

2 
= 0, i.e., a, = 0 or a

2
 = 0, since R is a domain. Therefore, (a, b

1
)  I or (a

2
, b

2
)  I. Thus, I is a

prime ideal.

Now we will, prove the relationship between integral domains and prime ideals.

Theorem 1: An ideal P of a ring R with identity is a prime ideal of R if and only if the quotient
ring R/P is an integral domain.

Proof: Let us first assume that P is a prime ideal of R. Since R has identity, so has R/P. Now, let
a + P and b + P be in R/P such that (ai � P) (b + P) = P, the zero element of R/P. Then ab+P = P, i.e.,
ab  P. As P is a prime ideal of R either a  P or b  P. So either a + P = P or b+P = P.

Thus, R/P has no zero divisors.

Hence, R/P is an integral domain.

Conversely, assume that R/P is an integral domain. Let a, b  R such that ab  P. Then ab + P =
P in R/P, i.e., (a + P) (b + P) = P in R/P. As R/P is an integral domain, either a + P = P or b + P =
P, i.e., either a E P or b  P. This shows that P is a prime ideal of R.

An ideal mZ of Z is prime iff m is a prime number. Can we generalise this relationship between
prime numbers and prime ideals in Z to any integral domain? To answer this let us first try and
suitably generalise the concepts of divisibility and prime elements.

Definition: In a ring R, we say that an elements divides an element b if b = ra for some r  R. In
this case we also say that a is a factor of b, or a is a divisor of b.

Thus, 3  divides 6 in Z
7
, since 3.2 6.

Now let us see what a prime element is.

Definition: A non-zero element p of an integral domain R is called n prime element if

(i) p does not have a multiplicative inverse, and

(ii) whenever a, b  R and p | ab, then p | a or p | b.

Can you say what the prime elements of Z are? They are precisely the prime numbers and their
negatives.

Now that we know what a prime element is, let us see if we can relate prime ideals and prime
elements in an integral domain.

Theorem 2: Let R be an integral domain. A non-zero element p  R is n prime element if and
only if Rp is a prime ideal of R.

Proof: Let us first assume that p is a prime element in R. Since p does not have a multiplicative
inverse, 1  Rp. Thus, Rp is a proper ideal of R. Now let a, b  R such that ab  Rp. Then ab = rp
for some r  R

 p | a or p | b, since p is a prime element.

 a = xp or b = xp for some x  R.

a  p or b  Rp .

Thus ab  Rp  either a  Rp or b G  Rp, i.e., Rp is a prime ideal of R.

2
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Notes

Note x R has a multiplicative inverse iff Rx = R.

Conversely, assume that Rp is a prime ideal. Then Rp  R, Thus, 1  Rp, and hence, p does not
have a multiplicative inverse. Now suppose p divides ab, where a, b  R. Then ab = rp far some
r  R, i.e., ab  Rp.

As Rp is a prime ideal, either a  Rp or b  Rp. Hence, either p | a or p | b. Thus, p is a prime
element in R.

Theorem 2 is very useful for checking whether an element is a prime element or not, or for
finding out when a principal ideal is a prime ideal.

Prime ideals have several useful properties.

Now consider the ideal 22 in Z. Suppose the ideal nZ in Z is such that 2Z  nZ Z. Then n | 2.
 n=  1or n = 2.  nZ = Z or nZ = 2Z.

This shows that no ideal can lie between 2Z and Z. That is, 22 is maximal among the proper
ideals of Z that contain it. So we say that it is a �maximal ideal�. Let us define this expression.

Definition: A proper ideal M of a ring R is called a maximal ideal if whenever I is an ideal of R
such that M  I  R, then either I = M or I = R.

Thus, a proper ideal M is a maximal ideal if there is no proper ideal of R which contains it. An
example that comes to mind immediately is the zero ideal in any field F. This is maximal
because you know that the only other ideal of F is F itself.

To generate more examples of maximal ideals, we can use the following characterisation of such
ideals.

Theorem 3: Let R be a ring with identity. An ideal M in R is maximal if and only if R/M is a field.

Proof: Let us first assume that M is a maximal ideal of R. We want to prove that R/M is a field.
For this, it is enough to prove that R/M has no non-zero proper ideals. So, let I be an ideal of
R/M. Consider the canonical homomorphism  : R  R/M :  (r) = r + M. Then, you know that
-1 (I) is an ideal of R containing M, the kernel of . Since M is a maximal ideal of R. 1(I) = M or

-1(I) = R. Therefore, I = (-1 (I)) is either (M) or (R). That is, I = {0}  or I = R/M, where; = O +M

= M. Thus, R/M is a field.

Conversely, let M be an ideal of R such that R/M is a field. Then the only ideals of R/M are

{0}  and R/M. Let I be an ideal of R containing M. Then, as above (1) = {0}  or, (I) = R/M.

 I = -1((1)) is M or R. Therefore, M is a maximal ideal of R.

Corollary: Every maximal ideal of a ring with identity is a prime ideal.

Now, the corollary is a one-way statement. What about the converse? That is, is every prime
ideal maximal? What about the zero ideal in Z? Since Z is a domain but not a field and Z  Z/{0},
Z/{0} is a domain but not a field. Thus. (0) is a prime ideal but not a maximal ideal of Z.

Example: Show that an ideal mZ of Z is maximal iff m is a prime number.

Solution: You know that Z,,, is a field iff m is a prime number. You also know that Z/mZ = Z
m

.
Z | mZ is a field iff m is prime. Hence, mZ is maximal in Z iff m is a prime number.

3
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Unit 1 : The Field of Quotient Euclidean Domains

Notes

Example: Show that 122Z  is a maximal ideal of Z
12

, whereas (0, 4,8)  is not.

Solution: You know that Z
12

 = Z/12Z and 122Z  = 2Z/12Z. We see that Z
12

/ 122Z = (Z/12Z)/

(2Z/12Z) = Z
2
, which is a field. Therefore, 122Z {0,2,4,6,8,10}  is maximal in Z

12
.

Now 12 12 12{0, 4, 8} = 4Z 2Z Z . 

Therefore, {0, 4, 8}  is not maximal in Z
12

.

We first introduced you to a special ideal of a ring, called a prime ideal. Its speciality lies in the
fact that the quotient ring corresponding to it is an integral domain.

Then we discussed a special kind of prime ideal, i.e., a maximal ideal.

1.2 Field of Quotients

Consider Z and Q. You know that every element of Q is of the form 
a

,
b

 where a  Z and b  Z*.

Actually, we can also denote 
a
b

 by the ordered pair (a, b)  Z × Z*. Now, in Q we know that

a c
b d
 = - iff ad = bc. Let us put a similar relation on the elements of Z × Z*

Now, we also know that the operations on Q are given by

a c ad bc a c a c a c
and . , Q.

b d bd b d b d b d


    

Keeping these in mind we can define operations on Z × Z*. Then we can suitably define an
equivalence relation on Z × Z* to get a field isomorphic to Q.

We can generalise this procedure to obtain a field from any integral domain. So, take an integral
domain R. Let K be the following set of ordered pairs:

K= {(a,b) ) a , b  R and b  0)

We define a relation ~ in K by

(a, b) ~ (c, d) if ad = bc.

We claim that ~ is an equivalence relation. Let us see if this is so.

(i) (a, b) ~ (a, b)   (a, b)  K, since R is commutative. Thus, ~ is reflexive.

(ii) Let (a, b), (c, d)  K such that (a, b) ~ (c, d). Then ad = bc, i.e., cb = da. Therefore, (c, d) ~
(a, b). Thus, ~ is symmetric.

(iii) Finally, let (a,b), (c,d), ( u, v)  K such that (a,b) � (c,d) and (c,d) ~ (u,v ). Then ad = bc and
cv = du. Therefore, (ad) v = (bc)v = bdu, i.e., avd =bud. Thus, by the cancellation law for
multiplication (which is valid for a domain), we get av = bu, i.e., (a,b) � (u,v). Thus, � is
transitive.

Hence, ~ is an equivalence relation.

4
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Notes Let us denote the equivalence class that contains (a,b) by [a,b]. Thus,

[a,b] = {(c,d) | c,d  R, d  0 and ad = bc }.

Let F be the set of all equivalence classes of K with respect to ~.

Let us define + and in F as follows. (It might help you to keep in mind the rules for adding and
multiplying rational numbers.)

[a,b] + [c,d] = [ad+bc,bd] and

[a,b].[c,d] = [ac,bd].

Do you think + and . are binary operations on F?

Note b # 0 and d # 0 in the integral domain R imply bd # 0. So, the right-hand
sides of the equations given above are well defined equivalence classes. Thus, the sum and
product of two elements in F is again an element in F.

We must make sure that these operations are well defined.

So, let [a,b] = [a�,b�] and [c,d] = [c�,d�]. We have to show that [a,b] + [c,d] = [a�,b�] + [c�,d�],
i.e., [ad+bc,bd] = [a�d�+b�c�,b�d�].

Now, (ad+bc) b�d� � (a�d� + b�c�) bd

= ab�dd�, + cd�bb� � a�bdd� � cdbb�

= (ab� � a�b)dd� + (cd� - c�d) bb�

= (0) dd� + (0)bb�, since (a,b) - (a�, b�) and (c,d) ~ (c�,d�).

= 0

Hence, [ad+bc,bd] = [a� d� + b�c�,brd�], i.e., + is well defined.

Now, let us show that [a,b] . [c,d] = [a�,br] . [c�,d�],

i.e., [ac,bd] = [a�c� b�d�].

Consider (ac) (b�d�) - (bd) (a�c�)

= ab�cd� � ba�dc� = ba�cd� � ba� cd�, since ab� = bar and cd� = dc�

= 0

Therefore, [ac,bd] = [a�c�,b�d�]. Hence,. is well defined.

We will now prove that F is a field.

(i) + is associative : For [a,b], [c,d], [u,v] E F,

([a,b] + [c,d]) + [u,v]  = [ad+bc,bd] + [u,v]

= [(ad+bc)v + ubd, Wv]

= [adv + b(cv+ud), bdv]

= [a,b] + [cv+ud,dv]

= [a,b] + ([c,d]+ [u,v])

5
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Unit 1 : The Field of Quotient Euclidean Domains

Notes(ii) + is commutative :.For [a,b], [c,d]  F,

[a,b] + [c,d] = [ad+bc,bd] = [cb+da,db] = [c,d] + [a,b]

(iii) [0,1] is the additive identity for F : For [a,b]  F,

[0,1] + [a,b] = [0.b+l.a, l.b] = [a,b]

(iv) The additive inverse of [a,b]  F is [�a,b] :

[a,b] + [�a,b] = [ab-ab,b2] = [0,b2] = [0,1], since 0.1 = 0.b2.

We would like you to prove the rest of the requirements for F to be a field.

So we have put our heads together and proved that F is a field.

Now, let us define f : R  F : f(.a) = [a,1]. We want to show that f is a monomorphism.

Firstly, for a, b  R,

f(a+b) = [a+b,1] = [a,]] + [b,l].

= f(a) + f(b), and

Thus, f is a ring homomorphism.

Next, let a,b  R such that f(a) = f(b). Then [a,1] = [b,l], i.e., a = b. Therefore, f is 1�1.

Thus, f is a monomorphism.

So, Im f = (R) is a subring of F which is isomorphic to R.

As you know, isomorphic structures are algebraically identical.

So, we can identify R with f(R), and think of R as a subring of F. Now, any element of F is of the
form [a,b] = [a,1] [l,b] = [a,l] [b,l]-1 = f(a) f(b)-1, where b  0. Thus, identifying x  R with f(x)  f(R),
we can say that any element of F is of the form ab-1, where a,b  R, b  0.

All that we have discussed adds up to the proof of the following theorem.

Theorem 4: Let R be an integral domain. Then R can be embedded in a field F such that every
element of F has the form ab-1 for a, b  R, b  0.

The field F whose existence we have just proved is called the field of quotients (or the field of
fraction) of R.

Thus, Q is the field of quotient of Z. What is the field of quotients of R? The following theorem
answers this question.

Theorem 5: Iff : R  K is a monomorphism of an integral domain R into a field K, then there
exists a monomorphism g : F  K : g([a,1]) = f(a), where F is the field of quotients of R.

It says that the-field of quotients of an integral domain is the smallest field containing it. Thus,
the field of quotients of any field is the field itself.

So, the field of quotients of R is R and of Z
p
 is Z

p
, where p is a prime number.

Self Assessment

1. An ideal P of a ring R is called a/an .................. ideal of R. If whenever ab  P for a, b  R,
then either a  P or b  P.

(a) prime ideal (b) odd ideal

(c) even ideal (d) integer ideal

6
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Notes 2. An ideal P of a ring R with identity is a prime ideal of R. If and only if the .................. R/P
is an integral domain.

(a) polynomial ring (b) subring

(c) quotient ring (d) ideal ring

3. If x  R, it has multiplicative inverse iff RX = ..................

(a) R (b) RX-1

(c) XR (d) X

4. A proper ideal m of a ring R is called maximal ideal of whenever I is an ideal of R such that
m .................. I .................. R then either I = m or I = R.

(a) ,  (b) , 

(c) ,  (d) , 

5. If R be a ring with identity. An ideal M in R is maximal if and only if .................. is a field.

(a) R.M (b) R/M

(c) M/R (d) R+M

1.3 Summary

 The characteristic of any domain or field is either zero or a prime number.

 The definition and examples of prime and maximal ideals.

 The proof and use of the fact that a proper ideal I of a ring R with identity is prime
(or maximal) iff R/I is an integral domain (or a field).

 Every maximal ideal is a prime ideal.

 An element p of an integral domain R is prime iff the principal ideal pR is a prime ideal of
R.

 Z, is a field iff n is a prime number.

 The construction of the field of quotients of an integral domain.

1.4 Keywords

Prime Ideal: A ideal P of a ring R is called a prime ideal of R if whenever ab  P for a, b  R, then
either a  P or b  P.

Proper Ideal: A proper ideal M of a ring R is called a maximal ideal if whenever I is an ideal of
R such that M  I  R, then either I = M or I = R.

Maximal Ideal: Every maximal ideal of a ring with identity is a prime ideal.

1.5 Review Questions

1. Let F be a field. Show that F, with the Euclidean valuation d defined by d(a) = 1   a 
F/{0}, is a Euclidean domain.

2. Let F be a field. Define the function

d : F(x)\{0}  N  {0} : d(f(x)) = deg f(x).

Show that d is a Euclidean valuation on F[x], and hence, F[x] is a Euclidean domain.

7
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Unit 1 : The Field of Quotient Euclidean Domains

Notes3. Find all the units in

(a) Z     (b) Z
6
     (c) Z/5Z     (d) Z + IZ

4. Let R be an integral domain. Show that

(a) u is a unit in R iff u | 1.

(b) for a, b  R, a | b and b | a iff a and b are associates in R.

5. Which of the following polynomials is irreducible? Give reasons for your choice.

(a) x2 � 2x + 1  R[x] (b) x2 + x + 1  C[x]

(c) x � i  C[x] (d) x3 � 3x2 + 2x + 5  R[x].

Answers: Self Assessment

1. (a) 2. (c) 3. (a) 4. (c) 5. (b)

1.6 Further Readings

Books Dan Saracino: Abstract Algebra; A First Course.

Mitchell and Mitchell: An Introduction to Abstract Algebra.

John B. Fraleigh: An Introduction to Abstract Algebra (Relevant Portion).

Online links www.jmilne.org/math/CourseNotes/

www.math.niu.edu

www.maths.tcd.ie/

archives.math.utk.edu
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Notes Unit 2 : Principal Ideal Domains

CONTENTS
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2.5 Review Questions

2.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss the Principal Ideal Domains

 Describe theorem related to Principal Ideal Domains

Introduction

In the last unit, you have studied about field and integer domain. In this unit, you will study
about Principal Ideal Domains.

2 .1 Euclidean Domain

In earlier classes you have seen that Z and F[x] satisfy a division algorithm. There are many
other domains that have this property. Here we will introduce you to them and discuss some of
their properties. Let us start with a definition.

Definition: Let R be an integral domain. We say that a function d : R \ (0)  NU (0) is a Euclidean
valuation on R if the following conditions are satisfied:

(i) d(a)  d (ab)   a, b  R \ {0}, and

(ii) for any a, b  k, b  0 3 q, r  R such that

a = bq+r, where r = 0 or d(r) < d(b).

And then R is called a Euclidean domain.

Thus, a domain on which we can define a Euclidean valuation is a Euclidean domain.

Let us consider an example.

Example: Show that Z is a Euclidean domain.

Solution: Define, d : Z  N{0} : d(n) = |n|.

Richa Nandra, Lovely Professional University
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Unit 2 : Principal Ideal Domains

NotesThen, for any a,b  Z \ {O],

d(ab)= |ab| = |a| |b|  |a| (since | b| for b  0)

           = d(a).

i.e., d(a)  d(ab).

Further, the division algorithm in Z says that if a, b  Z, b  0, then 3 q, r  Z such that

a = bq + r, where r = 0 or 0 < |r| < |b|.

i.e:, a = bq+r, where r = 0 or d(r) < d(b).

Hence, d is a Euclidean valuation and Z is a Euclidean domain.

Let us now discuss some properties of Euclidean domains. The first property involves the
concept of units. So let us define this concept. Note that this definition is valid for any integral
domain.

Definition: Let R be an integral domain. An element a  R is called a unit (or an invertible
element) in R, if we can find an element b  R, such that ab = 1, i.e., if a has a multiplicative
inverse.

For example, both 1 and -1 are units in Z since 1.1 = 1 and (-1).(-1) = 1.

!
Caution The difference between a unit in R and the unity in R. The unity is the identity
with respect to multiplication and is certainly a unit. But a ring can have other units ton, as
you have just seen in the case of Z.

Now, can we obtain all the units in a domain? You know that every non-zero element in a field
F is invertible. Thus, the set of units of F� is F \ {0}. Let us look at some examples.

Example: Obtain all the units in F[x], where F is a field.

Solution: Let f (x)  P[ x] be a unit, Then  g(x)  F[x] such that f(x) g(x) = 1. Therefore,

deg f(x) g(x)) = deg(1) = 0, i.e.,

deg f(x) + deg g(x) = 0

Since deg f(x) and deg g(x) are non-negative integers, this equation can hold only if deg f(x) = 0
= deg g(x). Thus, f(x) must be a non-zero constant, i.e., an element of F\ {0}. Thus, the units of F[x]
are the non-zero elements of F. That is, the units of F and F[x] coincide.

Example: Find all the units in R =  a b 5|a,b Z .  

Solution: Let a b 5   be a unit in R. Then there exists

c d 5 R    such that

  a b 5 c d 5     = 1

 (ac � 5bd) + (bc + ad) 5  = 1

  ac � 5bd = 1 and bc+ad = 0

 abc � 5b2d = b and bc+ad = 0

 a(�ad) � 5b2d = b, substituting bc = �ad.

10
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Notes So, if b  0, then (a2 + 5b2) | b, which is not possible.

 b = 0.

Thus, the only units of R are the invertible elements of Z.

Theorem 1: Let R be a Euclidean domain with Euclidean valuation d. Then, for any a  R \ {0},
d(a) = d(l) iff a is a unit in K.

Proof: Let us first assume that a  R\ {0] with d(a) = d(1).

By the division algorithm in R,  q, r  R such that 1 = aq+r,

where r = 0 or d(r) < d(a) = d(1).

Now, if r  0, d(r) = d(r.1)   d(1). Thus, d(r) < d(1) can�t happen.

Thus, the only possibility for r is r = 0,

Therefore, 1 = aq, so that a is a unit.

Conversely, assume that a is a unit in R. Let b  R such that ab = 1. Then d(a)  d(ab) = d(1). But
we know that d(a) = d(a.1)  d(1). So, we must have d(a) = d(1).

Using this theorem, we can immediately solve Example, since f(x) is a unit in F[x] iff deg f(x) =
deg (1 ) = 0.

Now let us look at the ideals of a Euclidean domain.

Theorem 2: Let R be a Euclidean domain with Euclidean valuation d. Then every ideal I % of R
is of the form I = Ra for some a  R.

Proof: If I = (01, then I = Ka, where a = 0. So let us assume that I  {0}. Then I\ {0} is non-empty.
Consider the set {d(a) | a  I \{0}). The well ordering principle this set has a minimal element.
Let this be d(b), where b e I \ {0}. We will show that I = Rb.

Since b  1 and I is an ideal of R,

Rb  I. ...(1)

Now take any a  I. Since I  R and R is a Euclidean domain, we can find q, r  R such that

a = bq + r, where r = 0 or d(r) < d(b).

Now, b  I  bq  I. Also, a  I. Therefore, r = a � bq  I.

But r = 0 or d(r) < d(b), The way we have chosen d(b), d(r) < d(b) is not possible.

Therefore, r = 0, and hence, a = bq  Rb.

Thus, I  Rb. ...(2)

From (1) and (2) we get

I = Rb.

Thus, every ideal I of a Euclidean domain R with Euclidean valuation d is principal, and is
generated by a  I, where d(a) is a minimal element of the set {d(x) | x  I \ (0) }.

Tasks 1. Show that every ideal of F[x] is principal, where F is a field.

2. Using Z as an example, show that the set

3. S = (a  R\ (0) | d(a) > d(1) }  (0) is not an ideal of the Euclidean domain R
with Euclidean valuation d.

11
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Unit 2 : Principal Ideal Domains

Notes2 .2 Principal Ideal Domain (PID)

In the previous section you have proved that every ideal of F[x] is principal, where F is a field.
There are several other integral domains, apart from Euclidean domains, which have this property.
We give such rings a very appropriate name.

Definition: We call an integral domain R a principal ideal domain (PID, in short) if every ideal
in R is a principal ideal.

Note Every Euclidean domain is a PID

Thus, Z is a PID. Can you think of another example of a PID? What about Q and Q[x]? In fact, by
Theorem 2 all Euclidean domains are PIDs. But, the converse is not true. That is, every principal
ideal domain is not a Euclidean domain.

For example, the ring of all complex numbers of the form  
b

a 1 i 19 ,
2

   where a, b  Z, is a

principal ideal domain, but not a Euclidean domain.

Now let us look at an example of an integral domain that is not a PID.

Example: Show that Z[x] is not a PID,

Solution: You know that Z[x] is a domain, since Z is one. We will show that all its ideals are not
principal. Consider the ideal of Z[x] generated by 2 and x, i.e., < 2,x>. We want to show that
< 2, x >  <f(x)> for any f(x)  Z[X].

On the contrary, suppose that 3 f(x)  Z[x] such that < 2, x > = < f(x) >. Clearly, f(x)  0.

Also, 3 g(x), h(x)  Z[x] such that

2 = f(x) g(x) and x = f(x) h(x).

Thus, deg f(x) + deg g(x) = deg 2 = 0 ...(1)

and deg f(x)+deg h(x) = deg x = 1 ...(2)

(I) shows that deg f(x) = 0, i.e., f(x)  Z, say f(x) = n.

Then (2) shows that deg h(x) = 1. Let h(x) = ax+b with a,b  Z.

Then x =f(x) h(x) = n(ax+b).

Comparing the coefficients on either side of this equation, we see that na = 1 and nb = 0. Thus, n
is a unit in Z, that is, n = If I.

Therefore, 1  < f(x) > = < x,2 >. Thus, we can write

I = x (a
0
 +a

1
x+ ...+a

r
xr ) + 2(b

0
+b

1
x+ .... +b

s
xs), where a

i
,b

j
  Z   i = 0, l,.. ...., r and j = 0, 1,...,s.

Now, on comparing the constant term on either side we see that 1 = 2b
0
. This can�t be true, since

2 is not invertible in Z. So we reach a contradiction.

Thus, < x,2 > is not a principal ideal.

Thus, Z[x] is not a P.I.D.

12
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Notes We will now discuss some properties of divisibility in PIDs. If R is a ring and a,b  R, with a  0,
then a divides b if there exists c  R such that b = ac.

Definition: Given two elements a and b in a ring. R, we say that c  R is a common divisor of a
and b if c | a and c | b.

An element d  R is a greatest common divisor (g.c.d, in short) of a, b  R if

(i) d | a and d | b, and

(ii) for any common divisor c of a and b, c | d.

For example, in Z a g.c.d of 5 and 15 is 5 , and a g.c.d of 5 and 7 is 1.

We will show you that if the g.c.d of two elements exists, it is unique up to units, i.e., if d and d
are two g.c.ds of a and b, then d=ud� , for some unit u.

So now let us prove the following result.

Theorem 3: Let R be an integral domain and a, b  R. If a g.c.d of a and b exists, then it is unique
up to units.

Proof: So, let d and d� be two g.c.ds of a and b. Since d is a common divisor and d� is a g.c.d, we
get d | d� . Similarly, we get d�|d. Thus, we see that d and d� are associates in R. Thus, the g.c.d of
a and b is unique up to units.

Theorem 3 allows us to say the g.c.d instead of a g.c.d. We denote the g.c.d of a and b by (a,b).
(This notation is also used for elements of R × R. But there should be no cause for confusion. The
context will clarify what we are using the notation for.

How do we obtain the g.c.d of two elements in practice? How did we do it in Z? We looked at the
common factors of the two elements and their product turned out to be the required g.c.d.
We will use the same method in the following example.

Example: In Q[x] find the g.c.d of

p(x) = x2 + 3x � 10 and

q(x) = 6x2 � 10x � 4

Solution: By the quadratic formula, we know that the roots of p(x) are 2 and �5, and the roots of
q(x) are 2 and �1/3.

Therefore, p(x) = (x � 2) (x + 5) and q(x) = 2(x � 2) (3x + 1).

The g.c.d of p(x) and q(x) is the product of the common factors of p(x) and q(x), which is (x � 2).

Let us consider the g.c.d of elements in a PD.

Theorem 4: Let R be a PID and a, b  R. Then (a, b) exists and is of the form ax + by for some x,y
 R.

Proof: Consider the ideal <a, b>. Since R is a PID, this ideal must be principal also. Let d  R such
that <a, b> = <d>. We will show that the g.c,d of a and b is d.

Since a  <d>, d | a, Similarly, d | b.

Now suppose c  R such that c | a and c | b.

Since d E <a,b>, 3 x, y  R such that d = ax+by.

Since c | a and c | b, c | (ax+by), i.e., c | d.

13
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Unit 2 : Principal Ideal Domains

NotesThus, we have shown that d = (a,b), and d= ax+by for some x.y  R.

The fact that F[x] is a PID gives-us the following corollary to Theorem 4.

Corollary: Let F be a field. Then any two polynomials f(x) and g(x) in F[x] have a g.c.d which is
of the form a(x)f(x)+b(x)g(x) for some a(x), b(x)  F[x].

For example, (c), (x�1) = 
1
5

 (x3 � 2x2 + 6x � 5) + 
( x)

5


(x2 � 2x + 1).

Now you can use Theorem 4 to prove the following exercise about relatively prime elements in
a PID, i.e., pairs of elements whose g.c.d is 1.

Let us now discuss a concept related to that of a prime element of a domain.

Definition: Let R be an integral domain. We say that an element x  R is irreducible if

(i) x is not a unit, and

(ii) if x = ab with a,b  R, then a is a unit or b is a unit.

Thus, an element is irreducible if it cannot be factored in a non-trivial way, i.e., its only factors
are its associates and the units in the ring.

So, for example, the irreducible elements of Z are the prime numbers and their associates. This
means that an element in Z is prime iff it is irreducible.

Another domain in which we can find several examples is F[x], where F is a field. Let us look at
the irreducible elements in R[x] and C[x], i.e., the irreducible polynomials over R and C. Consider
the following important theorem about polynomials in C[x]. You have already come across this
in the Linear Algebra course.

Theorem 5 (Fundamental Theorem of Algebra): Any non-constant polynomial in C[x] has a
root in C.

Does this tell us anything about the irreducible polynomials over C? Yes. In fact, we can also
write it as:

Theorem 5: A polynomial is irreducible in C[x] iff it is linear.

A corollary to this result is:

Theorem 6: Any irreducible polynomial in R[x] has degree 1 or degree 2.

We will not prove these results here but we will use them often when discussing polynomials
over R or C. You can use them to solve the following exercise.

Let us now discuss the relationship between prime and irreducible elements in a PID.

Theorem 7: In a PID an element is prime iff it is irreducible.

Proof: Let R be a PID and x  R be irreducible. Let x | ab, where a, b  R. Suppose x I  a.

Then (x,a) = 1, since the only factor of x is itself, up to units. Thus, xb, Thus, x is prime.

Task Let R be a domain and p  R be a prime element. Show that p is irreducible.
(Hint: Suppose p = ab. Then p | ab. If p | a, then show that b must be a unit.)

14
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Notes Now, why do you think we have said that Theorem, 7 is true for a PID only? You can see that one
way is true for any domain. Is the other way true for any domain? That is, is every irreducible
element of a domain prime? You will get an answer to this question.

Example: Just now we will look at some uses of Theorem 7.

Theorem 7 allows us to give a lot of examples of prime elements of F[x]. For example, any linear
polynomial over F is irreducible, and hence prime. In the next unit we will particularly consider
irreducibility (and hence primeness) over Q[x].

Now we would like to prove a further analogy between prime elements in a PID and prime
numbers, namely, a result analogous. For this we will first show g very interesting property of
the ideals of a PID. This property called the ascending chain condition, says that any increasing
chain of ideals in a PID must stop after a finite number of steps.

Theorem 8: Let R be a PID and I
1
,I

2
,.. .. .. be an infinite sequence of ideals of R satisfying.

1
1
  1

2
 ....

Then 3 m  N such that I, = I
m+1

 = I
m+2

 = ....

Proof: Consider the set I = I,  I
2
  ... = n

m 1

I




 . We will prove that I is an ideal of R.

Firstly, I  , since I
1
   and I

1
  I.

Secondly, if a,b  I, then a  I, and b  I
s
 for some r,s  N.

Assume r  s. Then I
s
  I,. Therefore, a, b  I,. Since I, is an ideal of R, a�b  I,  I. Thus,

a�b  I   a, b  I.

Finally, let x  R and a  I. Then a  I, for some r  N.

 xa  I,  I. Thus, whenever x  R and a  I, xa  I.

Thus, I is an ideal of R. Since R is a PID, I = <a> for some a  R. Since a  I, a  I, for some m  N.

Then I  I,. But I,  I. So we. see that I = I
m

.

Now, I,  I
m+1

 
m
Therefore, I, = I

m+1

Similarly, I, = I
m+2

 and so on. Thus, Im = I
m+1

 = I
m+2

 = ...

Now, for a moment let us go back, where we discussed prime ideals. Over there we said that an
element p  R is prime iff < p > is a prime ideal of R. If R is a PID, we shall use Theorem 7 to make
a stronger statement.

Theorem 9: Let R be a PID. An ideal < a > is a maximal ideal of R iff a is a prime element of R.

Proof: If < a > is a maximal ideal of R, then it is a prime ideal of R. Therefore, a is a prime element
of R.

Conversely, let a be prime and let I be an ideal of R such that < a >   I. Since R is a PID, I = < b

> for some b  R. We will show that b is a unit in R.

< b > = R, i.e., I = R.

Now, < a >  < b >  a = bc for some c  R. Since a is irreducible, either b is an associate of a or
b is a unit in R. But if b is an associate of a, then <b> = <a>, a contradiction. Therefore, b is a unit
in R. Therefore, I = R.
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NotesThus, <a> is a maximal ideal of R.

What Theorem 9 says is that the prime ideals and maximal Ideals coincide in a PID.

Now, take any integer n. Then we can have n = 0, or n = ± 1, or n has a prime factor. This property
of integers is true for the elements of any PID, as you will see now.

Theorem 10: Let R be a PID and a be a non-zero non-invertible element of R. Then there is some
prime element p in R such that a.

Proof: If a is prime, take p = a. Otherwise, we can write a =albl, where neither a, nor b
1
 is an

associate of a. Then < a >   < a
1
 >. If a

1
 is prime, take p = a

1
. Otherwise, we can write a

1
 = a

2
b

2
,

where neither a
2
 nor b

2
 is an associate of a,. Then <a

1
>   < a

2
 >. Continuing in this way we get

an increasing chain

<a>   <a
1
>   <a

2
>   ...

By Theorem 8, this chain stops with some < a, >. Then a, will be prime, since it doesn�t have any
non-trivial factors. Take p = a,, and the theorem is proved.

And now we are in a position to prove that any non-zero non-invertible element of a PID can be
uniquely written as a finite product of prime elements (i.e., irreducible elements).

Theorem 11: Let Rt be a PID. Let a  R such that a  0 and a is not a unit. Then a = p
1
,
 
p

2
....p

r
, where

p
1
,p

2
.... p

r
, are prime elements of R.

Proof: If a is a prime element, there is nothing to prove. If not, then P
1
 | a, for some prime p

1
 in

R, by Theorem 10. Let a = p
l
a

l
. If p

1
a

1
. If a

1
 is a prime, we are through. Otherwise P

2
 | a, for some

prime p
2
 in R. Let a

1
, = p

2
a

2
. Then a = p

1
p

2
a

2
. If a

2
 is a prime, we are through. Otherwise we

continue the process. Note that since al is a non-trivial factor of a, <a>   <a
1
>. Similarly, <a

1
> 

< a
2
 >. So, as the process continues we get an increasing chain of ideals,

<a>   <a
1
>   <a

2
>   ...

in the PID R. Just as in the proof of Theorem 10, this chain ends at < a, > for some m  N, and a,
is irreducible.

Hence, the process stops after m steps, i.e., we can write a = p
1
p

2
 ... p

m
, where p

i
 is a prime element

of R   i = 1, .... m.

Thus, any non-zero non-invertible element in a PID can be factorised into a product of primes.
What is interesting about this factorisation is the following result that you have already proved
for Z in Unit 1.

Theorem 12: Let R be a PID and a  0 be non-invertible in R. Let a = p
1
p

2
....p

n 
= q

1
q

2
....q

m
, where

p
i
 and q

j
 are prime elements of R. Then n = m and each p

i
 is an associate of some q

j
 for 1  i | n,

1  j | m.

Before going into the proof of this result, we ask you to prove a property of prime elements that
you will need in the proof.

Task Use induction on n to prove that if p is a prime element in an integral domain
R and if p | a

1
a

2 
... a, (where a

l
, a

2
,.. .., a,  R), then p | a

i
, for some i = 1, 2. .... n.

Now let us start the proof of Theorem 12.
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Notes Proof: Since p
1
p

2
, ...p, = q

1
q

2
 ... ,.q

m
, p

1
 | q

1
q

2
. ... q

m
,.

Thus, p
1
 | q

j
 for some j = 1. .... ..,m. By changing the order of the q

i
, if necessary, we can assume

that j = 1, i.e., p
1 
| q. Let q

1
 = p

l
u

l
. Since q

1
 is irreducible, u

1
 must be a unit in R. So p

1
 and q

1
 are

associates. Now we have

p
1
p

2
 = P

n
 (p

1
u

1
)q

2
....q

m
.

Cancelling p
1
 from both sides, we get

p
2
p

3
...p

n
 = u

1
q

2
...,q

m
.

Now, if m > n, we can apply the same process to p
2
, p

3
, and so on.

Then we will get

1 = u
1
u

2
 .... u

n
 q

n+1
 .... q

m
.

This shows that q
n+1

 is a unit. But this contradicts the fact that q
n+1

 is irreducible.

Thus, m  n.

Interchanging the roles of the ps and qs and by using a similar argument, we get n  m.

Thus, n = m.

During the proof we have also shown that each pi is an associate of some q
j
, and vice versa.

What Theorem 12 says is that any two prime factorisations of an element in a PID are identical,
apart from the order in which the factors appear and apart from replacement of the factors by
their associates.

Thus, Theorems 11 and 12 say that every non-zero element in a PID R, which is not a unit, can be
expressed uniquely (up to associates) as a product of a finite number of prime elements.

For example, x2 � 1  R[x] can be written as (x-1)(x+1) or (x-1) (x-1) or [2(x-tl)] [2(x-1)] in R[x].

The property that we have shown for a PID in Theorems 11 and 12 is true for several other
domains also. Let us discuss such rings now.

Self Assessment

1. An integral domains R a .................. if every ideal in R is a principle ideal.

(a) principle ideal domain (b) unique ideal domain

(c) special ideal domain (d) range ideal domain

2. g.c.d. represent ..................

(a) greatest common divisor (b) greatest common dividend

(c) greatest common domain (d) greatest commutated domain

3. Let R be .................. and a, b  R, if a g.c.d. of a and b exists, then it is unique up to unit.

(a) domain and range (b) integral domain

(c) UID (d) SID

4. PID stands for ..................

(a) principal integral domain (b) pair ideal domain

(c) principle ideal domain (d) principle ideal divisor
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Notes5. Any irreducible polynomials R[x] has degree 1 or define ..................

(a) n (b) 2

(c) 4 (d) 5

2 .3 Summary

 The definition and examples of a Euclidean domain.

 Z any field and any polynomial ring over a field are Euclidean domains.

 Units, associates, factors, the g.c.d. of two elements, prime elements and irreducible elements
in an integral domain.

 The definition and examples of a principal ideal domain (PID).

 Every Euclidean domain is a PID, but the converse is not true.

Thus, Z, F and F[x] are PIDs, for any field F.

 The g.c.d. of any two elements a and b in a PID R exists and is of the form ax + by for some
x, y  R.

 The Fundamental Theorem of Algebra: Any non-constant polynomial over C has all its
roots in C.

2 .4 Keywords

Euclidean Domain: An integral domain D is called a Euclidean domain if for each non-zero
element x in D there is assigned a non-negative integer (x) such that

(i) (ab) (b) for all non-zero a,b in D, and

(ii) for any non-zero elements a,b in D there exist q,r in D such that a = bq + r, where either
r = 0 or (r) < (b).

UID: Let R be a commutative ring with identity. A non-zero element p of R is said to be
irreducible if

(i) p is not a unit of R, and

(ii) if p = ab for a,b in R, then either a or b is a unit of R.

Any principal ideal domain is a unique factorization domain.

2 .5 Review Questions

1. Show that a subring of a PID need not be PID.

2. Will any quotient ring of a PID be a PID? Why? Remember that a PID must be an integral
domain.

3. Let R be an integral domain. Show that

(a) u is a unit in R iff u | 1.

(b) for a, b  R, a | b and b | a iff a and b are associates in R.
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Notes 4. Find the g.c.d. of

(a) 2 and 6 in Z/ 8 ,  (b) x2 + 8x + 15 and x2 + 12x + 35 in Z[x],

(c) x3 � 2x2 + 6x � 5 and x2 � 2x + 1 in Q[x].

5. Let R be a PID and a, b, c  R such that a (bc. Show that if (a, b) = 1, then a | c.

(Hint: By Theorem 4,  x, y  R such that ax + b = 1.)

Answers: Self Assessment

1. (a) 2. (a) 3. (b) 4. (c) 5. (b)

2 .6 Further Readings

Books Dan Saracino: Abstract Algebra; A First Course.

Mitchell and Mitchell: An Introduction to Abstract Algebra.

John B. Fraleigh: An Introduction to Abstract Algebra (Relevant Portion).

Online links www.jmilne.org/math/CourseNotes/

www.math.niu.edu

www.maths.tcd.ie/

archives.math.utk.edu
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Objectives

After studying this unit, you will be able to:

 Discuss unique factorization domains

 Explain theorems of UID

Introduction

In this unit, we shall look at special kinds of integral domains. These domains were mainly
studied with a view to develop number theory. Let us say a few introductory sentences about
them.

You saw that the division algorithm holds for F[x], where F is a field. You saw that it holds
for Z. Such integral domains are called Euclidean domains.

We shall look at some domains which are algebraically very similar to Z. These are the principal
ideal domains, so called because every ideal in them is principal.

Finally, we shall discuss domains in which every non-zero non-invertible element can be uniquely
factorised in a particular way. Such domains are very appropriately called unique factorisation
domains. While discussing them, we shall introduce you to irreducible elements of a domain.

While going through the unit, you will also see the relationship between Euclidean domains,
principal ideal domains and unique factorisation domains.

3.1 Unique Factorisation Domain (UFD)

Here we shall look at some details of a class of domains that include PDs.

Definition: We call an integral domain R a unique factorisation domain (UFD, in short) if every
non-zero element of R which is not a unit in R can be uniquely expressed as a product of a finite
number of irreducible elements of R.

Richa Nandra, Lovely Professional University 3
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Notes Thus, if R is a UFD and a  R, with a  0 and a being non-invertible, then

(i) a can be written as a product of a finite number of irreducible elements, and

(ii) if a = p
1
p

2
.. ..p

n
 = q

1
q

2
 ..... q

m
, be two factorisations into irreducibles, then n = m and each

p
i
 is an associate of some q

j
, where 1 | i | n, 1  j  m.

Thus, F[x] is a UFD for any field F.

Also, since any Euclidean domain is a PID, it is also a UFD. You directly proved that Z is a UFD.
Why don�t you go through that proof and then try and solve the exercises.

Now we give you an example of a domain which is not a UFD (and hence, neither a PID nor a
Euclidean domain).

ED implies PID implies UFD

Theorem 1: Every Euclidean domain is a principal ideal domain.

Proof: For any ideal l, take a nonzero element of minimal norm b. Then l must be generated by
b, because for any a  l we have a = bq + r for some q, r with N(r) < N(b), and we must have
r = 0 otherwise r would be a nonzero element of smaller norm than b, which is a contradiction.

Fact: If R is a UFD then R[x] is also a UFD.

Theorem 2: Every principal ideal domain is a unique factorization domain.

Proof: We show it is impossible to find an infinite sequence a
1
, a

2
,... such that a

1
 is divisible by a

i+1

but is not an associate. Once done we can iteratively factor an element as we are guaranteed this
process terminates.

Suppose such a sequence exists. Then the a
i
 generate the sequence of distinct principal ideals (a

1
)

(a
2
)  ... The union of these ideals is some principal ideal (a). So a  (a

n
) for some n, which

implies (a
i
) = (a

n
) for all i  n, a contradiction.

Uniqueness: Each irreducible p generates a maximal ideal (p) because if (p)  (a)  R then p = ab
for some b  R implying that a or b is a unit, thus (a) = (p) or (a) = R. Thus R/(p) is a field. Next
suppose a member of R has two factorizations

p
1
 ... p

r
 = q

1
 ... q

s

Consider the ideals (p
i
) . (q

i
). Relabel so that p

1
 generates a minimal ideal amongst these

(in other words, (p
1
) does not strictly contain another one of the ideals). Now we show (p

1
) = (q

i
)

for some i. Suppose not. Then (p
1
) does not contain any q

i
, thus q

i
 is nonzero modulo (p

1
) for

all i, which is a contradiction because the left-hand side of the above equation is zero modulo
(p

1
).

Relabel so that (p
1
) = (q

1
). Then p

1
 = uq

1
 for some unit u. Cancelling gives up

2
 ... p

r
 = q

2
 ... q

z
. The

element up
2
 is also irreducible, so by induction we have that factorization is unique.

The converse of the above theorem is not always true. Consider the ring [x]. The ideal (2, x) is
not principal: suppose (2, x) = (a) for some a. Since this ideal contains the even integers, a must
be some integer (multiplication never reduces the degree of an element), and in fact it must be
(an associate of) 2. But (2) does not contain polynomials with odd coefficients, so (2, x) = (2).

Example: Show that Z[ 5] {a b 5|a,b Z}      is not a UFD.

Solution: Let us define a function

f : Z [ 5 ]  N U {0} by f(a+b 5 ) = a2+ 5b2.
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NotesThis function is the norm function, and is usually denoted by N.

You can check that this function has the property that

f() = f() f()  , ,  Z [ 5 ].

Now, 9 has two factorisations in Z[ 5],  namely,

9 = 3.3 = ( 2 + �5  ) ( 2 � �5  ).

You have already shown that the only units of Z [ 5 ] are 1 and �1. Thus, no two of 3, 2+ 5

and 2 � 5  are associates of each other.

Also, each of them is irreducible. For suppose any one of them, say 2 + 5 , is reducible. Then

2+ 5  =  for some non-invertible a,  Z[ 5 ].

Applying the function f we see that

f ( 2 + �5  )  = f() f(),

i.e., 9 = f() f().

Since f(), f()  N and a,  are not units, the only possibilities are f() = 3 = f().

So, if a = a + b 5 , then a2 + 5b2 = 3.

But, if b  0, then a2 + 5b2 5; and if b = 0, then a2 = 3 is not possible in Z. So we reach a

contradiction. Therefore, our assumption that 2 + 5  is reducible is wrong. That is, 2 + 5  is
irreducible.

Similarly, we can show that 3 and 2� 5  are irreducible. Thus, the factorisation of 9 as a product

of irreducible elements is not unique. Therefore, Z[ 5 ] is not a UFD.

From this example you can also see that an irreducible element need not be a prime element.

For example, 2 + 5  is irreducible and 2+ 5 |3.3, but 2+ 5 | 3 . Thus, 2 + 5  is not a
prime element.

Now let us discuss some properties of a UFD. The first property says that any two elements of a
UFD have a g.c.d. and their g.c.d. is the product of all their common factors. Here we will use the
fact that any element a in a UFD R can be written as

1 2 nr r r
1 2 na p p ...p

where the pis are distinct irreducible elements of R. For example, in Z[x] we have

x3 � x2 � x + 1 = (x � 1) (x + l) (x � 1 ) = (x � 1)2 (x + 1).

So, let us prove the following result.

Theorem 3: Any two elements of a UFD have a g.c.d.

Proof: Let R be a UFD and a.b  R.

Let 1 2 n 1 2 nr r r s s s
1 2 n 1 2 na p p ...p and b p p ...p 

3
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Notes where p
1
, p

2
, ..., p

n
 are distinct irreducible elements of R and r

i
 and s

i
 are non-negative integers 

i = 12, ..., n.

(If some p
i
 does not occur in the factorisation of a, then the corresponding r

i
 = 0. Similarly, if

some p
i
 is not a factor of b, then the corresponding s

i
 = 0. For example, take 20 and 15 in Z. Then

20 = 22 × 30 ×  5 and 15 = 20 × 31 × 51.)

Now, let t, = min (r
i
, s

i
) i = 1, 2 ,....,n .

Then 1 2 nt t t
1 2 nd p p ...p  divides a as well as b, since t

i
  r

i
 and t

i
  s

i 
  i = 1, 2, ...., n.

Now, let c | a and c | b. Then every irreducible factor of c must be an irreducible factor of a and
of b, because of the unique factorisation property.

Thus, 1 2 nm m m
1 2 nc p p ...p ,  where m

i
  r

i
 and m

i
  s

i
  i = 1,2, ...,n . Thus, m

i
  t

i 
  i = 1,2 ,..., n.

Therefore, c | d.

Hence, d = (a, b).

Over there we found a non-UFD in which an irreducible element need not be a prime element.
The following result says that this distinction between irreducible and prime elements can only
occur in a domain that is not a UFD.

Theorem 4: Let R be a UFD. An element of R is prime iff it is irreducible.

Proof: We know that every prime in R is irreducible. So let us prove the converse.

Let a  R be irreducible and let a | bc, where b, c  R.

Consider (a,b). Since a is irreducible, (a,b) = 1 or (a,b) = a.

If (a,b) = a, a| b.

If (a,b) = I, then d| b . Let bc = ad, where d  R.

Let 1 2 m 1 2 nr r r s s s
1 2 m 1 2 nb p p ...p , and c q q ...q  , be irreducible factorisations of b and c. Since bc = ad

and a is irreducible, a must be one of the pis or one of the q
j
s. Since a | b, a  p

i
 for any i.

Therefore, a = q
j
 for some j. That is, a | c.

Thus, if (a,b) = 1 then alc.

So, we have shown that a/ bc  a | b or a | c.

Hence, a is prime.

Theorem 5: Let R be a UFD. Then R[x] is a UFD.

We will not prove this result here, even though it is very useful to mathematicians. But let us
apply it. You can use it to solve the following exercises.

Lemma: Let D be a unique factorization domain, and let p be an irreducible element of D. If a,b
are in D and p|ab, then p|a or p|b.

Definition: Let D be a unique factorization domain. A non-constant polynomial

f(x) = a
n
 xn + a

n-1
 xn-1 + · · · + a

1
 x + a

0
     in D[x]

is called primitive if there is no irreducible element p in D such that p | a
i
 for all i.
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NotesLemma: The product of two primitive polynomials is primitive.

Lemma: Let Q be the quotient field of D, and let f(x) be a polynomial in Q[x]. Then f(x) can be
written in the form f(x) = (a/b)f*(x), where f*(x) is a primitive element of D[x], a,b are in D, and
a and b have no common irreducible divisors. This expression is unique, up to units of D.

Lemma: Let D be a unique factorization domain, let Q be the quotient field of D, and let f(x) be
a primitive polynomial in D[x]. Then f(x) is irreducible in D[x] if and only if f(x) is irreducible in
Q[x].

Theorem 6: If D is a unique factorization domain, then so is the ring D[x] of polynomials with
coefficients in D.

Corollary: For any field F, the ring of polynomials

F[x
1
 , x

2
 , ... , x

n
]

in n indeterminates is a unique factorization domain.

For example, the ring Z [ 5  ] is not a unique factorization domain.

Self Assessment

1. If R is a UFD and a  R, with a  0 and being a .................., then a can be written as a product
of finite number of irreducible elements.

(a) invertible (b) non-invertible

(c) external (d) infinite

2. Any euclidean domains is a PID, it is also a ..................

(a) integral domain (b) UFD

(c) SFD (d) Ideal

3. Let R be a UFD. Then R(x) is a ..................

(a) UFD (b) SFD

(c) PID (d) Special range domain

4. In a UFD an element is prime iff it is ..................

(a) reducible (b) finite

(c) irreducible (d) infinite

5. Any two elements in a .................. have g.c.d.

(a) SFD (b) PID

(c) UFD (d) Domain

3.2 Summary

 In a PID every prime ideal is a maximal ideal.

 The definition and examples of a unique factorisation domain (UFD).

 Every PID is a UFD, but the converse is not true. Thus, Z, F� and F[x] are UFDs, for any
field F.

3
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Notes  In a UFD (and hence, in a PID) an element is prime iff it is irreducible.

 Any two elements in a UFD have a g.c.d.

 If R is a UFD. then so is K[x].

3.3 Keyword

Unique Factorisation Domain: We call an integral domain R a unique factorisation domain
(UFD, in short) if every non-zero element of R which is not a unit in R can be uniquely expressed
as a product of a finite number of irreducible elements of R.

3.4 Review Questions

1. Directly prove that F[x] is a UFD, for any field F.

(Hint: Suppose you want to factorise f(x). Then use induction on deg f(x)).

2. Give two different prime factorisations of 10 in Z.

3. Give two different factorisations of 6 as a product of irreducible elements in Z[ 5].

4. Give an example of a UFD which is not a PID.

5. If p is an irreducible element of a UFD R, then is it irreducible in every quotient ring of R?

6. Is the quotient ring of a UFD a UFD? Why?

7. Is a subring of a UFD a UFD? Why?

Answers: Self Assessment

1. (b) 2. (b) 3. (a) 4. (c) 5. (c)

3.5 Further Readings

Books Dan Saracino: Abstract Algebra; A First Course.

Mitchell and Mitchell: An Introduction to Abstract Algebra.

John B. Fraleigh: An Introduction to Abstract Algebra (Relevant Portion).

Online links www.jmilne.org/math/CourseNotes/

www.math.niu.edu

www.maths.tcd.ie/

archives.math.utk.edu

25

http://www.jmilne.org/math/CourseNotes/
http://www.math.niu.edu
http://www.maths.tcd.ie/


LOVELY PROFESSIONAL UNIVERSITY

Unit : Polynomial Rings

NotesUnit 4 : Polynomial Rings

CONTENTS

Objectives
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4.2 Some Properties of R[x]

4.3 Summary

4.4 Keywords

4.5 Review Questions

4.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Identify polynomials over a given ring

 Prove and use the fact that R [x], the set of polynomials over a ring R, is a ring

 Relate certain properties of R[x] to those of R

Introduction

In the earlier units, you must have come across expressions of the form x+1, x2+2x+1, and so on.
These are examples of polynomial. You have also dealt with polynomials in the course of Linear
Algebra. In this unit, we will discuss sets whose elements are polynomials of the type a

0
 + a, x +

... + a
n
xn, where a

0
, a

1
,......, a,, are elements of a ring R. You will see that this set, denoted by R [x],

is a ring also.

You may wonder why we are talking of polynomial rings in a block on domains and fields. The
reason for this is that we want to focus on a particular case, namely, R [x], where R is a domain.
This will turn out to be a domain also, with a lot of useful properties. In particular, the ring of
polynomials over a field satisfies a division algorithm, which is similar to the one satisfied by
Z. We will prove this property and use it to show how many roots any polynomial over a field
can have.

4.1 Ring of Polynomials

As we have said above, you may already be familiar with expressions of the type 1 + x, 2 + 3x +
4x2, x5-1, and so on. These are examples of polynomials over the ring Z. Do these examples
suggest to you what a polynomial over any ring R is ? Let�s hope that your definition agrees
with the following one.

Definition: A polynomial over a ring R in the indeterminate x is an expression of the form

a
0
x0 + a

1
x1 + a

2
x2 + ... + a

n
xn,

Richa Nandra, Lovely Professional University 4

26



LOVELY PROFESSIONAL UNIVERSITY

Notes where n is a non-negative integer and a
0
, a,, ..., a

n
  R.

While discussing polynomials we will observe the following conventions. We will

(i) write x0 as 1, so that we will write a
0
 for a

0
x0,

(ii) write x1 as x,

(iii) write xm instead of 1 .xm (i.e., when a
m

 = l),

(iv) omit terms of the type O.xm.

Thus, the polynomial 2 + 3x2 � 1.x3 is 2x0 + 0.x1 + 3x2 + (�1)x3.

Henceforth, whenever we use the word polynomial, we will mean a polynomial in the

indeterminate x. We will also be using the shorter notation 
n

i
i

i 0

a x


  for the polynomial

a
0
 + a

1
x+ ... + a

n
xn.

Let us consider a few mox basic definitions related to a polynomial.

Definition: Let a
n
 + a, x + ... + a, xn be a polynomial over a ring R. Each of a

0
 ,a

l
, . . ., a, is a coefficient

of this polynomial. If a,  0, we call a, the leading coefficient of this polynomial.

If a
1
 = 0 = a

2
 = ... = a

n
 , we get the constant polynomial, a

0
. Thus, every element of R is a constant

polynomial.

In particular, the constant polynomial 0 is the zero polynomial.

It has no leading coefficient.

Now, there is a natural way of associating a non-negative integer with any non-zero polynomial.

Definition: Let a,, + a, x + . . . + a,, xn be a polynomial over a ring R, where a,  0. Then we call the
integer n the degree of this polynomial, and we write

n
i

i
i 0

deg a x n,of a, , 0.


 
  

 


We define the degree of the zero polynomial to be � . Thus, deg 0 = �.

Let us consider some examples.

(i) 3x2 + 4x + 5 is a polynomial of degree 2, whose coefficients belong to the ring of integers
Z. Its leading coefficient is 3.

(ii) x2 + 2x4 + 6x + 8 is a polynomial of degree 4, with coefficients in Z and leading coefficient
2. (Note that this polynomial can be rewritten as 8 + 6x + x2 + 2x4.)

(iii) Let R be a ring and r  R, r  0. Then r is a polynomial of degree 0, with leading coefficient
r.

Before giving more examples we would like to set up some notation.

Notation: We will denote the set of all polynomials over a ring R by R[x]. (Please note the use of
the square brackets [ ]. Do not use any other kind of brackets because R [x] and R (x) denote
different sets.)

Thus, R[x] = 
n

i
1 i

i 0

a x a R i 0, 1,...n, where n 0, n Z .


 
     

 


We will also often denote a polynomial a
0
 + a

1
 x + . . . + a

n
 xn by f(x), p (x), q(x), etc.
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Notes
Thus, an example of an element from Z

4
 [x] is f(x) = 2 x2 + 3 x + i.

Here deg f(x) = 2, and the leading coefficient of f(x) is 2 .

Now, for ring R, we would like to see if you can define operations on the set R [x] so that it
becomes a ring. For this purpose we define the operations of addition and multiplication of
polynomials.

Definition: Let f(x) = a,, + a1x + .. + a, xn and g (x) = b
0
 + b, x + .. + b

m
xm be two polynomials in

R[X]. Let us assume that m 2 n. Then their sum f(x) + g(x) is given by

f(x) + g(x) = (a,, + b
0
) + (a, + b

1
)x + .. + (a

n
+ b,) x

n
 + b

n+1
 xn+l .. + b

m
xm.

For example, consider the two polynomials p(x), q(x).in Z[x] given by

p(x) = 1 + 2x + 3x2, q(x) = 4 + 5x + 7x3

Then

p(x) + q(x) = (1+4) + (2+5)x + (3+0) x2 + 7x3 = 5 + 7x + 3x2 + 7x3.

Note that p (x) + q (x)  Z [X] and that

From the definition given above, it seems that deg (f(x)+g(x)) = max (deg f (x), deg g (x)). But this
is not always the case. For example, consider p(x) = 1 + x2 and q (x) = 2 + 3x � x2 in Z [X].

Then p(x) + q(x) = (1+2) + (0+3)x + (1-1)x2 = 3 a 3x.

Here deg (p(x) + q (x)) = 1 < max (deg p(x), deg q(x)).

So, what we can say is that

deg (f(x) + g(x))  max (deg f(x), deg g(x))

  f(x), g(x)  R[x].

Now let us define the product of polynomials.

Definition: If f(x) = a,, + a
1
x + .. + a, xn and g(x) = b

0
 + b, x + .. + b

m
xm are two polynomials in R [x],

we define their product f(x). g(x) by

f(x) . g(x) = c
0
 a c

1
x +.. + c

m+n
xm+n

where c
1
 = a

1
b

0
, + a

i-1 
b

1
 + .... a

0
b

i 
  i = 0,l ,... ; m + n.

Note that a
i
 = 0 for i > n and b

i
 = 0 for i > m,

As an illustration, let us multiply the following polynomials in Z[x] :

p(x) = 1 � x + 2x3, q(x) = 2 + 5x + 7x2.

Here a, = 1, a, = �1, a
2
 = 0, a

3 
= 2, b

0
 = 2, b, = 5, b

2
 = 7.

Thus, p(x) q(x) = 
5

i
i

i=0

 c x ,  where

c
0
 = a

0
b

0
 = 2,

c
1
 = a

1
b

0
 + a

0
b

1
 = 3,

c
2
 = a

2
b

0
 + a

l
 b

1
 + a

0
b

2
 = 2,

c
3
 = a

3
b

0
 + a

2
b

1 
+ a

1
b

2 
+ a

0
b

3
 = �3 (since b

3
 = 0).

4
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Notes c
4
 = a

4
b

0
 + a

3
b

1
 + a

2
b

2
 +a

1
b

3
 + a

0
b

4
 = 10 (since a

4
 = 0 = b

4
).

c
5
 = a

5
b

0
 +a

4
b

1
 + a

3
b

2
 + a

2
b

3
 +a

1
b

4
 + a

0
b, = 14 (since a

5
 = 0 = b

5
).

So p(x). q(x) = 2 + 3x +2x2 - 3x3 + 10x4 + 14x5.

Note that p(x). q(x)  Z[X], and deg (p(x) q(x)) = 5 = deg p (x) + deg q (x).

As another example, consider

2 6p(x) 1 2x,q(x) 2 3x Z [x].    

Then, p(x). q(x) = 2 3 22 + 4x + 3x  + 6x  = 2 + 4x + 3x .

Here, deg (p(x). q(x)) = 2 < deg p (x) + deg q (x) (since deg p (x) = 1, deg q (x) = 2).

In the next section we will show you that

deg (f(x) g(x))  deg f(x) + deg g(x)

By now you must have got used to addition and multiplication of polynomials. We would like
to prove that for any ring R, R[x] is a ring with respect to these operations. For this we must note
that by definition, + and . are binary operations over R [x].

Now let us prove the following theorem. It is true for any ring, commutative or not,

Theorem 1: If R is a ring, then so is R[x], where x is an indeterminate.

Proof: We need to establish the axioms R1 � R6 of Unit 14 for (R[x], + , .).

(i) Addition is Commutative: We need to show that

p(x) + q(x) = q(x) + p(x) for any p(x) , q(x)  R [x].

Let p (x) = a
0
 + a

1
x + ... + a,xn, and

q(x) = b
0
 + b

1
x + ... + b

m
xm be in R[x].

Then, p (x) + q(x) = c
0
 + c

1
x + ... + c

1
xt,

where c
i
 = a

i
 + b

i
 and t = max (m,n).

Similarly,

q(x) + p(x) = d
0
 + d

1
x + ... + d

s
xs,

where d
i
 = b

i
 + a

i
, s = max (n, m) = t.

Since addition is commutative in R, c, =d
i
 i  0.

So we have

p(x) + q(x) = q(x) + p(x).

(ii) Addition is Associative: Again, by using the associativity of addition in R, we can show
that if p(x), q(x), s(x)  R[x], then

{p(x) + q (x)} + s(x) = p(x) + {q(x) + s(x)}.

(iii) Additive Identity: The zero polynomial is the additive identity in R [x]. This is because,
for any p(x) = a

0
 + a, x+ ... + a

n
xn

 
 R[x],

0 + p(x)  = (0 + a,) + (0 +a
1
)x + ... +(0 + a

n
)xn

= a
0
 + a

l
 x + ... +a

n
xn

= p(x)
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Notes(iv) Additive Inverse: For p (x) = a, + a
1
x +... + a

n
xn  R[x], consider the polynomial �p(x) =

�a, �a
1
x � ... �a

n
xn, � a

i
 being the additive inverse of ai in R. Then

p(x) + (�p(x))  = (a,, �a,,) + (a
1
 � a

1
) x + ... + (a

1
 � a

n
)xn

= 0 + 0.x + 0.x2+ ... + 0.xn

= 0.

Therefore, � p(x) is the additive inverse of p(x).

(v) Multiplication is Associative:

Let p(x) =a, +a
1
x + ... +a

n
xn,

q(x) = b
0
 + b

1
x+ ... +b

m
xm,

and t (x) = d
0
 +d

1
x + ... + d

r
xr, be in R [x]

Then

p(x) . q(x) = c
0
 + c

1
 x + .. . + c

s
xs

,
 where s = m + n and

ck = a
k
b

0
 + a

k�1
b

1
 + ... + a

0
b

k
 k = 0,l, ...,s .

Therefore,

{p(x) . q(x)} t (x) = e
0
 + e

1
 x + ... +e

1
xt,

where t = s + r = m+n+r and

e
k
 = c

k
d

0
 + c

k-1
d

1
 + ... + c

0
d

k

    = (a
k
b

0
 + ... + a

0
b

k
)d

0
 + (a

k-1
,b

0
 + ... + a

0
b

k-1
) d

1
 + ... + a

0
b

0
d

k
.

Similarly, we can show that the coefficient of xk (for any k  0) in p(x) (q (x) t(x))

is a
k
b

0
d

0 
+ a

k-1
, (b

1
d

0
 + b

0
d

1
) + ... + a

0
(b

k
d

0 
+ b

k-1
, d

1
 + ... + b

0
d

k
)

= e
k
, by using the properties of + and . in R.

Hence, {p(x).q(x)} . t(x) = p(x) . {q (x). t (x)}

(vi) Multiplication Distributes over Addition:

Let p(x) = a
0
 +a

1
x + ... + a

n
x

n
,

q(x) = b
0
 + b

l
x + ...+ b

m
xm

and t(x) = d
0
 + d, x + . . . + d

r
 xr be in R[x],

The coefficient of xk in p (x). (q(x) + t (x)) is

c
k
 = a

k
 (b

0
 + d

0
) + a(b

1
 + d

1
) + (b

1
 + d

1
) + ... + a, (b

k
 + d

k
).

And the coefficient of xk in p (x) q (x) + p (x) t(x) is

(a
k
b

0 
+ a

k-1
b

1
 + ... + a

0
b

k
) + (a

k
d

0
 + a

k-1
d

1
 + ... +a

0
d

k
),

= a
k
(b

0 
+ d

0
) +a

k-1
 (b + d

1
) + ... +a

0
 (b

k
 + d

k
) = c

k

This is true  k  0.

Hence, p (x) . (q(x) + t (x) ] = p (x) . q(x) + p (x). t.(x).

Similarly, we can prove that

{q(x)+t(x).p(x)=q(x).p(x)+t(x).p(x)

Thus, R [x] is a ring.

4
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Notes Note that the definitions and theorem in this section are true for any ring. We have not restricted
ourselves to commutative rings. But, the case that we are really interested in is when R is a
domain. In the next section we will progress towards this case.

4 .2 Some Properties of R[x]

In the previous section you must have realised the intimate relationship between the operations
on a ring R and the operations on R [x]. The next theorem reinforces this fact.

Theorem 2: Let R be a ring.

(a) If R is commutative, so is R [x].

(b) If R has identity, so does R [x].

Proof: (a) Let p (x) = a
0
 + a, x + .. . + a,xn and

q(x) = b
0
 + b

1
x + ... + b

m
x

m
 be in R[x].

Then (x) . q(x) = c
0
 + c

1
 x + .. . + c

s
xs, where s = m + n and

c
k
 = a

k
b

0
 + a

k-1
 b

1
 +. . .+ a

0
b

k

= b
k
a

0
 + b

k-1
a

1
4 ... + b

1
a

k-1
 + b

0
a

k
, since both addition and multiplication are commutative in R.

= coefficient of xk in q (x) p(x).

Thus, for every i  0 the coefficients of x1 in p(x) q(x) and q(x) p(x) are equal

Hence, P(x) q(x) = q(x) p(x).

(b) We know that R has identity 1. We will prove that the constant polynomial 1 is the identity
of R [X]. Take any

p(x) = a
0
 + a

1
x + ... + a

n
xn  R[x].

Then 1.p(x) = c
0
 + c

1
x + ... + c

n
xn (since deg 1 = 0),

where c
k
 = a

k
 , 1 + ak

-1
 . 0 + a

k-2
 . 0 + ... + a

0
.0 = a

k

Thus, 1, p(x) = p (x).

Similarly, p(x). 1 = p(x).

This shows that 1 is the identity of R[x]. ,

In the following exercise we ask you to check if the converse of Theorem 2 is true.

Now let us explicitly state a result which will help in showing us that R is a domain iff R [x} is a
domain, This result follows just from the definition of multiplication of polynomials.

Theorem 3: Let R be a ring and f (x) and g (x) be two non-zero elements of R [x]. Then deg (f(x) g
(x))  deg f(x) + deg g (x), with equality if R is an integral domain.

Proof: Let f (x) = a
0
 + a

1
x + ... + a

n
xn, a

n
  0,

and g (x) = b
0
 + b

1
x + ... + b

m
xm, b

m
  0.

Then deg f (x) = n, deg g (x) = m. We know that

f (x). g (x) = c
0
 +c

1
x + ... + c

m+n
 × m+n,

where c
k
 = a

k
b

0 
+ a, b

1
 + ... + a

0
b

k
,.
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NotesSince a
n+1

, a
n+2

, ... and b
m+1

, b
m+2

. .. . are all zero,

c
m+n

 = a
n
b

m

Now, if R is without zero divisors, then a
n
b

m
  0, since a,  0

and b  0. Thus, in this case,

deg (f(x) g (x)) = deg f(x) + deg g (x).

On the other hand, if R has zero divisors, it can happen that a,b, = 0. In this case,

deg (f (x) g (x)) < m+n = deg f(x) + deg g(x).

Thus, our theorem is proved.

The following result follows immediately from Theorem 3.

Theorem 4: R [x] is an integral domain <=>. R is an integral domain.

Proof: From Theorem 2, we know that R is a commutative ring with identity iff R[x] is a
commutative ring with identity. Thus, to prove this theorem we need to prove that. R is without
zero divisors iff R [x] is without zero divisors.

So let us first assume that R is without zero divisors.

Let p(x) = a
0
 + a

l
x+ ... + a

n
x

n
, and q(x) = b

0
 + b

1
 x +... +b

m
x

m

be in R [x], where a,  0 and b,  0.

Then, in Theorem 3 we have seen that deg .(p (x) q (x)) = m + n  0.

Thus, p (x) q (x)  0

Thus, R [x] is without zero divisors.

Conversely, let us assume that R [x] is without zero divisors. Let a and b be non-zero elements
of R. Then they are non-zero elements of R [x] also. Therefore, ab  0. Thus, R is without zero
divisors. So, we have proved the theorem.

Now, you have seen that many properties of the ring R carry over to R�[x]. Thus, if F is a field, we
should expect F[x] to be a field also, But this is not so. F[x] can never be a field.

This is because any polynomial of positive degree in F|x| does not have a multiplicative
inverse. Let us see why.

Let f (x)  F [x] and deg f (x) = n > 0. Suppose g (x)  F [x] such that f (x) g (x) = 1. Then

0 = deg 1 = deg (f(x) g (x)) = deg f(x) + deg g (x), since F [x] is a domain.

   = n + deg g (x)  n > 0.

We reach a contradiction.

Thus, F [x] cannot be a field.

But there are several very interesting properties of F [x], which are similar to those of Z, the set
of integers. In the next section we shall discuss the properties of division in F [x].

Self Assessment

1. A polynomial over a ring R in determinate X is an expression of the form .................

(a) a
0
x0 + a

1
x1 + a

2
x2 + ...... a

n
xn (b) a0x

1
 + a2x

2
 + a3x

3
 + ...... anx

n

(c) a-1x + a-1x
2
 + a-1x

3
 ...... a-1x

n
(d) a

0
x-1 + a

1
x-1 + a

2
x-3 ...... a

n
x-n

4
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Notes 2. The degree of the zero polynomial to be ................. thus degree 0 = .................

(a) � , �  (b) , 

(c) , �1 (d) �1, 

3. 3x2 + 4x + 5 is a polynomial of degree ................., whose coefficients belong to the ring of
integers Z its leading coefficients is .................

(a) 4, 5 (b) 2, 3

(c) 2, 4 (d) 2, 5

4. x2 + 2x4 + 6x + 8 is a polynomial of degree ................. with coefficient 2.

(a) 4 (b) 5

(c) 6 (d) 8

5. Let R be a ring and r  R, R ................. 0. Then r is polynomial degree of 0 with leading
coefficient r.

(a) = (b) 

(c)  (d) 

4.3 Summary

 The definition and examples of polynomials over a ring.

 The ring structure df R[x], where R is a ring.

 R is a commutative ring with identity iff R[x] is a commutative ring with identity.

 R is an integral domain iff R[x] is an integral domain.

4.4 Keywords

Polynomial: A polynomial over a ring R in the indeterminate x is an expression of the form

a
0
x0 + a

1
x1 + a

2
x2 + ... + a

n
xn,

where n is a non-negative integer and a
0
, a,, ..., a

n
  R.

Coefficient of Polynomial: Let a
n
 + a, x + ... + a, xn be a polynomial over a ring R. Each of a

0
 ,a

l
, .

. ., a, is a coefficient of this polynomial. If a,  0, we call a, the leading coefficient of this
polynomial.

4.5 Review Questions

1. Identify the polynomials from the following expressions. Which of these are elements of
Z[x]?

(a) x6 + x5 + x4 + x2 + x + 1 (b) 2
2

2 1
x x

x x
  

(c) 23x 2x 5  (d) 2 31 1 1
1 x x x

2 3 4
  

(e) x1/2 + 2x3/2 + 3x5/2 (f) �5
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Notes2. Calculate

(a) (2 + 3x2 + 4x3) + (5x + x3) in Z[x]. (b) 2 3
7(6 2x ) (1 2x 5x ) in Z [x].   

(c) (1 + x) (1 + 2x + x2) in Z[x]. (d) 2
3(1 x) (1 2x x ) in Z [x]  

(e) (2 + x + x2) (5x + x3) in Z[x]

3. If R is a ring such that R[x] is commutative and has identity, then

(a) is R commutative?

(b) does R have identity?

Answers: Self Assessment

1. (a) 2. (a) 3. (b) 4. (a) 5. (b)

4.6 Further Readings

Books Dan Saracino: Abstract Algebra; A First Course.

Mitchell and Mitchell: An Introduction to Abstract Algebra.

John B. Fraleigh: An Introduction to Abstract Algebra (Relevant Portion).

Online links www.jmilne.org/math/CourseNotes/

www.math.niu.edu

www.maths.tcd.ie/

archives.math.utk.edu

4
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Notes Unit 5 : Division of Algorithm

CONTENTS

Objectives

Introduction

5.1 The Division Algorithm

5.2 Summary

5.3 Keywords

5.4 Review Questions

5.5 Further Readings

Objectives

After studying this unit, you will be able to:

 Prove and use the division algorithm for F[X], where F is a field

 Discuss examples related to algorithms

Introduction

In the last unit, you have studied about polynomials rings. In this unit, we will discuss the
division of algorithm.

5.1 The Division Algorithm

We have discussed various properties of divisibility in Z. In particular, we proved the division
algorithm for integers. We will now do the same for polynomials over a field F.

Theorem 1 (Division Algorithm): Let F be a field. Let f(x) and g(x) be two polynomials in F[x],
with g(x)  0. Then

(a) there exist two polynomials q(x) and r (x) in F [X] such that

f (x) = q (x) g (x) + r (x), where deg r(x) < deg g (x).

(b) the polynomials q (x) and r (x) are unique.

Proof: (a) If deg f (x) < deg g (x), we can choose q (x) = 0.

Then f(x) = 0. g(x) + f (x), where deg f(x) < deg g (x).

Now, let us assume that deg f(x)  deg g (x).

Let f(x) = a
0
 + a

1
x + . . . +a

n
xn, a,  0, and

       g(x) = b
0
 + b

1
x + ... + b

m
xm, b

m
  0, with n  m.

Sachin Kaushal, Lovely Professional University
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NotesWe shall apply the principle of induction on deg f(x), i.e., n.

If n = 0, then rn = 0, since g(x)  0. Now

f(x) = a,,, g(x) = b,, and hence

f(x) = (a,, b
0

-l) b
0
 + 0 = q (x) g (x) + r (x), where q(x) = a

0
b

0
-1 and r(x) = 0.

Thus,

f(x) = q(x) g(x) + r (x), where deg r(x) < deg g(x).

So the algorithm is true when n = 0. Let us assume that the algorithm is valid for all polynomials
of degree  n � 1 and how to establish that it is true for f(x). Consider the polynomial

f
1
(x) = f(x) � a

n
b

m
-1xn-m g(x)

         = (a,, + a, x +. . .+a
n
xn) � (a

n
b

m
-1 b

0
xn-m+a

n
b

m
-1 b

1
xn-m+1 +...+ a

n
b

m
-1b

m
xn)

Thus, the coefficient of xn in f, (x) is zero; and hence,

deg f, (x)  n-1.

By the induction hypothesis, there exist q, (x) and r (x) in

F[x] such that f, (x) = q, (x) g(x) + r(x), where deg r(x) < deg g(x).

Substituting the value of f,(x), we get

f(x)-a
n
b

m
-1g(x) = q

1
(x) g(x) + r(x),

i.e., f(x) = {a
n
b

m
-1 xn-m +q

1
(x)} g(x) + (x)

               = q(x) g(x)+r(x), where q(x) = a
n
b

m
-1 xn-m +q

1
(x)

and deg r(x) < deg g(x).

Therefore, the algorithm is true for f(x), and hence for all polynomials in F[x].

(b) Now let us show that q(x) and r(x) are uniquely determined.

If possible, let

f(x) = q
1
(x) g(x) + r

1
(x), where deg r

1
(x) < deg g(x).

and

f(x) =q
2
(x) g(x)+r

2
(x), where deg r

2
(x) < deg g(x).

Then

q
1
(x) g(x)+r

1
(x) = q

2
(x) g(x)+r

2
(x), so that

{q
1
(x) � q

2
(x)} g(x) = r

2
(x) � r

1
(x) ...(1)

Now if q
1
(x)  q

2
(x), then deg {q

1
(x) � q

2
(x)}  0, so that

deg [{q
1
(x) � q

2
(x) g(x)]  deg g(x).

On the other hand, deg {r
2
(x) - r

1
(x)} < deg g(x), since

deg r
2
(x) < deg g(x) and deg r

1
(x) < deg g(x).

But this contradicts Equation (1). Hence. Equation (1) will remain valid only if

q
1
(x) � q

2
(x) = 0. And then r

2
(x) � r

1
(x) = 0,

i.e., q
1
(x) = q

2
(x) and r

1
(x) = r

2
(x).

5
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Notes Thus, we have proved the uniqueness of q(x) and r(x) in the expression f(x) = q(x) g(x)+r(x). Here
q(x) is called the quotient and r(x) is called the remainder obtained on dividing f(x) by g(x).

Now, what happens if we take g(x) of Theorem 1 to be a linear polynomial? We get the remainder
theorem. Before proving it let us set up some notation.

Notation: Let R be a ring and f(x)  R[x]. Let

f(x) = a
0
 + a

l
x + ... +a

n
xn.

Then, for any r  R, we define

that is, f(r) is the value of f(x) obtained by substituting r for x.

Thus, if f(x) = 1 + x + x2  Z[x], then

f(2) = 1 + 2 + 4 = 7 and f(0) = 1 + 0 + 0 = 1.

Let us now prove the remainder theorem, which is a corollary to the division algorithm.

Theorem 2 (Remainder Theorem): Let F be a field. If f(x)  P[x] and b  F, then there exists a
unique polynomial q(x)  F[x] such that f(x) = (i-b) q(x)+f(b).

Proof: Let g(x) = x-b. Then, applying the division algorithm to f(x) and g(x), we can find unique
q(x) and r(x) in F[x], such that

f(x) = q(x)g(x) + r(x)

      = q(x) (x � b) + r(x), where deg r(x) < deg g(x) = 1.

Since deg r(x) < 1, r (x) is an element of F, say a.

So, f(x) = (x - b)q(x) + a,

Substituting b for x, we get

f(b) = (b � b) q(b) + a

        = 0.q(b) + a= a

Thus, a = f(b).

Therefore, f(x) = (x-b) q(x)+f(b).

Note that deg f(x) = deg(x-b)+deg q(x) = l+deg q(x).

Therefore, deg q(x) = deg f(x)-1.

Let us apply the division algorithm in a few situations now.

Example: Express x4 + x3 + 5x2 � x as

(x2 + x + 1) q(x) + r(x) in Q[x].

Solution: We will apply long division of polynomials to solve this problem.

2 4 3 2

4 3 2

2

2

x  + x + 1) x  + x  + 5x   x

x x x

4x x

4x 4x 4

5x 4



 



 

 
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NotesNow, since the degree of the remainder -5x- 4 is less than deg .(x2+x+1), we stop the process. We
get

x4 + x3 + 5x2 � x = (x2 + x + 1) (x2 + 4) � (5x + 4)

Here the quotient is x2 + 4 and the remainder is � (5x+4).

Now, let us see what happens when the remainder in the expression f = qg + r is zero.

Self Assessment

1. Let F be a field. Let f(x) and g(x) be two polynomials is f[x], with g(x)  0, then the
polynomial q(x) and r(x) an ...................

(a) unique (b) deficient

(c) finite (d) infinite

2. If deg f(x) < deg g(x) we can chosen q(x) = 0. Then f(x) = 0.g(x) + f(x) where degf(x) ...................
deg g(x).

(a) < (b) >

(c)  (d) 

3. x4 + x3 + 5x2 � x is equal to ...................

(a) (x2 + x + 1) (q(x) + r(x) is Q[x])

(b) (x + x2 + 1) (q-1(x) + r-1(x) in Q[x])

(c) (x + x2 + 1)-1 (q(x) + r(x) in Q[x])

(d) q(x)-1 + q(x)2 + (x + x2 + 1) in Q[x]

4. ................... theorem said that let F be a field, if F[x]  P[x] and b  F, then there exists a
unique polynomial q(x)  F[x] such that f(x) = (i - b) q(x) + F(b)

(a) remainder theorem (b) division algorithm

(c) contradiction theorem (d) division matrix

5.2 Summary

 The division algorithm in F[x], where F is a field, which states that if f(x), g(x)  F(x),
g(x)  0, then there exist unique q(x), r(x)  F[x] with f(x) = q(x) g(x)+r(x) and deg r(x)
< deg g(x).

a F is a root of f(x)  F[x] iff (x�a) | f(x).

 A non-zero polynomial of degree n over a field F can have at the most n roots.

5.3 Keywords

Division Algorithm: Let F be a field. Let f(x) and g(x) be two polynomials in F[x], with g(x)  0.

Remainder Theorem: Let F be a field. If f(x)  P[x] and b  F, then there exists a unique polynomial
q(x)  F[x] such that f(x) = (i-b) q(x)+f(b).

5
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Notes 5.4 Review Questions

1. Express f as gq + r, where deg r < degg, in each of the following cases.

(a) f = x4 + 1, g = x3 in Q[x]

(b) 3 2
3f = x + 2x � x + 1, g = x + 1 in Z [x].

(c) f = x3 � 1, g = x � 1 in R[x].

2. You know that if p, q  Z, q  0, then 
p
q

 can be written as the sum of an integer and a

fraction * with | m | < | q |. What is the analogous property for elements of F[x]?

Answers: Self Assessment

1. (a) 2. (a) 3. (a) 4. (a)

5.5 Further Readings

Books Dan Saracino: Abstract Algebra; A First Course.

Mitchell and Mitchell: An Introduction to Abstract Algebra.

John B. Fraleigh: An Introduction to Abstract Algebra (Relevant Portion).

Online links www.jmilne.org/math/CourseNotes/

www.math.niu.edu

www.maths.tcd.ie/

archives.math.utk.edu
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NotesUnit 6 : Irreducibility and Field Extensions

CONTENTS

Objectives

Introduction

6.1 Irreducibility in Q[x]

6.2 Field Extensions

6.2.1 Prime Fields

6.2.2 Finite Fields

6.3 Summary

6.4 Keywords

6.5 Review Questions

6.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Prove and use Eisenstein�s criterion for irreducibility in Z[x] and Q[x]

 Obtain field extensions of a field F from F[x]

 Obtain the prime field of any field

 Use the fact that any finite field F has pn elements, where char F = p and dim z
p
 F = n

Introduction

We have discussed various kinds of integral domains, including unique factorisation domains.
Over there you saw that Z[x] and Q[x] are UFDs. Thus, the prime and irreducible elements
coincide in these rings. In this unit, we will give you a method for obtaining the prime
(or irreducible) elements of Z[x] and Q[x]. This is the Eisenstein criterion, which can also be used
for obtaining the irreducible elements of any polynomial ring over a UFD.

After this, we will introduce you to the field extensions and subfields. We will use irreducible
polynomials for obtaining field extensions of a field F from F[x]. We will also show you that
every field is a field extension of Q or Z, for some prime p. Because of this, we call Q and the Z

p
s

prime fields. We will discuss these fields briefly.

Finally, we will look at finite fields. These fields were introduced by the young French
mathematician Evariste Galois while he was exploring number theory. We will discuss some
properties of finite fields which will show us how to classify them.

Before reading this unit ,we suggest that you go through the definitions of irreducibility.

Sachin Kaushal, Lovely Professional University 6
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Notes 6.1 Irreducibility in Q[x]

We introduced you to irreducible polynomials in F[x], where F is a field. We also stated the
Fundamental Theorem of Algebra, which said that a polynomial over C is irreducible iff it is
linear. You also learnt that if a polynomial over R is irreducible, it must have degree 1 or
degree 2. Thus, any polynomial over R of degree more than 2 is reducible. And, using the
quadratic formula, we know which quadratic polynomials over R are irreducible.

Now let us look at polynomials over Q. Again, as for any field F, a linear polynomial over Q is
irreducible. Also, by using the quadratic formula we can explicitly obtain the roots of any
quadratic polynomial over Q, and hence figure out whether it is irreducible or not. But, can you
tell whether 2x7 + 3x5 � 6x4 + 3x3 + 12 is irreducible over Q. This criterion was discovered by the
nineteenth century mathematician Ferdinand Eisenstein. In this section we will build up the
theory for proving this useful criterion.

Let us start with a definition.

Definition: Let f(x) = a, + a
1
x + . .. + a

n
xn  Z[x]. We define the content of f[x] to be the g.c.d. of the

integers a
0
, a

1
,,..., a,.

We say that f(x) is primitive if the content of f(x) is 1.

For example, the content of 3x2 + 6x + 12 is the g.c.d. of 3, 6 and 12, i.e., 3. Thus, this polynomial
is not primitive. But x5 + 3x2 + 4x � 5 is primitive, since the g.c.d of 1, 0, 0, 3, 4, �5 is 1.

We will now prove that the product of primitive polynomials is a primitive polynomial. This
result is well known as Gauss� lemma.

Theorem 1: Let f(x) and g(x) be primitive polynomials. Then so is f(x) g(x).

Proof: Let f(x) = a
0
 + a

1
x + ... + a

n
xn  Z[x] and

g(x) = b
0
 + b

1
x + ... + b

m
xm  Z[x], where the

g.c.d. of a
0
, a

1
, ..., a, is 1 and the g.c.d. of b

0
, b

1
..., b

m
 is 1. Now

f(x) g(x) = c
0
 + c

1
x + ... + c

m+n
xm+n

where c, = a
0
b

k
 + a

1
b

k-1
 + ... + a

k
b

0
.

To prove the result we shall assume that it is false, and then reach a contradiction. So, suppose
that f(x) g(x) is not primitive. Then the g.c.d. of c

0
, c

1
...., c

m+n
 is greater than 1, and hence some

prime p must divide it. Thus, p | c
i 
  i = 0, 1, ..., m+n. Since f(x) is primitive, p does not divide

some a
i
. Let r be the least integer such that p| a

r
. Similarly, let s be the least integer such that

p| b
s
.

Now consider

c
r+s

 = a
0
b

r+s
 + a

I
b

r+s-1
 + ... + a

r
b

s
 + ... + a

r+s
 b

0

      = a
r
b

s
 + (a

0
b

r+s
 + a

I
b

r+s-1
 + ... + a

r-1
 b

s+1
 + a

r+1
b

s-1
 + ... + a

r+s
 b

0
)

By our choice of r and s, p | a
0
, p | a

1
, ..., p | a

r-1
, and p | b

0
, p | b

1
, ..., p | b

s-1
. Also p | c

r+s
,

Therefore, p | c
r+s

 � (a
0
b

r+s
 +... + a

r-1
 b

s+1
  + a

r+1
 b

s-1
 + ... + a

r+s
 b

0
)

i.e., p | a
r
 b,.

 p ( a, or p | b
s
, since p is a prime.
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Notes
But p |  a

r
 and p |  b

s
. So we reach a contradiction. Therefore, our supposition is false. That is, our

theorem is true.

Let us shift our attention to polynomials over Q now.

Consider any polynomial over Q, say f(x) = 3 23 1 1
x + x + 3x + .

2 5 3
 If we take the l.c.m of the

denominators, is., of 2, 5, 1 and 3, i.e., 30 and multiply f(x) by it, what do we get? We get

30f(x) = 45x3 + 6x2 + 90x + 10  Z[x]

Using the same process, we can multiply any f(x)  Q[x] by a suitable integer d so that df(x),
 Z[X]. We will use this fact while relating irreducibility in Q[x] with irreducibility in Z[x].

Theorem 2: If f(x)  Z[x] is irreducible in Z[x], then it is irreducible in Q[x].

Proof: Let us suppose that f(x) is not irreducible over Q[x]. Then we should reach a contradiction.
So let f(x) = g(x) h(x) in Q[x], where neither g(x) nor h(x) is unit, i.e., deg g(x) > 0, deg h(x) > 0. Since
g(x)  Q[x].  m  Z such that mg(x)  Z[x]. Similarly,  n  Z such that nh(x)  Z[x]. Then,

mnf(x) = mg(x) nh(x) ... (1)

Thus, (1) gives us

mnrf
1
(x) = stg

1
(x)h

1
(x) ...(2)

Since g
1
(x) and h

1
(x) are primitive, Theorem 1 says that g

1
(x) h

1
(x) is primitive. Thus, the content

of the right hand side polynomial in (2) is st. But the content of the left hand side polynomial in
(2) is mnr. Thus, (2) says that mnr = st.

Hence, using the cancellation law in (2), we get f,(x) = g,(x) h
1
(x).

Therefore, f(x) = rf
1
(x) = (rg

1
(x)) h

1
(x) in Z[x], where neither rp

1
(x) nor h

1
(x) is a unit. This

contradicts the fact that f(x) is irreducible in Z[x].

Thus, our supposition is false. Hence, f(x) must be irreducible in Q[x].

What this result says is that to check irreducibility of ii polynomial in Q[x], it is enough to check
it in Z[x]. And, for checking it in Z[x] we have the terrific Eisenstein�s criterion, that we mentioned
at the beginning.

Theorem 3 (Eisenstein�s Criterion): Let f(x) = a
0
 + a

l
x + ... + a,,xn  Z[x]. Suppose that for some

prime number p;

(i) P |  a
n
,

(ii) p | a
0
, p | a

1
, ..., p | a

n-1
, and

(iii) p2 |  a
0
.

Then f(x) is irreducible in Z[x] (and hence Q[x]).

Proof: Suppose f(x) is reducible in Z[x].

Let f(x) = g(x) h(x),

where g(x) = b
0
 + b

1
x + ... + b,, xm, m > 0 and

h(x) = c
0
 + c

1
 x + ... + c

r
xr, r > 0.

6
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Notes Then n = deg f = deg g + deg h = m + r, and

a
k
 = b

0
 c

k
 + b

1
 c

k-l
 ... + b

k
 c

0 
  k = 0, 1 ..., n.

Now a
0
 = b

0
c

0
. We know that p | a

0
. Thus, p | b

0
c

0
,   p | b

0
 or p | c

0
. Since p2 |  a

0
, p cannot divide

both b
0
 and c

0
. Let us suppose that p | b

0
 and p k CJ

Now let us look at a,, = b, c,. Since p |  a, we see that p |  b
m

 and p |  c
r
. Thus, we see that for some

i, p |  b
i
. Let k be the least integer such that p |  b

k
. Note that 0 < k  m < n.

Therefore, p|a
k
.

Since p|a
k
 and p|b

0
, p | b

1
, ..., p | b

k�1
, we see that p(a

k
 � (b

0
c

k
 + .... + b

k�1
c

1
), i. e.,

p (b
k
c

0
. But p |  b

k
 and p |  c

0
. So we reach a contradiction.

r Thus, f(x) must be irreducible in Z[x].

Let us illustrate the use of this criterion.

Example: Is 2x7 + 3x5 � 6x4 + 3x3 + 12 irreducible in Q[x]?

Solution: By looking at the coefficients we see that the prime number 3 satisfies the conditions
given in Eisenstein�s criterion. Therefore, the given polynomial is irreducible in Q[x].

Example: Let p be a prime number. Is Q[x]/<x3 � p > a field?

Solution: You know that for any field F, if f(x) is irreducible in F[x], then <f(x)> is a maximal
ideal of F[x].

Now, by Eisenstein�s criterion, x3-p is irreducible since p satisfies the conditions given in
Theorem 3. Therefore, <x3 � p> is a maximal ideal of Q[x].

You also know that if R is a ring, and M is a maximal ideal of R, then R/M is a field.

Thus, Q[x] /<x3 � p> is a field.

Example: Let p be a prime number. Show that

f(x) = xp-1 + xp-2 + .... + x + 1 is irreducible in Z[x], f(x) is called the pth cyclotornic polynomial.

Solution: To start with, we would like you to note that f(x) = g(x) h(x) in Z[x] iff f(x + 1) = g(x + 1)
h(x + 1) in Z[x]. Thus, f(x) is irreducible in Z[x] iff f(x + l) is irreducible in Z[x].

Now, f(x) = 
px 1

x 1





 f(x + 1) = 
 

px 1 1

x

 

= 
1
x

(xp + pC
1
 xp-1 + ... + pC

p-1
 x + 1 � 1), (by the binomial theorem)

= xp-1 + pxp-2 + pC
2
xp-3 + ... + pC

p-2
 x + p.
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NotesNow apply Eisenstein�s criterion taking p as the prime. We find that f(x+l) is irreducible.

Therefore, f(x) is irreducible.

So far we have used the fact that if f(x)  Z[x] is irreducible over Z, then it is also irreducible over
Q. Do you think we can have a similar relationship between irreducibility in Q[x] and R[xl? To

answer this, consider f(x) = x2 - 2. This is irreducible in Q[x], but f(x) = (x 2 )(x 2 )   in R[x].

Thus, we cannot extend irreducibility over Q to irreducibility over W.

But, we can generalise the fact that irreducibility in Z[x] implies irreducibility in Q[x]. This is not
only true for Z and Q; it is true for any UFD R and its field of quotients F. Let us state this
relationship explicitly.

Theorem 4: Let R be a UFD with field of quotients F.

(i) If f(x)  R[x] is an irreducible primitive polynomial, then it is also irreducible in F[x].

(ii) (Eisenstein�s Criterion) Let f(x) = a
0
 + a

1
x + ... + a, xn  R[x] and p  R be a prime element

such that p |  a,, p2 |  a
0
 and p | a

i
 for 0  i < n. Then f(x) is irreducible in F[x].

The proof of this result is on the same lines as that of Theorems 2 and 3. We will not be doing it
here. But if you are interested, you should try and prove the result yourself.

Now, we have already pointed out that if F is a field and f(x) is irreducible over F, then F[x]/
<f(x)> is field. How is this field related to F? That is part of what we will discuss in the next
section.

6.2 Field Extensions

We shall discuss subfields and field extensions. To start with let us define these terms. By now
the definition may be quite obvious to you.

Definition: A non-empty subset S of a field F is called a subfield of F if it is a field with respect
to the operations on F. If S$F, then S is galled a proper subfield of F.

A field K is called a field extension of F if F is a subfield of K. Thus, Q is a subfield of R and R is
a field extension of Q. Similarly, C is a field extension of Q as well as of R.

Note that a non-empty subset S of a field F is a subfield of F if

(i) S is a subgroup of (F,+), and

(ii) the set of all non-zero elements of S forms a subgroup of the group of non-zero elements
of F under multiplication.

Theorem 5: A non-empty subset S of a field F is a subfield of F if and only if

(i) a  S, b  S  a � b  S, and

(ii) a  S , b  S , b  0  ab-1  S.

Now, let us look at a particular field extension of a field F. Since F[x] is an integral domain, we
can obtain its field of quotients. We denote this field by F(x). Then F is a subfield of F(x). Thus,
F(x) is a field extension of F. Its elements are expressions of the form f,( x) where f(x), g(x)  F[x]
and g(x) # 0.

g(x)

There is another way of obtaining a field extension of a field F from F[x]. We can look at quotient
rings of F[x] by its maximal ideals. You know that an ideal is maximal in F[x] iff it is generated
by an irreducible polynomial over F. So, F[x]/<f(x)> is a field iff f(x) is irreducible over F.

6
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Notes Now, given any f(x)  F[x], such that deg f(x) > 0, we will show that there is a field monomorphism
from F into F[x]/d(x)>. This will show that F[x)/<f(x)> contains an isomorphic copy of F; and
hence, we can say, that it contains F. So, let us define 0 : F  F[x]/d(x)>: (a) = a + <f(x)>.

Then  (a+b) =  (a) +  (b), and

(ab) = (a) (b).

Thus,  is a ring homomorphism.

What is Ker  ?

Ker   = {a  F] a + <f(x)> = <f(x)>}

= {a  F | a  <f(x)>}

= {a  F | f(x) | a}

= {0}, since deg f > 0 and deg a  0.

Thus,  is 1-1, and hence an inclusion.

Hence, F is embedded in F[x]/<f(x)>.

Thus, if f(x) is irreducible in F[x], then F[x]/<f(x)> is a field extension of F.

Well, we have looked at field extensions of any field F. Now let us look at certain fields, one of
which F will be an extension of.

6.2.1 Prime Fields

Let us consider any field F. Can we say anything about what its subfields look like? Yes, we can
say something about one of its subfields. Let us prove this very startling and useful fact.

Theorem 6: Every field contains a subfield isomorphic to Q or to Z
p
, for some prime number p.

Proof: Let F be a field. Define a function f : Z  F : f(n) = n.1 = 1 + 1 + .... + 1 (n times).

f is a ring homomorphism and Ker f = pZ, where p is the characteristic of F.

You know that char F = 0 or char F = p, a prime. So let us look at these two cases separately.

Case 1 (char F = 0): In this case f is one-one.  Z = f(Z). Thus, f(Z) is an integral domain contained
in the field F. Since F is a field, it will also contain the field of quotients of f(Z). This will be
isomorphic� to the field of quotients of Z, i.e., Q. Thus, F has a subfield which is isomorphic to Q.

Case 2 (char F = p, for some prime p):

Since p is a prime number, Z/pZ is a field.

Also, by applying the Fundamental Theorem of Homomorphism to f, we get Z/pZ  f(Z). Thus,
f(Z) is isomorphic to Z

p
 and is contained in F. Hence, F has a subfield isomorphic to Z

p
.

Let us Theorem 6 slightly. What it says is that:

Let F be a field.

(i) If char F = 0, then F has a subfield isomorphic to Q.

(ii) If char F = p, then P has a subfield isomorphic to Z.

Because of this property of Q arid Zp (where p is a prime number) we call these fields prime
fields.
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NotesThus, the prime fields are Q, Z
2
, Z

3
, Z

5
, etc.

We call the subfield isomorphic to a prime field (obtained in Theorem 6), the prime subfield of
the given field.

Let us again reword Theorem 6 in terms of field extensions. What it says is that every field is a
Weld extension of a prime field.

Now, suppose a field F is an extension of a field K. Are the prime subfields of K and F isomorphic
or not? To answer this let us look at char K and char F. We want to know if char K = char F or not.
Since F is a field extension of K, the unity of F and K is the same, namely, 1. Therefore, the least
positive integer n such that n.1 = 0 is the same for F as well as K. Thus, char K = char F. Therefore,
the prime subfields of K and F are isomorphic.

A very important fact that a field is a prime field iff it has no proper subfields.

Now let us look at certain field extensions of the fields Z
p
.

6.2.2 Finite Fields

You have dealt a lot with the finite fields Z
p
. Now we will look at field extensions of these fields.

You know that any finite field F has characteristic p, for some prime p. And then F is an extension
of Z. Suppose P contains q elements. Then q must be a power of p. That is what we will prove
now.

Theorem 7: Let F be a finite field having q elements and characteristic p. Then q = pn, some
positive integer n.

The proof of this result uses the concepts of a vector space and its basis.

Proof: Since char F = p, F has a prime subfield which is isomorphic to Z
p
. We lose nothing if we

assume that the prime subfield is Z
p
. We first show that F is a vector space over Z

p
 with finite

dimension.

Recall that a set V is a vector space over a field K if:

(i) we can define a binary operation + on V such that (V, +) is an abelian group,

(ii) we can define a �scalar multiplication. : K × V  V such that   a, b  K and v, w  V,

a(a + w) = a.v + a.w

(a + b).v = a.v + b.w

(ab). v = a. (b.v)

1.v = v.

Now, we know that (F, +) is an abelian group. We also know that the multiplication in F will
satisfy all the conditions that the scalar multiplication should satisfy. Thus, F is a vector space
over 2,. Since F is a finite field, it has a finite dimension over Z

p
. Let dim Z

p
 F = n. Then we can

find a,. .., a
n
, a F such that

F = Z
p
a

1
 + Z

p
a

2
 + .. + Z

p
a

n
.

We will show that F has pn elements.

Now, any element of F is of the form

b
1
a

1
, + b

2
a

2
 + ... +, b

n
a

n
, where b,, . .., b

n
  Zp.

Now, since o(Zp) = p, b
1
 can be any one of its p elements.

6
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Notes Similarly, each of b
2
, b

3
, ...., b

n
 has p choices. And, corresponding to each of these choices we get

a distinct element of F. Thus, the number of elements in F is p × p × ... × p (n times) = pn.

The utility of this result is something similar to that of Lagrange�s theorem. Using this result we
know that, for instance, no field of order 26 exists. But does a field of order 25 exist? Does
Theorem 7 answer this question? It only says that a field of order 25 can exist. But it does not say
that it does exist. The following exciting result, the proof of which is beyond the scope of this
course, gives us the required answer. This result was obtained by the American mathematician
E.H. Moore in 1893.

Theorem 8: For any prime number p and n  N, there exists a field with pn elements. Moreover,
any two finite fields having the same number of elements are isomorphic.

Self Assessment

1. If f(x)  Z(x) is irreducible over Q[x]. Then it is .............. in Q[x].

(a) reducible (b) irreducible

(c) direct (d) finite

2. A non-empty subsets of a field F is called a .............. of F it is a field with respect to the
operation on F.

(a) subfield (b) field domain

(c) range field (d) extension

3. Every field contains a subfield is o morphic to Q or to Z
p
 for r some .............. P.

(a) prime (b) finite

(c) infinite (d) external

4. Let F be a finite having of elements and characteristics P, then q = .............., some positive
integer n.

(a) p-1 (b) pn

(c) xpn (d) p.xp

5. For any prime number P and n  N, then exists a field with Pn elements. Move over, and
two .............. fields having the same number of elements are isomorphic.

(a) infinite (b) finite

(c) direct (d) extension

6.3 Summary

 Gauss lemma, i.e., the product of primitive polynomials is primitive.

 For any n  N, we can obtain an irreducible polynomial over Q of degree n.

 Definitions and examples of subfields and field extensions.

 Different ways of obtaining field extensions of a field F from F[x].
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Notes Eisenstein�s irreducibility criterion for polynomials over Z and Q. This states that if
f(x) = a

0
 + a, x + . . . + a

n
xn  Z[x] and there is a prime p  Z such that

 p | a
i 
  i = 0 , 1 . ..., n � 1.

 p |  a, and

 p |  a
0
,

then f(x) is irreducible over Z� (and hence over Q).

 Every field contains a subfield isomorphic to a prime field.

The prime fields are Q or Zp, for some prime p.

 The number of elements in a finite field F is pn�, where char F = p and dim z
p
F = n.

 Given a prime number p�and n  N, there exists a field containing pn elements. Any two
finite fields with the same number of elements are isomorphic.

 If F is a finite field with pn elements, then 
npx x  is a product of pn linear polynomials

over F.

6.4 Keywords

Eisenstein�s Criterion: Let f(x) = a
0
 + a

l
x + ... + a,,xn  Z[x]. Suppose that for some prime number

p; (i) P |  a
n
, (ii) p | a

0
, p | a

1
,...p|a

n�1

Subfield of F: A non-empty subset S of a field F is called a subfield of F if it is a field with respect
to the operations on F. If S$F, then S is galled a proper subfield of F.

6.5 Review Questions

1. What are the contents of the following polynomials over Z?

(a) 1 + x + x2 + x3 + x4 (b) 7x4 � 7

(c) 5(2x2 � 1) (x + 2)

2. Prove that any polynomial f(x)  Z[x] can be written as dg(x), where d is the content of f(x)
and g(x) is a primitive polynomial.

3. For any n  N and prime number p, show that xn � p is irreducible over Q[x]. Note that this
shows us that we can obtain irreducible polynomials of any degree over Q[x].

4. If a
0
 + a

1
x + ... + a, xn  Z[x] is irreducible in Q[x], can you always find a prime p that satisfied

the conditions (i), (ii) and (iii) of Theorem 3?

5. Which of the following elements of Z[x] are irreducible over Q?

(a) x2 � 12 (b) 8x3 + 6x2 � 9x + 24

(c) 5x + 1

6. Let p be a prime: integer. Let a be a non-zero non-unit square-free integer, i.e., 2b | a  for

any b  Z. Show that Z[x]/<xp + a> is an integral domain.

7. Show that p
px a Z [x]   is not irreducible for any a Z.

6
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Notes Answers: Self Assessment

1. (b) 2. (a) 3. (a) 4. (b) 5. (b)

6.6 Further Readings

Books Dan Saracino: Abstract Algebra; A First Course.

Mitchell and Mitchell: An Introduction to Abstract Algebra.

John B. Fraleigh: An Introduction to Abstract Algebra (Relevant Portion).

Online links www.jmilne.org/math/CourseNotes/

www.math.niu.edu

www.maths.tcd.ie/

archives.math.utk.edu
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Unit : Roots of a Polynomial

NotesUnit 7 : Roots of a Polynomial

CONTENTS

Objectives

Introduction

.1 Roots of Polynomials

.2 Summary

.3 Keywords

.4 Review Questions

.5 Further Readings

Objectives

After studying this unit, you will be able to:

 Define roots of polynomials

 Discuss examples of roots of polynomial

Introduction

You have seen when we can say that an element in a ring divides another element. Let us recall
the definition in the context of F[x], where F is a field.

7.1 Roots of Polynomials

Definition: Let f(x) and g(x) be in F[x], where F is a field and g(x)  0. We say that g(x) divides
f(x)(or g(x) is a factor of f(x), or f(x) is divisible by gi(x)) if there-exists q(x)  F[x] such that

f(x) = q(x) g(x).

We write g(x) | f(x) for �g(x) divides f(x)�, and g(x) |  f(x) for �g(x) does not divide f(x)�.

Now, if f(x)  F[x] and g(x)  F[x], where g(x)  0,  when g(x) | f(x)? We find that g(x) | f(x) if
r(x) = 0.

Definition: Let F be a field and f(x)  F[x]. We say that an element a  F is a root (or zero) of f(x)
if f(n) = 0.

For example, 1 is a root of x2 � 1  R[x], since 12 � 1 = 0.

Similarly, �1 is a root of f(x) = 3 2 1 1
x x x Q[x],

2 2
     since

f(�1) = �1 +1
1 1

0.
2 2

  

Richa Nandra, Lovely Professional University 7
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Notes Let F be a field and f (x)  F[x]. Then a  P is a root of f(x) if and only if (x�a) | f(x)).

We can generalise this criterion to define a root of multiplicity m of a polynomial in F[x].

Definition: Let F be a field and f(x)  F[x]. We say that a  F is a root of multiplicity m (where m
is a positive integer) of

f(x) if (x � a)m | f(x), but (x�a)m+1 |  f(x).

For example, 3 is a root of multiplicity 2 of the polynomial (x�3)2 (x+2)  Q[x]; and (�2) is a root
of multiplicity 1 of this polynomial.

Now, is it easy to obtain all the roots of a given polynomial? Any linear polynomial ax+b  F[x]
will have only one root, namely, -a-1b. This is because ax+b = 0 iff x = -a-1b.

In the case of a quadratic polynomial ax2 + bx + c  F[x], you know that its two roots are obtained
by applying the quadratic formula

2b b 4ac
2a

  

For polynomials of higher degree we may be able to obtain some roots by trial and error. For
example, consider f(x) = x5 � 2x + 1  R[x]. Then, we try out x = 1 and find f(1) = 0. So, we find that
1 is a zero of f(x). But this method doesn�t give us all the roots of f(x).

As we have just seen, it is not easy to find all the roots of a given polynomial. But, we can give
a definite result about the number of roots of a polynomial.

Theorem 1: Let f(x) be a non-zero polynomial of degree n over a field F:Then f(x) has at most n
roots in F.

Proof: If n = 0, then f(x) is a non-zero constant polynomial.

Thus, it has no roots, and hence, it has at most 0 ( = n) roots in F.

So, let, us assume that n  1. We will use the principle of induction on n. If deg f(x) = 1,

then

f(x) = a
0
 + a

1
x, where a

0
, a,  F and a,  0.

So f(x) has only one root, namely, (�a
1

-1 a
0
).

Now assume that the theorem is true for all polynomials in F[x] of degree  n. We will show that
the number of roots of f(x)  n.

If f(x) has no root in F, then the number of roots of f(x) in F is 0 S n. So, suppose f(x) has a root
a  F.

Then f(x) = (x � a) g(x), where deg g(x) = n�1.

Hence, by the induction hypothesis g(x) has at most n�1 roots in F, say a
1
,....,a

n-1
. Now,

a
i
 is a root of g(x)  g(a

i
) = 0  f(a

i
) = (a,�a) g(a

i
) = 0

 a a
i
 is a root of f(x)   i = 1, ..., n � 1.

Thus, each root of g(x) is a root of f(x).

Now, b  F is a root of f(x) iff f(b) = 0, i.e., iff (b � a) g(b) = 0, i.e., iff b � a = 0 or g(b) = 0, since F is
an integral domain. Thus, b is a root of f(x) iff b = a or b is a root of g(x). So, the only roots of
f(x) are a and a

1
, ..., a

n-1
. Thus, f(x) has at the most n roots, and so, the theorem is true for n.
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NotesHence, the theorem is true for all n  1.

Using this result we know that, for example, x3�1  Q[x] can�t have more than 3 roots in Q.

In Theorem 1 we have not spoken about the roots being distinct. But an obvious corollary of
Theorem 1 is that

if f(x)  F[x] is of degree n, then f(x) has st most n distinct roots in F.

We will use this result to prove the following useful theorem.

Theorem 2: Let f(x) and g(x) be two non-zero polynomials of degree n over the field F. If there

exist n+l distinct elements a,,.. .,a
n+1

, in F such that f(a
i
) = g(a

i
)   i = I , ..., n+l, then f(x) = g(x).

Proof: Consider the polynomial h(x) = f(x) = g(x)

Then deg h(x)  n, but it has n + l distinct roots a,, ..., a
n+1

.

This is impossible, unless h(x) = 0, i.e., f(x) = g(x).

Example: Prove that 3
6x 5x Z [x]   has more roots than its degree. (Note that Z

6
 is not

a field.)

Solution: Since the ring is finite, it is easy for us to run through all its elements and check which
of them, are roots of

3f(x) x 5x. 

So, by substitution we find that

f(0) = 0 = f(1) = f(2) = f(3) = f(4) = f(5).

In fact, every element of Z
6
 is a zero of f(x). Thus, f(x) has 6 zeros, while deg f(x) = 3.

So far, we have been saying that a polynomial of degree n over F has at most n roots in Fa. It can
happen that the polynomial has no root in F. For example, consider the polynomial x2 + 1  R[x].
You know that it can have 2 roots in R, at the most. But as you know, this has no roots in R (it has
two roots, i and �i, in C).

We can find many other examples of such polynomials in R[x]. We call such polynomials
irreducible over R. We shall discuss them in detail in the next units.

Now let us end this unit by seeing what we have covered in it.

Definition: Let F be a set on which two binary operations are defined, called addition and
multiplication, and denoted by + and · respectively. Then F is called a field with respect to these
operations if the following properties hold:

(i) Closure: For all a,b in F the sum a + b and the product a . b are uniquely defined and belong
to F.

(ii) Associative Laws: For all a,b,c in F,

a + (b + c) = (a + b) + c and a· (b· c) = (a· b)· c.

(iii) Commutative Laws: For all a,b in F,

a + b = b + a and a · b = b· a.

(iv) Distributive Laws: For all a, b, c in F,

a· (b + c) = (a· b) + (a· c) and (a + b)· c = (a· c) + (b· c).

7
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Notes (v) Identity Elements: The set F contains an additive identity element, denoted by 0, such that
for all a in F,

a + 0 = a  and  0 + a = a.

The set F also contains a multiplicative identity element, denoted by 1 (and assumed to be
different from 0) such that for all a in F,

a· 1 = a and 1· a = a.

(vi) Inverse Elements: For each a in F, the equations

a + x = 0  and  x + a = 0

have a solution x in F, called an additive inverse of a, and denoted by -a. For each nonzero
element a in F, the equations

a· x = 1  and  x· a = 1

have a solution x in F, called a multiplicative inverse of a, and denoted by a-1.

Definition: Let F be a field. For a
m

, a
m-1

 , . . . , a
1
, a

0
 in F, an expression of the form

a
m

xm + a
m-1

xm-1 + · · · + a
1
x + a

0

is called a polynomial over F in the indeterminate x with coefficients a
m

, a
m-1

, . . . , a
0
. The set of

all polynomials with coefficients in F is denoted by F[x]. If n is the largest nonnegative integer
such that a

n
  0, then we say that the polynomial

f(x) = a
n
xn + · · · + a

0

has degree n, written deg(f(x)) = n, and a
n
 is called the leading coefficient of f(x). If the leading

coefficient is 1, then f(x) is said to be monic.

Two polynomials are equal by definition if they have the same degree and all corresponding
coefficients are equal. It is important to distinguish between the polynomial f(x) as an element
of F[x] and the corresponding polynomial function from F into F defined by substituting elements
of F in place of x. If f(x) = a

m
xm + · · · + a

0
 and c is an element of F, then f(c) = a

m
cm + · · · + a

0
. In fact,

if F is a finite field, it is possible to have two different polynomials that define the same polynomial
function. For example, let F be the field Z

5
 and consider the polynomials x5 - 2x + 1 and 4x + 1. For

any c in Z
5
, by Fermat�s theorem we have c5  c (mod 5), and so

c5 - 2c + 1  - c + 1  4c + 1 (mod 5),

which shows that x5 - 2x + 1 and 4x + 1 are identical, as functions.

For the polynomials

f(x) = a
m

xm + a
m-1

xm-1 + · · · + a
1
x + a

0

and

g(x) = b
n
xn + b

n-1
xn-1 + · · · + b

1
x + b

0
,

the sum of f(x) and g(x) is defined by just adding corresponding coefficients. The product f(x)g(x)
is defined to be

a
m

b
n
xn+m + · · · + (a

2
b

0
 + a

1
b

1
 + a

0
b

2
)x2 + (a

1
b

0
 + a

0
b

1
)x + a

0
b

0
.

The coefficient c
k
 of xk in f(x)g(x) can be described by the formula

c
k
 = 

i

k

k ii 0a
b .
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NotesThis definition of the product is consistent with what we would expect to obtain using a naive
approach: Expand the product using the distributive law repeatedly (this amounts to multiplying
each term be every other) and then collect similar terms.

Proposition: If f(x) and g(x) are non-zero polynomials in F[x], then f(x)g(x) is non-zero and
deg(f(x)g(x)) = deg(f(x)) + deg(g(x)).

Corollary: If f(x),g(x),h(x) are polynomials in F[x], and f(x) is not the zero polynomial, then
f(x)g(x) = f(x)h(x) implies g(x) = h(x).

Definition: Let f(x),g(x) be polynomials in F[x]. If f(x) = q(x)g(x) for some q(x) in F[x], then we say
that g(x) is a factor or divisor of f(x), and we write g(x) | f(x). The set of all polynomials divisible
by g(x) will be denoted by < g(x) >.

Lemma: For any element c in F, and any positive integer k,

(x - c) | (xk - ck).

Theorem 3: Let f(x) be a non-zero polynomial in F[x], and let c be an element of F. Then there
exists a polynomial q(x) in F[x] such that

f(x) = q(x)(x - c) + f(c).

Moreover, if f(x) = q
1
(x)(x - c) + k, where q

1
(x) is in F[x] and k is in F, then q

1
(x) = q(x) and k = f(c).

Definition: Let f(x) = a
m

xm + · · + a
0
 belong to F[x]. An element c in F is called a root of the

polynomial f(x) if f(c) = 0, that is, if c is a solution of the polynomial equation f(x) = 0 .

Corollary: Let f(x) be a non-zero polynomial in F[x], and let c be an element of F. Then c is a root
of f(x) if and only if x-c is a factor of f(x). That is,

f(c) = 0     if and only if     (x-c) | f(x).

Corollary: A polynomial of degree n with coefficients in the field F has at most n distinct roots
in F.

Self Assessment

1. Let F be a field and f(x)  F[x] then we say that an element a  F is a root of f(x) of
f(n) = ...............

(a) 1 (b) 2

(c) 0 (d) 2-1

2. 1 is a root of x2 � 1  R[x], since 12 � 1 = ...............

(a) 2 (b) 1

(c) 0 (d) �1

3. ............... is a root of f(x) = x3 + x2 + 
1 1

x
2 2

   Q[x]

(a) 1 (b) 2

(c) �1 (d) �2

4. If n = 0 then f(x) is a non-zero ............... polynomial

(a) constant (b) degree

(c) range (d) power

7
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Notes 5. x3 + 5x  z
6
[x] has ............... roots than its degree.

(a) 2 (b) 3

(c) 1 (d) more

7.2 Summary

 If f(x) and g(x) are non-zero polynomials in F[x], then f(x)g(x) is non-zero and  deg(f(x)g(x))
= deg(f(x)) + deg(g(x)).

 If f(x),g(x),h(x) are polynomials in F[x], and f(x) is not the zero polynomial, then  f(x)g(x) =
f(x)h(x) implies g(x) = h(x).

 Let f(x),g(x) be polynomials in F[x]. If f(x) = q(x)g(x) for some q(x) in F[x], then we say that
g(x) is a factor or divisor of f(x), and we write g(x) | f(x). The set of all polynomials
divisible by g(x) will be denoted by < g(x) >.

 For any element c in F, and any positive integer k,

(x - c) | (xk - ck).

 Let f(x) be a non-zero polynomial in F[x], and let c be an element of F. Then there exists a
polynomial q(x) in F[x] such that

f(x) = q(x)(x - c) + f(c).

Moreover, if f(x) = q
1
(x)(x - c) + k, where q

1
(x) is in F[x] and k is in F, then q

1
(x) = q(x) and

k = f(c).

 Let f(x) = a
m

xm + · · + a
0
 belong to F[x]. An element c in F is called a root of the polynomial

f(x) if f(c) = 0, that is, if c is a solution of the polynomial equation f(x) = 0 .

 Let f(x) be a non-zero polynomial in F[x], and let c be an element of F. Then c is a root of f(x)
if and only if x-c is a factor of f(x). That is,

f(c) = 0     if and only if     (x-c) | f(x).

 A polynomial of degree n with coefficients in the field F has at most n distinct roots in F.

7.3 Keywords

Field: Let F be a set on which two binary operations are defined, called addition and multiplication,
and denoted by + and · respectively. Then F is called a field with respect to these operations.

Identity Elements: The set F contains an additive identity element, denoted by 0, such that for all
a in F,

a + 0 = a  and  0 + a = a.

Inverse Elements: For each a in F, the equations

a + x = 0  and  x + a = 0

have a solution x in F, called an additive inverse of a, and denoted by -a. For each non-zero
element a in F, the equations

a· x = 1  and  x· a = 1
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Notes7.4 Review Questions

1. Let F be a field and f(x)  F[x] with deg f(x)  1. Let a  F. Show that f(x) is divisible by
x � a iff f(a) = 0.

2. Find the roots of the following polynomials, along with their multiplicity.

(a) 21 5
f(x) x x 3 Q[x]

2 2
    (b) 2

3f(x) x x 1 Z [x]   

(c) 4 3
5f(x) x 2x 2x 1 Z [x]    

3. Let F be a field and a  F. Define a function

 : F[x]  F : f(f(x)) = f(x)

This function is the evaluation at a.

Show that

(a) f is an onto ring homomorphism.

(b) f (b) = b   b  F.

(c) Ker f = <x � a>

So, what does the Fundamental Theorem of Homomorphism say in this case?

4. Let p be a prime number. Consider p 1
px 1 Z [x].

   Use the fact that Zp is a group of order

p to show that every non-zero element of Zp is a root of xp-1 � 1.   Thus, show that xp-1 � 1 =

(x 1)(x 2)...(x p 1).   

5. The polynomial x4 + 4  can be factored into linear factors in Z
5
[x]. Find this factorisation.

Answers: Self Assessment

1. (c) 2. (c) 3. (c) 4. (a) 5. (d)

7.5 Further Readings

Books Dan Saracino: Abstract Algebra; A First Course.

Mitchell and Mitchell: An Introduction to Abstract Algebra.

John B. Fraleigh: An Introduction to Abstract Algebra (Relevant Portion).

Online links www.jmilne.org/math/CourseNotes/

www.math.niu.edu

www.maths.tcd.ie/

archives.math.utk.edu
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Notes Unit 8 : Splitting Fields, Existence and Uniqueness

CONTENTS

Objectives

Introduction

8.1 Extension Field

8.2 Summary

8.3 Keywords

8.4 Review Questions

8.5 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss splitting field

 Describe extension field and theorem related to extension

Introduction

Beginning with a field K, and a polynomial f(x)  K, we need to construct the smallest possible
extension field F of K that contains all of the roots of f(x). This will be called a splitting field for
f(x) over K. The word �the� is justified by proving that any two splitting fields are isomorphic.

Let F be an extension field of K and let u  F. If there exists a non-zero polynomial f(x)  K[x]
such that f(u) = 0, then u is said to be algebraic over K. If not, then u is said to be transcendental
over K.

8.1 Extension Field

If F is an extension field of K, and u  F is algebraic over K, then there exists a unique monic
irreducible polynomial p(x)  K[x] such that p(u) = 0. It is the monic polynomial of minimal
degree that has u as a root, and if f(x) is any polynomial in K[x] with f(u) = 0, then
p(x) | f(x).

Alternate proof: The proof in the text uses some elementary ring theory. Then decided to include
a proof that depends only on basic facts about polynomials.

Assume that u  F is algebraic over K, and let I be the set of all polynomials f(x)  K[x] such that
f(u) = 0. The division algorithm for polynomials can be used to show that if p(x) is a non-zero
monic polynomial in I of minimal degree, then p(x) is a generator for I, and thus p(x) | f(x)
whenever f(u) = 0.

Furthermore, p(x) must be an irreducible polynomial, since if p(x) = g(x)h(x) for g(x); h(x)  K[x],
then g(u)h(u) = p(u) = 0, and so either g(u) = 0 or h(u) = 0 since F is a field. From the choice of p(x)
as a polynomial of minimal degree that has u as a root, we see that either g(x) or h(x) has the
same degree as p(x), and so p(x) must be irreducible.

Richa Nandra, Lovely Professional University
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NotesIn the above proof, the monic polynomial p(x) of minimal degree in K[x] such that p(u) = 0 is
called the minimal polynomial of u over K, and its degree is called the degree of u over K.

Let F be an extension field of K, and let u
1
, u

2
, ..., u

n
  F. The smallest subfield of F that contains

K and u
1
, u

2
,..., u

n
 will be denoted by K(u

1
, u

2
,..., u

n
). It is called the extension field of K generated

by u1, u
2
,...., u

n
. If F = K(u) for a single element u  F, then F is said to be a simple extension of K.

Let F be an extension field of K, and let u  F. Since K(u) is a field, it must contain all elements of
the form

2 m
0 1 2 m

2 n
0 1 2 n

a  + a u + a u  + ... + a u
,

b  + b u + b u  + ... + b u

where a
i
, b

j
  K for i = 1,..., m and j = 1,... n. In fact, this set describes K(u), and if u is transcendental

over K, this description cannot be simplified. On the other hand, if u is algebraic over K, then the
denominator in the above expression is unnecessary, and the degree of the numerator can be
assumed to be less than the degree of the minimal polynomial of u over K.

If F is an extension field of K, then the multiplication of F defines a scalar multiplication,
considering the elements of K as scalars and the elements of F as vectors. This gives F the
structure of a vector space over K, and allows us to make use of the concept of the dimension of
a vector space. The next  result describes the structure of the extension field obtained by adjoining
an algebraic element.

Definition: Let F be an extension field of K and let u  F be an element algebraic over K.

(a) K(u)  K[x]= hp(x)i, where p(x) is the minimal polynomial of u over K.

(b) If the minimal polynomial of u over K has degree n, then K(u) is an n-dimensional vector
space over K.

Alternate proof: The standard proof uses the ring homomorphism  : K[x]  F defined by
evaluation at u. Then the image of  is K(u), and the kernel is the ideal of K[x] generated by the
minimal polynomial p(x) of u over K. Since p(x) is irreducible, ker() is a prime ideal, and so
K[x] = ker() is a field because every nonzero prime ideal of a principal ideal domain is maximal.
Thus K(u) is a field since K(u) 245= K[x]= ker().

The usual proof involves some ring theory, but the actual ideas of the proof are much simpler.
To give an elementary proof, define  : K[x]= {p(x)}  K(u) by ([f(x)]) = f(u), for all congruence
classes [f(x)] of polynomials (modulo p(x)). This mapping makes sense because K(u) contains u,
together with all of the elements of K, and so it must contain any expression of the form a

0
 +a

1
u+

... + a
m

um, where a
i
  K, for each subscript i. The function  is well-defined, since it is also

independent of the choice of a representative of [f(x)]. In fact, if g(x)  K[x] and f(x) is equivalent
to g(x), then f(x) � g(x) = q(x)p(x) for some q(x)  K[x], and so f(u) � g(u) = q(u)p(u) = 0, showing
that ([f(x)]) = ([g(x)]).

Since the function  simply substitutes u into the polynomial f(x), and it is not difficult to show
that it preserves addition and multiplication. It follows from the definition of p(x) that 
is one-to-one. Suppose that f(x) represents a nonzero congruence class in K[x]= {p(x)}. Then

p(x) |  f(x), and so f(x) is relatively prime to p(x) since it is irreducible. Therefore, there exist

polynomials a(x) and b(x) in K[x] such that a(x)f(x) + b(x)p(x) = 1. It follows that [a(x)][f(x)] = [1]
for the corresponding equivalence classes, and this shows that K[x] /{p(x)} is a field. Thus the
image E of  in F must be subfield of F. On the one hand, E contains u and K, and on the other
hand, we have already shown that E must contain any expression of the form a

0
 + a

1
u + ... + a

m
um,

where a
i
  K. It follows that E = K(u), and we have the desired isomorphism.

(b) It follows from the description of K(u) in part (a) that if p(x) has degree n, then the set
B = {1, u, u2,..., un-1} is a basis for K(u) over K.

8
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Notes Let F be an extension field of K. The dimension of F as a vector space over K is called the degree
of F over K, denoted by [F : K]. If the dimension of F over K is finite, then F is said to be a finite
extension of K. Let F be an extension field of K and let u  F. The following conditions are
equivalent: (1) u is algebraic over K; (2) K(u) is a finite extension of K; (3) u belongs to a finite
extension of K.

Never underestimate the power of counting: the next result is crucial. If we have a tower of
extensions K  E  F, where E is finite over K and F is finite over E, then F is finite over K, and
[F : K] = [F : E][E : K]. This has a useful corollary, which states that the degree of any element of
F is a divisor of [F : K].

Let K be a field and let f(x) = a
0
 + a

1
x + ... + a

n
xn be a polynomial in K[x] of degree n > 0. An

extension field F of K is called a splitting field for f(x) over K if there exist elements r
1
, r

2
,..., r

n

 F such that

(i) f(x) = a
n
(x � r

1
)(x � r

2
) ... (x � rn) and

(ii) F = K(r
1
, r

2,
..., r

n
).

In this situation we usually say that f(x) splits over the field F. The elements r
1
, r

2
,..., r

n
 are roots

of f(x), and so F is obtained by adjoining to K a complete set of roots of f(x). An induction
argument (on the degree of f(x)) can be given to show that splitting fields always exist. Theorem
states that if f(x)  K[x] is a polynomial of degree n > 0, then there exists a splitting field F for f(x)
over K, with [F : K]  n!.

The uniqueness of splitting fields follows from two lemmas. Let  : K  L be an isomorphism of
fields. Let F be an extension field of K such that F = K(u) for an algebraic element u  F. Let p(x)
be the minimal polynomial of u over K. If v is any root of the image q(x) of p(x) under , and
E = L(v), then there is a unique way to extend  to an isomorphism  : F  E such that (u) = v and
(a) = (a) for all a  K. The required isomorphism  : K(u)  L(v) must have the form

(a
0
 + a

1
u + ... + a

n-1
un-1) = (a

0
) + (a

1
)v + ... + (a

n-1
)vn-1

The second lemma is stated as follows. Let F be a splitting field for the polynomial f(x)  K[x]. If
 : K  L is a field isomorphism that maps f(x) to g(x)  L[x] and E is a splitting field for g(x) over
L, then there exists an isomorphism  : F  E such that (a) = (a) for all a  K. The proof uses
induction on the degree of f(x), together with the previous lemma.

Theorem states that the splitting field over the field K of a polynomial f(x)  K[x] is unique up
to isomorphism. Among other things, this result has important consequences for finite fields.

Self Assessment

1. If F is an extension field k and u  F is algebraic over K, then their exists a ...............

(a) different (b) finite

(c) infinite (d) unique

2. The monic polynomial P(x) of minimal degree in K[x] such that P(u) = 0 is called is
............... of r over K and its degree is called the degree of u over K.

(a) maximal polynomial (b) minimal polynomial

(c) finite polynomial (d) infinite polynomial

3. The dimension of F as a vector space K is called the ............... of F over K, denoted by [f : k]

(a) range (b) domain

(c) degree (d) field
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Notes4. The splitting field over the field K of a polynomial f(x)  K[x] is unique up to ...............

(a) homomorphism (b) isomorphism

(c) automorphism (d) finite extension

8.2 Summary

If F is an extension field of K, and u  F is algebraic over K, then there exists a unique monic
irreducible polynomial p(x)  K[x] such that p(u) = 0. It is the monic polynomial of minimal
degree that has u as a root, and if f(x) is any polynomial in K[x] with f(u) = 0, then
p(x) | f(x).

Alternate Proof: The proof in the text uses some elementary ring theory. I�ve decided to include
a proof that depends only on basic facts about polynomials.

Let F be an extension field of K, and let u
1
, u

2
, ..., u

n
  F. The smallest subfield of F that contains

K and u
1
, u

2
,..., u

n
 will be denoted by K(u

1
, u

2
,..., u

n
). It is called the extension field of K generated

by u
1
, u

2
,...., u

n
. If F = K(u) for a single element u  F, then F is said to be a simple extension of K.

Let F be an extension field of K, and let u  F. Since K(u) is a field, it must contain all elements of
the form

2 m
0 1 2 m

2 n
0 1 2 n

a  + a u + a u  + ... + a u
,

b  + b u + b u  + ... + b u

where a
i
, b

j
  K for i = 1,..., m and j = 1,... n. In fact, this set describes K(u), and if u is transcendental

over K, this description cannot be simplified. On the other hand, if u is algebraic over K, then the
denominator in the above expression is unnecessary, and the degree of the numerator can be
assumed to be less than the degree of the minimal polynomial of u over K.

If F is an extension field of K, then the multiplication of F defines a scalar multiplication,
considering the elements of K as scalars and the elements of F as vectors. This gives F the
structure of a vector space over K, and allows us to make use of the concept of the dimension of
a vector space. The next  result describes the structure of the extension field obtained by adjoining
an algebraic element.

The uniqueness of splitting fields follows from two lemmas. Let  : K  L be an isomorphism of
fields. Let F be an extension field of K such that F = K(u) for an algebraic element u  F. Let p(x)
be the minimal polynomial of u over K. If v is any root of the image q(x) of p(x) under , and
E = L(v), then there is a unique way to extend  to an isomorphism  : F  E such that (u) = v and
(a) = (a) for all a  K. The required isomorphism  : K(u)  L(v) must have the form

(a
0
 + a

1
u + ... + a

n-1
un-1) = (a

0
) + (a

1
)v + ... + (a

n-1
)vn-1

The second lemma is stated as follows. Let F be a splitting field for the polynomial f(x)  K[x].
If  : K  L is a field isomorphism that maps f(x) to g(x)  L[x] and E is a splitting field for g(x)
over L, then there exists an isomorphism  : F  E such that (a) = (a) for all a  K. The proof uses
induction on the degree of f(x), together with the previous lemma.

The splitting field over the field K of a polynomial f(x)  K[x] is unique up to isomorphism.

8.3 Keywords

Splitting Field: Beginning with a field K, and a polynomial f(x)  K, we need to construct the
smallest possible extension field F of K that contains all of the roots of f(x). This will be called a
splitting field for f(x) over K.

8

60



LOVELY PROFESSIONAL UNIVERSITY

Notes Extension Field: Let F be an extension field of K and let u  F. If there exists a nonzero polynomial
f(x)  K[x] such that f(u) = 0, then u is said to be algebraic over K. If not, then u is said to be
transcendental over K.

In the above proof, the monic polynomial p(x) of minimal degree in K[x] such that p(u) = 0 is
called the minimal polynomial of u over K, and its degree is called the degree of u over K.

8.4 Review Questions

1. Find the splitting field over Q for the polynomial x4 + 4.

2. Let p be a prime number. Find the splitting fields for xp � 1 over Q and over R.

3. Find the splitting field for x3 + x + 1 over Z
2
.

4. Find the degree of the splitting field over Z
2
 for the polynomial (x3 + x + 1)(x2 + x + 1).

5. Let F be an extension field of K. Show that the set of all elements of F that are algebraic
over K is a subfield of F.

6. Let F be a field generated over the field K by u and v of relatively prime degrees m and n,
respectively, over K. Prove that [F : K] = mn.

7. Let F  E  K be extension fields. Show that if F is algebraic over E and E is algebraic over
K, then F is algebraic over K.

8. Let F  K be an extension field, with u  F. Show that if [K(u) : K] is an odd number, then
K(u2) = K(u).

9. Find the degree [F : Q], where F is the splitting field of the polynomial x3 � 11 over the field
Q of rational numbers.

10. Determine the splitting field over Q for x4 + 2.

11. Determine the splitting field over Q for x4 + x2 + 1.

12. Factor x6 � 1 over Z
7
; factor x5 � 1 over Z

11
.

Answers: Self Assessment

1. (d) 2. (b) 3. (c) 4. (b)

8.5 Further Readings

Books Dan Saracino: Abstract Algebra; A First Course.

Mitchell and Mitchell: An Introduction to Abstract Algebra.

John B. Fraleigh: An Introduction to Abstract Algebra (Relevant Portion).

Online links www.jmilne.org/math/CourseNotes/

www.math.niu.edu

www.maths.tcd.ie/

archives.math.utk.edu
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NotesUnit 9 : Separable Extensions

CONTENTS

Objectives

Introduction

.1 Separability

.2 Summary

.3 Keywords

.4 Review Questions

.5 Further Readings

Objectives

After studying this unit, you will be able to:

 Define separability

 Discuss examples related to separable extension

Introduction

In the last unit, you have studied about the splitting field and extension field. This unit will
provide you information related to separable extension.

9.1 Separability

Separability of a finite field extension L/K can be described in several different ways. The
original definition is that every element of L is separable over K (that is, has a separable
minimal polynomial in K[X]). We will give here three descriptions of separability for a finite
extension and use each of them to prove two theorems about separable extensions.

Theorem 1: Let L/K be a finite extension. Then L/K is separable if and only if the trace function
Tr

L/K
 : L  K is not identically 0.

The trace function is discussed in Appendix A.

Theorem 2: Let L/K be a finite extension. Then L/K is separable if and only if the ring KK L

has no non-zero nilpotent elements. When L/K is separable, the ring KK L  is isomorphic to

[L:K ]
K .

Example: Consider the extension Q( 2 )=Q. Since Q( 2 )  Q[X]/(X2 � 2), tensoring with

Q  gives   2
QQ Q 2 ; Q[X]/(X 2) Q[X]/((X 2 )(X 2 ) Q Q,     

which is a product of 2 copies of Q  (associated to the 2 roots of X
2
 2) and has no nilpotent

elements besides 0.

Sachin Kaushal, Lovely Professional University 9

9

9

9

9

9
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Example: Consider the extension F
2
( u )/F

2
(u). Since F

2
( u )  F

2
[X]/(X2 � u),

2

2 2 2
2 F (u) 2 2 2F (u)  F ( u) F ( u) F (u)[X]/(X � u) = F (u)[X]/(X � u ) ,  

which has the nonzero nilpotent element X � u .

Theorem 3: Let L/K be a finite extension. Then L is separable over K if and only if any derivation
of K has a unique extension to a derivation of L.

For above two proofs, the reader should be comfortable with the fact that injectivity and
surjectivity of a linear map of vector spaces can be detected after a base extension: a linear
map is injective or surjective if and only if its base extension to a larger field is injective or
surjective.

Each of the three theorems above will be proved and then lead in its own way to proofs of the
following two theorems.

Theorem 4: If L = K(a
1
,....., a

r
) and each a

i
 is separable over K then every element of L is separable

over K (so L/K is separable).

Theorem 5: Let L/K be a finite extension and F be an intermediate field. If L/F and F/K are
separable then L/K is separable.

We will use our new viewpoints to define separability for arbitrary (possibly non-algebraic)
field extensions.

We want to show L/K is separable if and only if Tr
L/K

 : L  K is not identically 0. The trace map
is either identically 0 or it is onto, since it is K-linear with target K, so another way of putting
Theorem 1 is that we want to show L/K is separable if and only if the trace from L to K is onto.

Proof: We might as well take K to have positive characteristic p, since in characteristic 0 all
finite field extensions are separable and the trace is not identically 0 : TrL

/K
(1) = [L : K]  0 in

characteristic 0.

If L/K is separable, by the primitive element theorem we can write L = K() where  is separable
over K. To show the trace is surjective for finite separable extensions, it suffices to prove surjectivity
of the trace map on K()/K when K is any base field and  is separable over K.

If L/K is inseparable, then there must be some a  L which is inseparable over K. Since
Tr

L/K 
= Tr

K()/K
 o Tr

L/K()
, it success to prove the trace map on K()=K vanishes when  is inseparable

over K.

For both cases of the field extension K()/K ( separable or inseparable over K), let  have

minimal polynomial (X) in K[X]. Write (X) =  (Xpm) where m is as large as possible, so  (X)
is separable. Thus (X) is separable if and only if m = 0.

Let n = deg  = pmd, with d = deg  . In K[X],

 (X) = (X � 
1
) ... (X � 

d
)

for some 
i
�s, which are all distinct since  (X) is separable. Write 

mp
i ig ,   so the 

i
�s are distinct.

Then

m m m m mp p p p p
1 d 1 d(X) (X ) (X ) ... (X ) (X ) ... (X ) .          
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NotesConsider now the extension of scalars up to K  of the trace map Tr
K(a)/K

 : K(a)  K:

k(a)/K K KK
Tr id Tr : K K(a) K K K.     

Tr  is the trace map on KK K( )   as a K -vector space.

Since tensoring with a field extension preserves injectivity and surjectivity of a linear map,

Tr
K(a)/K

 is onto  Tr  is onto; Tr
K(a)

=K  Tr  = 0

Since K()  K[X] /((X)) as K-algebras, K( ) K[X]/( (X))   as K -algebras, and thus is isomorphic

to the direct product of the rings K [X]/
mp

i(X � ).  The trace is the sum of the traces to K  on each

mp
iK[X]/(X � ).  Let�s look at the trace from 

mp
iK[X]/(X � ).  to K .

In K [X], 
mp

iX �   = 
mp

i(X � ) .  Then 
m mp p

iK[X]/(X � ) = K[Y]/(Y ),  where Y = X  
i
. If m = 0, then

K [Y ] /
mp(Y )  = K , so the trace to K  is the identity. If m > 0, any element of K [Y ]/

mp(Y )  is the

sum of a constant plus a multiple of Y , which is a constant plus a nilpotent element (since Y

mod 
rpY  is nilpotent). Any constant in K [Y ]/

mp(Y )  has trace 0 since pm = 0 in K  (because

m > 0). A nilpotent element has trace 0. Thus the trace to K of any element of K [Y ] /
mp(Y )  is 0.

To summarize, when  is separable over K (i.e., m = 0), the trace map from K() to K is onto since

it is onto after extending scalars to K . When a is inseparable over K (i.e., m > 0), the trace map
is identically 0 since it vanishes after extending scalars.

Theorem 1 implies Theorem 4.

Proof. Set L
0
 = K, L

1
 = K(

1
) = L

0
(

1
), and more generally L

i
 = K(

1
,....

i
) = L

i-1
(

i
) for i  1. So we

have the tower of field extensions

K = L
0
  L

1
  L

2
  ...   L

r-1
  L

r
 = L.

By transitivity of the trace,

1 0 2 1 r r�1L/K L /L L /L L /LTr  = Tr o Tr o o Tr

Since 
i
 is separable over K and the minimal polynomial of 

i
 over L

i-1
 divides its minimal

polynomial over K, 
i
 is separable over L

i-1
. Therefore Tr

Li-1
(

i
)/L

i-1
 : L

i
  L

i-1
 is onto from the

proof of Theorem 1, so the composite map TrL/K : L  K is onto. Therefore L/K is separable by
Theorem 1.

Corollary: Theorem 1 implies Theorem 5.

Proof: By Theorem 1 and the hypothesis of Theorem 5, both Tr
L/F

 and Tr
F/K

 are onto. Therefore,
their composite Tr

L/K
 is onto, so L/K is separable by Theorem 1.

Proof: We will begin with the case of a simple extension L = K(). Let (X) be the minimal
polynomial of  over K, so L  K[X]/((X)) as K-algebras and

 KK L K[X]/ (X) 

as K -algebras. This ring was considered in the proof of Theorem 1, where we saw its structure

is different when (X) is separable or inseparable. If (X) is separable in K[X], then K[X]/( K (X))

9
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Notes is a product of copies of the field K , so it has no non-zero nilpotent elements. If (X) is inseparable,

then K [X]/((X)) is a product of copies of rings K [Y ]/(
mpY ) with m > 0, which all have

nonzero nilpotents.

Now we consider the structure of K 
K
 L when L/K is any finite extension.

First assume L/K is separable. By the primitive element theorem, we can write L = K() and 

is separable over K. By the first paragraph of the proof, [L:K]
KK L  K    since (X) has distinct

linear factors in K .

If L/K is inseparable, then some a  L is inseparable over K. Tensoring the inclusion map

K()  L up to K , we have an inclusion

K 
K 

K()  K 
K
 L.

The ring K 
K 

K() has a non-zero nilpotent element by the first paragraph of the proof, so

K 
K 

L does as well.

Corollary: The proof of Theorem 2 implies Theorem 4.

Proof: Make a tower of intermediate extensions in L/K as in (2.2). Note K  is an algebraic
closure of every field L

i
 in the tower. Since

K K 1 L1K L (K L ) L  

and L
1
 = K(

1
) with 

1
 separable over K, the proof of Theorem 2 implies

1[L :K]

K 1K L K 

as K -algebras. Therefore

1
1

1 1

[L :K ] [L :K ]
K L LK L K L (K L)   

Since L = L
1
(

2
,... 

r
) with each 

i
 separable over L

1
, we can run through the same computation

for 
2LK L  as we did for 

KK L,  and we get 2 1

1 2

[L :L ]
L LK L (K L) ,   so

2 1 1 2

2

[L :L ][L :K] [L :K]
K L 2K L (K L)  = (K L L) .  

Repeating this enough, in the end we get

r

r

[L:K ][L :K]
K LK L  (K L) K .  

Corollary: The proof of Theorem 2 implies Theorem 5.

Proof: The field K  is an algebraic closure of F and L. Using Theorem 2,

K 
K
L  ( K 

K
F)

F
 L

  K [F:K]
F 

L since F/K is separable

  ( K 
F 
L)[F:K]
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Notes  K [L:F][F:K] since L=F is separable

  K [L:K]

Thus L/K is separable by Theorem 1.2.

Theorem 6: Let L/K be an extension of fields, and   L be algebraic over K. Then is separable
over K if and only if any derivation on K has a unique extension to a derivation on K().

Proof: When   L is separable over K, Corollary B.10 shows any derivation on K extends
uniquely to a derivation on K().

Now suppose   L is inseparable over K. Then �(X) = 0, where (X) is the minimal polynomial
of  over K. In particular �() = 0. We are going to use this vanishing of �() to construct a
nonzero derivation on K() which extends the zero derivation on K.

Then the zero derivation on K has two lifts to K(): the zero derivation on K() and this other
derivation we will construct.

Define Z : K()  K() by Z(f()) = f�(), where f(X)  K[X]. Is this well-defined?

Well, if f
1
() = f

2
(), then f

1
(X)  f

2
(X) mod (X), say

f
1
(X) = f

2
(X) + (X)k(X).

Differentiating both sides with respect to X,

f�
1
(X) = f�

2
(X) + (X)k�(X) + �(X)k(X):

Evaluating both sides at yields f�
1
 () = f�

2
() since �() = 0. So Z : K()  K() is well-defined.

It is left to the reader to check Z is a derivation on K(). This derivation kills K, but Z() = 1, so
Z extends the zero derivation on K while not being the zero derivation itself.

The reader can check more generally that when  is inseparable over K and   K() is arbitrary
the map f()  f�() is a derivation on K() that extends the zero derivation on K and sends 
to . So there are many extensions of the zero derivation on K to K(): one for each element of
K().

We need a lemma to put inseparable extensions into a convenient form for our derivation
constructions later.

Lemma: Let L/K be a finite inseparable field extension. Then there is an  L and intermediate
field F such that L = F() and  is inseparable over F.

Proof: Inseparable field extensions only occur in positive characteristic. Let p be the characteristic
of K. Necessarily [L : K] > 1. Since L/K is inseparable, there is some   L that is inseparable over
K.

Write L = K(
1
,.... 

r
). We will show by contradiction that some 

i
 has to be inseparable over K.

Assume every 
i
 is separable over K. Then we can treat L/K as a succession of simple field

extensions as in (2.2), where L
i
 = L

i-1
(

i
) with 

i
 separable over L

i-1
. By Theorem, any derivation

on L
i-1

 extends to a derivation on L
i
, so any derivation on K extends to a derivation on L.

Moreover, this extended derivation on L is unique. To show that, consider two derivations D and
D� on L that are equal on K. Since L

1
 = K(

1
) and 

1
 is separable over K, the proof of Corollary

B.10 tells us that D and D� both send L
1
 to L

1
 and are equal on L

1
. Now using L

1
 in place of K, D and

D� being equal on L
1
 implies they are equal on L

2
 since L

2
 = L

1
(

2
) and 

2
 is separable over L

1
. We

can keep going like this until we get D = D� on L
r
 = L. As a special case of this uniqueness, the only

derivation on L which vanishes on K is the zero derivation on L.

9
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Notes Now replace K as base field with K(), over which the 
i
�s are of course still separable. Then any

derivation on K() extends uniquely to a derivation on L. But in the proof of Theorem we saw
there is a non-zero derivation Z on K() that vanishes on K, and an extension of that to a
derivation on L is non-zero on L and is zero on K. We have a contradiction of the uniqueness of
extensions, so in any set of field generators {

1
,...., 

r
}, some 

i
 must be inseparable in K.

Choose a generating set {
1
,....,

r
} with as few inseparable elements as possible. At least one 

i

is inseparable over K and we may assume that 
r
 is one of them. Set  = 

r
 and F = K(

1
,....

r-1
)

(so F = K if r = 1). Then L = F(). We will show by contradiction that  must be inseparable
over F, which is the point of the lemma.

Suppose  is separable over F. Then  is separable over the larger field F(p) since its minimal
polynomial over F(p) divides its minimal polynomial over F. Since  is a root of Xp � p

 F(p)[X], its (separable) minimal polynomial in F(p)[X] is a factor of this, so that polynomial

must be X � . Therefore,   F(p). Taking pk-th powers for any k  0, 
k k+1p pa F(a ),  so

k k+1p pF(a ) F(a ).

The reverse inclusion is obvious, so 
kpF(a )  = 

k+1pF(a )  for all k  0. Therefore,

kp pk
1 r-1 rL = F( ) = F( ) = K( ,..., , )    

for any k  0. We can pick k so that 
kp

  is separable over K (why?). Then the generating set
kp

1 r 1 r{ ,..., ,a }   has with one less inseparable element among the field generators. This

contradicts the choice of generators to have as few members in the list as possible that are
inseparable over K, so  has to be inseparable over F.

Proof: Assume L/K is separable, so by the primitive element theorem L = K() where  is
separable over K. Any derivation on K can be extended (using Theorem) uniquely to a derivation
on L.

If L/K is inseparable, then Lemma lets us write L = F() with  inseparable over F, and
F  K. The, by a construction used in the proof of Theorem, f()  f�() with f(X)  F[X] is a
nonzero derivation on L which is zero on F, and thus also zero on the smaller field K. This shows
the zero derivation on K has a non-zero extension (and thus two extensions) to a derivation on L.

Corollary: The proof of Theorem 3 implies Theorem 4.

Proof: Again we consider the tower of field extensions (2.2). Since L
i
 = L

i-1
(

i
) and 

i 
is separable

over L
i-1

, the proof shows any derivation on L
i-1

 extends uniquely to a derivation on L
i
. Therefore,

any derivation on K = L
0
 can be extended step-by-step through the tower (2.2) to a derivation on

Lr = L. By the argument in the proof of Lemma, this derivation on L is unique.

Lemma: Let L/K be a finite extension and F be an intermediate extension such that F/K is
separable. Then any derivation F  L which sends K to K has values in F.

Proof: Pick   F, so  is separable over K. Now use Corollary B.10 to see the derivation F  L
sends  to an element of K()  F.

Corollary: Theorem 3 implies Theorem 5.

Proof: To prove L/K is separable, we want to show any derivation on K has a unique extension
to a derivation on L. Since F/K is separable, a derivation on K extends to a derivation on F. Since
L/F is separable, a derivation on F extends to a derivation on L.
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NotesFor uniqueness, let D
1
 and D

2
 be derivations on L which extend the same derivation on K. Since

D
1
(K)  K and D

2
(K)  K, we have D

1
(F)  F and D

2
(F)  F by Lemma. Then D

1
 = D

2
 on F since

F/K is separable, and D
1
 = D

2
 on L since L/F is separable.

When L/K is an algebraic extension of possibly infinite degree, here is the way separability is
defined.

Definition: An algebraic extension L/K is called separable if every finite subextension of L=K is
separable. Equivalently, L=K is separable when every element of L is separable over K.

This definition makes no sense if L/K is not an algebraic extension since a non-algebraic extension
is not the union of its finite subextensions.

Theorem 1 has a problem in the infinite-degree case: there is no natural trace map. However, the
conditions in Theorems 2 and 3 both make sense for a general L/K. (In the case of Theorem 2,

we have to drop the specification of KK L  as a product of copies of K , and just leave the

statement about the tensor product having no non-zero nilpotent elements.) It is left to the
reader to check for an infinite algebraic extension L/K that the conditions of Theorems 2 and 3
match Definition.

The conditions in Theorems 2 and 3 both make sense if L/K is not algebraic, so they could each
potentially be used to define separability of a completely arbitrary field extension. But there is
a problem: for transcendental (that is, non-algebraic) extensions the conditions in Theorems 2
and 3 are no longer equivalent. Indeed, take L = K(u), with u transcendental over K. Then

KK L  = K(u)  is a field, so the condition in Theorem 2 is satisfied. However, the zero derivation

on K has more than one extension to K(u): the zero derivation on K(u) and differentiation with
respect to u on K(u).

Definition: A commutative ring with no nonzero nilpotent elements is called reduced.

A domain is reduced, but a more worthwhile example is a product of domains, like F3 × Q[X],
which is not a domain but is reduced.

Definition: An arbitrary field extension L/K is called separable when the ring KK L  is reduced.

Using this definition, in characteristic 0 all field extensions are separable. In characteristic p, any
purely transcendental extension is separable. The condition in Theorem 3, that derivations on
the base field admit unique extensions to a larger field, characterizes not separable field extensions
in general, but separable algebraic field extensions.

A condition equivalent to that in Definition is that KF L  is reduced as F runs over the finite

extensions of K.

The condition that KK L  is reduced makes sense not just for field extensions L/K, but for any

commutative K-algebra. Define an arbitrary commutative K-algebra A to be separable when

the ring KK A  is reduced. This condition is equivalent to A 

 F being reduced for every finite

extension field F/K.

Example: Let A = K[X]/(f(X)) for any non-constant f(X)  K[X]. The polynomial f(X) need
not be irreducible, so A might not be a field. It is a separable K-algebra precisely when f(X) is a
separable polynomial in K[X].

When [A : K] is finite, an analogue of Theorem 1 can be proved: A is a separable K-algebra if and
only if the trace pairing hx; yi = Tr

A/K
(xy) from A × A to K is non-degenerate.

9
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Notes Traces

Let A be a finite-dimensional commutative K-algebra (with identity), such as a finite extension
field of K or the product ring Kn or even a mixture of the two: a product of finite extensions
of K. To any a 2 A we associate the K-linear map m


 : A  A which is left multiplication by a:

x  x:

For a; b  A and   K, m
a+b

 = m
a
 + m

b
 and m

aa
 = am

a
, so m

a
 is a K-linear map.

Definition: For a finite-dimensional K-algebra A, the trace of a  A is the trace of m
a
.

That is, the trace of a is tr(m
a
)  K, usually written as Tr

A/K
(a), so Tr

A/K
 : A  K. The trace from A

to K is K-linear, hence identically zero or surjective since K is a one-dimensional K-vector space.

Example: Since m
1
 is the identity function, Tr

A/K
(1) = [A : K].

Example: Suppose a  A is nilpotent: ar = 0 for some r  1. Then r
am 0,  so m

a
 is a nilpotent linear

transformation. Thus its eigenvalues are all 0, so Tr
A/K

(a) = 0.

We now consider a finite-dimensional L-algebra A with K a subfield of L such that [L : K] < . We
have finite-dimensional algebras A/L, A/K, and L/K. The next theorem is called the transitivity
of the trace.

Theorem 7: In the above notation, Tr
A/K

 = Tr
L/K   Tr

A/L
. In particular, if a  L, then Tr

A/K
(a) =

[A : L]Tr
L/K

(a).

Proof: Let (e1; : : : ; em) be an ordered L-basis of A and (f1; : : : ; fn) be an ordered K-basis

of L. Thus as an ordered K-basis of A we can use

(e
1
f

1
,....., e

1
f

n
,....., e

m
f

1
,....., e

m
f

n
):

For a  A, let

m n

j ij i ij s ijrs r
i 1 r 1

ae c e , c f b f ,
 

  

for c
ij
  L and b

ijrs
  K. Thus a(e

j
f

s
) = ijrs i ri r

b e f .   So

[m
a
]

A/L
 = (c

ij
), [m

cij
 ]

L/K
 = (b

ijrs
), [m

a
]

A/K
 = ([m

cij
 ]

L/K
):

Thus

Tr
L/K

(Tr
A/L

(a))   = L/K ii
i

Tr ( c )

= L /K ii
i

Tr (c )

= iirr
i r

b

= Tr
A/K

(a).

Theorem 8: Let A and B be finite-dimensional K-algebras. For (a; b) in the product ring A × B,
Tr

(A×B)/K
(a, b) = Tr

A/K
(a) + Tr

B/K
(b).

Proof: Let e
1
,....., e

m
 be a K-basis of A and f

1
,....., f

n
 be a K-basis of B. In A × B, e

i
 . f

j
 = 0. Therefore,

the matrix for multiplication by (a, b), with respect to the K-basis { e
i
f

j 
}, is a block-diagonal

matrix a

b

0[m ]
,

0 [m ]
 
 
 

 whose trace is Tr
A/K

(a) + Tr
B/K

(b).

69



LOVELY PROFESSIONAL UNIVERSITY

Unit : Separable Extensions

NotesTheorem 9: Let A be a finite-dimensional K-algebra, L/K be a field extension, and B = L
K
A be

the base extension of A to an L-algebra. For a  A, Tr
B/L

(1a) = Tr
A/K

(a).

Proof: Let e
1
,....., e

n
 be a K-basis of A. Write ae

j
 = 

n

ij ii 1
c e

 , so the matrix for m
a
 in this basis is (c

ij
).

The tensors 1  e
1
,....., 1  en are an L-basis of B, and we have

(1  a) (1  e
j
) = 1  ae

j
 = 

n

ij i
i 1

c (1 e ),




so the matrix for m
1a

 on B is the same as the matrix for m
a
 on A. Thus Tr

A/K
(a) = Tr

B/L
(1  a).

Remark: Because m
1a

 and m
a
 have the same matrix representation, not only are their traces the

same but their characteristic polynomials are the same.

Theorem 10: Let A be a finite-dimensional K-algebra. For any field extension L/K, the base
extension by K of the trace map A  K is the trace map L 

K
 A  L. That is, the function

idTr
A/K

 : LK A  L which sends an elementary tensor x a to xTr
A/K

(a) is the trace map
Tr

(LKA)/L
.

Proof: We want to show Tr
(LKA)/L

(t) = (idTr
A/K

)(t) for all t  L
K
A. The elementary tensors

additively span L
K
 A so it succes to check equality when t = x  a for x  K and a  A. This means

we need to check Tr
(LKA)/K

(x  a) = xTr
A/K

(a).

Pick a K-basis e
1
,..., e

n
 for A and write ae

j
 = 

n

ij ii 1
c e

  with c
ij
  K. The elementary tensors

1  e
1
,..., 1  e

n
 are an L-basis of LK A and

n n

j j ij i ij i
i 1 i 1

(x a)(1 e ) x ae c (x e ) c x(1 e )
 

        

by the definition of the L-vector space structure on L
K
A. So the matrix for multiplication by

x  a in the basis {1  e
i
} is (c

ij
x), which implies

n n

(L KA )/L ii A /K
i 1 i 1

Tr (x a) c x x cii xTr (a).

 

    

Derivations

A derivation is an abstraction of differentiation on polynomials. We want to work with
derivations on fields, but polynomial rings will intervene, so we need to understand derivations
on rings before we focus on fields.

Let R be a commutative ring and M be an R-module (e.g., M = R). A derivation on R with values
in M is a map D : R  M such that D(a + b) = D(a) + D(b) and D(ab) = aD(b) + bD(a). Easily, by
induction D(an) = nan-1D(a) for any n  1. When M = R, we will speak of a derivation on R.

Example: For any commutative ring A, differentiation with respect to X on A[X] is a derivation
on A[X] (R = M = A[X]).

Example: Let R = A[X] and M = A as an R-module by f(X)a := f(0)a. Then D: R  M by D(f)
= f�(0) is a derivation.

Example: Let D : R  R be a derivation. For i
ii

f(X) a X  in R[X], set fD(X) =   i
ii

D a X .

This is the application of D coefficentwise to f(X). The operation f  fD is a derivation on R[X] (to
check the product rule, it suffices to look at monomials).

9
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Notes If R = F
2
[u] and D is the usual u-derivative on F

2
[u], then the polynomial f(X) = (u3 + u)X4 + uX3

+ u2X + 1 in R[X] has fD(X) = (u2 + 1)X4 + X3.

Any element of R satisfying D(a) = 0 is called a D-constant, or just a constant if the derivation is
understood. The constants for a derivation form a subring. For instance, from the product rule,
taking a = b = 1, we obtain D(1) = 0.

Example: The set of all constants for X-differentiation on K[X] is K when K has characteristic 0 and
K[Xp] when K has characteristic p.

Example: If D: R  R is a derivation and f  fD is the corresponding derivation on R[X], its ring of
constants is C[X], where C is the constants for D.

We will generally focus on derivations from R to R, although it will be convenient to allow
R-modules as the target space for derivations in Corollary, which is used in the main text in the
proofs of Theorem 3 and Lemma.

Example: Let�s check that any derivation on K[X] which has the elements of K among its constants
has the form D(f) = hf� for some h  K[X]. (When h = 1, this is the usual X-derivative.)

When K is among the constants of D, D is K-linear: D(cf) = cD(f) + fD(c) = cD(f). Therefore, D is
determined by what it does to a K-basis of K[X], such as the power functions Xn. By induction,
D(Xn) = nXn-1D(X) for all n  1. Therefore, by linearity, D(f) = f�(X)D(X) for every f  K[X]. Set
h = D(X).

Theorem 11: Let R be a domain with fraction field K. Any derivation D: R  K uniquely extends

to D  : K  K, given by the quotient rule: D (a/b) = (bD(a) � aD(b))/b2.

Proof: Suppose there is an extension of D to a derivation on K. Then, if x = a/b is in K (with a, b
 A), a = bx, so

D(a) = bD(x) + xD(b):

Therefore in K,

2

D(a) � xD(b) bD(a) � aD(b)
D(x) =

b b


To see, conversely, that this formula does give a derivation D  on K, first we check it is well-
defined: if a/b = c/d (with b and d nonzero), then ad = bc, so

aD(d) + dD(a) = bD(c) + cD(b).

Therefore,

2 2

bD(a) � aD(b) dD(a) � cD(d)

b d
  =

2 2

2 2

d (bD(a) � aD(b)) � b (dD(c) � cD(d))

b d

=
2 2

2 2

bd(dD(a) � bD(c)) � d aD(b) + b cD(d)

b d

=
2 2

2 2

bd(cD(b) � aD(d)) � d aD(b) + b cD(d)

b d

= 2 2

(bc � ad)dD(b) � (ad � bc)bD(d)

b d

= 0 since ad = bc.

That D  satisfies the sum and product rules is left to the reader to check.
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NotesTheorem 12: Let L/K be a finite extension of fields, and D: K  K be a derivation. Suppose
a  L is separable over K, with minimal polynomial (X)  K[X]. That is, (X) is irreducible in
K[X], () = 0, and �()  0. Then D has a unique extension from K to a derivation on the field
K(), and it is given by the rule

D(f()) = D D(a)
f ( ) � f'( )

'(a)


 


for any f(X)  K[X].

Proof: The rule (B.1) looks bizarre at first. To make it less so, we start by assuming D has an
extension to K(), and prove by a direct computation that it must be given by the indicated

formula. For any   K(), write  = f(), where f(X) = 
r

i ii=0
c X  and c

i
  K. Then

D() = D(f()) = 
r

i i-1 D
i i

i=0

(D(c ) + c (i D( ))) = f ( ) + f'( )D( ).     

Taking f(X) = (X) to be the minimal polynomial of  over K, f() = 0, so if D has an extension to
K() then (B.2) becomes

0 = D() + �()D(),

which proves (since �()  0) that D() must be given by the formula �D()/�(). Plugging this
formula for D(), shows D() must be given by the formula. Since  was a general element of
K(), this proves D has at most one extension to a derivation on K().

Now, to show the formula works, we start over and define

D(f()) : = 
D

D ( )
f (a) � f'( ) .

'( )

 


 

We need to show this formula is well-defined.

Suppose f
1
() = f

2
() for f

1
; f

2
  K[X]. Then f

1
(X)  f

2
(X) mod (X), say

f
1
(X) = f

2
(X) + (X)k(X)

for some k(X)  K[X]. Differentiating both sides with respect to X in the usual way,

f�
1
(X) = f�

2
(X) + (X)k�(X) + �(X)k(X).

Evaluating at X = ,

f�
1
() = f�

2
() + �()k().

Since �()  0, we divide by �() and multiply through by �D() to get

 

D D
D

1 2

(a) ( )
�f' ( ) f ' (a) ( )k( ).

' a '( )

  
      

  

We want to add D
1f ( )  to both sides. First, apply D to the coefficients in (B.3), which is a derivation

on K[X], to get

D D D D
1 2 kf (X) f (X) (X) (X) (X)k(X).    

Therefore,

D D D
1 2f (a) f (a) ( )k(a).   

9
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Notes Add this to both sides to get

D D
D ' D D ' D
1 2 2 2

D
D '
2 2

(a) (a)
f ( ) f ( ) f ( ) ( )k( ) f ( ) ( )k( )

'(a) '(a)

( )
f ( ) f (a) .

'( )

 
              

 

 
  

 

This proves the formula for a derivation on K() is well-defined. It is left to the reader to check
this really is a derivation.

Example: In contrast with Theorem 12, consider K = F
p
(u) and L = K() where  is a root

of Xp � u  K[X]. This is an inseparable irreducible polynomial over K. The u-derivative on K
does not have any extension to a derivation on L. Indeed, suppose the u-derivative on K has an
extension to L, and call it D. Applying D to the equation ap = u gives

pp-1D() = D(u).

The left side is 0 since we�re in characteristic p. The right side is 1 since D is the u-derivative on
F

p
(u). This is a contradiction, so D does not exist.

Corollary: Let L/K be a finite extension of fields. For any derivation D: K  L and   L
which is separable over K, D has a unique extension to a derivation K()  L. If D(K)  K then
D(K())  K().

Proof: Follow the argument in the proof of Theorem 12, allowing derivations to have values in
L rather than in K(). The formula for D(f()) still turns out to be the same as in (B.1). In
particular, if D(K)  K then the extension of D to a derivation on K() actually takes values in
K().

Self Assessment

1. A ................... ring with no non-zero nilpotent element is called reduced.

(a) associative ring (b) commutative ring

(c) multiplicative ring (d) addition ring

2. An arbitrary field extension ................... is called separable when the ring uK L  is reduced.

(a) L-1k (b) L/K

(c) K/L-1 (d) (L + K)-1

3. If L/K be a  ................... extensions. Then L is separable over K. If and only if any derivation
of K has a unique extension to a derivative of L.

(a) finite (b) infinite

(c) domain (d) split

4. The extension 2 2F ( u )/F /4).  Since   2
2 2F ( u ) F x /x u,  which then the non-zero

nilpotent element ...................

(a) X u (b) u X

(c) 1X u
 (d) 1u u x

 
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Notes5. If D : R  R is a derivatives and f  F0 is the corresponding derivation on R[x] from its ring
of constants in C[x], where ................... is the constant for ..................., f(x) =

1
1 i i

u

a x in R[x] and fd(x) D(a )X 

(a) D, C (b) C, D

(c) X, C (d) C, D

9.2 Summary

 Let L/K be a finite extension. Then L is separable over K if and only if any derivation of K
has a unique extension to a derivation of L.

 If L = K(a
1
,....., a

r
) and each a

i
 is separable over K then every element of L is separable over

K (so L/K is separable).

 Let L/K be a finite extension and F be an intermediate field. If L/F and F/K are separable
then L/K is separable.

 The proof of Theorem 2 implies Theorem 4.

 Let L/K be an extension of fields, and   L be algebraic over K. Then is separable over K
if and only if any derivation on K has a unique extension to a derivation on K().

 A commutative ring with no nonzero nilpotent elements is called reduced.

 A domain is reduced, but a more worthwhile example is a product of domains, like
F3 × Q[X], which is not a domain but is reduced.

 An arbitrary field extension L/K is called separable when the ring KK L  is reduced.

 A derivation is an abstraction of differentiation on polynomials. We want to work with
derivations on fields, but polynomial rings will intervene, so we need to understand
derivations on rings before we focus on fields.

9.3 Keywords

Separability: Separability of a finite field extension L/K can be described in several different
ways.

Commutative Ring: A commutative ring with no nonzero nilpotent elements is called reduced.

Domain: A domain is reduced, but a more worthwhile example is a product of domains, like
F3 × Q[X], which is not a domain but is reduced.

Derivation: A derivation is an abstraction of differentiation on polynomials.

9.4 Review Questions

1. Let R be a domain with fraction field K. Any derivation D: R  K uniquely extends to

D  : K  K, given by the quotient rule: D (a/b) = (bD(a) � aD(b))/b2. Prove it.

2. Let L/K be a finite extension of fields, and D: K  K be a derivation. Suppose
a  L is separable over K, with minimal polynomial (X)  K[X]. That is, (X) is irreducible
in K[X], () = 0, and �()  0. Then D has a unique extension from K to a derivation on the
field K(), and it is given by the rule.

9
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1. (b) 2. (b) 3. (a) 4. (a) 5. (b)

9.5 Further Readings

Books Dan Saracino: Abstract Algebra; A First Course.

Mitchell and Mitchell: An Introduction to Abstract Algebra.

John B. Fraleigh: An Introduction to Abstract Algebra (Relevant Portion).

Online links www.jmilne.org/math/CourseNotes/

www.math.niu.edu

www.maths.tcd.ie/

archives.math.utk.edu
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10.2 Repeated Roots

10.3 The Fundamental Theorem

10.4 Summary

10.5 Keywords

10.6 Review Questions

10.7 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss Galois theory

 Describe repeated roots

Introduction

In the last unit, you have studied about extension field. This unit will provide information
related to Galois theory.

.1 Galois Theory

This gives the definition of the Galois group and some results that follow immediately from the
definition. We can give the full story for Galois groups of finite fields.

We use the notation Aut(F) for the group of all automorphisms of F, that is, all one-to-one
functions from F onto F that preserve addition and multiplication. The smallest subfield containing
the identity element 1 is called the prime subfield of F. If F has characteristic zero, then its prime
subfield is isomorphic to Q, and if F has characteristic p, for some prime number p, then its
prime subfield is isomorphic to Z

p
. In either case, for any automorphisms  of F we must have

(x) = x for all elements in the prime subfield of F.

To study solvability by radicals of a polynomial equation f(x) = 0, we let K be the field generated
by the coefficients of f(x), and let F be a splitting field for f(x) over K. Galois considered
permutations of the roots that leave the coefficient field fixed. The modern approach is to
consider the automorphism determined by these permutations. The first result is that if F is an
extension field of K, then the set of all automorphism  : F  F such that (a) = a for all a  K is
a group under composition of functions. This justifies the following definitions.

Sachin Kaushal, Lovely Professional University
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Notes Definition: Let F be an extension field of K. The set

{   Aut(F) | (a) = a for all a  K }

is called the Galois group of F over K, denoted by Gal(F/K).

Definition: Let K be a field, let f(x)  K[x], and let F be a splitting field for f(x) over K. Then
Gal(F/K) is called the Galois group of f(x) over K, or the Galois group of the equation f(x) = 0
over K.

Proposition states that if F is an extension field of K, and f(x)  K[x], then any element of
Gal(F/K) defines a permutation of the roots of f(x) that lie in F. The next theorem is extremely
important.

Theorem 1: Let K be a field, let f(x)  K[x] have positive degree, and let F be a splitting field for
f(x) over K. If no irreducible factor of f(x) has repeated roots, then j Gal(F=K)j = [F : K].

This result can be used to compute the Galois group of any finite extension of any finite field, but
first we need to review the structure of finite fields. If F is a finite field of characteristic p, then it
is a vector space over its prime subfield Z

p
, and so it has pn elements, where [F : Z

p
] = n. The

structure of F is determined by the following theorem.

Theorem 2: If F is a finite field with pn elements, then F is the splitting field of the polynomial
npx � x  over the prime subfield of F.

The description of the splitting field of 
npx � x  over Z

p
 shows that for each prime p and each

positive integer n, there exists a field with pn elements. The uniqueness of splitting fields shows
that two finite fields are isomorphic iff they have the same number of elements. The field with
pn elements is called the Galois field of order pn, denoted by GF(pn). Every finite field is a simple
extension of its prime subfield, since the multiplicative group of nonzero elements is cyclic, and
this implies that for each positive integer n there exists an irreducible polynomial of degree n in
Z

p
[x].

If F is a field of characteristic p, and n  Z+, then {a  F | 
npa = a} is a subfield of F, and this

observation actually produces all subfields. In fact, Proposition 6.5.5 has the following statement:
Let F be a field with pn elements. Each subfield of F has pm elements for some divisor m of n.

Conversely, for each positive divisor m of n there exists a unique subfield of F with pm elements.
If F is a field of characteristic p, consider the function  : F  F defined by (x) = xp. Since F has
characteristic p, we have (a + b) = (a + b)p = ap + bp = (a) + (b), because in the binomial expansion
of (a + b)p each coefficient except those of ap and bp is zero. (The coefficient (p!)/(k!(p � k)!)
contains p in the numerator but not the denominator since p is prime, and so it must be equal to
zero in a field of characteristic p.) It is clear that  preserves products, and so  is a ring
homomorphism. Furthermore, since it is not the zero mapping, it must be one-to-one. If F is
finite, then  must also be onto, and so in this case  is called the Frobenius automorphism of F.

Note that n(x) = 
npx  (Inductively, n(x) = (n-1(x))p = 

n-1p(x ) p = 
npx .) Using an appropriate power

of the Frobenius automorphism, we can prove that the Galois group of any finite field must be
cyclic.

Theorem 3: Let K be a finite field and let F be an extension of K with [F : K] = m. Then
Gal(F/K) is a cyclic group of order m.

Outline of the proof: We start with the observation that F has pn elements, for some positive

integer n. Then K has pr elements, for r = n/m, and F is the splitting field of 
npx x  over its

prime subfield, and hence over K. Since f(x) has no repeated roots, to conclude that |Gal(F/K)|
= m. Now define  : F  F to be the rth power of the Frobenius automorphism. That is, define
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Notesrp(x) = x .  To compute the order of  in Gal(F/K), first note that m is the identity since m(x) =
rm np px  = x x  for all x  F. But  cannot have lower degree, since this would give a polynomial

with too many roots. It follows that  is a generator for Gal(F/K).

.2 Repeated Roots

In computing the Galois group of a polynomial, it is important to know whether or not it has
repeated roots. A field F is called perfect if no irreducible polynomial over F has repeated roots.
This section includes the results that any field of characteristic zero is perfect, and that any finite
field is perfect.

In the previous section, we showed that the order of the Galois group of a polynomial with no
repeated roots is equal to the degree of its splitting field over the base field. The first thing in this
section is to develop methods to determine whether or not a polynomial has repeated roots.

Let f(x) be a polynomial in K[x], and let F be a splitting field for f(x) over K. If f(x) has the

factorization f(x) = t1 mm
1 t(x � r ) ... (x � r )  over F, then we say that the root r

i
 has multiplicity m

i
.

If m
i
 = 1, then r

i
 is called a simple root.

Let f(x)  K[x], with 
t k

kk=0
f(x) = a x .  The formal derivative f�(x) of f(x) is defined by the formula

t k-1
kk=0

f'(x) = ka x ,  where ka
k
 denotes the sum of a

k
 added to itself k times. It is not difficult to

show from this definition that the standard differentiation formulas hold. Proposition shows
that the polynomial f(x)  K[x] has no multiple roots iff it is relatively prime to its formal
derivative f�(x). Proposition shows that f(x) has no multiple roots unless char(K) = p  0 and f(x)
has the form f(x) = a

0
 + a

1
xp + a

2
x2p + ... + a

n
xnp.

A polynomial f(x) over the field K is called separable if its irreducible factors have only simple
roots. An algebraic extension field F of K is called separable over K if the minimal polynomial
of each element of F is separable. The field F is called perfect if every polynomial over F is
separable.

Theorem states that any field of characteristic zero is perfect, and a field of characteristic
p > 0 is perfect if and only if each of its elements has a pth root in the field. It follows immediately
from the theorem that any finite field is perfect.

To give an example of a field that is not perfect, let p be a prime number, and let K = Z
p
. Then in

the field K(x) of rational functions over K, the element x has no pth root. Therefore, this rational
function field is not perfect.

The extension field F of K is called a simple extension if there exists an element u  F such that
F = K(u). In this case, u is called a primitive element. Note that if F is a finite field, then Theorem
shows that the multiplicative group Fx is cyclic. If the generator of this group is a, then it is easy
to see that F = K(a) for any subfield K. Theorem shows that any finite separable extension is a
simple extension.

.3 The Fundamental Theorem

Here we study the connection between subgroups of Gal(F/K) and fields between K and F. This
is a critical step in proving that a polynomial is solvable by radicals if and only if its Galois
group is solvable.

10

10

10
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Notes Let F be a field, and let G be a subgroup of Aut(F). Then

{a  F | (a) = a for all   G}

is called the G-fixed subfield of F, or the G-invariant subfield of F, and is denoted by FG.
(Proposition shows that FG is actually a subfield of F.) If F is the splitting field over K of a
separable polynomial and G = Gal(F/K), then Proposition shows that FG = K. Artin�s lemma
provides the first really significant result of the section. It states that if G is a finite group of
automorphism of the field F, and K = FG, then [F : K]  |G|.

Let F be an algebraic extension of the field K. Then F is said to be a normal extension of K if every
irreducible polynomial in K[x] that contains a root in F is a product of linear factors in F[x]. With
this definition, the following theorem and its corollary can be proved from previous results.

Theorem 4: The following are equivalent for an extension field F of K:

(1) F is the splitting field over K of a separable polynomial;

(2) K = FG for some finite group G of automorphism of F;

(3) F is a finite, normal, separable extension of K.

As a corollary, we obtain the fact that if F is an extension field of K such that K = FG for some finite
group G of automorphisms of F, then G = Gal(F/K).

The next theorem is the centerpiece of Galois theory. In the context of the fundamental theorem,
we say that two intermediate subfields E

1
 and E

2
 are conjugate if there exists   Gal(F/K) such

that (E
1
) = E

2
. Proposition states that if F is the splitting field of a separable polynomial over K,

and K  E  F, with H = Gal(F/E), then Gal(F/(E)) = H-1, for any   Gal(F/K).

Theorem 5 (The Fundamental Theorem of Galois Theory): Let F be the splitting field of a
separable polynomial over the field K, and let G = Gal(F/K).

(a) There is a one-to-one order-reversing correspondence between subgroups of G and subfields
of F that contain K:

(i) The subfield FH corresponds to the subgroup H, and H = Gal(F/FH).

(ii) If K  E  F, then the corresponding subgroup is Gal(F/E), and E = FGal(F/E).

(b) [F : FH] = |H| and [FH : K] = [G : H], for any subgroup H of G.

(c) Under the above correspondence, the subgroup H is normal iff FH is a normal extension
of K. In this case, Gal(E/K)  Gal(F/K) / Gal(F/E).

For example, suppose that F is a finite field of characteristic p, and has pm elements. Then
[F : GF(p)] = m, and so G = Gal(F= GF(p)) is a cyclic group of degree m by Corollary. Since G is
cyclic, the subgroups of G are in one-to-one correspondence with the positive divisors of m.
Proposition shows that the subfields of F are also in one-to-one correspondence with
the positive divisors of m. Remember that the smaller the subfield, the more automorphisms
will leave it invariant. By the Fundamental Theorem of Galois Theory, a subfield E with
[E : GF(p)] = k corresponds to the cyclic subgroup with index k, not to the cyclic subgroup of
order k.

Self Assessment

1. If F has characteristics zero, then its prime subfield is isomorphic to Q and if F has
characteristics P, for some prime number P, then its prime subfield is ................ to Zp.

(a) homomorphic (b) isomorphic

(c) automorphism (d) polynomial
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Notes2. Let F be extension field of K. The set { Q  Aut(F) | Q(a) = a for all a  K } is Galois group
is denoted by ................

(a) Gal(F/K) (b) Gal(u/F)

(c) Gal-1(K/F) (d) Gal(k × F)

3. Let K be a finite field and let F be an extension of K with [F : k] = m. Then Gal(F/k) is a
................ group of order m.

(a) cyclic (b) polynomial

(c) permutation (d) finite

4. A polynomial f(x) over the field k is called ................ if its irreducible factors have only
simple roots.

(a) spittery field (b) extension field

(c) separable (d) finite field

5. The ................ F of K is called simple extensions. If then exist an element u  F. Such that
F = K(u).

(a) finite field (b) extension field

(c) separable field (d) spliting field

.4 Summary

 Let F be an extension field of K. The set

{   Aut(F) | (a) = a for all a  K }

is called the Galois group of F over K, denoted by Gal(F/K).

 Let K be a field, let f(x)  K[x], and let F be a splitting field for f(x) over K. Then Gal(F/K)
is called the Galois group of f(x) over K, or the Galois group of the equation f(x) = 0 over
K.

 It states that if F is an extension field of K, and f(x)  K[x], then any element of Gal(F/K)
defines a permutation of the roots of f(x) that lie in F. The next theorem is extremely
important.

 Let K be a field, let f(x)  K[x] have positive degree, and let F be a splitting field for f(x)
over K. If no irreducible factor of f(x) has repeated roots, then j Gal(F=K)j = [F : K].

This result can be used to compute the Galois group of any finite extension of any finite
field, but first we need to review the structure of finite fields. If F is a finite field of
characteristic p, then it is a vector space over its prime subfield Z

p
, and so it has pn elements,

where [F : Z
p
] = n. The structure of F is determined by the following theorem.

 If F is a finite field with pn elements, then F is the splitting field of the polynomial  
npx � x

over the prime subfield of F.

 Let K be a finite field and let F be an extension of K with [F : K] = m. Then Gal(F/K) is a
cyclic group of order m.

 (The fundamental theorem of Galois theory) Let F be the splitting field of a separable
polynomial over the field K, and let G = Gal(F/K).

10

10
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Prime Subfield: If F is a finite field with pn elements, then F is the splitting field of the polynomial
npx � x  over the prime subfield of F.

The Fundamental Theorem of Galois Theory: Let F be the splitting field of a separable polynomial
over the field K, and let G = Gal(F/K).

.6 Review Questions

1. Determine the group of all automorphisms of a field with 4 elements.

2. Let F be the splitting field in C of x4 + 1.

(a) Show that [F : Q] = 4.

(b) Find automorphisms of F that have fixed fields Q( 2 ), Q(i), and Q( 2 i),
respectively.

3. Find the Galois group over Q of the polynomial x4 + 4.

4. Find the Galois groups of x3 � 2 over the fields Z
5
 and Z

11
.

5. Find the Galois group of x4 � 1 over the field Z
7
.

6. Find the Galois group of x3 � 2 over the field Z
7
.

7. Let f(x) 2 Q[x] be irreducible over Q, and let F be the splitting field for f(x) over Q. If [F : Q]
is odd, prove that all of the roots of f(x) are real.

8. Find an element  with Q( 2 , i) = Q().

9. Find the Galois group of x6 � 1 over Z
7
.

10. Prove that if F is a field and K = FG for a finite group G of automorphisms of F, then there
are only finitely many subfields between F and K.

11. Let F be the splitting field over K of a separable polynomial. Prove that if Gal(F/K) is
cyclic, then for each divisor d of [F : K] there is exactly one field E with K  E  F and
[E : K] = d.

12. Let F be a finite, normal extension of Q for which |Gal(F=Q)| = 8 and each element of
Gal(F/Q) has order 2. Find the number of subfields of F that have degree 4 over Q.

13. Let F be a finite, normal, separable extension of the field K. Suppose that the Galois group
Gal(F/K) is isomorphic to D

7
. Find the number of distinct subfields between F and K. How

many of these are normal extensions of K?

14. Show that F = Q(i, 2 ) is normal over Q; find its Galois group over Q, and find all
intermediate fields between Q and F.

15. Let F = Q( 2 , 3 2 ). Find [F : Q] and prove that F is not normal over Q.

16. Find the order of the Galois group of x5 � 2 over Q.

Answers: Self Assessment

1. (b) 2. (a) 3. (a) 4. (c) 5. (b)

10

10

81



LOVELY PROFESSIONAL UNIVERSITY

Unit : Galois Theory

Notes.7 Further Readings

Books Dan Saracino: Abstract Algebra; A First Course.

Mitchell and Mitchell: An Introduction to Abstract Algebra.

John B. Fraleigh: An Introduction to Abstract Algebra (Relevant Portion).

Online links www.jmilne.org/math/CourseNotes/

www.math.niu.edu

www.maths.tcd.ie/

archives.math.utk.edu
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Objectives

After studying this unit, you will be able to:

 Discuss transitively and transitive group

 Explain computing Galois group

Introduction

In the last unit, you have studied about Galois theory. In this unit, you will get information
related to computing the Galois groups.

11.1 Transitively Group

Definition: Let G be a group acting on a set S. We say that G acts transitively on S if for each pair
of elements x,y in S there exist an element g in G such that y = gx.

If G is a subgroup of the symmetric group S
n
, then G is called a transitive group if it acts

transitively on the set { 1, 2, ... , n }.

11.2 Separable Polynomial

Proposition: Let f(x) be a separable polynomial over the field K, with roots r
1
 , ... , r

n
 in its

splitting field F. Then f(x) is irreducible over K if and only if Gal(F/K) acts transitively on the
roots of f(x).

Lemma: Let p be a prime number, and let G be a transitive subgroup of S
p
. Then any nontrivial

normal subgroup of G is also transitive.

Lemma: Let p be a prime number, and let G be a solvable, transitive subgroup of S
p
. Then G

contains a cycle of length p.

Proposition: Let p be a prime number, and let G be a solvable, transitive subgroup of S
p
. Then G

is a subgroup of the normalizer in S
p
 of a cyclic subgroup of order p.

Richa Nandra, Lovely Professional University
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NotesLet f(x) be a polynomial of degree n over the field K, and assume that f(x) has roots r
1
, r

2
, ... , r

n
 in

its splitting field F. The element  of F defined by

 = (r
i
 - r

j
)2,

where the product is taken over all i, j with 1  i < j  n, is called the discriminant of f(x).

It can be shown that the discriminant of any polynomial f(x) can be expressed as a polynomial in
the coefficients of f(x), with integer coefficients. This requires use of elementary symmetric
functions, and lies beyond the scope of what we have chosen to cover in the book.

We have the following properties of the discriminant:

(i)   0 if and only if f(x) has distinct roots;

(ii)  belongs to K;

(iii) If   0, then a permutation in S
n
 is even if and only if it leaves unchanged the sign of

i j1 i < j n(r - r )  

Proposition: Let f(x) be a separable polynomial over the field K, with discriminant , and let F be
its splitting field over K. Then every permutation in Gal(F/K) is even if and only if is the square
of some element in K.

We now restrict our attention to polynomials with rational coefficients. The next lemma shows
that in computing Galois groups it is enough to consider polynomials with integer coefficients.
Then a powerful technique is to reduce the integer coefficients modulo a prime and consider the
Galois group of the reduced equation over the field GF(p).

Lemma: Let f(x) = xn + a
n-1

 xn-1 + · · · + a
1
 x + a

0
 be a polynomial in Q[x], and assume that

a
i
 = b

i
 / d for d, b

0
, b

1
, ... , b

n-1
 in Z.

Then dn f(x/d) is monic with integer coefficients, and has the same splitting field over Q as f(x).

If p is a prime number, we have the natural mapping : Z[x] > Z
p
[x] which reduces each coefficient

modulo p. We will use the notation p(f(x)) = f
p
(x).

Theorem [Dedekind]: Let f(x) be a monic polynomial of degree n, with integer coefficients and
Galois group G over Q, and let p be a prime such that f

p
(x) has distinct roots. If f

p
(x) factors in Z

p
[x]

as a product of irreducible factors of degrees n
1
, n

2
, ... , n

k
, then G contains a permutation with the

cycle decomposition

(1,2, ... ,n
1
) (n

1
+1, n

1
+2, ... , n

1
+n

2
) · · · (n-n

k
+1, ... ,n),

relative to a suitable ordering of the roots.

Self Assessment

1. IF G is a .................. of symmetric group sn then G is called transitive group. If it acts
transitively on Set {1, 2, 3, n}

(a) sub group (b) cyclic group

(c) permutation group (d) finite group

2. Let P be a prime number and let G be a transitive subgroup of Sp. Then any ..................
normal subgroup of G is also transitive.

(a) trivial (b) non-trivial

(c) finite (d) infinite
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Notes 3. Let P be a prime number and G be a solvable, transitive subgroup of S
p
. Then G is a

subgroup of the normalizer in S
p
 of a cyclic subgroup of order ..................

(a) P (b) G

(c) S
p

(d) S

4. If f(x) be a polynomial of degree n over the field k and assume that f(x) has roots r
1
, r

2
,...r

n

in its splitting field F. Then element  of F defined by

(a)  = (r
1
 � r

3
)2 (b)  = 2(r

1
 � r

j
)2

(c)  = (r
i
 � r

j
)-2 (d)  = 3(r

1
 � r

j
)3

11.3 Summary

 Let f(x) be a separable polynomial over the field K, with roots r
1
 , ... , r

n
 in its splitting field

F. Then f(x) is irreducible over K if and only if Gal(F/K) acts transitively on the roots of
f(x).

 Let p be a prime number, and let G be a transitive subgroup of S
p
. Then any non-trivial

normal subgroup of G is also transitive.

 Let p be a prime number, and let G be a solvable, transitive subgroup of S
p
. Then G

contains a cycle of length p.

 Let p be a prime number, and let G be a solvable, transitive subgroup of S
p
. Then G is a

subgroup of the normalizer in S
p
 of a cyclic subgroup of order p.

 Let f(x) = xn + a
n-1

 xn-1 + · · · + a
1
 x + a

0
 be a polynomial in Q[x], and assume that

a
i
 = b

i
 / d for d, b

0
, b

1
, ... , b

n-1
 in Z.

 Then dn f(x/d) is monic with integer coefficients, and has the same splitting field over Q as
f(x).

 If p is a prime number, we have the natural mapping : Z[x] > Z
p
[x] which reduces each

coefficient modulo p. We will use the notation p(f(x)) = f
p
(x).

 Let f(x) be a monic polynomial of degree n, with integer coefficients and Galois group G
over Q, and let p be a prime such that f

p
(x) has distinct roots. If f

p
(x) factors in Z

p
[x] as a

product of irreducible factors of degrees n
1
, n

2
, ... , n

k
, then G contains a permutation with

the cycle decomposition

(1,2, ... ,n
1
) (n

1
+1, n

1
+2, ... , n

1
+n

2
) · · · (n-n

k
+1, ... ,n),

relative to a suitable ordering of the roots.

11.4 Keywords

Transitive Group: If G is a subgroup of the symmetric group S
n
, then G is called a transitive

group if it acts  transitively on the set { 1, 2, ... , n }.

Separable Polynomial: Let f(x) be a separable polynomial over the field K, with roots r
1
 , ... , r

n

in its splitting field F. Then f(x) is irreducible over K if and only if Gal(F/K) acts transitively on
the roots of f(x).
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Notes11.5 Review Questions

1. Give the order and describe a generator of the Galois group of GF (729) over GF(9).

2. Determine the Galois group of each of the following polynomials in Q[x]; hence, determine
the solvability of each of the polynomials

(a) x5 � 12x2 + 2 (b) x5 � 4x4 + 2x + 2

(c) x3 � 5 (d) x4 � x2 � 6

(e) x5 + 1 (f) (x2 � 2) (x2 + 2)

(g) x8 � 1 (h) x8 + 1

(i) x4 � 3x2 � 10

3. Find a primitive element in the splitting field of each of the following polynomials in
Q[x].

(a) x4 � 1 (b) x4 � 2x2 � 15

(c) x4 � 8x2 + 15 (d) x3 � 2

4. Prove that the Galois group of an irreducible quadratic polynomial is isomorphic to Z
2
.

5. Prove that the Galois group of an irreducible cubic polynomial is isomorphic to S
3
 or Z

3
.

Answers: Self Assessment

1. (a) 2. (b) 3. (a) 4. (a)

11.6 Further Readings

Books Dan Saracino: Abstract Algebra; A First Course.

Mitchell and Mitchell: An Introduction to Abstract Algebra.

John B. Fraleigh: An Introduction to Abstract Algebra (Relevant Portion).

Online links www.jmilne.org/math/CourseNotes/

www.math.niu.edu

www.maths.tcd.ie/

archives.math.utk.edu

11
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CONTENTS

Objectives

Introduction

12.1 G-invariant Subfield

12.2 Summary

12.3 Keywords

12.4 Review Questions

12.5 Further Readings

Objectives

After studying this unit, you will be able to:

 Define G-invariant subfield

 Discuss examples related to subfield

Introduction

In the last unit, you have studied about computing Galois theory and groups. In this unit, you
will get information related to fundamental theorem.

12.1 G-invariant Subfield

Proposition: Let F be a field, and let G be a subgroup of Aut(F). Then

{ a in F |  (a) = a   for all  in G }

is a subfield of F.

Definition: Let F be a field, and let G be a subgroup of Aut (F). Then

{ a in F |  (a) = a   for all  in G }

is called the G-fixed subfield of F, or the G-invariant subfield of F, and is denoted by FG.

Proposition: If F is the splitting field over K of a separable polynomial and G = Gal(F/K), then
FG = K.

Lemma [Artin]: Let G be a finite group of automorphisms of the field F, and let K = FG. Then

[F : K]   | G |.

Let F be an algebraic extension of the field K. Then F is said to be a normal extension of K if every
irreducible polynomial in K[x] that contains a root in F is a product of linear factors in F[x].

Richa Nandra, Lovely Professional University
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Unit : Invariant Subfield

NotesThe following conditions are equivalent for an extension field F of K:

(1) F is the splitting field over K of a separable polynomial;

(2) K = FG for some finite group G of automorphisms of F;

(3) F is a finite, normal, separable extension of K.

If F is an extension field of K such that K = FG for some finite group G of automorphisms of F,
then G = Gal(F/K).

Example: The Galois group of GF(pn) over GF(p) is cyclic of order n, generated by the
automorphism  defined by  (x) = xp, for all x in GF(pn). This automorphism is usually known as
the Frobenius automorphism of GF(pn).

Let F be the splitting field of a separable polynomial over the field K, and let G = Gal(F/K).

(a) There is a one-to-one order-reversing correspondence between subgroups of G and subfields
of F that contain K:

(i) If H is a subgroup of G, then the corresponding subfield is FH, and

H = Gal(F/FH).

(ii) If E is a subfield of F that contains K, then the corresponding subgroup of G is
H = Gal(F/E), and

E = FH.

(b) For any subgroup H of G, we have

[F : FH] = | H| and [FH : K] = [G : H].

(c) Under the above correspondence, the subgroup H is normal if and only if the subfield
E = FH is a normal extension of K. In this case,

Gal(E/K)  Gal(F/K)/Gal(F/E).

In the statement of the fundamental theorem we could have simply said that normal subgroups
correspond to normal extensions. In the proof we noted that if E is a normal extension of K, then
(E)  E for  all in Gal(F/K). In the context of the fundamental theorem, we say that two
intermediate subfields E

1
 and E

2
 are conjugate if there exists in Gal(F/K) such that (E

1
) = E

2
.

The next result shows that the subfields conjugate to an intermediate subfield E correspond to
the subgroups conjugate to Gal(F/E). Thus E is a normal extension if and only if it is conjugate
only to itself.

Let F be the splitting field of a separable polynomial over the field K, and let E be a subfield such
that K  E  F, with H = Gal(F/E). If  is in Gal(F/K), then

Gal(F/(E)) = H -1.

[Fundamental Theorem of Algebra]: Any polynomial in C[x] has a root in C.

Example: Prove that if F is a field extension of K and K = FG for a finite group G of
automorphisms of F, then there are only finitely many subfields between F and K.

Solution: The given condition is equivalent to the condition that F is the splitting field over K of
a separable polynomial. Since we must have G = Gal (F/K), the fundamental theorem of Galois
theory implies that the subfields between F and K are in one-to-one correspondence with the
subgroups of F. Because G is a finite group, it has only finitely many subgroups.

12
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Example: Let F be the splitting field over K of a separable polynomial. Prove that if
Gal (F/K) is cyclic, then for each divisor d of [F:K] there is exactly one field E with K E F and
[E:K] = d.

Solution: By assumption we are in the situation of the fundamental theorem of Galois theory, so
that there is a one-to-one order-reversing correspondence between subfields of F that contain K
and subgroups of G = Gal (F/K). Because G is cyclic of order [F:K], there is a one-to-one
correspondence between subgroups of G and divisors of [F:K]. Thus for each divisor d of [F:K]
there is a unique subgroup H of index d. By the fundamental theorem, [FH: K] = [G:H], and so E
= F^H is the unique subfield with [E:K] = d.

Comment: Pay careful attention to the fact that the correspondence between subfields and
subgroups reverses the order

Example: Let F be a finite, normal extension of Q for which | Gal (F/Q) | = 8 and each
element of Gal (F/Q) has order 2. Find the number of subfields of F that have degree 4 over Q.

Solution: Since F has characteristic zero, the extension is automatically separable, and so the
fundamental theorem of Galois theory can be applied. Any subfield E of F must contain Q, its
prime subfield, and then [E:Q] = 4 iff [F:E] = 2, since [F:Q] = 8. Thus the subfields of F that have
degree 4 over Q correspond to the subgroups of Gal (F/Q) that have order 2. Because each
nontrivial element has order 2 there are precisely 7 such subgroups.

Example: Let F be a finite, normal, separable extension of the field K. Suppose that the
Galois group Gal (F/K) is isomorphic to D

7
. Find the number of distinct subfields between F and

K. How many of these are normal extensions of K?

Solution: The fundamental theorem of Galois theory converts this question into the question of
enumerating the subgroups of D

7
, and determining which are normal. If we use the usual

description of D
7
 via generators a of order 7 and b of order 2, with ba = a -1 b, then a generates a

subgroup of order 7, while each element of the form ai b generates a subgroup of order 2, for
0  i < 7. Thus there are 8 proper nontrivial subgroups of D

7
, and the only one that is normal is

< a >, since it has |D
7
| / 2 elements. As you should recall from the description of the conjugacy

classes of D
7
 conjugating one of the 2-element subgroups by a produces a different subgroup,

showing that none of them are normal.

Example: Show that F = Q ( 2 ,i)  is normal over Q; find its Galois group over Q, and find
all intermediate fields between Q and F.

Solution: It is clear that F is the splitting field over Q of the polynomial (x2 + 1)(x2 � 2), and this
polynomial is certainly separable. Thus, F is a normal extension of Q.

It follows that the Galois group is isomorphic to Z
2
 × Z

2
. Since the Galois group has 3 proper

nontrivial subgroups, there will be 3 intermediate subfields E with Q  E  F.

The existence of 3 nontrivial elements begins with the splitting field of x4+1 over Q.

Comment: Recall that Z
7
 is the splitting field of x7 � x = x(x6 � 1).

Self Assessment

1. If F is field and G be a subgroup of Aut(F). Then {a in F | Q(a) = aQ in G} is called ...............
of F.
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Notes(a) G-invariant subfield (b) variant subfield

(c) finite field (d) domain subfield

2. G-invariant subfield is denoted by ...............

(a) GF (b) FG

(c) F.G (d) GF-1

3. G be a finite group of automorphisms of the field F and let K = FG then [F : K] ...............|G|.

(a)  (b) 

(c) = (d) 

4. For any subgroup H of G, we have ............... and [FH : K] = [G : H]

(a) [F : FH] = |H| (b) [HF : F]  |H|

(c) [F�1 : H] = |H| (d) [F�1 : H�1]  |H|

5. Let F be an algebraic extensions of the field K. Then F is said to be a ............... of K. If every
irreducible polynomial in K[x] that contains a root in F is a product of linear factors in F[x]

(a) normal extension (b) finite extension

(c) infinite extension (d) subgroup extension

12.2 Summary

 The following conditions are equivalent for an extension field F of K:

(1) F is the splitting field over K of a separable polynomial;

(2) K = FG for some finite group G of automorphisms of F;

(3) F is a finite, normal, separable extension of K.

 If F is an extension field of K such that K = FG for some finite group G of automorphisms
of F, then G = Gal(F/K).

 Let F be the splitting field of a separable polynomial over the field K, and let G = Gal(F/K).

(a) There is a one-to-one order-reversing correspondence between subgroups of G and
subfields of F that contain K:

(i) If H is a subgroup of G, then the corresponding subfield is FH, and

H = Gal(F/FH).

(ii) If E is a subfield of F that contains K, then the corresponding subgroup of G is
H = Gal(F/E), and

E = FH.

(b) For any subgroup H of G, we have

[F : FH] = | H| and [FH : K] = [G : H].

(c) Under the above correspondence, the subgroup H is normal if and only if the subfield
E = FH is a normal extension of K. In this case,

Gal(E/K)  Gal(F/K) / Gal(F/E).

12
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Notes  Let F be the splitting field of a separable polynomial over the field K, and let E be a
subfield such that K  E  F, with H = Gal(F/E). If  is in Gal(F/K), then

Gal(F/(E)) = H -1.

 [Fundamental Theorem of Algebra] Any polynomial in C[x] has a root in C.

12.3 Keywords

Normal Extension: Let F be an algebraic extension of the field K. Then F is said to be a normal
extension of K if every irreducible polynomial in K[x] that contains a root in F is a product of
linear factors in F[x].

Frobenius Automorphism: The Galois group of GF(pn) over GF(p) is cyclic of order n, generated
by the automorphism  defined by  (x) = xp, for all x in GF(pn). This automorphism is usually
known as the Frobenius automorphism of GF(pn).

12.4 Review Questions

1. Compute each of the following Galois groups. Which of these field extensions are normal
field extensions? If the extension is not normal, find a normal extension of Q in which the
extension field is contained.

(a) G(Q( 30)/Q) (b) 4G(Q( 5)/Q)

(c) G(Q( 2 , 3 , 5)/Q) (d) 3G(Q( 2 , 2 ,i)/Q)

(e) G(Q( 6 ,i)/Q)

2. Let F K  E be field. If E is a normal extension of F, show that E must also be a normal
extension of K.

3. Let G be the Galois group of a polynomial of degree n. Prove that |G| divides n!.

4. Let F  E. If f(x) is solvable over F, show that f(x) is also solvable over E.

Answers: Self Assessment

1. (a) 2. (b) 3. (b) 4. (a) 5. (a)

12.5 Further Readings

Books Dan Saracino: Abstract Algebra; A First Course.

Mitchell and Mitchell: An Introduction to Abstract Algebra.

John B. Fraleigh: An Introduction to Abstract Algebra (Relevant Portion).

Online links www.jmilne.org/math/CourseNotes/

www.math.niu.edu

www.maths.tcd.ie/

archives.math.utk.edu
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NotesUnit 13: The Galois Group of a Polynomial

CONTENTS

Objectives

Introduction

13.1 Galois Group of Polynomial

13.2 Fundamental Theorem of Symmetric Functions

13.3 Symmetric Polynomial

13.4 Constructible Polygon

13.5 Connection to Pascal�s Triangle

13.6 Summary

13.7 Keywords

13.8 Review Questions

13.9 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss the Galois group of polynomial

 Explain the theorem of Galois theory

Introduction

To study solvability by radicals of a polynomial equation f(x) = 0, we let K be the field generated
by the coefficients of f(x), and let F be a splitting field for f(x) over K. Galois considered
permutations of the roots that leave the coefficient field fixed. The modern approach is to
consider the automorphisms determined by these permutations. We note that any automorphism
of a field F must leave its prime subfield fixed.

13.1 Galois Group of Polynomial

Proposition: Let F be an extension field of K. The set of all automorphisms  : F > F such that (a)
= a for all a in K is a group under composition of functions.

Definition: Let F be an extension field of K. The set

{ in Aut(F) | (a) = a for all a in K }

is called the Galois group of F over K, denoted by Gal(F/K).

Definition: Let K be a field, let f(x) be a polynomial in K[x], and let F be a splitting field for f(x)
over K. Then Gal(F/K) is called the Galois group of f(x) over K, or the Galois group of the
equation f(x) = 0 over K.

Richa Nandra, Lovely Professional University 1
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Notes Proposition: Let F be an extension field of K, and let f(x) be a polynomial in K[x]. Then any
element of Gal(F/K) defines a permutation of the roots of f(x) that lie in F.

Let f(x) be a polynomial in K[x] with no repeated roots and let F be a splitting field for f(x) over
K. If  : K > L is a field isomorphism that maps f(x) to g(x) in L[x] and E is a splitting field for g(x)
over L, then there exist exactly [F:K] isomorphisms : F -> E such that (a) = (a) for all a in K.

Theorem: Let K be a field, let f(x) be a polynomial in K[x], and let F be a splitting field for f(x)
over K. If f(x) has no repeated roots, then |Gal(F/K)| = [F:K].

Corollary: Let K be a finite field and let F be an extension of K with [F:K] = m. Then Gal
(F/K) is a cyclic group of order m.

If we take K = Z
p
, where p is a prime number, and F is an extension of degree m, then the

generator of the cyclic group Gal(F/K) is the automorphism  : F -> F defined by (x) = xp, for all
x in F. This automorphism is called the Frobenius automorphism of F.

A symmetric function on n variables x
1
,..., x

n
 is a function that is unchanged by any permutation

of its variables. In most contexts, the term �symmetric function� refers to a polynomial on n
variables with this feature (more properly called a �symmetric polynomial�). Another type of
symmetric functions is symmetric rational functions, which are the rational functions that are
unchanged by permutation of variables.

The symmetric polynomials (respectively, symmetric rational functions) can be expressed as
polynomials (respectively, rational functions) in the elementary symmetric polynomials. This
is called the fundamental theorem of symmetric functions.

A function f(x) is sometimes said to be symmetric about the y-axis if f(�x) = f(x). Examples of such
functions include |x| (the absolute value) and x2 (the parabola).

13.2 Fundamental Theorem of Symmetric Functions

Any symmetric polynomial (respectively, symmetric rational function) can be expressed as a
polynomial (respectively, rational function) in the elementary symmetric polynomials on those
variables.

There is a generalization of this theorem to polynomial invariants of permutation groups G,
which states that any polynomial invariant f  R [X

1
,... X

n
] can be represented as a finite linear

combination of special G-invariant orbit polynomials with symmetric functions as coefficients,
i.e.,

1 1 n G
r special

f p ( ,..., ) orbit (t),  

where p
1
  R [X

1
, ..., X

n
],

and 
1
, ..., 

n
 are elementary symmetric functions, and t = 1e

1X , ..., ne
nX  are special terms.

Furthermore, any special term t has a total degree  n(n � 1)/2, and a maximal variable degree
 n � 1.

13.3 Symmetric Polynomial

A symmetric polynomial on n variables x
1
,..., x

n
 (also called a totally symmetric polynomial) is

a function that is unchanged by any permutation of its variables. In other words, the symmetric
polynomials satisfy

f(y
1
, y

2
, ..., y

n
) = f(x

1
, x

2
,..., x

n
), ...(1)

where y
i
 = x

(i)
 and  being an arbitrary permutation of the indices 1, 2, ..., n.
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NotesFor fixed n, the set of all symmetric polynomials in n variables forms an algebra of
dimension n. The coefficients of a univariate polynomial f(x) of degree n are algebraically
independent symmetric polynomials in the roots of f, and thus form a basis for the set of all such
symmetric polynomials.

There are four common homogeneous bases for the symmetric polynomials, each of which is
indexed by a partition  (Dumitriu et al., 2004). Letting l be the length of , the elementary
functions e


, complete homogeneous functions h


, and power-sum functions p


 are defined for

l = 1 by

e
1

 =
1 1

1 2 1

j j
j j ... j

x ...x


  

 ...(2)

h
1

 =
1

n
jm

m ... mn l1 j 1

x
   

  ...(3)

p
1

 =
n

j 1

x .


 ...(4)

and for l > 1 by

s

 =

i

l

i 1

s


 ...(5)

where s is one of e, h or p. In addition, the monomial functions m are defined as

m

 = 1 2 m

(1) s (2 ) (m )
S

x x ... x ,


  

 



 ...(6)

where S

 is the set of permutations giving distinct terms in the sum and  is considered to be

infinite.

As several different abbreviations and conventions are in common use, care must be taken when
determining which symmetric polynomial is in use.

The elementary symmetric polynomials 
k
 (x

1
, ..., x

n
) (sometimes denoted 

k
 or e


) on n variables

{x
1
, ..., x

n
} are defined by


1
(x

1
, ..., x

n
)  = i

1 i n

x
 

 ...(7)


2
(x

1
, ..., x

n
)  = i j

1 i j n

x x
  

 ...(8)


3
(x

1
, ..., x

n
)  = i j k

1 i j k n

x x x
   

 ...(9)


4
(x

1
, ..., x

n
)  = i j k l

1 i j k l n

x x x x
    

 ...(10)

 


5
(x

1
, ..., x

n
)  = i

1 i n

x
 

 ...(12)

The kth elementary symmetric polynomial is implemented in Mathematica as Symmetric
Polynomial [k, {x

1
, ..., x

n
}]. Symmetric Reduction [f, {x

1
, ..., x

n
}] gives a pair of polynomials

{p, q} in x
1
, ..., x

n
 where is the symmetric part and is the remainder.

1
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Notes Alternatively, 
j
(x

1
,..., x

n
) can be defined as the coefficient of xn-j in the generating function

i
1 i n

(x x ).
 

                                  ...(13)

For example, on four variables x
1
, ..., x

4
, the elementary symmetric polynomials are


1
(x

1
, x

2
, x

3
, x

4
) = x

1
 + x

2
 + x

3
 + x

4
...(14)


2
(x

1
, x

2
, x

3
, x

4
) = x

1
 x

2
 + x

1
 x

3
 + x

1
 x

4
 + x

2
 x

3
 + x

2
 x

4
 + x

3
 x

4
...(15)


3
(x

1
, x

2
, x

3
, x

4
) = x

1
 x

2
 x

3
 + x

1
 x

2
 x

4
 + x

1
 x

3
 x

4
 + x

2
 x

3
 x

4
...(16)


4
(x

1
, x

2
, x

3
, x

4
) = x

1
 x

2
 x

3
 x

4
...(17)

The power sum S
p
 (x

1
,..., x

n
) is defined by

S
p
(x

1
, ..., x

n
) =

n
p
k

k 1

x .


 ...(18)

The relationship between * and 
1
,...,

p
 is given by the so-called Newton-Girard formulas. The

related function s
p
(

1
, ..., 

n
) with arguments given by the elementary symmetric polynomials

(not x
n
) is defined by

s
p
(

1
,...,

n
) = (�1)p�1 S

p
 (x

1
,...,x

n
) ...(19)

=
n

p 1 p
k

k 1

( 1) x .



  ...(20)

It turns out that s
p
 (

1
, ...,

n
) is given by the coefficients of the generating function

ln (1 + 
1
t + 

2
 t2 + 

3
 t3 + ...) = kk

k 1

s
t

k





 ...(21)

= 2 2 3 3
1 1 2 1 1 2 3

1 1
t ( 2 )t ( 3 3 )t ...

2 3
            

so the first few values are

s
1
 =

1
...(22)

s
2
 = 2

1 22   ...(23)

s
3
 = 3

1 1 2 3� 3 3     ...(24)

s
4
 = 4 2 2

1 1 2 2 1 3 44 2 4 4 .           ...(25)

In general, s
p
 can be computed from the determinant

s
p
 =

1

2 1

p 1 3 2 1

34 2 1

p p 1 p 2 p 3 1

0 0 01
2 0 01
3 01( 1)
4 0

1
p



  



 

  


  

    









    



...(26)
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S
1
(x

1
,..., x

n
) =

n

k 1
k 1

x


  ...(27)

S
2
(x

1
,..., x

n
) = 2

1 22   ...(28)

S
3
(x

1
,..., x

n
) = 3

1 1 2 33 3      ...(29)

S
4
(x

1
,..., x

n
) = 4 2 2

1 1 2 2 1 3 44 2 4 4           ...(30)

(Schroeppel 1972), as can be verified by plugging in and multiplying through.

13.4 Constructible Polygon

In mathematics, a constructible polygon is a regular polygon that can be constructed with
compass and straightedge. For example, a regular pentagon is constructible with compass and
straightedge while a regular heptagon is not.

Conditions for Constructibility

Some regular polygons are easy to construct with compass and straightedge; others are not. This
led to the question being posed: is it possible to construct all regular n-gons with compass and
straightedge? If not, which n-gons are constructible and which are not?

Carl Friedrich Gauss proved the constructability of the regular 17-gon in 1796. Five years later,
he developed the theory of Gaussian periods in his Disquisitiones Arithmeticae. This theory
allowed him to formulate a sufficient condition for the constructability of regular polygons.

A regular n-gon can be constructed with compass and straight edge if n is the product of a power
of 2 and any number of distinct Fermat primes.

Gauss stated without proof that this condition was also necessary, but never published his proof.
A full proof of necessity was given by Pierre Wantzel in 1837. The result is known as the Gauss�
Wantzel theorem.

Figure 3.1
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Detailed results by Gauss� theory

Only five Fermat primes are known:

F
0
 = 3, F

1
 = 5, F

2
 = 17, F

3
 = 257, and F

4
 = 65537 (sequence A019434 in OEIS)

The next twenty-eight Fermat numbers, F
5
 through F

32
, are known to be composite.

Thus an n-gon is constructible if

n = 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, � (sequence A003401 in OEIS),

while an n-gon is not constructible with compass and straightedge if

n = 7, 9, 11, 13, 14, 18, 19, 21, 22, 23, 25, � (sequence A004169 in OEIS).

13.5 Connection to Pascal�s Triangle

There are 31 known numbers that are multiples of distinct Fermat primes, which correspond to
the 31 odd-sided regular polygons that are known to be constructible. These are 3, 5, 15, 17, 51,
85, 255, 257, �, 4294967295. As John Conway commented in The Book of Numbers, these numbers,
when written in binary, are equal to the first 32 rows of the modulo-2 Pascal�s triangle, minus
the top row. This pattern breaks down after there, as the 6th Fermat number is composite, so the
following rows do not correspond to constructible polygons. It is unknown whether any more
Fermat primes exist, and is therefore unknown how many odd-sided constructible polygons
exist. In general, if there are x Fermat primes, then there are 2x�1 odd-sided constructible polygons.

General Theory

In the light of later work on Galois Theory, the principles of these proofs have been clarified.
It is straightforward to show from analytic geometry that constructible lengths must come from
base lengths by the solution of some sequence of quadratic equations. In terms of field theory,
such lengths must be contained in a field extension generated by a tower of quadratic extensions.
It follows that a field generated by constructions will always have degree over the base field that
is a power of two.

In the specific case of a regular n-gon, the question reduces to the question of constructing a
length

cos(2/n).

This number lies in the n-th cyclotomic field � and in fact in its real subfield, which is a totally
real field and a rational vector space of dimension

½(n),

where (n) is Euler�s quotient function. Wantzel�s result comes down to a calculation showing
that (n) is a power of 2 precisely in the cases specified.

As for the construction of Gauss, when the Galois group is 2-group it follows that it has a
sequence of subgroups of orders

1, 2, 4, 8, ...

that are nested, each in the next something simple to prove by induction in this case of an abelian
group. Therefore, there are subfields nested inside the cyclotomic field, each of degree 2 over the
one before. Generators for each such field can be written down by Gaussian period theory.
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four roots of unity, and one that is the sum of two, which is cos(2/17).

Each of those is a root of a quadratic equation in terms of the one before. Moreover, these
equations have real rather than imaginary roots, so in principle can be solved by geometric
construction: this because the work all goes on inside a totally real field.

In this way the result of Gauss can be understood in current terms; for actual calculation of the
equations to be solved, the periods can be squared and compared with the �lower� periods, in a
quite feasible algorithm.

Compass and Straightedge Constructions

Compass and straightedge constructions are known for all constructible polygons. If n = p· q
with p = 2 or p and q co-prime, an n-gon can be constructed from a p-gon and a q-gon.

 If p = 2, draw a q-gon and bisect one of its central angles. From this, a 2q-gon can be
constructed.

 If p > 2, inscribe a p-gon and a q-gon in the same circle in such a way that they share a
vertex. Because p and q are relatively prime, there exists integers a,b such that ap + bq = 1.
Then 2a/q + 2b/p = 2/pq. From this, a p·q-gon can be constructed.

Thus one only has to find a compass and straightedge construction for n-gons where n is a
Fermat prime.

 The construction for an equilateral triangle is simple and has been known since Antiquity.
Constructions for the regular pentagon were described both by Euclid and by Ptolemy.

 Although Gauss proved that the regular 17-gon is constructible, he didn�t actually show
how to do it. The first construction is due to Erchinger, a few years after Gauss� work.

 The first explicit construction of a regular 257-gon was given by Friedrich Julius Richelot
(1832).

 A construction for a regular 65537-gon was first given by Johann Gustav Hermes (1894).
The construction is very complex; Hermes spent 10 years completing the 200-page
manuscript. (Conway has cast doubt on the validity of Hermes� construction, however.

Figure 31 .2
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From left to right, constructions of a 17-gon, 257-gon and 65537-gon.

Other Constructions

It should be stressed that the concept of constructible as discussed in this article applies specifically
to compass and straightedge construction. More constructions become possible if other tools are
allowed. The so-called neusis constructions, for example, make use of a marked rulers.The
constructions are a mathematical idealization and are assumed to be done exactly.

Example: Determine the group of all automorphisms of a field with 4 elements.

Solution: The automorphism group consists of two elements: the identity mapping and the
Frobenius automorphism.

As you know this field with 4 elements can be constructed as F = Z
2
[x] / < x2+x+1 >. Letting a be

the coset of x, we have F = {0, 1, a, 1+a}. Any automorphism of F must leave 0 and 1 fixed, so the
only possibility for an automorphism other than the identity is to interchange a and 1+a. Is this
an automorphism? Since x2+x+1 0, we have x2 -x-1 x+1, so a2 = 1+a and (1+a)2 = 1+2a+a2 = a. Thus
the function that fixes 0 and 1 while interchanging a and 1+a is in fact the Frobenius automorphism
of F.

Example: Let F be the splitting field in C of x4+1.

(i) Show that [F:Q] = 4.

Solution: The polynomial x8-1 factors over Q as x8-1 = (x4-1)(x4+1) = (x-1)(x+1)(x2+1)(x4 +1). The
factor x4 +1 is irreducible over Q by Eisenstein�s criterion. The roots of x4+1 are thus the primitive

8th roots of unity, ± 2 / 2 ± 2 / 2i, and adjoining one of these roots also gives the others,
together with i. Thus, the splitting field is obtained in one step, by adjoining one root of x4+1, so
its degree over Q is 4.

It is clear that the splitting field can also be obtained by adjoining first 2  and then i, so it can

also be expressed as Q( 2 , i).
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(ii) Find automorphisms of F that have fixed fields Q( 2 ), Q(i), and Q( 2 i), respectively.

Solution: These subfields of Q( 2 , i) are the splitting fields of x2-2, x2+1, and x2+2, respectively.

Any automorphism must take roots to roots, so if is an automorphism of Q( 2 , i), we must

have ( 2 ) = ± 2 , and (i) = ± i. These possibilities must in fact define 4 automorphisms of the
splitting field.

If we define 
1
 ( 2 ) = 2  and 

1
 (i) = -i, then the subfield fixed by 

1
 is Q( 2 ). If we define


2
( 2 ) = � 2  and 

2
 (i) = i, then the subfield fixed by 

2
 is Q(i). Finally, for 

3
 = 

2
 

1
 we have


3
( 2 ) = � 2  and (i) = �i, and thus 

3
 ( 2 i) = 2 i, so 

3
 has Q( 2 i) as its fixed subfield.

Example: Find the Galois groups of x3 � 2 over the fields Z
5
 and Z

11
.

Solution: The polynomial is not irreducible over Z
5
, since it factors as x3-2 = (x+2)(x2-2x-1). The

quadratic factor will have a splitting field of degree 2 over Z
5
, so the Galois group is cyclic of

order 2.

A search in Z
11

 for roots of x3-2 yields one and only one: x = 7. Then x3-2 can be factored as x3-2 =
(x-7)(x2+7x+5), and the second factor must be irreducible. The splitting field has degree 2 over
Z

11
, and can be described as Z

11
[x] / < x2+7x+5 >. Thus the Galois group is cyclic of order 2.

Example: Find the Galois group of x4-1 over the field Z
7
.

Solution: We first need to find the splitting field of x4-1 over Z
7
. We have x4-1 = (x-1)(x+1)(x2+1).

A quick check of ±2 and ±3 shows that they are not roots of x2+1 over Z
7
, so x2+1 is irreducible

over Z
7
. To obtain the splitting field we must adjoin a root of x2+1, so we get a splitting field

Z
7
[x] / < x2+1 > of degree 2 over Z

7
.

The Galois group of x4-1 over Z
7
 is cyclic of order 2.

Example: Find the Galois group of x3-2 over the field Z
7
.

Solution: In this case, x3-2 has no roots in Z
7
, so it is irreducible. We first adjoin a root a of x3-2 to

Z
7
. The resulting extension Z

7
(a) has degree 3 over Z

7
, so it has 73 = 343 elements, and each

element is a root of the polynomial x343-x. Let b> be a generator of the multiplicative group of
the extension. Then (b114)3 = b342 = 1, showing that Z

7
(a) contains a non-trivial cube root of 1. It

follows that x3-2 has three distinct roots in Z
7
(a): a, ab114, and ab228, so therefore Z

7
(a) is a splitting

field for x3-2 over Z
7
. Since the splitting field has degree 3 over Z

7
, it follows the Galois group of

the polynomial is cyclic of order 3.

Self Assessment

1. Galois considered ................... of the roots that leave the coefficient field fixed.

(a) polynomial (b) permutation

(c) combination (d) range

2. The modern approach is to consider ................... determined by permutation.

(a) homomorphism (b) automorphism

(c) isomorphism (d) ideal and subfield
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Notes 3. Any automorphism of a field f must leave its prime ................... fixed.

(a) sub group (b) sub domain

(c) sub field (d) sub range

4. Given [F : Q] is equal to ...................

(a) 7 (b) 5

(c) 6 (d) 4

5. Automorphism of F that have fixed fields Q( 2 ),Q(i) and Q 2 ,i  respectively.

(a) 1 2 3Q Q 2 ,Q Q(i),Q 2i 2i  

(b) 1 2 3Q 2 ,Q i,Q 2i 0  

(c) Q = Q
2
 = Q

3

(d) Q
1
 = Q

2
�1 = Q

3
�1

13.6 Summary

 Let F be an extension field of K. The set of all automorphisms  : F > F such that (a) = a for
all a in K is a group under composition of functions.

 Let F be an extension field of K. The set

{ in Aut(F) | (a) = a for all a in K }

is called the Galois group of F over K, denoted by Gal(F/K).

 Let K be a field, let f(x) be a polynomial in K[x], and let F be a splitting field for f(x) over
K. Then Gal(F/K) is called the Galois group of f(x) over K, or the Galois group of the
equation f(x) = 0 over K.

 Let F be an extension field of K, and let f(x) be a polynomial in K[x]. Then any element of
Gal(F/K) defines a permutation of the roots of f(x) that lie in F.

 Let f(x) be a polynomial in K[x] with no repeated roots and let F be a splitting field for f(x)
over K. If  : K > L is a field isomorphism that maps f(x) to g(x) in L[x] and E is a splitting
field for g(x) over L, then there exist exactly [F:K] isomorphisms : F -> E such that (a) = (a)
for all a in K.

 Let K be a field, let f(x) be a polynomial in K[x], and let F be a splitting field for f(x) over
K. If f(x) has no repeated roots, then |Gal(F/K)| = [F:K].

 Let K be a finite field and let F be an extension of K with [F:K] = m. Then Gal(F/K) is a
cyclic group of order m.

 If we take K = Z
p
, where p is a prime number, and F is an extension of degree m, then the

generator of the cyclic group Gal(F/K) is the automorphism  : F -> F defined by
(x) = xp, for all x in F. This automorphism is called the Frobenius automorphism of F.

13.7 Keywords

Galois Group: Let F be an extension field of K. The set

{ in Aut(F) | (a) = a for all a in K }

is called the Galois group of F over K, denoted by Gal(F/K).
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NotesGalois Group of the Equation: Let K be a field, let f(x) be a polynomial in K[x], and let F be a
splitting field for f(x) over K. Then Gal(F/K) is called the Galois group of f(x) over K, or the
Galois group of the equation f(x) = 0 over K.

13.8 Review Questions

1. Let p be prime. Prove that there exists a polynomial f(x) 

Q[x] of degree p with Galois

group isomorphic to S
p
. Conclude that for each prime p with p  5 there exists a polynomial

of degree p that is not solvable by radicals.

2. Let p be a prime and Z
p
(t) be the field of rational functions over Z

p
. Prove that f(x) = xp � t

is an irreducible polynomial in Zp(t)[x]. Show that f(x) is not separable.

3. Let E be an extension field of F. Suppose that K and L are two intermediate fields. If there
exists an element   G(E/F) such that (K) = L, then K and L are said to be conjugate fields.
Prove that K and L are conjugate if and only if G(E/K) and G(E/L) are conjugate subgroups
of G(E/F).

4. Let   Aut(). If a is a positive real number, show that (a) > 0.

5. Let K be the splitting field of x3 + x2 + 1  
2
[x]. Prove or disprove that K is an extension by

radicals.

6. Let F be a field such that char F  2. Prove that the splitting field of f(x) = ax2 + bx + c is

F( ),  where a = b2 � 4ac.

7. Prove or disprove: Two different subgroups of a Galois group will have different fixed
fields.

8. Let K be the splitting field of a polynomial over F. If E is a field extension of F contained
in K and [E : F] = 2, then E is the splitting field of some polynomial in F[x].

Answers: Self Assessment

1. (b) 2. (b) 3. (c) 4. (d) 5. (a)

13.9 Further Readings

Books Dan Saracino: Abstract Algebra; A First Course.

Mitchell and Mitchell: An Introduction to Abstract Algebra.

John B. Fraleigh: An Introduction to Abstract Algebra (Relevant Portion).

Online links www.jmilne.org/math/CourseNotes/

www.math.niu.edu

www.maths.tcd.ie/

archives.math.utk.edu
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14.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss the radical extension

 Explain that a polynomial equation is solvable by radical

Introduction

In most results, in this section we will assume that the fields have characteristic zero, in order to
guarantee that no irreducible polynomial has multiple roots. When we say that a polynomial
equation is solvable by radicals, we mean that the solutions can be obtained from the coefficients
in a finite sequence of steps, each of which may involve addition, subtraction, multiplication,
division, or taking nth roots. Only the extraction of an nth root leads to a larger field, and so our
formal definition is phrased in terms of subfields and adjunction of roots of xn-a for suitable
elements a.

14.1 Radical Extension

Definition: An extension field F of K is called a radical extension of K if there exist elements
u

1
, u

2
, ... , u

m
 in F and positive integers n

1
, n

2
, ... , n

m
 such that

(i) F = K (u
1
, u

2
, ... , u

m
), and

(ii) u
1

n
1
 is in K and u

i
n

i
 is in K ( u

1
, ... , u

i-1
 ) for i = 2, ... , m .

14.2 Solvable by Radicals

For a polynomial f(x) in K[x], the polynomial equation f(x) = 0 is said to be solvable by radicals
if there exists a radical extension F of K that contains all roots of f(x).

Proposition: Let F be the splitting field of xn - 1 over a field K of characteristic zero. Then
Gal(F/K) is an abelian group.

Richa Nandra, Lovely Professional University
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NotesTheorem 1: Let K be a field of characteristic zero that contains all nth roots of unity, let a be an
element of K, and let F be the splitting field of xn-a over K. Then Gal(F/K) is a cyclic group whose
order is a divisor of n.

Theorem 2: Let p be a prime number, let K be a field that contains all pth roots of unity, and let
F be an extension of K. If [F:K] = |Gal(F/K)| = p, then F = K(u) for some u in F such that up is in
K.

Lemma: Let K be a field of characteristic zero, and let E be a radical extension of K. Then there
exists an extension F of E that is a normal radical extension of K.

Theorem 3: Let f(x) be a polynomial over a field K of characteristic zero. The equation
f(x) = 0 is solvable by radicals if and only if the Galois group of f(x) over K is solvable.

S
n
 is not solvable for n  5, and so to give an example of a polynomial equation of degree n that

is not solvable by radicals, we only need to find a polynomial of degree n whose Galois group
over Q is S

n
.

Lemma: Any subgroup of S
5
 that contains both a transposition and a cycle of length 5 must be

equal to S
5
 itself.

Theorem 4: There exists a polynomial of degree 5 with rational coefficients that is not solvable
by radicals

Example: Let f(x) be irreducible over Q, and let F be its splitting field over Q. Show that if
Gal (F/Q) is abelian, then F = Q(u) for all roots u of f(x).

Solution: Since F has characteristic zero, we are in the situation of the fundamental theorem of
Galois theory. Because Gal (F/Q) is abelian, every intermediate extension between Q and F must
be normal. Therefore, if we adjoin any root u of f(x), the extension Q(u) must contain all other
roots of f(x), since it is irreducible over Q. Thus Q(u) is a splitting field for f(x), so Q(u) = F.

Example: Find the Galois group of x9-1 over Q.

Solution: We can construct the splitting field F of x9-1 over Q by adjoining a primitive 9th root
of unity to Q. We have the factorization

x9-1 = (x3-1)(x6+x3+1)

        = (x-1)(x2+x+1)(x6+x3+1).

Substituting x+1 in the last factor yields

(x+1)6+(x+1)3+1 = x6+6x5+15x4+ 21x3+18x2+9x+3.

This polynomial satisfies Eisenstein�s criterion for the prime 3, which implies that the factor
x6+x3+1 is irreducible over Q. The roots of this factor are the primitive 9th roots of unity, so it
follows that [F:Q] = 6. Gal (F/Q) is isomorphic to a subgroup of Z

9
× Since Z

9
× is abelian of order

6, it is isomorphic to Z
6
. It follows that Gal (F/Q)  Z

6
.

Comment: The Galois group of xn-1 over Q is isomorphic to Z
n

× and so the Galois group is cyclic
of order (n) iff n = 2, 4, pk, or 2pk, for an odd prime p.

Example: Show that x4-x3+x2-x+1 is irreducible over Q, and use it to find the Galois group
of x10-1 over Q.

14
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Notes Solution: We can construct the splitting field F of x10-1 over Q by adjoining a primitive 10th root
of unity to Q. We have the factorization

x10-1 = (x5-1)(x5+1)

= (x-1)(x4+x3+x2+x+1) (x+1)(x4-x3+x2-x+1).

Substituting x-1 in the last factor yields

(x-1)4-(x-1)3+(x-1)2-(x-1)+1

= (x4-4x3+6x2-4x+1) - (x3-3x2+3x-1) + (x2-2x+1) - (x-1) + 1

= x4-5x3+10x2-10x+5.

This polynomial satisfies Eisenstein�s criterion for the prime 5, which implies that the factor
x4-x3+x2-x+1 is irreducible over Q.

The roots of this factor are the primitive 10th roots of unity, so it follows that [F:Q] = 4. The proof
of Theorem 1 shows that Gal (F/Q)  Z

10
× and so the Galois group is cyclic of order 4.

Example: Show that p(x) = x5-4x+2 is irreducible over Q, and find the number of real
roots. Find the Galois group of p(x) over Q, and explain why the group is not solvable.

Solution: The polynomial p(x) is irreducible over Q since it satisfies Eisenstein�s criterion for
p = 2. Since p(-2) = -22, p(-1) = 5, p(0) = 2, p(1) = �1, and p(2) = 26, we see that p(x) has a real root
between -2 and -1, another between 0 and 1, and a third between 1 and 2. The derivative
p�(x) = 5x4-4 has two real roots, so p(x) has one relative maximum and one relative minimum,
and thus it must have exactly three real roots. It follows as in the proof of Theorem 2 that the
Galois group of p(x) over Q is S

5
, and so it is not solvable.

Self Assessment

1. Let F be splitting field of xn � 1 over a field K of characteristic .................. then G(F/K) is an
abelian group.

(a) 1 (b) 0

(c) �1 (d) �2

2. Let K be a field of characteristic zero and let  be a ..................  of K. Thus there exists an
extension of F of  that is normal radical extension.

(a) radical extension (b) solvable group

(c) Galois group (d) finite element

3. There exists a polynomial of degree .................. with rational co-efficients that is not solvable
by radical.

(a) 4 (b) 5

(c) 6 (d) 7

4. Any subgroup of S
5
 that contains both a transposition and cycle of length ..................  must

be equal to S
5
 itself.

(a) 4 (b) 5

(c) 3 (d) 6
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Unit : Solvability by Radicals

Notes14.3 Summary

 An extension field F of K is called a radical extension of K if there exist elements
u

1
, u

2
, ... , u

m
 in F and positive integers n

1
, n

2
, ... , n

m
 such that

(i) F = K (u
1
, u

2
, ... , u

m
), and

(ii) u
1

n
1
 is in K and u

i
n

i
 is in K ( u

1
, ... , u

i-1
 ) for i = 2, ... , m .

For a polynomial f(x) in K[x], the polynomial equation f(x) = 0 is said to be solvable by
radicals if there exists a radical extension F of K that contains all roots of f(x).

 Let F be the splitting field of xn - 1 over a field K of characteristic zero. Then Gal(F/K) is an
abelian group.

 Let K be a field of characteristic zero that contains all nth roots of unity, let a be an element
of K, and let F be the splitting field of xn-a over K. Then Gal(F/K) is a cyclic group whose
order is a divisor of n.

 Let p be a prime number, let K be a field that contains all pth roots of unity, and let F be an
extension of K. If [F:K] = |Gal(F/K)| = p, then F = K(u) for some u in F such that up is in K.

 Let K be a field of characteristic zero, and let E be a radical extension of K. Then there exists
an extension F of E that is a normal radical extension of K.

 Let f(x) be a polynomial over a field K of characteristic zero. The equation
f(x) = 0 is solvable by radicals if and only if the Galois group of f(x) over K is solvable.

 S
n
 is not solvable for n  5, and so to give an example of a polynomial equation of degree

n that is not solvable by radicals, we only need to find a polynomial of degree n whose
Galois group over Q is S

n
.

 Any subgroup of S
5
 that contains both a transposition and a cycle of length 5 must be equal

to S
5
 itself.

 There exists a polynomial of degree 5 with rational coefficients that is not solvable by
radicals

14.4 Keywords

Radical Extension: An extension field F of K is called a radical extension of K if there exist
elements u

1
, u

2
, ... , u

m
 in F and positive integers n

1
, n

2
, ... , n

m
 such that

(i) F = K (u
1
, u

2
, ... , u

m
)

Solvable by Radicals: For a polynomial f(x) in K[x], the polynomial equation f(x) = 0 is said to be
solvable by radicals if there exists a radical extension F of K that contains all roots of f(x).

14.5 Review Questions

1. We know that the cyclotomic polynomial

p
p 1 p 2

p

x 1
(x) x x ... x 1

x 1
 

      


is irreducible over  for every prime p. Let w be a zero 
p
(x), and consider the field ().

(a) Show that , 2,...,p-1 are distinct zeros of 
p
(x), and conclude that they are all the

zeros of 
p
(x).

14
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Notes (b) Show that G((w)/) is abelian of order p � 1.

(c) Show that the fixed field of G(()/) is .

2. Let F be a finite field of characteristic zero. Let E be a finite normal extension of F with
Galois group G(E/F): Prove that F  K  L  E if and only if {id}  G(E/L)  G(E/K) 
G(E/F).

3. Let F be a field of characteristic zero and let f(x)  F[x] be a separable polynomial of degree

n. If E is the splitting field of f(x), let 
1
,...,

n
 be the roots of f(x) in E. Let i j i j( ).     

We define the discriminant of f(x) to be 2.

(a) If f(x) = ax2 + bx + c, show that 2 = b2 � 4ac.

(b) If f(x) = x3 + px + q, show that 2 = �4p3 � 27q2.

(c) Prove that 2 is in F.

(d) If   G(E/F) is a transposition of two roots of f(x), show that () = �.

(e) If   G(E/F) is an even permutation of the roots of f(x), show that () = .

(f) Prove that G(E/F) is isomorphic to a subgroup of A
n
 if and only if   F.

(g) Determine the Galois groups of x3 + 2x � 4 and x3 + x � 3.

Answers: Self Assessment

1. (b) 2. (a) 3. (b) 4. (b)

14.6 Further Readings

Books Dan Saracino: Abstract Algebra; A First Course.

Mitchell and Mitchell: An Introduction to Abstract Algebra.

John B. Fraleigh: An Introduction to Abstract Algebra (Relevant Portion).

Online links www.jmilne.org/math/CourseNotes/

www.math.niu.edu

www.maths.tcd.ie/

archives.math.utk.edu
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