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Notes Unit 1 :  Notation and Summation Convention

CONTENTS
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1 .4 Summary

1 .5 Keywords

1 .6 Self Assessment

1 .7 Review Questions

1 .8 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss the concept rectangular Cartesian coordinate systems

 Describe the suffix and symbolic notation

 Discuss the orthogonal transformation

Introduction

In this unit, we will discuss an elementary introduction to Cartesian tensor analysis in a three-
dimensional Euclidean point space or a two-dimensional subspace. A Euclidean point space is
the space of position vectors of points. The term vector is used in the sense of classical vector
analysis, and scalars and polar vectors are zeroth- and first-order tensors, respectively. The
distinction between polar and axial vectors is discussed later in this chapter. A scalar is a single
quantity that possesses magnitude and does not depend on any particular coordinate system,
and a vector is a quantity that possesses both magnitude and direction and has components, with
respect to a particular coordinate system, which transform in a definite manner under change of
coordinate system. Also vectors obey the parallelogram law of addition. There are quantities
that possess both magnitude and direction but are not vectors, for example, the angle of finite
rotation of a rigid body about a fixed axis.

A second-order tensor can be defined as a linear operator that operates on a vector to give
another vector. That is, when a second-order tensor operates on a vector, another vector, in the
same Euclidean space, is generated, and this operation can be illustrated by matrix multiplication.
The components of a vector and a second-order tensor, referred to the same rectangular Cartesian
coordinate system, in a three-dimensional Euclidean space, can be expressed as a (3 × 1) matrix
and a (3 × 3) matrix, respectively. When a second-order tensor operates on a vector, the components
of the resulting vector are given by the matrix product of the (3 × 3) matrix of components of the

Richa Nandra, Lovely Professional University
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LOVELY PROFESSIONAL UNIVERSITY

Notation and Summation Convention

Notessecond-order tensor and the matrix of the (3 × 1) components of the original vector. These
components are with respect to a rectangular Cartesian coordinate system, hence, the term
Cartesian tensor analysis. Examples from classical mechanics and stress analysis are as follows.
The angular momentum vector, h, of a rigid body about its mass center is given by h = J, where
J is the inertia tensor of the body about its mass center and  is the angular velocity vector. In this
equation the components of the vectors, h and  can be represented by (3 × 1) matrices and the
tensor J by a (3 × 3) matrix with matrix multiplication implied. A further example is the relation
t = n, between the stress vector t acting on a material area element and the unit normal n to the
element, where s is the Cauchy stress tensor. The relations h = J and t = n are examples of
coordinate-free symbolic notation, and the corresponding matrix relations refer to a particular
coordinate system.

We will meet further examples of the operator properties of second order tensors in the study of
continuum mechanics and thermodynamics. Tensors of order greater than two can be regarded
as operators operating on lower-order tensors. Components of tensors of order greater than
two cannot be expressed in matrix form.

It is very important to note that physical laws are independent of any particular coordinate
system. Consequently, equations describing physical laws, when referred to a particular
coordinate system, must transform in definite manner under transformation of coordinate
systems. This leads to the concept of a tensor, that is, a quantity that does not depend on the
choice of coordinate system. The simplest tensor is a scalar, a zeroth-order tensor. A scalar is
represented by a single component that is invariant under coordinate transformation. Examples
of scalars are the density of a material and temperature.

Higher-order tensors have components relative to various coordinate systems, and these
components transform in a definite way under transformation of coordinate systems. The velocity
v of a particle is an example of a first-order tensor; henceforth we denote vectors, in symbolic
notation, by lowercase bold letters. We can express v by its components relative to any convenient
coordinate system, but since v has no preferential relationship to any particular coordinate
system, there must be a definite relationship between components of v in different coordinate
systems. Intuitively, a vector may be regarded as a directed line segment, in a three-dimensional
Euclidean point space E

3
, and the set of directed line segments in E

3
, of classical vectors, is a

vector space V
3
. That is, a classical vector is the difference of two points in E

3
. A vector, according

to this concept, is a first-order tensor.

There are many physical laws for which a second-order tensor is an operator associating one
vector with another. Remember that physical laws must be independent of a coordinate system;
it is precisely this independence that motivates us to study tensors.

1 .1 Rectangular Cartesian Coordinate Systems

The simplest type of coordinate system is a rectangular Cartesian system, and this system is
particularly useful for developing most of the theory to be presented in this text.

A rectangular Cartesian coordinate system consists of an orthonormal basis of unit vectors
(e

1
, e

2
, e

3
) and a point 0 which is the origin. Right-handed Cartesian coordinate systems are

considered, and the axes in the (e
1
, e

2
, e

3
) directions are denoted by 0x

1
, 0x

2
, and 0x

3
, respectively,

rather than the more usual 0x, 0y, and 0z. A right-handed system is such that a 90º right-handed
screw rotation along the 0x

1
 direction rotates 0x

2
 to 0x

3
, similarly a right-handed rotation about

0x
2
 rotates 0x

3
 to 0x

1
, and a right-handed rotation about 0x

3
 rotates 0x

1
 to 0x

2
.

2



LOVELY PROFESSIONAL UNIVERSITY

Notes A right-handed system is shown in Figure 14.1. A point, x  E
3
, is given in terms of its coordinates

(x
1
, x

2
, x

3
) with respect to the coordinate system 0x

1
x

2
x

3
 by

x = x
1
e

1
 + x

2
e

2
 + x

3
e

3
,

which is a bound vector or position vector.

If points x, y  E
3
, u = x � y is a vector, that is, u  V

3
. The vector u is given in terms of its

components (u
1
, u

2
, u

3
), with respect to the rectangular coordinate system, 0x

1
x

2
x

3
 by

u = u
1
e

1
 + u

2
e

2
 + u

3
e

3
.

Figure 1 .1: Right-handed Rectangular Cartesian Coordinate System

Henceforth in this unit, when the term coordinate system is used, a rectangular Cartesian system
is understood. When the components of vectors and higher-order tensors are given with respect
to a rectangular Cartesian coordinate system, the theory is known as Cartesian tensor analysis.

1 .2 Suffix and Symbolic Notation

Suffixes are used to denote components of tensors, of order greater than zero, referred to a
particular rectangular Cartesian coordinate system. Tensor equations can be expressed in terms
of these components; this is known as suffix notation. Since a tensor is independent of any
coordinate system but can be represented by its components referred to a particular coordinate
system, components of a tensor must transform in a definite manner under transformation of
coordinate systems. This is easily seen for a vector. In tensor analysis, involving oblique Cartesian
or curvilinear coordinate systems, there is a distinction between what are called contra-variant
and covariant components of tensors but this distinction disappears when rectangular Cartesian
coordinates are considered exclusively.

Bold lower- and uppercase letters are used for the symbolic representation of vectors and second-
order tensors, respectively. Suffix notation is used to specify the components of tensors, and the
convention that a lowercase letter suffix takes the values 1, 2, and 3 for three-dimensional and 1
and 2 for two-dimensional Euclidean spaces, unless otherwise indicated, is adopted. The number
of distinct suffixes required is equal to the order of the tensor. An example is the suffix
representation of a vector u, with components (u

1
, u

2
, u

3
) or u

i
, i  {1, 2, 3}. The vector is then

given by

3

i i
i 1

u u e .


 ...(1)

3



LOVELY PROFESSIONAL UNIVERSITY

Notation and Summation Convention

NotesIt is convenient to use a summation convention for repeated letter suffixes. According to this
convention, if a letter suffix occurs twice in the same term, a summation over the repeated suffix
from 1 to 3 is implied without a summation sign, unless otherwise indicated. For example,
equation (1) can be written as

u = u
i
e

i
 = u

1
e

1
 + u

2
e

2
 + u

3
e

3
...(2)

without the summation sign. The sum of two vectors is commutative and is given by

u + v = v + u = (u
i
 + v

i
)e

i
,

which is consistent with the parallelogram rule. A further example of the summation convention
is the scalar or inner product of two vectors,

u . v = u
i
v

i
 = u

1
v

1
 + u

2
v

2
 + u

3
v

3
...(3)

Repeated suffixes are often called dummy suffixes since any letter that does not appear elsewhere
in the expression may be used, for example,

u
i
v

i
 = u

j
v

j
.

Equation (3) indicates that the scalar product obeys the commutative law of algebra, that is,

u . v = v . u.

The magnitude |u| of a vector u is given by

i i|u| u.u u u . 

Other examples of the use of suffix notation and the summation convention are

C
ii
 = C

11
 + C

22
 + C

33

C
ij
b

j
 = C

i1
b

1
 + C

i2
b

2
 + C

i3
b

3
.

A suffix that appears once in a term is known as a free suffix and is understood to take in turn the
values 1, 2, 3 unless otherwise indicated. If a free suffix appears in any term of an equation or
expression, it must appear in all the terms.

1 .3 Orthogonal Transformations

The scalar products of orthogonal unit base vectors are given by

e
i
 . e

j
 = 

ij
, ...(1)

where 
ij
 is known as the Kronecker delta and is defined as

ij

1 for i j
.

0 for i j


  


...(2)

The base vectors ei are orthonormal, that is, of unit magnitude and mutually perpendicular to
each other. The Kronecker delta is sometimes called the substitution operator because

u
j


ij
 + u

1


i1
 + u

2


i2
 + u

3


i3
 = u

i
. ...(3)

Consider a right-handed rectangular Cartesian coordinate system 0x�
i
 with the same origin as

0x
i
 as indicated in Figure 14.2. Henceforth, primed quantities are referred to coordinate system

0x�
i
.

4



LOVELY PROFESSIONAL UNIVERSITY

Notes
Figure 1 .2: Change of Axes

The coordinates of a point P are x
i
 with respect to 0x

i
 and '

ix  with respect to 0x
i
. Consequently,

x
i
e

i
 = ' '

i jx e , ...(4)

where the '
ie  are the unit base vectors for the system 0x

i
. Forming the inner product of each side

of equation (4) with e�
k
 and using equation (1) and the substitution operator property equation

(3) gives

'
k ki ix a x , ...(5)

where

' '
ki k i k ia e .e cos(x 0x ).  ...(6)

Similarly

'
i ki kx a x . ...(7)

It is evident that the direction of each axis '
k0x  can be specified by giving its direction cosines

a
ki
 = ' '

k i k ie .e cos(x 0x )  referred to the original axes 0x
i
. The direction cosines, a

ki
 = '

k ie .e ,  defining

this change of axes are tabulated in Table 1 .1.

The matrix [a] with elements a
ij
 is known as the transformation matrix; it is not a tensor.

Table 1 .1: Direction cosines for Rotation of Axes

5



LOVELY PROFESSIONAL UNIVERSITY

Notation and Summation Convention

NotesIt follows from equations (5) and (7) that

k i
ki

i k

x' x
a ,

x x'
 

 
 

...(8)

and from equation (4) that

'
j' 'i

i j k'
k k

xx
e e e ,

x' dx


 


...(9)

since x
j
/x

k
 = 

jk
, and from equations (8) and (9) that

'
k ki ie a e , ...(10)

and

'
i ki ke a e . ...(11)

Equations (10) and (11) are the transformation rules for base vectors. The nine elements of a
ij
 are

not all independent, and in general,

a
ki
  a

ik
.

A relation similar to equations (5) and (7),

' '
k ki i i ki ku a u , and u a u  ...(12)

is obtained for a vector u since ' '
i i k ku e u e ,  which is similar to equation (4) except that the ui are

the components of a vector and the x
i
 are coordinates of a point.

The magnitude |u| = (u
i
u

i
)1/2 of the vector u is independent of the orientation of the coordinate

system, that is, it is a scalar invariant; consequently,

u
i
u

i
 = ' '

k ki ji ku a a u . ...(13)

Eliminating u
i
 from equation (12) gives

' '
k ki ji ju a a u ,

and since ' '
k kj ju u , 

a
ki
a

ji
 = 

kj
. ...(14)

Similarly, eliminating u
k
 from equation (12) gives

a
ik
a

jk
 = 

ij
. ...(15)

It follows from equation (14) or (15) that

{det[a
ij
]}2 = 1, ...(16)

where det [a
ij
] denotes the determinant of a

ij
. The negative root of equation (16) is not considered

unless the transformation of axes involves a change of orientation since, for the identity

transformation x
i
 = '

ix ,  a
ik

 = 
ik

 and det[
ik

] = 1. Consequently, det[a
ik

] = 1, provided the

transformations involve only right-handed systems (or left-handed systems).

6



LOVELY PROFESSIONAL UNIVERSITY

Notes The transformations (5), (7), and (12) subject to equation (14) or (15) are known as orthogonal
transformations. Three quantities u

i
 are the components of a vector if, under orthogonal

transformation, they transform according to equation (12). This may be taken as a definition of
a vector. According to this definition, equations (5) and (7) imply that the representation x of a
point is a bound vector since its origin coincides with the origin of the coordinate system.

If the transformation rule (7) holds for coordinate transformations from right-handed systems
to left-handed systems (or vice versa), the vector is known as a polar vector. There are scalars
and vectors known as pseudo scalars and pseudo or axial vectors; there have transformation
rules that involve a change in sign when the coordinate transformation is from a right-handed
system to a left-handed system (or vice versa), that is, when det[a

ij
] = �1. The transformation rule

for a pseudo scalar is

� = det [a
ij
], ...(17)

and for a pseudo vector

'
i ij ij ju det[a ]a u . ...(18)

A pseudo scalar is not a true scalar if a scalar is defined as a single quantity invariant under all
coordinate transformations. An example of a pseudo vector is the vector product u × v of two
polar vectors u and v. The moment of a force about a point and the angular momentum of a
particle about a point are pseudo vectors. The scalar product of a polar vector and a pseudo
vector is a pseudo scalar; an example is the moment of a force about a line. The distinction
between pseudo vectors and scalars and polar vectors and true scalars disappears when only
right- (or left-) handed coordinate systems are considered. For the development of continuum
mechanics presented in this book, only right-handed systems are used.

Example: Show that a rotation through angle  about an axis in the direction of the unit
vector n has the transformation matrix

a
ij
 = � 

ij
 + 2n

i
n

j
, det[aij] = 1.

Solution. The position vector of point A has components x
i
 and point B has position vector with

components '
ix .

1 .4 Summary

 A rectangular Cartesian coordinate system consists of an orthonormal basis of unit vectors
(e

1
, e

2
, e

3
) and a point 0 which is the origin. Right-handed Cartesian coordinate systems are

considered, and the axes in the (e
1
, e

2
, e

3
) directions are denoted by 0x

1
, 0x

2
, and 0x

3
,

respectively, rather than the more usual 0x, 0y, and 0z. A right-handed system is such that
a 90º right-handed screw rotation along the 0x

1
 direction rotates 0x

2
 to 0x

3
, similarly a

right-handed rotation about 0x
2
 rotates 0x

3
 to 0x

1
, and a right-handed rotation about 0x

3

rotates 0x
1
 to 0x

2
.

 Suffixes are used to denote components of tensors, of order greater than zero, referred to
a particular rectangular Cartesian coordinate system. Tensor equations can be expressed
in terms of these components; this is known as suffix notation. Since a tensor is independent
of any coordinate system but can be represented by its components referred to a particular
coordinate system, components of a tensor must transform in a definite manner under
transformation of coordinate systems. This is easily seen for a vector. In tensor analysis,
involving oblique Cartesian or curvilinear coordinate systems, there is a distinction
between what are called contra-variant and covariant components of tensors but this
distinction disappears when rectangular Cartesian coordinates are considered exclusively.

7



LOVELY PROFESSIONAL UNIVERSITY

Notation and Summation Convention

NotesBold lower- and uppercase letters are used for the symbolic representation of vectors and
second-order tensors, respectively. Suffix notation is used to specify the components of
tensors, and the convention that a lowercase letter suffix takes the values 1, 2, and 3 for
three-dimensional and 1 and 2 for two-dimensional Euclidean spaces, unless otherwise
indicated, is adopted. The number of distinct suffixes required is equal to the order of the
tensor. An example is the suffix representation of a vector u, with components (u

1
, u

2
, u

3
)

or ui, i  {1, 2, 3}. The vector is then given by

3

i i
i 1

u u e .




1 .5 Keywords

Rectangular Cartesian coordinate: A rectangular Cartesian coordinate system consists of an
orthonormal basis of unit vectors (e

1
, e

2
, e

3
) and a point 0 which is the origin.

Right-handed Cartesian coordinate systems are considered, and the axes in the (e
1
, e

2
, e

3
)

directions are denoted by 0x
1
, 0x

2
, and 0x

3
, respectively.

Suffixes are used to denote components of tensors, of order greater than zero, referred to a
particular rectangular Cartesian coordinate system.

Tensor equations can be expressed in terms of these components; this is known as suffix notation.

1 .6 Self Assessment

1. A ................. system consists of an orthonormal basis of unit vectors (e
1
, e

2
, e

3
) and a point

0 which is the origin.

2. ................. coordinate systems are considered, and the axes in the (e
1
, e

2
, e

3
) directions are

denoted by 0x
1
, 0x

2
, and 0x

3
, respectively.

3. ................. are used to denote components of tensors, of order greater than zero, referred to
a particular rectangular Cartesian coordinate system.

4. Tensor equations can be expressed in terms of these components; this is known as ..................

5. Suffix notation is used to specify the components of tensors, and the convention that a
lowercase letter suffix takes the values 1, 2, and 3 for three-dimensional and 1 and 2 for
two-dimensional ................., unless otherwise indicated, is adopted.

1 .7 Review Questions

1. Discuss the concept rectangular Cartesian coordinate systems.

2. Describe the suffix and symbolic notation.

3. Discuss the orthogonal transformation.

Answers: Self Assessment

1. rectangular Cartesian coordinate 2. Right-handed Cartesian

3. Suffixes 4. suffix notation

5. Euclidean spaces

8
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Notes 1 .8 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati, T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H. Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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Tensors in Cartesian Coordinates

NotesUnit : Tensors in Cartesian Coordinates

CONTENTS

Objectives

Introduction

.1 Covectors

.2 Scalar Product of Vector and Covector

.3 Linear Operators

.4 Bilinear and Quadratic Forms

.5 General Definition of Tensors

.6 Dot Product and Metric Tensor

.7 Multiplication by Numbers and Addition

.8 Tensor Product

.9 Contraction

.10 Raising and Lowering Indices

.11 Some Special Tensors and some useful Formulas

.12 Summary

.13 Keywords

.14 Self Assessment

.15 Review Questions

.16 Further Readings

Objectives

After studying this unit, you will be able to:

 Define convectors

 Discuss the scalar products of vector and convectors

 Describe bilinear and quadratic forms

 Explain the dot product and metric tensor

Introduction

In the last unit, you have studied about notation and summation of convention. A tensor written
in component form is an indexed array. The order of a tensor is the number of indices required.
(The rank of tensor used to mean the order, but now it means something different). The rank of
the tensor is the minimal number of rank-one tensor that you need to sum up to obtain this
higher-rank tensor. Rank-one tensors are given the generalization of outer product to m-vectors,
where m is the order of the tensor.

Sachin Kaushal, Lovely Professional University
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Notes 2.1 Covectors

In previous sections, we learned the following important fact about vectors: a vector is a physical
object in each basis of our three-dimensional Euclidean space E represented by three numbers
such that these numbers obey certain transformation rules when we change the basis.

Now suppose that we have some other physical object that is represented by three numbers in
each basis, and suppose that these numbers obey some certain transformation rules when we
change the basis. Is it possible? One can try to find such an object in nature. However, in
mathematics we have another option. We can construct such an object mentally, then study its
properties, and finally look if it is represented somehow in nature.

Let�s denote our hypothetical object by a, and denote by a
1
, a

2
, a

3
 that three numbers which

represent this object in the basis e
1
, e

2
, e

3
. By analogy with vectors we shall call them coordinates.

But in contrast to vectors, we intentionally used lower indices when denoting them by a
1
, a

2
, a

3
.

Let�s prescribe the following transformation rules to a
1
, a

2
, a

3
 when we change e

1
, e

2
, e

3
 to

1 2 3e ,e ,e :  

3
i

j j i
i 1

a S a ,


 ...(1)

3
i

j j i
i 1

a T a ,


 ...(2)

Note that (1) is sufficient, formula (2) is derived from (1).

Example: Using the concept of the inverse matrix T = S�1 derive formula (2) from
formula (1).

Definition: A geometric object a in each basis represented by a triple of coordinates a
1
, a

2
, a

3
 and

such that its coordinates obey transformation rules (1) and (2) under a change of basis is called a
covector.

Looking at the above considerations one can think that we arbitrarily chose the transformation
formula (1). However, this is not so. The choice of the transformation formula should be

self-consistent in the following sense. Let e
1
, e

2
, e

3
 and 1 2 3e ,e ,e    be two bases and let 1 2 3e ,e ,e      be

the third basis in the space. Let�s call them basis one, basis two and basis three for short. We can
pass from basis one to basis three directly. Or we can use basis two as an intermediate basis.
In both cases, the ultimate result for the coordinates of a covector in basis three should be the
same: this is the self-consistence requirement. It means that coordinates of a geometric object
should depend on the basis, but not on the way that they were calculated.

Exercise 2 .1: Replace S by T in (1) and T by S in (2). Show that the resulting formulas are not
self-consistent.

What about the physical reality of covectors? Later on we shall see that covectors do exist in
nature. They are the nearest relatives of vectors. And moreover, we shall see that some
well-known physical objects we thought to be vectors are of covectorial nature rather than
vectorial.
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Notes2.2 Scalar Product of Vector and Covector

Suppose we have a vector x and a covector a. Upon choosing some basis e
1
, e

2
, e

3
, both of them

have three coordinates: x1, x2, x3 for vector x, and a
1
, a

2
, a

3
 for covector a. Let�s denote by a,x  the

following sum:

a,x  = 
3

i
i

i 1

a x .


 ...(1)

The sum (1) is written in agreement with Einstein�s tensorial notation. It is a number depending
on the vector x and on the covector a. This number is called the scalar product of the vector x and
the covector a. We use angular brackets for this scalar product in order to distinguish it from the
scalar product of two vectors in E, which is also known as the dot product.

Defining the scalar product a,x  by means of sum (1) we used the coordinates of vector x and

of covector a, which are basis-dependent. However, the value of sum (1) does not depend on any
basis. Such numeric quantities that do not depend on the choice of basis are called scalars or true
scalars.

Exercise 2 .2: Consider two bases e
1
, e

2
, e

3
 and 1 2 3e ,e ,e ,    and consider the coordinates of vector

x and covector a in both of them. Prove the equality

3 3
i i

i i
i 1 i 1

a x a x .
 

    ...(2)

Thus, you are proving the self-consistence of formula (1) and showing that the scalar product

a,x  given by this formula is a true scalar quantity.

Exercise 2 .3: Let  be a real number, let a and b be two covectors, and let x and y be two vectors.
Prove the following properties of the scalar product:

(1) a + b; x  = a, x + b, x ;

(2) a, x + y a,x a, y ; 

(3) a, x a,x ;  

(4) a, x a,x .  

Exercise 2 .4: Explain why the scalar product a,x  is sometimes called the bilinear function of

vectorial argument x and covectorial argument a. In this capacity, it can be denoted as f(a, x).
Remember our discussion about functions with non-numeric arguments.

Important note. The scalar product a,x  is not symmetric. Moreover, the formula

a,x x,a

is incorrect in its right hand side since the first argument of scalar product by definition should
be a covector. In a similar way, the second argument should be a vector. Therefore, we never can
swap them.

12
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Notes 2 .3 Linear Operators

In this section we consider more complicated geometric objects. For the sake of certainty, let�s
denote one of such objects by F. In each basis e

1
, e

2
, e

3
, it is represented by a square 3 × 3 matrix

i
jF  of real numbers. Components of this matrix play the same role as coordinates in the case of

vectors or covectors. Let�s prescribe the following transformation rules to i
jF :

3 3
q pi i

j p j q
p 1 q 1

F T S F ,
 

 ...(1)

3 3
q pi i

j p j q
p 1 q 1

F S T F .
 

  ...(2)

Exercise 2 .5: Using the concept of the inverse matrix T = S�1 prove that formula (2) is derived
from formula (1).

If we write matrices pi
j qF and F , then (1) and (2) can be written as two matrix equalities:

F T F S, F S F T.   ...(3)

Definition: A geometric object F in each basis represented by some square matrix i
jF  and such

that components of its matrix i
jF  obey transformation rules (1) and (2) under a change of basis is

called a linear operator.

Let�s take a linear operator F represented by matrix i
jF  in some basis e

1
, e

2
, e

3
 and take some

vector x with coordinates x1, x2, x3 in the same basis. Using i
jF  and xj we can construct the

following sum:

yi = 
3

ji
j

j 1

F x .


 ...(4)

Index i in the sum (4) is a free index; it can deliberately take any one of three values: i = 1,
i = 2, or i = 3. For each specific value of i we get some specific value of the sum (4). They are

denoted by y1, y2, y3 according to (4). Now suppose that we pass to another basis 1 2 3e ,e ,e    and do

the same things. As a result we get other three values 1 2 3y ,y ,y    given by formula

3
p p q

q
q 1

y F x .


   ...(5)

Relying upon (1) and (2) prove that the three numbers y1, y2, y3 and the other three numbers
1 2 3y ,y ,y    are related as follows:

3 3
j j j ji i

i i
i 1 i 1

y T y , y S y .
 

    ...(6)
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NotesThus, formula (4) defines the vectorial object y. As a result, we have vector y determined by a
linear operator F and by vector x. Therefore, we write

y = F(x) ...(7)

and say that y is obtained by applying linear operator F to vector x. Some people like to write (7)
without parentheses:

y = Fx. ....(8)

Formula (8) is a more algebraic form of formula (7). Here the action of operator F upon vector
x is designated like a kind of multiplication. There is also a matrix representation of formula (8),
in which x and y are represented as columns:

1 1 1 1 1
1 2 3

2 2 2 2 2
1 2 3

3 3 3 3 3
1 2 3

y F F F x

y F F F x .

y F F F x


...(9)

Exercise 2 .6: Derive (9) from (4).

Exercise 2 .7: Let  be some real number and let x and y be two vectors. Prove the following
properties of a linear operator (7):

(1) F(x + y) = F(x) + F(y),

(2) F( x) = F(x).

Write these equalities in the more algebraic style introduced by (8). Are they really similar to
the properties of multiplication?

Exercise 2 .8: Remember that for the product of two matrices

det(AB) = detA detB. ...(10)

Also remember the formula for det(A�1). Apply these two formulas to (3) and derive

det F = detF. ...(11)

Formula (10) means that despite the fact that in various bases linear operator F is represented by
various matrices, the determinants of all these matrices are equal to each other. Then we can
define the determinant of linear operator F as the number equal to the determinant of its matrix
in any one arbitrarily chosen basis e

1
, e

2
, e

3
:

det F = det F. ...(12)

Exercise 2 .9 (for deep thinking). Square matrices have various attributes: eigenvalues,
eigenvectors, a characteristic polynomial, a rank (maybe you remember some others). If we
study these attributes for the matrix of a linear operator, which of them can be raised one level
up and considered as basis-independent attributes of the linear operator itself? Determinant (12)
is an example of such attribute.

Exercise 2 .10: Substitute the unit matrix for i
jF  into (1) and verify that i

jF  is also a unit matrix in

this case. Interpret this fact.

Exercise 2 .11: Let x = e
i
 for some basis e

1
, e

2
, e

3
 in the space. Substitute this vector x into (7) and

by means of (4) derive the following formula:

F(e
i
) = 

3
j

i j
j 1

F e .


 ...(13)
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Notes The fact is that in some books the linear operator is determined first, then its matrix is introduced
by formula (13). Explain why if we know three vectors F(e

1
), F(e

2
), and F(e

3
), then we can

reconstruct the whole matrix of operator F by means of formula (13).

Suppose we have two linear operators F and H. We can apply H to vector x and then we can
apply F to vector H(x). As a result we get

F   H(x) = F(H(x)). ...(14)

Here F   H is new linear operator introduced by formula (14). It is called a composite operator,
and the small circle sign denotes composition.

Exercise 2 .12: Find the matrix of composite operator F   H if the matrices for F and H in the
basis e

1
, e

2
, e

3
 are known.

Exercise 2 .13: Remember the definition of the identity map in mathematics (see on-line Math.
Encyclopedia) and define the identity operator id. Find the matrix of this operator.

Exercise 2 .14: Remember the definition of the inverse map in mathematics and define inverse
operator F�1 for linear operator F. Find the matrix of this operator if the matrix of F is known.

2 .4 Bilinear and Quadratic Forms

Vectors, covectors, and linear operators are all examples of tensors (though we have no definition
of tensors yet). Now we consider another one class of tensorial objects. For the sake of clarity,
let�s denote by a one of such objects. In each basis e

1
, e

2
, e

3
 this object is represented by some

square 3 × 3 matrix a
ij
 of real numbers. Under a change of basis these numbers are transformed

as follows:

3 3
p q

ij i j pq
p 1 q 1

a S S a ,
 

 ...(1)

a
ij
 = 

3 3
p q
i j pq

p 1 q 1

T T a .
 

  ...(2)

Transformation rules (1) and (2) can be written in matrix form:

T Ta S aS, a T aT. 
 ...(3)

Here by ST and TT we denote the transposed matrices for S and T respectively.

Exercise 2 .15: Derive (2) from (1), then (3) from (1) and (2).

Definition: A geometric object a in each basis represented by some square matrix aij and such
that components of its matrix a

ij
 obey transformation rules (1) and (2) under a change of basis is

called a bilinear form.

Let�s consider two arbitrary vectors x and y. We use their coordinates and the components of
bilinear form a in order to write the following sum:

a(x, y) = 
3 3

ji
ij

i 1 j 1

a x y .
 

 ...(4)
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NotesExercise 2 .16: Prove that the sum in the right hand side of formula (4) does not depend on the
basis, i.e. prove the equality

3 3 3 3
j p qi

ij pq
i 1 j 1 p 1 q 1

a x y a x y .
   

    

This equality means that a(x, y) is a number determined by vectors x and y irrespective of the
choice of basis. Hence we can treat (4) as a scalar function of two vectorial arguments.

Exercise 2 .17: Let  be some real number, and let x, y, and z be three vectors. Prove the
following properties of function (4):

(1) a(x + y, z) = a(x, z) + a(y, z);

(2) a( x, y) =  a(x, y);

(3) a(x, y + z) = a(x, y) + a(x, z);

(4) a(x, y) =  a(x, y).

Due to these properties function (4) is called a bilinear function or a bilinear form. It is linear
with respect to each of its two arguments.

Note that scalar product is also a bilinear function of its arguments. The arguments of scalar
product are of a different nature: the first argument is a  covector, the second is a vector. Therefore,
we cannot swap them. In bilinear form (4) we can swap arguments. As a result we get another
bilinear function

b(x, y) = a(y, x). ...(5)

The matrices of a and b are related to each other as follows:

b
ij
 = a

ji
, b = aT. ...(6)

Definition: A bilinear form is called symmetric if a(x, y) = a(y, x).

Exercise 2 .18: Prove the following identity for a symmetric bilinear form:

a(x, y) = 
a(x + y, x + y) � a(x, x) � a(y, y)

.
2

...(7)

Definition: A quadratic form is a scalar function of one vectorial argument f(x) produced from
some bilinear function a(x; y) by substituting y = x:

f(x) = a(x, x). ...(8)

Without a loss of generality a bilinear function a in (8) can be assumed symmetric. Indeed, if a is
not symmetric, we can produce symmetric bilinear function

c(x, y) = 
a(x, y) + a(y, x)

,
2

...(9)

and then from (8) due to (9) we derive

f(x) = a(x, x) = 
a(x, x) + a(x, x)

= c(x, x).
2

This equality is the same as (8) with a replaced by c. Thus, each quadratic function f is produced
by some symmetric bilinear function a. And conversely, comparing (8) and (7) we get that a is
produced by f:

a(x, y) = 
f(x + y) � f(x) � f(y)

.
2

...(10)

16



LOVELY PROFESSIONAL UNIVERSITY

Notes Formula (10) is called the recovery formula. It recovers bilinear function a from quadratic
function f produced in (8). Due to this formula, in referring to a quadratic form we always imply
some symmetric bilinear form like the geometric tensorial object introduced by definition.

2 .5 General Definition of Tensors

Vectors, covectors, linear operators, and bilinear forms are examples of tensors. They are
geometric objects that are represented numerically when some basis in the space is chosen. This
numeric representation is specific to each of them: vectors and covectors are represented by one-
dimensional arrays, linear operators and quadratic forms are represented by two-dimensional
arrays. Apart from the number of indices, their position does matter. The coordinates of a vector
are numerated by one upper index, which is called the contra-variant index. The coordinates of
a covector are numerated by one lower index, which is called the covariant index. In a matrix of
bilinear form we use two lower indices; therefore bilinear forms are called twice-covariant
tensors. Linear operators are tensors of mixed type; their components are numerated by one
upper and one lower index. The number of indices and their positions determine the
transformation rules, i.e. the way the components of each particular tensor behave under a
change of basis. In the general case, any tensor is represented by a multidimensional array with
a definite number of upper indices and a definite number of lower indices.

Let�s denote these numbers by r and s. Then we have a tensor of the type (r; s), or sometimes the
term valency is used. A tensor of type (r; s), or of valency (r; s) is called an r-times contravariant
and an s-times covariant tensor. This is terminology; now let�s proceed to the exact definition. It
is based on the following general transformation formulas:

1 r

1 s

i ...i
j ... jX  = s1 r 1 1 r

1 r 1 s 1 s

1 r
1 s

3 3
ki i k h ...h

h h j j k ...k
h , h...,
k , k...,

... S ...S T ...T X ,   ...(1)

1 r

1 s

i ...i
j ... jX  = s1 r 1 1 r

1 r 1 s 1 s

1 r
1 s

3 3
ki i k h ...h

h h j j k ...k
h , h...,
k , k...,

... T ...T S ...S X ,  ...(2)

Definition: A geometric object X in each basis represented by (r + s) dimensional array 1 r

1 s

i ...i
j ... jX  of

real numbers and such that the components of this array obey the transformation rules (1) and
(2) under a change of basis is called tensor of type (r, s), or of valency (r, s).

Formula (2) is derived from (1), so it is sufficient to remember only one of them. Let it be the
formula (1). Though huge, formula (1) is easy to remember.

Indices i
1
, ... i

r
 and j

1
, ..., j

s
 are free indices. In right hand side of the equality (1) they are distributed

in S-s and T-s, each having only one entry and each keeping its position, i.e. upper indices i
1
, ...;

i
r
 remain upper and lower indices j

1
,..., j

s
 remain lower in right hand side of the equality (1).

Other indices h
1
, ... h

r
 and k

1
, ... , k

s
 are summation indices; they enter the right hand side of (1)

pairwise: once as an upper index and once as a lower index, once in S-s or T-s and once in

components of array 1 r

1 s

h ...h
k ...kX .

When expressing 1 r

1 s

i ...i
j ... jX  through 1 r

1 s

h ...h
k ...kX  each upper index is served by direct transition matrix

S and produces one summation in (1):
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...i ... i ...h ...
......... h ...........

h 1

X .... ... ... S ... X  



 

   
...(3)

In a similar way, each lower index is served by inverse transition matrix T and also produces one
summation in formula (1):

3
k......... ..........

... ja... j ...k ...
k 1

X .... ... ... T ... X

 

 

   
...(4)

Formulas (3) and (4) are the same as (1) and used to highlight how (1) is written. So tensors are
defined. Further we shall consider more examples showing that many well-known objects
undergo the definition.

Task What are the valencies of vectors, covectors, linear operators, and bilinear
forms when they are considered as tensors.

Exercise 2 .19: Let a
ij
 be the matrix of some bilinear form a. Let�s denote by bij components of

inverse matrix for a
ij
. Prove that matrix bij under a change of basis transforms like matrix of

twice-contravariant tensor. Hence, it determines tensor b of valency (2, 0). Tensor b is called a
dual bilinear form for a.

2 .6 Dot Product and Metric Tensor

The covectors, linear operators, and bilinear forms that we considered above were artificially
constructed tensors. However there are some tensors of natural origin. Let�s remember that we
live in a space with measure. We can measure distance between points (hence, we can measure
length of vectors) and we can measure angles between two directions in our space. Therefore,
for any two vectors x and y we can define their natural scalar product (or dot product):

(x, y) = |x| |y| cos() ...(1)

where  is the angle between vectors x and y.

Task Remember the following properties of the scalar product (1):

(1) (x + y, z) = (x, z) + (y, z);

(2) (a x, y) = a (x, y);

(3) (x, y + z) = (x, y) + (x, z);

(4) (x, a y) = a (x, y);

(5) (x, y) = (y, x);

(6) (x, x)  0 and (x, x) = 0 implies x = 0.

These properties are usually considered in courses on analytic geometry or vector algebra, see
Vector Lessons on the Web.
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Notes The first four properties of the scalar product (1) are quite similar to those
or quadratic forms. This is not an occasional coincidence.

Exercise 2 .20: Let�s consider two arbitrary vectors x and y expanded in some basis e
1
, e

2
, e

3
. This

means that we have the following expressions for them:

3 3
ji

i j
i 1 j 1

x x e , y x e .
 

   ...(2)

Substitute (2) into (1) and using properties (1)-(4) listed in exercise 2 .17 derive the following
formula for the scalar product of x and y:

3 3
ji

i j
i 1 j 1

(x,y) (e ,e )x y .
 

 ...(3)

Exercise 2 .21: Denote g
ij
 = (e

i
, e

j
) and rewrite formula (3) as

3 3
ji

ij
i 1 j 1

(x,y) g x y .
 

 ...(4)

Consider some other basis 1 2 3e ,e ,e ,    denote pq p qg (e ,e )    and prove that matrices g
ij
 and pqg  are

components of a geometric object under a change of base. Thus you prove that the Gram matrix

g
ij
 = (e

i
, e

j
 ) ...(5)

defines tensor of type (0; 2). This is very important tensor; it is called the metric tensor. It
describes not only the scalar product in form of (4), but the whole geometry of our space.
Evidences for this fact are below.

Matrix (5) is symmetric due to property (5) in task on previous page. Now, keeping in mind the
tensorial nature of matrix (5), we conclude that the scalar product is a symmetric bilinear form:

(x, y) = g(x, y) ...(6)

The quadratic form corresponding to (6) is very simple: f(x) = g(x, x) = |x|2. The inverse matrix
for (5) is denoted by the same symbol g but with upper indices: gij. It determines a tensor of type
(2, 0), this tensor is called dual metric tensor.

2 .7 Multiplication by Numbers and Addition

Tensor operations are used to produce new tensors from those we already have. The most
simple of them are multiplication by number and addition. If we have some tensor X of type
(r, s) and a real number , then in some base e

1
, e

2
, e

3
 we have the array of components of tensor

X; let�s denote it 1 r

1 s

i ...i
j ... jX .  Then by multiplying all the components of this array by  we get

another array

1 r 1 r

1 s 1 s

i ...i i ...i
j ... j j .... jY X .  ...(1)
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NotesChoosing another base 1 2 3e ,e ,e ,    and repeating this operation we get

1 r 1 r

1 s 1 s

i ...i i ...i
j ... j j .... jY X .   ...(2)

Exercise 2 .22: Prove that arrays 1 r 1 r

1 s 1 s

i ...i i ...i
j ... j j .... jY and Y  are related to each other in the same way as

arrays 1 r 1 r

1 s 1 s

i ...i i ...i
j ... j j .... jX X ,  i.e. according to transformation formulas. In doing this you prove that

formula (1) applied in all bases produces new tensor Y = X from initial tensor X.

Formula (1) defines the multiplication of tensors by numbers. In exercise 2 .22 you prove its
consistence. The next formula defines the addition of tensors:

1 r 1 r 1 r

1 s 1 s 1 s

i ...i i ...i i ...i
j ... j j .... j j ... jX Y Z .  ...(3)

Having two tensors X and Y both of type (r, s) we produce a third tensor Z of the same type (r, s)
by means of formula (3). It�s natural to denote Z = X + Y.

Exercise 2.1: By analogy with exercise 2 .22 prove the consistence of formula (3).

Exercise 3.1: What happens if we multiply tensor X by the number zero and by the number
minus one? What would you call the resulting tensors?

2 .8 Tensor Product

The tensor product is defined by a more tricky formula. Suppose we have tensor X of type (r, s)
and tensor Y of type (p, q), then we can write:

1 r p r 1 r p1 r

1 s p 1 s s 1 s p

i ...i i ...ii ...i
j ... j j .... j j ... jZ X Y .  

  
 ...(1)

Formula (1) produces new tensor Z of the type (r + p, s + q). It is called the tensor product of X and

Y and denoted Z = X   Y. Don�t mix the tensor product and the cross product. They are different.

Exercise 2 .23: By analogy prove the consistence of formula (1).

Exercise 2 .24: Give an example of two tensors such that X   Y  Y   X.

2 .9 Contraction

As we have seen above, the tensor product increases the number of indices. Usually the tensor

Z = X   Y has more indices than X and Y. Contraction is an operation that decreases the number
of indices. Suppose we have tensor X of the type (r + 1, s + 1). Then we can produce tensor Z of
type (r, s) by means of the following formula:

1 m 1 m r1 r

1 s 1 k 1 k s

n
i ...i i ...ii ....i

j ... j j ... j j ... j
1

Z X .









 ...(1)

What we do ? Tensor X has at least one upper index and at least one lower index. We choose the
m-th upper index and replace it by the summation index . In the same way, we replace the k-th
lower index by . Other r upper indices and s lower indices are free. They are numerated in some
convenient way, say as in formula (1). Then we perform summation with respect to index . The
contraction is over. This operation is called a contraction with respect to m-th upper and
k-th lower indices. Thus, if we have many upper an many lower indices in tensor X, we can
perform various types of contractions to this tensor.
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Task Prove the consistence of formula (1).

Interpret this formula as the contraction of the tensor product ax.

2 .10 Raising and Lowering Indices

Suppose that X is some tensor of type (r, s). Let�s choose its -th lower index: .........
...k...X .  The symbols

used for the other indices are of no importance. Therefore, we denoted them by dots. Then let�s

consider the tensor product Y = g   X:

...pq... pq ..........
...k.... ....k...Y g X . ...(1)

Here g is the dual metric tensor with the components gpq. In the next step, let�s contract (1) with
respect to the pair of indices k and q. For this purpose we replace them both by s and perform the
summation:

3
...p... ps ........
........ ...s...

s 1

X g X .


 ...(2)

This operation (2) is called the index raising procedure. It is invertible. The inverse operation is
called the index lowering procedure:

3
......... ....s....
...p... ps ..........

s 1

X g X .


 ...(3)

Like (2), the index lowering procedure (3) comprises two tensorial operations: the tensor product
and contraction.

2 .11 Some Special Tensors and some useful Formulas

Kronecker symbol is a well known object. This is a two-dimensional array representing the unit
matrix. It is determined as follows:

i
j

1 for i j,

0 for i j


  


...(1)

We can determine two other versions of Kronecker symbol:

ij ij

1 for i j,
d

0 for i j


   


...(2)

Exercise 2 .25: Prove that definition (1) is invariant under a change of basis, if we interpret the
Kronecker symbol as a tensor. Show that both definitions in (2) are not invariant under a change
of basis.

Exercise 2 .26: Lower index i of tensor (1). What tensorial object do you get as a result of this
operation?
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Another well known object is the Levi-Civita symbol. This is a three dimensional array
determined by the following formula:

jkq
jkq

0, if among j,k,q, there at least two equal numbers;

1, if ( j k q) is even permutation of numbers (1 2 3);

1, if ( jkq) is odd permutation of numbers (1 2 3).




   


...(3)

The Levi-Civita symbol (3) is not a tensor. However, we can produce two tensors by means of
Levi-Civita symbol. The first of them

ijk ij ijkdet(g )   ...(4)

is known as the volume tensor. Another one is the dual volume tensor:

ijk ij ijkdet(g ) .   ...(5)

Let�s take two vectors x and y. Then using (4) we can produce covector a:

3 3
j k

i ijk
j 1 k 1

a x y .
 

  ...(6)

Then we can apply index raising procedure and produce vector a:

3 3 3
jr ri k

ijk
i 1 j 1 k 1

a g x y .
  

  ...(7)

Formula (7) is known as formula for the vectorial product (cross product) in skew-angular basis.

Exercise 2 .28: Prove that the vector a with components (7) coincides with cross product of
vectors x and y, i.e. a = [x, y].

2 .12 Summary

 Suppose we have a vector x and a covector a. Upon choosing some basis e
1
, e

2
, e

3
, both of

them have three coordinates: x1, x2, x3 for vector x, and a
1
, a

2
, a

3
 for covector a. Let�s denote

by a,x  the following sum:

a,x  = 
3

i
i

i 1

a x .




The sum is written in agreement with Einstein�s tensorial notation. It is a number depending
on the vector x and on the covector a. This number is called the scalar product of the vector
x and the covector a. We use angular brackets for this scalar product in order to distinguish
it from the scalar product of two vectors in E, which is also known as the dot product.

Defining the scalar product a,x  by means of sum we used the coordinates of vector x and

of covector a, which are basis-dependent.
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 A geometric object F in each basis represented by some square matrix i

jF  and such that

components of its matrix i
jF  obey transformation rules 

3 3
q pi i

j p j q
p 1 q 1

F T S F ,
 

  and

3 3
q pi i

j p j q
p 1 q 1

F S T F .
 

   under a change of basis is called a linear operator.

 Vectors, covectors, and linear operators are all examples of tensors (though we have no
definition of tensors yet). Now we consider another one class of tensorial objects. For the
sake of clarity, let�s denote by a one of such objects. In each basis e

1
, e

2
, e

3
 this object is

represented by some square 3 × 3 matrix a
ij
 of real numbers. Under a change of basis these

numbers are transformed as follows 
3 3

p q
ij i j pq

p 1 q 1

a S S a .
 



 The covectors, linear operators, and bilinear forms that we considered above were
artificially constructed tensors. However there are some tensors of natural origin. Let�s
remember that we live in a space with measure. We can measure distance between points
(hence we can measure length of vectors) and we can measure angles between two directions
in our space. Therefore for any two vectors x and y we can define their natural scalar
product (or dot product):

(x, y) = |x| |y| cos()

where  is the angle between vectors x and y.

 The tensor product is defined by a more tricky formula. Suppose we have tensor X of type
(r, s) and tensor Y of type (p, q), then we can write:

1 r p r 1 r p1 r

1 s p 1 s s 1 s p

i ...i i ...ii ...i
j ... j j .... j j ... jZ X Y .  

  


The above formula produces new tensor Z of the type (r + p, s + q). It is called the tensor

product of X and Y and denoted Z = X   Y. Don�t mix the tensor product and the cross
product. They are different.

2 .13 Keywords

Linear operator: A geometric object F in each basis represented by some square matrix i
jF  and

such that components of its matrix i
jF  obey transformation rules 

3 3
q pi i

j p j q
p 1 q 1

F T S F ,
 

  and

3 3
q pi i

j p j q
p 1 q 1

F S T F .
 

   under a change of basis is called a linear operator.

Bilinear form: A geometric object a in each basis represented by some square matrix aij and such

that components of its matrix aij obey transformation rules 
3 3

p q
ij i j pq

p 1 q 1

a S S a
 

  and aij =

3 3
p q
i j pq

p 1 q 1

T T a
 

   under a change of basis is called a bilinear form.
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Notes2 .14 Self Assessment

1. Defining the scalar product a,x  by means of sum we used the coordinates of vector x and
of covector a, which are ..................

2. A geometric object a in each basis represented by some square matrix aij and such that

components of its matrix aij obey transformation rules 
3 3

p q
ij i j pq

p 1 q 1

a S S a
 

  and a
ij
 =

3 3
p q
i j pq

p 1 q 1

T T a
 

   under a change of basis is called a ..................

3. The coordinates of a vector are numerated by one upper index, which is called the ..................

4. The number of indices and their positions determine the .................., i.e. the way the
components of each particular tensor behave under a change of basis.

2 .15 Review Questions

1. Explain why the scalar product a,x  is sometimes called the bilinear function of vectorial
argument x and covectorial argument a. In this capacity, it can be denoted as f(a, x).
Remember our discussion about functions with non-numeric arguments.

2. Derive 

1 1 1 1 1
1 2 3

2 2 2 2 2
1 2 3

3 3 3 3 3
1 2 3

y F F F x

y F F F x

y F F F x

  from yi = 
3

ji
j

j 1

F x .




3. Let  be some real number and let x and y be two vectors. Prove the following properties
of a linear operator:

(1) F(x + y) = F(x) + F(y),

(2) F( x) = F(x).

4. Find the matrix of composite operator F   H if the matrices for F and H in the basis e
1
, e

2
,

e
3
 are known.

5. Remember the definition of the identity map in mathematics (see on-line Math.
Encyclopedia) and define the identity operator id. Find the matrix of this operator.

6. Remember the definition of the inverse map in mathematics and define inverse operator
F�1 for linear operator F. Find the matrix of this operator if the matrix of F is known.

7. Let a
ij
 be the matrix of some bilinear form a. Let�s denote by bij components of inverse

matrix for a
ij
. Prove that matrix bij under a change of basis transforms like matrix of twice-

contravariant tensor. Hence it determines tensor b of valency (2, 0). Tensor b is called a
dual bilinear form for a.

8. By analogy with exercise 1 r 1 r

1 s 1 s

i ...i i ...i
j ... j j .... jY X   prove the consistence of formula

1 r p r 1 r p1 r

1 s p 1 s s 1 s p

i ...i i ...ii ...i
j ... j j .... j j ... jZ X Y .  

  


9. Give an example of two tensors such that X   Y  Y   X.
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10. Prove that definition i
j

1 for i j,

0 for i j


  


 is invariant under a change of basis, if we interpret

the Kronecker symbol as a tensor. Show that both definitions in ij ij

1 for i j,
d

0 for i j


   



are not invariant under a change of basis.

11. Lower index i of tensor i
j

1 for i j,

0 for i j


  


 by means of 

3
......... ....s....
...p... ps ..........

s 1

X g X .


  What tensorial

object do you get as a result of this operation? Likewise, raise index J in i
j

1 for i j,

0 for i j


  


.

12. Prove that the vector a with components 
3 3 3

jr ri k
ijk

i 1 j 1 k 1

a g x y
  

   coincides with cross

product of vectors x and y, i.e. a = [x, y].

Answers: Self Assessment

1. basis-dependent 2. bilinear form.

3. contravariant index. 4. transformation rules

2 .16 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati, T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H. Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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Objectives

After studying this unit, you will be able to:

 Discuss the tensor fields in Cartesian coordinates

 Describe the change of Cartesian coordinates system

 Explain the differentiation of tensors fields

 Discuss the gradient, divergency and rotor

Introduction

Cartesian tensors are widely used in various branches of continuum mechanics, such as fluid
mechanics and elasticity. In classical continuum mechanics, the space of interest is usually
3-dimensional Euclidean space, as is the tangent space at each point. If we restrict the local
coordinates to be Cartesian coordinates with the same scale centered at the point of interest, the
metric tensor is the Kronecker delta. This means that there is no need to distinguish covariant
and contra variant components, and furthermore there is no need to distinguish tensors and
tensor densities. All Cartesian-tensor indices are written as subscripts. Cartesian tensors achieve
considerable computational simplification at the cost of generality and of some theoretical
insight.

3 .1 Tensor Fields in Cartesian Coordinates

The tensors that we defined in the previous unit are free tensors. Indeed, their components are
arrays related to bases, while any basis is a triple of free vectors (not bound to any point). Hence,
the tensors previously considered are also not bound to any point.

Sachin Kaushal, Lovely Professional University
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Notes Now suppose we want to bind our tensor to some point in space, then another tensor to another
point and so on. Doing so we can fill our space with tensors, one per each point. In this case, we
say that we have a tensor field. In order to mark a point P to which our particular tensor is bound
we shall write P as an argument:

X = X(P) ...(1)

Usually the valencies of all tensors composing the tensor field are the same. Let them all be of
type (r, s). Then if we choose some basis e

1
, e

2
, e

3
, we can represent any tensor of our tensor field

as an array 1 r

1. s

i ...i
j .. jX  with r + s indices:

1 r 1 r

. s 1 s

i ...i i ...i
j1 .. j j ... jX X (P). ...(2)

Thus, the tensor field (1) is a tensor-valued function with argument P being a point of three-
dimensional Euclidean space E, and (2) is the basis representation for (1). For each fixed set of
numeric values of indices i

1
, ... , i

r
, j

1
, ... , j

s
 in (2), we have a numeric function with a point-valued

argument. Dealing with point-valued arguments is not so convenient, for example, if we want
to calculate derivatives. Therefore, we need to replace P by something numeric. Remember that
we have already chosen a basis. If, in addition, we fix some point O as an origin, then we get

Cartesian coordinate system in space and hence can represent P by its radius-vector pr OP


 and

by its coordinates x1, x2, x3:

1 r 1 r

1 s 1 s

i ...i i ...i 1 2 3
j ... j j ... jX X (x ,x ,x ). ...(3)

Conclusion. In contrast to free tensors, tensor fields are related not to bases, but to whole
coordinate systems (including the origin). In each coordinate system they are represented by
functional arrays, i.e. by arrays of functions (see (3)).

A functional array (3) is a coordinate representation of a tensor field (1). What happens when we
change the coordinate system ? Dealing with (2), we need only to recalculate the components of

the array 1 r

1 s

i ...i
j ... jX  :

s1 r 1 r 1 1 r

1 s 1 r 1 s 1 s

1 r

3 3
ki ...i i i k h ...h

j ... j h h j j k ...k
h , h

X (P) ... T ...T S ...S X (P).  ...(4)

In the case of (3), we need to recalculate the components of the array 1 r

1 s

i ...i
j ... jX  in the new basis

s1 r 1 r 1 1 r

1 s 1 r 1 s 1 s

1 r

3 3
ki ...i 1 2 3 i i k h ...h 1 2 3

j ... j h h j j k ...k
h , h

X (x ,x ,x ) ... T ...T S ...S X (x ,x ,x ),     ...(5)

We also need to express the old coordinates x1, x2, x3 of the point P in right hand side of (5)
through new coordinates of the same point:

1 1 1 2 3

2 2 1 2 3

3 3 1 2 3

x  = x (x , x , x ),

x  = x (x , x , x ),

x  = x (x , x , x ).







  

  

  

...(6)

Formula (5) can be inverted :

s1 r 1 r 1 1 r

1 s 1 r 1 s 1 s

1 r

3 3
ki ...i i i k h ...h 1 2 3

j ... j 1 2 3 h h j j k ...k
h , h

X (x ,x ,x ) ... S ...T S ...T X (x ,x ,x ).      ...(7)
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1 1 2 3
1

2 2 1 2 3

3 3 1 2 3

x  = x (x , x , x );

x  = x (x , x , x );

x  = x (x , x , x ).













...(8)

The couple of formulas (5) and (6), and another couple of formulas (7) and (8), in the case of
tensor fields play the same role as transformation formulas in the case of free tensors.

3 .2 Change of Cartesian Coordinate System

Note that formulas (6) and (8) are written in abstract form. They only indicate the functional
dependence of new coordinates of the point P from old ones and vice versa. Now we shall
specify them for the case when one Cartesian coordinate system is changed to another Cartesian
coordinate system. Remember that each Cartesian coordinate system is determined by some
basis and some fixed point (the origin). We consider two Cartesian coordinate systems. Let the

origins of the first and second systems be at the points O and O,  respectively. Denote by e
1
, e

2
,

e
3
 the basis of the first coordinate system, and by 1 2 3e , e , e    the basis of the second coordinate

system (see Fig. 16.1 below).

Figure 3 .1

Let P be some point in the space for whose coordinates we are going to derive the specializations

of formulas (6) and (8). Denote by rP and Pr  the radius-vectors of this point in our two coordinate

systems. Then rP = OP


 and pr OP.

  Hence,

P Pr OO r . 

  ...(1)

Vector OO

  determines the origin shift from the old to the new coordinate system. We expand

this vector in the basis e
1
, e

2
, e

3
:

3
i

i
i 1

a OO a e .


 

 ...(2)

Radius-vectors r
P
 and Pr  are expanded in the bases of their own coordinate systems:

3
i

P i
i 1

r x e ,



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i

P i
i 1

r x e ,


   ...(3)

Exercise 1.1: Using (1), (2) and (3) derive the following formula relating the coordinates of the
point P in the two coordinate systems in Fig. 16.1 :

3
ji i i

j
j 1

x a S x .


   ...(4)

Exercise 2.1: Derive the following inverse formula for (4):

3
ji i i

j
j 1

x a T x .


   ...(5)

Prove that ai in (4) and ia  in (5) are related to each other as follows:

3 3
j ji i i i

j j
j 1 j 1

a T x . a S a .
 

      ...(6)

Explain the minus signs in these formulas. Formula (4) can be written in the following expanded
form:

1 1 1 1 2 1 3 1
1 2 3

2 2 2 2 2 3 2
1 2 3

3 3 1 3 2 3 3 3
1 2 3

x S x S x S x a ,

x S x1 S x S x a ,

x S x S x S x a .

    


   
    

  

  

  
...(7)

This is the required specialization. In a similar way we can expand (5) :

1 1 1 1 2 1 3 1
1 2 3

2 2 1 2 2 2 3 2
1 2 3

3 3 1 3 2 3 3 3
1 2 3

x T x T x T x a ,

x T x T x T x a ,

x T x T x T x a .

    


   
    

 

 

 
...(8)

This is the required specialization. Formulas (7) and (8) are used to accompany the main
transformation formulas.

3 .3 Differentiation of Tensor Fields

In this section we consider two different types of derivatives that are usually applied to tensor
fields: differentiation with respect to spacial variables x1, x2, x3 and differentiation with respect
to external parameters other than x1, x2, x3, if they are present. The second type of derivatives are
simpler to understand. Let�s consider them to start. Suppose we have tensor field X of type (r, s)
and depending on the additional parameter t (for instance, this could be a time variable). Then,
upon choosing some Cartesian coordinate system, we can write

1 r 1 r

1 s 1 s

i1...ir i ...i 1 2 3 i ...i 1 2 3
j1... js j ... j j ... j

h 0

X X (t h,x ,x ,x ) X (t,x ,x ,x )
lim .

t h

  



...(1)

The left hand side of (1) is a tensor since the fraction in right hand side is constructed by means
of tensorial operations. Passing to the limit h  0 does not destroy the tensorial nature of this
fraction since the transition matrices S and T are all time-independent.
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NotesDifferentiation with respect to external parameters (like t in (1)) is a tensorial operation producing
new tensors from existing ones.

Exercise 1.1: Give a more detailed explanation of why the time derivative (1) represents a tensor
of type (r, s).

Now let�s consider the spacial derivative of tensor field X, i.e. its derivative with respect to a
spacial variable, e.g. with respect to x1. Here we also can write

1 r 1 r 1 r

1 s 1 s 1 s

i ...i i ...i 1 2 3 i ...i 1 2 3
j ... j j ... j j ... j

h 0

X X (x h,x ,x ) X (x ,x ,x )
lim ,

t h

  



...(2)

but in numerator of the fraction in the right hand side of (2) we get the difference of two tensors
bound to different points of space: to the point P with coordinates x1, x2, x3 and to the point P�
with coordinates x1 + h, x2, x3. To which point should be attributed the difference of two such
tensors ? This is not clear. Therefore, we should treat partial derivatives like (2) in a different
way.

Let�s choose some additional symbol, say it can be q, and consider the partial derivative of 1 r

1 s

i ...i
j ... jX

with respect to the spacial variable xq:

1 r

1 s1 r

1 s

i ...i
j ... ji ...i

qj ... j q

X
Y .

x





...(3)

Partial derivatives (2), taken as a whole, form an (r + s + 1)-dimensional array with one extra

dimension due to index q. We write it as a lower index in 1 r

1 s

i ...i
qj ... jY  due to the following theorem

concerning (3).

Theorem 1.1: For any tensor field X of type (r, s) partial derivatives (3) with respect to spacial
variables x1, x2, x3 in any Cartesian coordinate system represent another tensor field Y of the
type (r, s + 1).

Thus differentiation with respect to x1, x2, x3 produces new tensors from already existing ones.
For the sake of beauty and convenience this operation is denoted by the nabla sign: Y = X. In
index form this looks like

1 r 1 r

1 s 1 s

i ...i i ...i
qj ... j q j ... jY X .  ...(4)

Simplifying the notations we also write:

q q .
x


 


...(5)

Warning: Theorem 1.1 and the equality (5) are valid only for Cartesian coordinate systems.
In curvilinear coordinates things are different.

Exercise 2.1: Prove theorem 1.1. For this purpose consider another Cartesian coordinate system
1 2 3x , x , x    related to x1, x2, x3 . Then in the new coordinate system consider the partial derivatives

1 r

1 s1 r

1 s

i ...i
j ... ji ...i

qj ... j q

X
Y

x










...(6)

and derive relationships binding (6) and (3).
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The tensorial nature of partial derivatives established by theorem 1.1 is a very useful feature.
We can apply it to extend the scope of classical operations of vector analysis. Let�s consider the
gradient, grad = . Usually the gradient operator is applied to scalar fields, i.e. to functions
 = (P) or  = (x1, x2, x3) in coordinate form:

q q qa .
x


   


...(1)

Note that in (1) we used a lower index q for a
q
. This means that a = grad  is a covector. Indeed,

according to theorem 1.1, the nabla operator applied to a scalar field, which is tensor field of
type (0, 0), produces a tensor field of type (0, 1). In order to get the vector form of the gradient one
should raise index q:

3 3
q qi qi

i i
i 1 i 1

a g a g .
 

     ...(2)

Let�s write (2) in the form of a differential operator (without applying to ):

3
q qi

i
i 1

g .


   ...(3)

In this form the gradient operator (3) can be applied not only to scalar fields, but also to vector
fields, covector fields and to any other tensor fields.

Usually in physics we do not distinguish between the vectorial gradient q and the covectorial
gradient 

q
 because we use orthonormal coordinates with ONB as a basis. In this case, dual

metric tensor is given by unit matrix (gij = ij) and components of q and 
q
 coincide by value.

Divergency is the second differential operation of vector analysis. Usually it is applied to a
vector field and is given by formula:

3
i

i
i 1

div X X .


  ...(4)

As we see, (4) is produced by contraction (see section 16) from tensor qXi. Therefore we can
generalize formula (4) and apply divergency operator to arbitrary tensor field with at least one
upper index:

3
............... ........s........
............... s ..................

s 1

(div X) X .


  ...(5)

The Laplace operator is defined as the divergency applied to a vectorial gradient of something,
it is denoted by the triangle sign:  = div grad. From (3) and (5) for Laplace operator  we derive
the following formula:

3 3
ij

i j
i 1 j 1

g .
 

    ...(6)

Denote by �  the following differential operator:

�  = 
2

2 2

1
.

c t


 


...(7)
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NotesOperator (7) is called the d�Alambert operator or wave operator. In general relativity upon
introducing the additional coordinate x0 = ct one usually rewrites the d�Alambert operator in a
form quite similar to (6).

And finally, let�s consider the rotor operator or curl operator (the term �rotor� is derived from
�rotation� so that �rotor� and �curl� have approximately the same meaning). The rotor operator
is usually applied to a vector field and produces another vector field: Y = rotX. Here is the
formula for the r-th coordinate of rot X:

3 3 3
jri k

ijk
i 1 j 1 k 1

(rot X)r g X .
  

   ...(8)

Exercise 1.1: Formula (8) can be generalized for the case when X is an arbitrary tensor field with
at least one upper index. By analogy with (5) suggest your version of such a generalization.

Note that formulas (6) and (8) for the Laplace operator and for the rotor are different from those
that are commonly used. Here are standard formulas:

2 2 2

1 2 3
,

x x x

       
        

       
...(9)

31 2

1 2 3

1 2 3

ee e

rot X det .
x x x

X X X

  


  
...(10)

The truth is that formulas (6) and (8) are written for a general skew-angular coordinate system
with a SAB as a basis. The standard formulas (10) are valid only for orthonormal coordinates
with ONB as a basis.

Exercise 2.1: Show that in case of orthonormal coordinates, when gij =  ij , formula (6) for the
Laplace operator 4 reduces to the standard formula (9).

The coordinates of the vector rot X in a skew-angular coordinate system are given by formula
(8). Then for vector rot X itself we have the expansion:

3
r

r
r 1

rot X (rot X) e .


 ...(11)

Exercise 3.1: Substitute (8) into (11) and show that in the case of a orthonormal coordinate system
the resulting formula (11) reduces to (10).

3 .5 Summary

 Indeed, their components are arrays related to bases, while any basis is a triple of free
vectors (not bound to any point). Hence, the tensors previously considered are also not
bound to any point.

Now suppose we want to bind our tensor to some point in space, then another tensor to
another point and so on. Doing so we can fill our space with tensors, one per each point. In
this case we say that we have a tensor field. In order to mark a point P to which our
particular tensor is bound we shall write P as an argument:

X = X(P)
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Notes Usually the valencies of all tensors composing the tensor field are the same. Let them all
be of type (r, s). Then if we choose some basis e

1
, e

2
, e

3
, we can represent any tensor of our

tensor field as an array 1 r

1. s

i ...i
j .. jX  with r + s indices:

1 r 1 r

. s 1 s

i ...i i ...i
j1 .. j j ... jX X (P).

The left hand side is a tensor since the fraction in right hand side is constructed by means
of tensorial operations. Passing to the limit h  0 does not destroy the tensorial nature of
this fraction since the transition matrices S and T are all time-independent.

Differentiation with respect to external parameters is a tensorial operation producing
new tensors from existing ones.

 The tensorial nature of partial derivatives established by theorem is a very useful feature.
We can apply it to extend the scope of classical operations of vector analysis. Let�s consider
the gradient, grad = . Usually the gradient operator is applied to scalar fields, i.e. to
functions  = (P) or  = (x1, x2, x3) in coordinate form:

q q q
a .

x


   


 The Laplace operator is defined as the divergency applied to a vectorial gradient of
something, it is denoted by the triangle sign:  = div grad. From Laplace operator , we
derive the following formula:

3 3
ij

i j
i 1 j 1

g .
 

   

Denote by �  the following differential operator:

�  = 
2

2 2

1
.

c t


 



Above operator is called the d�Alambert operator or wave operator. In general relativity
upon introducing the additional coordinate x0 = ct one usually rewrites the d�Alambert
operator in a form quite similar.

And finally, let�s consider the rotor operator or curl operator (the term �rotor� is derived
from �rotation� so that �rotor� and �curl� have approximately the same meaning). The
rotor operator is usually applied to a vector field and produces another vector field:
Y = rot X. Here is the formula for the r-th coordinate of rot X:

3 3 3
jri k

ijk
i 1 j 1 k 1

(rot X)r g X .
  

  

3 .6 Keywords

Cartesian coordinate system in space and hence can represent P by its radius-vector pr OP


 and
by its coordinates x1, x2, x3.

Partial derivatives 
1 r 1 r 1 r

1 s 1 s 1 s

i ...i i ...i 1 2 3 i ...i 1 2 3
j ... j j ... j j ... j

h 0

X X (x h,x ,x ) X (x ,x ,x )
lim ,

t h

  



 taken as a whole, form an
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Notes(r + s + 1)-dimensional array with one extra dimension due to index q. We write it as a lower

index in 1 r

1 s

i ...i
qj ... jY  due to the following theorem concerning 

1 r

1 s1 r

1 s

i ...i
j ... ji ...i

qj ... j q

X
Y .

x






Divergency is the second differential operation of vector analysis. Usually it is applied to a
vector field and is given by formula:

3
i

i
i 1

div X X .


 

3 .7 Self Assessment

1. .................... in space and hence can represent P by its radius-vector pr OP


 and by its
coordinates x1, x2, x3:

1 r 1 r

1 s 1 s

i ...i i ...i 1 2 3
j ... j j ... jX X (x ,x ,x ).

2. A .................... 1 r 1 r

1 s 1 s

i ...i i ...i 1 2 3
j ... j j ... jX X (x ,x ,x )  is a coordinate representation of a tensor field

X = X(P).

3. .................... 
1 r 1 r 1 r

1 s 1 s 1 s

i ...i i ...i 1 2 3 i ...i 1 2 3
j ... j j ... j j ... j

h 0

X X (x h,x ,x ) X (x ,x ,x )
lim ,

t h

  



 taken as a whole, form an

(r + s + 1)-dimensional array with one extra dimension due to index q. We write it as a

lower index in 1 r

1 s

i ...i
qj ... jY  due to the following theorem concerning 

1 r

1 s1 r

1 s

i ...i
j ... ji ...i

qj ... j q

X
Y .

x






3 .8 Review Questions

1. Using P Pr OO r 

  , 

3
i

i
i 1

a OO a e


 

 , 

3
i

P i
i 1

r x e ,


    and 
3

j
i i j

j 1

e S e


  derive the following

formula relating the coordinates of the point P in the two coordinate systems.

3
ji i i

j
j 1

x a S x .


  

Compare 
3

ji i i
j

j 1

x a S x


    with 
3

j j i
i

i 1

x S x .


   Explain the differences in these two formulas.

2. Give a more detailed explanation of why the time derivative 
i1...ir
j1... jsX

t




=

1 r 1 r

1 s 1 s

i ...i 1 2 3 i ...i 1 2 3
j ... j j ... j

h 0

X (t h,x ,x ,x ) X (t,x ,x ,x )
lim

h

 
 represents a tensor of type (r, s)
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3. Prove theorem 
1 r 1 r

1 s 1 s

i1...ir i ...i 1 2 3 i ...i 1 2 3
j1... js j ... j j ... j

h 0

X X (t h,x ,x ,x ) X (t,x ,x ,x )
lim .

t h

  



 For this purpose

consider another Cartesian coordinate system 1 2 3x , x , x    related to x1, x2, x3 via

1 1 1 1 2 1 3 1
1 2 3

2 2 2 2 2 3 2
1 2 3

3 3 1 3 2 3 3 3
1 2 3

x S x S x S x a ,

x S x1 S x S x a ,

x S x S x S x a .

    


   
    

  

  

  
 and 

1 1 1 1 2 1 3 1
1 2 3

2 2 1 2 2 2 3 2
1 2 3

3 3 1 3 2 3 3 3
1 2 3

x T x T x T x a ,

x T x T x T x a ,

x T x T x T x a .

    


   
    

 

 

 
. Then in the new

coordinate system consider the partial derivatives

1 r

1 s1 r

1 s

i ...i
j ... ji ...i

qj ... j q

X
Y

x











and derive relationships binding 
1 r

1 s1 r

1 s

i ...i
j ... ji ...i

qj ... j q

X
Y

x










 and 

1 r

1 s1 r

1 s

i ...i
j ... ji ...i

qj ... j q

X
Y .

x






4. Formula 
3 3 3

jri k
ijk

i 1 j 1 k 1

(rot X)r g X
  

    can be generalized for the case when X is an arbitrary

tensor field with at least one upper index. By analogy with 
3

............... ........s........

............... s ..................
s 1

(div X) X .


 

suggest your version of such a generalization.

Note that formulas 
3 3

ij
i j

i 1 j 1

g
 

     and 
3 3 3

jri k
ijk

i 1 j 1 k 1

(rot X)r g X
  

    for the Laplace

operator and for the rotor are different from those that are commonly used. Here are
standard formulas:

2 2 2

1 2 3
,

x x x
       

        
       

31 2

1 2 3

1 2 3

ee e

rot X det .
x x x

X X X

  


  

The truth is that formulas 
3 3

ij
i j

i 1 j 1

g
 

     and 
3 3 3

jri k
ijk

i 1 j 1 k 1

(rot X)r g X
  

    are written

for a general skew-angular coordinate system with a SAB as a basis. The standard formulas

31 2

1 2 3

1 2 3

ee e

rot X det
x x x

X X X

  


  
 are valid only for orthonormal coordinates with ONB as a

basis.
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5. Show that in case of orthonormal coordinates, when gij =  dij , formula 

3 3
ij

i j
i 1 j 1

g
 

     for

the Laplace operator 4 reduces to the standard formula 
2 2 2

1 2 3
.

x x x

       
        

       

The coordinates of the vector rot X in a skew-angular coordinate system are given by

formula 
3 3 3

jri k
ijk

i 1 j 1 k 1

(rot X)r g X
  

   . Then for vector rot X itself we have the expansion:

3
r

r
r 1

rot X (rot X) e .




6. Substitute 
3 3 3

jri k
ijk

i 1 j 1 k 1

(rot X)r g X
  

    into 
3

r
r

r 1

rot X (rot X) e


  and show that in the case

of a orthonormal coordinate system the resulting formula 
3

r
r

r 1

rot X (rot X) e


  reduces to

31 2

1 2 3

1 2 3

ee e

rot X det .
x x x

X X X

  


  

Answers: Self Assessment

1. Cartesian coordinate system 2. functional array

3. Partial derivatives

3 .9 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati, T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H. Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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4 .1 General idea of Curvilinear Coordinates

4 .2 Auxiliary Cartesian Coordinate System

4 .3 Coordinate Lines and the Coordinate Grid

4 .4 Moving Frame of Curvilinear Coordinates

4 .5 Dynamics of Moving Frame
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4 .11 Keywords

4 .12 Self Assessment

4 .13 Review Questions

4 .14 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss the general idea of curvilinear coordinates

 Describe the auxiliary Cartesian coordinate system

 Explain the coordinate lines and coordinate grid.

 Discuss the moving frame of curvilinear coordinates

 Explain the formula for Christoffel symbols

Introduction

In the last unit, you have studied about tensor fields differentiation of tensors and tensor fields
in Cartesian coordinates. Curvilinear coordinates are a coordinate system for Euclidean space in
which the coordinate lines may be curved. These coordinates may be derived from a set of
Cartesian coordinates by using a transformation that is locally invertible (a one-to-one map) at
each point. This means that one can convert a point given in a Cartesian coordinate system to its
curvilinear coordinates and back. The name curvilinear coordinates, coined by the French
mathematician Lamé, derives from the fact that the coordinate surfaces of the curvilinear systems
are curved.

Sachin Kaushal, Lovely Professional University
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Notes4 .1 General idea of Curvilinear Coordinates

What are coordinates, if we forget for a moment about radius-vectors, bases and axes? What is
the pure idea of coordinates? The pure idea is in representing points of space by triples of

numbers. This means that we should have one to one map P   (y1, y2, y3) in the whole space or

at least in some domain, where we are going to use our coordinates y1, y2, y3. In Cartesian

coordinates this map P   (y1, y2, y3) is constructed by means of vectors and bases. Arranging

other coordinate systems one can use other methods. For example, in spherical coordinates
y1 = r is a distance from the point P to the center of sphere, y2 = q and y3 =  are two angles. By the
way, spherical coordinates are one of the simplest examples of curvilinear coordinates.
Furthermore, let�s keep in mind spherical coordinates when thinking about more general and
hence more abstract curvilinear coordinate systems.

4 .2 Auxiliary Cartesian Coordinate System

Now we know almost everything about Cartesian coordinates and almost nothing about the
abstract curvilinear coordinate system y1, y2, y3 that we are going to study. Therefore, the best
idea is to represent each point P by its radius vector r

P
 in some auxiliary Cartesian coordinate

system and then consider a map r
P
   (y

1
, y

2
, y

3
). The radius-vector itself is represented by three

coordinates in the basis e
1
, e

2
, e

3
 of the auxiliary Cartesian coordinate system:

3
i

P i
i 1

r x e .


 ...(1)

Therefore, we have a one-to-one map (x1, x2, x3)   (y1, y2, y3). Hurrah! This is a numeric map.

We can treat it numerically. In the left direction it is represented by three functions of three
variables:

1 1 1 2 3

2 2 1 2 3

3 3 1 2 3

x x (y ,y ,y ),

x x (y ,y ,y ),

x x (y ,y ,y ).

 



 

...(2)

In the right direction we again have three functions of three variables:

1 1 1 2 3

2 2 1 2 3

3 3 1 2 3

y y (x ,x ,x ),

y y (x ,x ,x ),

y y (x ,x ,x ).

 



 

...(3)

Further we shall assume all functions in (2) and (3) to be differentiable and consider their partial
derivatives. Let�s denote

ii
i i
j jj j

yx
S , T .

y x


 
 

...(4)

Partial derivatives (4) can be arranged into two square matrices S and T respectively. In
mathematics such matrices are called Jacobi matrices. The components of matrix S in that form,
as they are defined in (4), are functions of y1, y2, y3. The components of T are functions of
x1, x2, x3:

i i 1 2 3 i 1 2 3
j j jS S (y ,y ,y ), T (x ,x ,x ). ...(5)
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jS ,  or by substituting (2) into the arguments

of i
jT ,  we can make them have a common set of arguments:

i i 1 2 3 i i 1 2 3
j j j jS , S (x ,x ,x ), T T (x ,x ,x ),  ...(6)

i i 1 2 3 i i 1 2 3
j j j jS , S (y ,y ,y ), T T (y , y , y ),  ...(7)

When brought to the form (6), or when brought to the form (7) (but not in form of (5)), matrices
S and T are inverse of each other:

T = S�1. ...(8)

This relationship (8) is due to the fact that numeric maps (2) and (3) are inverse of each other.

Exercise 1.1: You certainly know the following formula:

1 2 3 i3
' 1 2 3 '
i i i

i 1

df(x (y), x (y), x (y)) dx (y) f
f (x (y),x (y),x (y)) , where f .

dy dy x


 




It�s for the differentiation of composite function. Apply this formula to functions (2) and derive
the relationship (8).

4 .3 Coordinate Lines and the Coordinate Grid

Let�s substitute (2) into (1) and take into account that (2) now assumed to contain differentiable
functions. Then the vector-function

R(y1, y2, y3) = r
P
 = 

3
i 1 2 3

i
i 1

x (y ,y ,y )e


 ...(1)

is a differentiable function of three variables y1, y2, y3. The vector-function R(y1, y2, y3) determined
by (1) is called a basic vector-function of a curvilinear coordinate system. Let P

0
 be some fixed

point of space given by its curvilinear coordinates 1 2 3
0 0 0y ,y ,y .  Here zero is not the tensorial

index, we use it in order to emphasize that P
0
 is fixed point, and that its coordinates 1 2 3

0 0 0y ,y ,y  are

three fixed numbers. In the next step let�s undo one of them, say first one, by setting

1 1 2 2 3 3
0 0 0y  = y t, y  = y , y  = y . ...(2)

Substituting (2) into (1) we get a vector-function of one variable t:

1 2 3
1 0 0 0R (t) R(y t,y ,y ).  ...(3)

If we treat t as time variable (though it may have a unit other than time), then (3) describes a
curve (the trajectory of a particle). At time instant t = 0 this curve passes through the fixed point
P

0
. Same is true for curves given by two other vector-functions similar to (4):

R
2
(t) = 1 2 3

0 0 0R(y ,y t,y ), ...(4)

R
3
(t) = 1 2 3

0 0 0R(y ,y ,y t). ...(5)
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point P

0
 as shown on Fig. 4 .1.

Figure 4 .1

Arrowheads on these lines indicate the directions in which parameter t increases. Curves (3), (4),
and (5) are called coordinate lines. They are subdivided into three families. Curves within one
family do not intersect each other. Curves from different families intersect so that any regular
point of space is an intersection of exactly three coordinate curves (one per family).

Coordinate lines taken in whole form a coordinate grid. This is an infinitely dense grid. But
usually, when drawing, it is represented as a grid with finite density. On Fig. 4 .2 the coordinate
grid of curvilinear coordinates is compared to that of the Cartesian coordinate system.

Figure 4 .2

Indeed, meridians and parallels are coordinate lines of a spherical coordinate system. The parallels
do not intersect, but the meridians forming one family of coordinate lines do intersect at the
North and at South Poles. This means that North and South Poles are singular points for spherical
coordinates.

Exercise 1.1: Remember the exact definition of spherical coordinates and find all singular points
for them.

4 .4 Moving Frame of Curvilinear Coordinates

Let�s consider the three coordinate lines shown on Fig. 2 .1 again. And let�s find tangent vectors
to them at the point P

0
. For this purpose, we should differentiate vector-functions (3), (4), and (5)

with respect to the time variable t and then substitute t = 0 into the derivatives:

0

i
i

t 0 i at the point P .

dR R
E

dt y


 


...(1)

Now let�s substitute the expansion (1) into (1) and remember (4):

j3 3
j

i j i ji i
j 1 j 1

R x
E e S e .

y y 

 
  
 

  ...(2)
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Notes All calculations in (2) are still in reference to the point P
0
. Though P

0
 is a fixed point, it is an

arbitrary fixed point. Therefore, the equality (2) is valid at any point. Now let�s omit the
intermediate calculations and write (2) as

3
j

i i j
i 1

E S e .


 ...(3)

They are strikingly similar, and det S  0. Formula (3) means that tangent vectors to coordinate
lines E

1
, E

2
, E

3
 form a basis (see Fig. 4 .3), matrices are transition matrices to this basis and back

to the Cartesian basis.

Figure 4 .3

Despite obvious similarity of the formulas, there is some crucial difference of basis E
1
, E

2
, E

3
 as

compared to e
1
, e

2
, e

3
. Vectors E

1
, E

2
, E

3
 are not free. They are bound to that point where derivatives

are calculated. And they move when we move this point. For this reason basis E
1
, E

2
, E

3 
is called

moving frame of the curvilinear coordinate system. During their motion the vectors of the
moving frame E

1
, E

2
, E

3
 are not simply translated from point to point, they can change their

lengths and the angles they form with each other. Therefore, in general the moving frame E
1
, E

2
,

E
3
 is a skew-angular basis. In some cases vectors E

1
, E

2
, E

3
 can be orthogonal to each other at all

points of space. In that case we say that we have an orthogonal curvilinear coordinate system.
Most of the well known curvilinear coordinate systems are orthogonal, e.g. spherical, cylindrical,
elliptic, parabolic, toroidal, and others. However, there is no curvilinear coordinate system
with the moving frame being ONB! We shall not prove this fact since it leads deep into differential
geometry.

4 .5 Dynamics of Moving Frame

Thus, we know that the moving frame moves. Let�s describe this motion quantitatively.
Accordingly the components of matrix S in (3) are functions of the curvilinear coordinates y1, y2,
y3. Therefore, differentiating E

i
 with respect to yj we should expect to get some nonzero vector

E
i
 / yj. This vector can be expanded back in moving frame E

1
, E

2
, E

3
. This expansion is written

as

3
ki
ij kj

k 1

E
E .

y 


 


 ...(1)

Formula (1) is known as the derivational formula. Coefficients k
ij  in (1) are called Christoffel

symbols or connection components.

Exercise 1.1: Relying upon formula (1) draw the vectors of the moving frame for cylindrical
coordinates.
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Task Do the same for spherical coordinates.

Exercise 3.1: Relying upon formula (1) and results of exercise 1.1. Calculate the Christoffel
symbols for cylindrical coordinates.

Exercise 4.1: Do the same for spherical coordinates.

Exercise 5.1: Remember formula from which you derive

Ei = i

R
.

y



...(2)

Substitute (2) into left hand side of the derivational formula (1) and relying on the properties of
mixed derivatives prove that the Christoffel symbols are symmetric with respect to their lower

indices: k k
ij ji .  

Notes Christoffel symbols k
ij  form a three-dimensional array with one upper index

and two lower indices. However, they do not represent a tensor. We shall not prove this
fact since it again leads deep into differential geometry.

4 .6 Formula for Christoffel Symbols

Let�s take formula (3) and substitute it into both sides of (1). As a result we get the following

equality for Christoffel symbols k
ji :

q3 3 3
qki

q ij k qj
q 1 k 1 q 1

S
e S e .

y  


 


  ...(1)

Cartesian basis vectors e
q
 do not depend on yj ; therefore, they are not differentiated when we

substitute (3) into (1). Both sides of (1) are expansions in the base e
1
, e

2
, e

3
 of the auxiliary

Cartesian coordinate system. Due to the uniqueness of such expansions we have the following
equality derived from (1):

q 3
qki

ij kj
k 1

S
S .

y 


 


 ...(2)

Exercise 1.1: Using concept of the inverse matrix ( T = S�1) derive the following formula for the

Christoffel symbols k
ij  from (2):

q3
k k i
ij q j

q 1

S
T .

y


 


 ...(3)

Due to this formula (3) can be transformed in the following way:

qq q23 3 3
jk k k ki

ij q q qj ji i
q 1 q 1 q 1

SS x
T T T .

y y y y  

 
   

   
   ...(4)
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Notes Formulas (4) are of no practical use because they express k
ij  through an external thing like

transition matrices to and from the auxiliary Cartesian coordinate system. However, they will
help us below in understanding the differentiation of tensors.

4 .7 Tensor Fields in Curvilinear Coordinates

As we remember, tensors are geometric objects related to bases and represented by arrays if
some basis is specified. Each curvilinear coordinate system provides us a numeric representation
for points, and in addition to this it provides the basis.

This is the moving frame. Therefore, we can refer tensorial objects to curvilinear coordinate
systems, where they are represented as arrays of functions:

1 r 1 r

1 s 1 s

i ...i i ...i 1 2 3
j ... j j ... jX X (y , y , y ). ...(1)

We also can have two curvilinear coordinate systems and can pass from one to another by means
of transition functions:

1 1 1 2 3 1 1 1 2 3

2 2 1 2 3 2 2 1 2 3

3 3 1 2 3 3 3 1 2 3

y y (y ,y ,y ), y y (y ,y ,y ),

y y (y ,y ,y ), y y (y ,y ,y ),

y y (y ,y ,y ), y y (y ,y ,y ).

  
 

  
   

    

    

    
...(2)

If we call 1 2 3y ,y ,y    the new coordinates, and y1, y2, y3 the old coordinates, then transition

matrices S and T are given by the following formulas:

i i
i i
j jj j

y y
S , T .

y y

 
 
 




...(3)

They relate moving frames of two curvilinear coordinate systems:

3 3
j i

i i j j j i
j 1 i 1

E S E , E T E .
 

    ...(4)

Exercise 1.1: Derive (3) from (4) and (2) using some auxiliary Cartesian coordinates with basis e
1
,

e
2
, e

3
 as intermediate coordinate system:

S S

1 2 3 1 2 3 1 2 3T T
(E ,E ,E ) (e ,e ,e ) (E ,E ,E )  

    ...(5)

Transformation formulas for tensor fields for two curvilinear coordinate systems are the same:

s1 r 1 r 1 1 r

1 s 1 r 1 s 1 s

1 r

1

3 3
ki ...i 1 2 3 i i k h ...h 1 2 3

j ... j h h j j k ...k
...h , h

k , ... ks

X (y ,y ,y ) ... T ...T S ...S X (y ,y ,y ),     ...(6)

s1 r 1 r 1 1 r

1 s 1 r 1 s 1 s

1 r

1

3 3
ki ...i i i k h ...h 1 2 3

j ... j 1 2 3 h h j j k ...k
...h , h

k , ... ks

X (y ,y ,y ) ... S ...S T ...T X (y ,y ,y ).      ...(7)

43



LOVELY PROFESSIONAL UNIVERSITY

Tensor Fields in Curvilinear Coordinates

Notes4 .8 Differentiation of Tensor Fields in Curvilinear Coordinates

We already know how to differentiate tensor fields in Cartesian coordinates (see section 21). We
know that operator  produces tensor field of type (r, s + 1) when applied to a tensor field of type
(r, s). The only thing we need now is to transform  to a curvilinear coordinate system. In order
to calculate tensor X in curvilinear coordinates, let�s first transform X into auxiliary Cartesian
coordinates, then apply , and then transform X back into curvilinear coordinates:

1 r 1 r

1 s 1 s

q

1 r 1 r

1 s 1 s

h ...h 1 2 3 h ...h 1 2 3
S ,Tk ...k k ...k

p q / x

i ...i 1 2 3 h ...h 1 2 3
T ,Sj ... j q k ...k

X (y , y ,y ) X (x ,x ,x )

pX (y ,y ,y ) X (x ,x ,x )

   



 

 

...(1)

Matrices are used in (1). We know that the transformation of each index is a separate multiplicative
procedure. When applied to the -th upper index, the whole chain of transformations (1) looks
like

3 3 3
q...i ... i h ...m ...

p .......... p h q m .............
q 1 h 1 m 1

X S ... T ... ... S ...X .   

 

   

     ...(2)

Note that q = /xq is a differential operator and we have

3
q
p p

q 1

S .
xq x

 


 
 ...(3)

Any differential operator when applied to a product produces a sum with as many summands as

there were multiplicand in the product. Here is the summand produced by term h
mS 


 in

formula (2):

h3 3
m...i ... i ...m ...

p .......... h .............p
m 1 h 1

S
X ... T X .....

y



  



  

   


  ...(4)

We can transform it into the following equality:

3
...i ... i ...m ...

p .......... pm .............
m 1

X ... X ...  



 

     ...(5)

Now let�s consider the transformation of the �-th lower index in (1):

3 3 3
q k n............ .............

p .... j ... p j q k ....n ...
q 1 k 1 n 1

X S ... S ... ... T ...X . 

   

   

     ...(6)

Applying (3) to (6) with the same logic as in deriving (4) we get

n3 3
k............ ............k

p .... j ... j ...n ...p
n 1 k 1

T
X ... S X ...

y





  

 



 

   


  ...(7)

In order to simplify (7) we need the following formula derived :

k3
qqk

ij i j
q 1

T
S .

y


  


 ...(8)
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3
n........... ............

p ... j ... pj ...n ...
n 1

X ... G X ...

  

 

    ...(9)

Now we should gather (5), (9), and add the term produced when rq in (2) (or equivalently in (4))

acts upon components of tensor X. As a result we get the following general formula for 1 r

1 s

i ...i
p j ... jX :

1 r

1 s 1 r1 r1 r

1 s 1 s 1 s

i ...i r 3 s 3
j ... j i ... .... ...ii i ...m ...i ni ...i

p j ... j pm j .... ..... .... j pj j ... ... .... jp
1 m 1 1 n 1

X
X G X X .

y
  

 

    


    


   ...(10)

The operator p determined by this formula is called the covariant derivative.

Exercise 1.1: Apply the general formula (10) to a vector field and calculate the covariant derivative


p
Xq.

Exercise 2.1: Apply the general formula (10) to a covector field and calculate the covariant
derivative 

p
X

q
.

Exercise 3.1: Apply the general formula (10) to an operator field and find q
p mF .  Consider special

case when 
p
 is applied to the Kronecker symbol q

m .

Exercise 4.1: Apply the general formula (10) to a bilinear form and find p qma .

Exercise 5.1: Apply the general formula (10) to a tensor product a  x for the case when x is a
vector and a is a covector. Verify formula (a  x) = a  x + a  x.

Exercise 6.1: Apply the general formula (10) to the contraction C(F) for the case when F is an
operator field. Verify the formula C(F) = C(F).

4 .9 Concordance of Metric and Connection

Let�s remember that we consider curvilinear coordinates in Euclidean space E. In this space, we
have the scalar product and the metric tensor.

Exercise 1.1: Transform the metric tensor to curvilinear coordinates using transition matrices
and show that here it is given by formula

g
ij
 = (E

i
, E

j
 ). ...(1)

In Cartesian coordinates all components of the metric tensor are constant since the basis vectors
e

1
, e

2
, e

3
 are constant. The covariant derivative (10) in Cartesian coordinates reduces to

differentiation 
p
 = /xp. Therefore,

pg
ij
 = 0. ...(2)

But g is a tensor. If all of its components in some coordinate system are zero, then they are
identically zero in any other coordinate system (explain why). Therefore the identity (2) is valid
in curvilinear coordinates as well.

The identity is known as the concordance condition for the metric g
ij
 and connection k

ij .  It is

very important for general relativity.

Remember that the metric tensor enters into many useful formulas for the gradient, divergency,
rotor, and Laplace operator. What is important is that all of these formulas remain valid in
curvilinear coordinates, with the only difference being that you should understand that 

p
 is not

the partial derivative /xp, but the covariant derivative in the sense of formula (10).
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NotesExercise 2.1: Calculate rot A, div H, grad  (vectorial gradient) in cylindrical and spherical
coordinates.

Exercise 3.1: Calculate the Laplace operator  applied to the scalar field  in cylindrical and in
spherical coordinates.

4 .10 Summary

 What are coordinates, if we forget for a moment about radius-vectors, bases and axes ?
What is the pure idea of coordinates? The pure idea is in representing points of space by

triples of numbers. This means that we should have one to one map P   (y1, y2, y3) in the

whole space or at least in some domain, where we are going to use our coordinates y1, y2,

y3. In Cartesian coordinates this map P   (y1, y2, y3) is constructed by means of vectors

and bases. Arranging other coordinate systems one can use other methods. For example,
in spherical coordinates y1 = r is a distance from the point P to the center of sphere, y2 = q
and y3 =  are two angles. By the way, spherical coordinates are one of the simplest
examples of curvilinear coordinates. Furthermore, let�s keep in mind spherical coordinates
when thinking about more general and hence more abstract curvilinear coordinate systems.

 Now we know almost everything about Cartesian coordinates and almost nothing about
the abstract curvilinear coordinate system y1, y2, y3 that we are going to study. Therefore,
the best idea is to represent each point P by its radius vector r

P
 in some auxiliary Cartesian

coordinate system and then consider a map r
P
   (y

1
, y

2
, y

3
). The radius-vector itself is

represented by three coordinates in the basis e
1
, e

2
, e

3
 of the auxiliary Cartesian coordinate

system:

3
i

P i
i 1

r x e .




Therefore, we have a one-to-one map (x1, x2, x3)   (y1, y2, y3). Hurrah! This is a numeric

map. We can treat it numerically. In the left direction it is represented by three functions
of three variables:

1 1 1 2 3

2 2 1 2 3

3 3 1 2 3

x x (y ,y ,y ),

x x (y ,y ,y ),

x x (y ,y ,y ).

 



 

 Cartesian basis vectors e
q
 do not depend on yj ; therefore, they are not differentiated. Both

sides are expansions in the base e
1
, e

2
, e

3
 of the auxiliary Cartesian coordinate system.

4 .11 Keywords

Spherical coordinates are one of the simplest examples of curvilinear coordinates.

Vector-function: Then the vector-function

R(y1, y2, y3) = r
P
 = 

3
i 1 2 3

i
i 1

x (y ,y ,y )e




is a differentiable function of three variables y1, y2, y3.

Christoffel symbols k
ij  form a three-dimensional array with one upper index and two lower

indices.
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1. ................... are one of the simplest examples of curvilinear coordinates.

2. The ................... itself is represented by three coordinates in the basis e
1
, e

2
, e

3
 of the auxiliary

Cartesian coordinate system 
3

i
P i

i 1

r x e .




3. Coordinate lines taken in whole form a coordinate grid. This is an infinitely dense grid.
But usually, when drawing, it is represented as a grid with ...................

4. The parallels do not intersect, but the ................... one family of coordinate lines do intersect
at the North and at South Poles. This means that North and South Poles are singular points
for spherical coordinates.

5. ................... k
ij  form a three-dimensional array with one upper index and two lower indices.

6. ................... e
q
 do not depend on yj ; therefore, they are not differentiated when we substitute

3
j

i i j
i 1

E S e


  into 
3

ki
ij kj

k 1

E
E .

y 


 


  Both sides of 

q3 3 3
qki

q ij k qj
q 1 k 1 q 1

S
e S e

y  


 


   are expansions in the

base e
1
, e

2
, e

3
 of the auxiliary Cartesian coordinate system.

4 .13 Review Questions

1. Remember the exact definition of spherical coordinates and find all singular points for
them.

2. Relying upon formula 
3

ki
ij kj

k 1

E
E

y 


 


 , calculate the Christoffel symbols for cylindrical

coordinates.

3. Remember formula 
j3 3

j
i j i ji i

j 1 j 1

R x
E e S e

y y 

 
  
 

   from which you derive

E
i
 = i

R
.

y




Answers: Self Assessment

1. Spherical coordinates 2. radius-vector

3. finite density. 4. meridians forming

5. Christoffel symbols 6. Cartesian basis vectors
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Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati, T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H. Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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CONTENTS

Objectives

Introduction

5 .1 Arc Length

5 .2 Curvature and Fenchel�s Theorem

5 .3 The Unit Normal Bundle and Total Twist

5 .4 Moving Frames

5 .5 Curves at a Non-inflexional Point and the Frenet Formulas

5 .6 Local Equations of a Curve

5 .7 Plane Curves and a Theorem on Turning Tangents

5 .8 Plane Convex Curves and the Four Vertex Theorem

5 .9 Isoperimetric Inequality in the Plane

5 .10 Summary

5 .11 Keywords

5 .12 Self Assessment

5 .13 Review Questions

5 .14 Further Readings

Objectives

After studying this unit, you will be able to:

 Define Arc Length

 Discuss Curvature and Fenchel�s Theorem

 Explain The Unit Normal Bundle and Total Twist

 Define Moving Frames

 Describe Curves at a Non-inflexional Point and the Frenet Formulas

 Explain Plane Convex Curves and the Four Vertex Theorem

Introduction

In the last unit, you have studied about Curvilinear coordinates. These coordinates may be
derived from a set of Cartesian coordinates by using a transformation that is locally invertible
(a one-to-one map) at each point. The term curve has several meanings in non-mathematical
language as well. For example, it can be almost synonymous with mathematical function or
graph of a function. An arc or segment of a curve is a part of a curve that is bounded by two
distinct end points and contains every point on the curve between its end points. Depending on
how the arc is defined, either of the two end points may or may not be part of it. When the arc is
straight, it is typically called a line segment.

Sachin Kaushal, Lovely Professional University
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Notes5 .1 Arc Length

A parametrized curve in Euclidean three-space e3 is given by a vector function

x(t) = (x
1
(t), x

2
(t), x

3
(t))

that assigns a vector to every value of a parameter t in a domain interval [a, b]. The coordinate
functions of the curve are the functions x

i
(t). In order to apply the methods of calculus, we

suppose the functions x
i
(t) to have as many continuous derivatives as needed in the following

treatment.

For a curve x(t), we define the first derivative x�(t) to be the limit of the secant vector from x(t) to
x(t+h) divided by h as h approaches 0, assuming that this limit exists. Thus,

h 0

x(t h) x(t)
x'(t) lim .

h

  
  

 

The first derivative vector x�(t) is tangent to the curve at x(t). If we think of the parameter t as
representing time and we think of x(t) as representing the position of a moving particle at time
t, then x�(t) represents the velocity of the particle at time t. It is straightforward to show that the
coordinates of the first derivative vector are the derivatives of the coordinate functions, i.e.

x�(t) = (x
1
�(t), x

2
�(t), x

3
�(t)).

For most of the curves we will be concerning ourselves with, we will make the �genericity
assumption� that x�(t) is non-zero for all t. Lengths of polygons inscribed in x as the lengths of
the sides of these polygons tend to zero. By the fundamental theorem of calculus, this limit can
be expressed as the integral of the speed s�(t) = |x�(t)| between the parameters of the end-points
of the curve, a and b. That is,

b b 3
' 2
i

i 1a a

s(b) s(a) |x'(t)|dt x (t) dt.


    

For an arbitrary value t  (a, b), we may define the distance function

s(t) � s(a) = 
t

a

|x'(t)|dt,

which gives us the distance from a to t along the curve.

Notice that this definition of arc length is independent of the parametrization of the curve. If we
define a function v(t) from the interval [a, b] to itself such that v(a) = a, v(b) = b and v�(t) > 0, then
we may use the change of variables formula to express the arc length in terms of the new
parameter v:

b b
v

a v a

|x'(t)|dt (a) a (b) b x'(v(t)) v'(t)dt x'(v) dv.     

We can also write this expression in the form of differentials:

ds = |x�(t)| dt = |x�(v)| dv.

This differential formalism becomes very significant, especially when we use it to study surfaces
and higher dimensional objects, so we will reinterpret results that use integration or
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Notes differentiation in differential notation as we go along. For example, the statement

3 ' 2
ti 1

s'(t) x (t)


   can be rewritten as

2 23
i

i 1

ds dx
,

dt dt

   
   

   


and this may be expressed in the form

3
2 2

i
i 1

ds dx ,




which has the advantage that it is independent of the parameter used to describe the curve. ds is
called the element of arc. It can be visualized as the distance between two neighboring points.

One of the most useful ways to parametrize a curve is by the arc length s itself. If we let s = s(t),
then we have

s�(t) = |x�(t)| = |x�(s)|s�(t),

from which it follows that |x�(s)| = 1 for all s. So the derivative of x with respect to arc length is
always a unit vector.

This parameter s is defined up to the transformation s  ±s + c, where c is a constant.
Geometrically, this means the freedom in the choice of initial point and direction in which to
traverse the curve in measuring the arc length.

Exercise 1: One of the most important space curves is the circular helix

x(t) = (a cos t, a sin t, bt),

where a  0 and b are constants. Find the length of this curve over the interval [0, 2].

Exercise 2: Find a constant c such that the helix

x(t) = (a cos(ct), a sin(ct), bt)

is parametrized by arclength, so that |x�(t)| = 1 for all t.

Exercise 3: The astroid is the curve defined by

x(t) = (a cos3 t, a sin3 t, 0),

on the domain [0, 2]. Find the points at which x(t) does not define an immersion, i.e., the points
for which x�(t) = 0.

Exercise 4: The trefoil curve is defined by

x(t) = ((a + b cos(3t)) cos(2t), (a + b cos(3t)) sin(2t), b sin(3t)),

where a and b are constants with a > b > 0 and 0  t  2. Sketch this curve, and give an argument
to show why it is knotted, i.e. why it cannot be deformed into a circle without intersecting itself
in the process.

Exercise 5: (For the serious mathematician) Two parametrized curves x(t) and y(u) are said to be
equivalent if there is a function u(t) such that u�(t) > 0 for all a < t < b and such that y(u(t)) = x(t).
Show that relation satisfies the following three properties:

1. Every curve x is equivalent to itself

2. If x is equivalent to y, then y is equivalent to x
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Notes3. If x is equivalent to y and if y is equivalent to z, then x is equivalent to z

A relation that satisfies these properties is called an equivalence relation. Precisely speaking, a
curve is considered be an equivalence class of parametrized curves.

5 .2 Curvature and Fenchel�s Theorem

If x is an immersed curve, with x�(t)  0 for all t in the domain, then we may define the unit

tangent vector T(t) to be 
x'(t)

.
|x'(t)|

 If the parameter is arclength, then the unit tangent vector T(s) is

given simply by x�(s). The line through x(t
0
) in the direction of T(t

0
) is called the tangent line at

x(t
0
). We can write this line as y(u) = x(t

0
) + uT(t

0
), where u is a parameter that can take on all real

values.

Since T(t) · T(t) = 1 for all t, we can differentiate both sides of this expression, and we obtain
2T�(t)· T(t) = 0. Therefore T�(t) is orthogonal to T(t). The curvature of the space curve x(t) is defined

by the condition (t) = 
T'(t)

,
|x'(t)|

 so = (t)s�(t) = |T�(t)|. If the parameter is arclength, then

x�(s) = T(s) and (s) = |T�(s)| = |x�(s)|.

Proposition 1. If (t) = 0 for all t, then the curve lies along a straight line.

Proof. Since (t) = 0, we have T�(t) = 0 and T(t) = a, a constant unit vector. Then x�(t) = s�(t)T(t)
= s�(t)a, so by integrating both sides of the equation, we obtain x(t) = s(t)a + b for some constant
b. Thus, x(t) lies on the line through b in the direction of a.

Curvature is one of the simplest and at the same time one of the most important properties of a
curve. We may obtain insight into curvature by considering the second derivative vector x�(t),
often called the acceleration vector when we think of x(t) as representing the path of a particle at
time t. If the curve is parametrized by arclength, then x�(s)·x�(s) = 1 so x�(s)·x�(t) = 0 and
(s) = |x�(s)|. For a general parameter t, we have x�(t) = s�(t)T(t) so x�(t) = s�(t)T(t) + s�(t)T�(t). If
we take the cross product of both sides with x�(t) then the first term on the right is zero since x�(t)
is parallel to T(t). Moreover x�(t) is perpendicular to T�(t) so

|T�(t)  × x�(t)| = |T�(t)||x�(t)| = s�(t)2(t) .

Thus,

x�(t) × x�(t) = s�(t)T�(t) × x�(t)

and

|x�(t) × x�(t)| = s�(t)3(t) .

This gives a convenient way of finding the curvature when the curve is defined with respect to
an arbitrary parameter. We can write this simply as

3/2

|x"(t) × x'(t)|
(t) = .

|x'(t)x'(t)|


Notes The curvature (t) of a space curve is non-negative for all t. The curvature can
be zero, for example at every point of a curve lying along a straight line, or at an isolated
point like t = 0 for the curve x(t) = (t, t3, 0). A curve for which (t) > 0 for all t is called
non-inflectional.
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Notes The unit tangent vectors emanating from the origin form a curve T(t) on the unit sphere called
the tangential indicatrix of the curve x. To calculate the length of the tangent indicatrix, we form
the integral of |T�(t)| = (t)s�(t) with respect to t, so the length is (t)s�(t)dt = (s)ds. This significant
integral is called the total curvature of the curve x.

Up to this time, we have concentrated primarily on local properties of curves, determined at
each point by the nature of the curve in an arbitrarily small neighborhood of the point. We are
now in a position to prove our first result in global differential geometry or differential geometry
in the large.

By a closed curve x(t), a  t  b, we mean a curve such that x(b) = x(a). We will assume moreover
that the derivative vectors match at the endpoints of the interval, so x�(b) = x�(a).

Theorem 1 (Fenchel�s Theorem): The total curvature of a closed space curve x is greater than or
equal to 2.

(s)ds  2

The first proof of this result was found independently by B. Segre in 1934 and later independently
by H. Rutishauser and H. Samelson in 1948. The following proof depends on a lemma by
R. Horn in 1971:

Lemma 1. Let g be a closed curve on the unit sphere with length L < 2. Then there is a point m on
the sphere that is the north pole of a hemisphere containing g.

To see this, consider two points p and q on the curve that break g up into two pieces g
1
 and g

2
 of

equal length, therefore both less than . Then the distance from p to q along the sphere is less
than  so there is a unique minor arc from p to q. Let m be the midpoint of this arc. We wish to
show that no point of g hits the equatorial great circle with m as north pole. If a point on one of

the curves, say g
1
, hits the equator at a point r, then we may construct another curve '

tg  by

rotating g
1
 one-half turn about the axis through m, so that p goes to q and q to p while r goes to

the antipodal point r�. The curve formed by g
1
 and '

tg  has the same length as the original

curve g, but it contains a pair of antipodal points so it must have length at least 2, contradicting
the hypothesis that the length of g was less than 2.

From this lemma, it follows that any curve on the sphere with length less than 2 is contained in
a hemisphere centered at a point m. However if x(t) is a closed curve, we may consider the
differentiable function f(t) = x(t) . m. At the maximum and minimum values of f on the closed
curve x, we have

0 = f�(t) = x�(t) . m = s�(t)T(t) . m

so there are at least two points on the curve such that the tangential image is perpendicular to m.
Therefore the tangential indicatrix of the closed curve x is not contained in a hemisphere, so by
the lemma, the length of any such indicatrix is greater than 2. Therefore, the total curvature of
the closed curve x is also greater than 2.

Corollary 1. If, for a closed curve x, we have (t)  
1
R

 for all t, then the curve has length L  2R.

Proof.

L = ds R (s)ds = R (s)ds  2 R      

Fenchel also proved the stronger result that the total curvature of a closed curve equals 2 if and
only if the curve is a convex plane curve.

53



LOVELY PROFESSIONAL UNIVERSITY

Theory of Space Curves

NotesI. F´ary and J. Milnor proved independently that the total curvature must be greater than 4 for
any non-self-intersecting space curve that is knotted (not deformable to a circle without
self-intersecting during the process.)

Exercise 6: Let x be a curve with x�(t
0
)  0. Show that the tangent line at x(t

0
) can be written as

y(u) = x(t
0
) + ux�(t

0
) where u is a parameter that can take on all real values.

Exercise 7: The plane through a point x(t
0
) perpendicular to the tangent line is called the normal

plane at the point. Show that a point y is on the normal plane at x(t
0
) if and only if

x�(t
0
) . y = x�(t

0
) . x(t

0
)

Exercise 8: Show that the curvature  of a circular helix

x(t) = (r cos(t), r sin(t), pt)

is equal to the constant value  = 2 2

|r|
.

r + p
 Are there any other curves with constant curvature?

Give a plausible argument for your answer.

Exercise 9: Assuming that the level surfaces of two functions f(x
1
, x

2
, x

3
) = 0 and g(x

1
, x

2
, x

3
) = 0

meet in a curve, find an expression for the tangent vector to the curve at a point in terms of the
gradient vectors of f and g (where we assume that these two gradient vectors are linearly

independent at any intersection point.) Show that the two level surfaces x
2
 � 2

1x  = 0 and x
3
x

1
 �

2
2x 0  consists of a line and a �twisted cubic� x

1
(t) = t, x

2
(t) = t2, x

3
(t) = t3. What is the line?

Tasks What is the geometric meaning of the function f(t) = x(t) . m used in the proof of
Fenchel�s theorem?

Let m be a unit vector and let x be a space curve. Show that the projection of this curve into
the plane perpendicular to m is given by

y(t) = x(t) � (x(t) . m)m.

Under what conditions will there be a t
0
 with y�(t

0
) = 0?

5 .3 The Unit Normal Bundle and Total Twist

Consider a curve x(t) with x�(t)  0 for all t. A vector z perpendicular to the tangent vector x�(t
0
)

at x(t
0
) is called a normal vector at x(t

0
). Such a vector is characterized by the condition z . x(t

0
) =

0, and if |z| = 1, then z is said to be a unit normal vector at x(t
0
). The set of unit normal vectors

at a point x(t
0
) forms a great circle on the unit sphere. The unit normal bundle is the collection of

all unit normal vectors at x(t) for all the points on a curve x.

At every point of a parametrized curve x(t) at which x�(t)  0, we may consider a frame E
2
(t), E

3
(t),

where E
2
(t) and E

3
(t) are mutually orthogonal unit normal vectors at x(t). If E

2
(t), E

3
(t) is another

such frame, then there is an angular function (t) such that

E
2
(t) = cos((t))E

2
(t) � sin((t))E

3
(t)

E
3
(t) = sin((t))E

2
(t) + cos((t))E

3
(t)
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E
2
(t) = cos((t))E

2
(t) + sin((t))E

3
(t)

E
3
(t) = sin((t))E

2
(t) + cos((t))E

3
(t) .

From these two representations, we may derive an important formula:

''
2 3 2 3E (t) . E (t) = E (t) . E (t) � '(t)

Expressed in the form of differentials, without specifying parameters, this formula becomes:

dE
2
E

3
 = dE

2
E

3
 � d.

Since E
3
(t) = T(t) × E

2
(t), we have:

''
2 3 22E (t) . E (t) = [E (t), E (t), T(t)]

or, in differentials:

dE
2
E

3
 = �[dE

2
,E

2
,T] .

More generally, if z(t) is a unit vector in the normal space at x(t), then we may define a function
w(t) = �[z�(t), z(t),T(t)]. This is called the connection function of the unit normal bundle. The
corresponding differential form w = �[dz, z,T] is called the connection form of the unit normal
bundle.

A vector function z(t) such that |z(t)| = 1 for all t and z(t) . x�(t) = 0 for all t is called a unit normal
vector field along the curve x. Such a vector field is said to be parallel along x if the connection
function w(t) = �[z�(t), z(t),T(t)] = 0 for all t. In the next section, we will encounter several unit
normal vector fields naturally associated with a given space curve. For now, we prove some
general theorems about such objects.

Proposition 2. If E
2
(t) and E

2
(t) are two unit normal vector fields that are both parallel along the

curve x, then the angle between E
2
(t) and E

2
(t) is constant.

Proof. From the computation above, then:

''
2 2 2 2E (t)· (�E (t) × T(t)) = E (t)· (�E (t) × T(t)) � '(t).

But, by hypothesis,

''
2 2 2 2E (t)· (�E (t)xT(t)) = 0 = E (t)(�E (t) × T(t))

so it follows that �(t) = 0 for all t, i.e., the angle (t) between E
2
(t) and E

2
(t) is constant.

Given a closed curve x and a unit normal vector field z with z(b) = z(a),

we define

(x, z) = 
1 1

[z'(t),z(t),T(t)]dt [dz,z,T].
2 2

  
 

If z is another such field, then

(x, z) � (x, z) = 
1

[z'(t),z(t),T(t)] [z'(t),z(t),T(t)]dt
2

 
 

= 
1 1

'(t)dt [ (b) (a)].
2 2

      
 
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NotesSince the angle (b) at the end of the closed curve must coincide with the angle (a) at the
beginning, up to an integer multiple of 2, it follows that the real numbers (x, z) and (x, z)
differ by an integer. Therefore, the fractional part of (x, z) depends only on the curve x and not
on the unit normal vector field used to define it. This common value (x) is called the total twist
of the curve x. It is a global invariant of the curve.

Proposition 3. If a closed curve lies on a sphere, then its total twist is zero.

Proof. If x lies on the surface of a sphere of radius r centered at the origin, then |x(t)|2 = x(t) . x(t)

= r2 for all t. Thus, x�(t) . x(t) = 0 for all t, so x(t) is a normal vector at x(t). Therefore, z(t) = 
x(t)

r
 is

a unit normal vector field defined along x, and we may compute the total twist by evaluating

(x, z) = 
1

[z'(t), z(t),T(t)]dt .
2


 

But

[z�(t), z(t),T(t)] = 
x'(t) x(t)

[ , ,T(t)] 0
r r



for all t since x�(t) is a multiple of T(t). In differential form notation, we get the same result:

[dz, z,T] = 2

1
[x'(t),x(t),T(t)]dt 0.

r
  Therefore, (x, z) = 0, so the total twist of the curve x is zero.

Remark 1. W. Scherrer proved that this property characterized a sphere, i.e. if the total twist of
every curve on a closed surface is zero, then the surface is a sphere.

Remark 2. T. Banchoff and J. White proved that the total twist of a closed curve is invariant under
inversion with respect to a sphere with center not lying on the curve.

Remark 3. The total twist plays an important role in modern molecular biology, especially with
respect to the structure of DNA.

Exercise 10: Let x be the circle x(t) = (r cos(t), r sin(t), 0), where r is a constant > 1. Describe the
collection of points x(t) + z(t) where z(t) is a unit normal vector at x(t).

Exercise 11: Let  be the sphere of radius r > 0 about the origin. The inversion through the sphere

S maps a point x to the point x = 2
2

x
r .

|x|
 Note that this mapping is not defined if x = 0, the center

of the sphere. Prove that the coordinates of the inversion of x = (x
1
, x

2
, x

3
) through S are given by

2
i

i 2 2 2
1 2 3

r x
x .

x x x


 
 Prove also that inversion preserves point that lie on the sphere S itself, and that

the image of a plane is a sphere through the origin, except for the origin itself.

Exercise 12: Prove that the total twist of a closed curve not passing through the origin is the same
as the total twist of its image by inversion through the sphere S of radius r centered at the origin.

5 .4 Moving Frames

In the previous section, we introduced the notion of a frame in the unit normal bundle of a space
curve. We now consider a slightly more general notion. By a frame, or more precisely a right-
handed rectangular frame with origin, we mean a point x and a triple of mutually orthogonal
unit vectors E

1
, E

2
, E

3 
forming a right-handed system. The point x is called the origin of the frame.

Note that E
i 
. E

j
 = 1 if i = j and 0 if i  j.
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Notes Moreover,

E
1
 × E

2
 = E

3
, E

2
 = E

3
 × E

1
, and E

3
 = E

1
 × E

2
.

In the remainder of this section, we will always assume that small Latin letters run from 1 to 3.

Note that given two different frames, x,E
1
,E

2
,E

3
 and x,E

1
,E

2
,E

3
, there is exactly one affine motion

of Euclidean space taking x to x and taking E
i
 to E

i
. When x(t),E

1
(t),E

2
(t),E

3
(t) is a family of frames

depending on a parameter t, we say we have a moving frame along the curve.

Proposition 4. A family of frames x(t), E1(t), E
2
(t), E

3
(t) satisfies a system of differential equations:

x�(t) = p
i
(t)E

i
(t)

'
tE (t)  = q

ij
(t)E

j
(t)

where p
i
(t) = x�(t) . E

i
(t) and q

i
j(t) = '

tE (t)  . E
j
(t).

Since E
i
(t) . E

j
(t) = 0 for i  j, it follows that

q
ij
(t) + q

ji
(t) = '

tE (t)  . E
j
(t) + E

i
(t) . '

jE (t)  = 0

i.e. the coefficients q
ij
(t) are anti-symmetric in i and j. This can be expressed by saying that the

matrix ((q
i
j(t))) is an anti-symmetric matrix, with 0 on the diagonal.

In a very real sense, the function p
i
(t) and q

ij
(t) completely determine the family of moving

frames.

Specifically we have:

Proposition 5. If x(t), E
1
(t), E

2
(t), E

3
(t) and x(t), E

1
(t), E

2
(t), E

3
(t) are two families of moving frames

such that p
i
(t) = p

i
(t) and q

ij
(t) = q

ij
(t) for all t, then there is a single affine motion that takes x(t),

E1(t), E
2
(t), E

3
(t) to x(t),E

1
(t),E

2
(t),E

3
(t)) for all t.

Proof. Recall that for a specific value t
0
, there is an affine motion taking x(t

0
), E

1
(t

0
), E

2
(t

0
), E

3
(t

0
)

to x(t
0
), E

1
(t

0
), E

2
(t

0
), E

3
(t

0
). We will show that this same motion takes x(t), E

1
(t), E

2
(t), E

3
(t) to x(t),

E
1
(t), E

2
(t), E

3
(t) for all t. Assume that the motion has been carried out so that the frames x(t0),

E
1
(t

0
), E

2
(t

0
), E

3
(t

0
) and x(t

0
), E

1
(t

0
), E

2
(t

0
), E

3
(t

0
) coincide.

Now consider

(E
i
(t) . E

i
(t))� = ''

j i iE (t) E (t) Ei(t) E (t)    

= q
ij
(t)E

j
(t) . E

i
(t) + E

i
(t) . q

ij
(t)E

j
(t)

= q
ij
(t)E

j
(t) . E

i
(t) + q

ij
(t)E

i
(t) . E

j
(t)

= q
ij
(t)E

j
(t) . E

i
(t) + q

ji
(t)E

j
(t) . Ei(t)

= 0 .

It follows that

E
i
(t) . E

i
(t) = E

i
(t

0
) . E

i
(t

0
) = E

i
(t

0
) . E

i
(t

0
) = 3

for all t. But since |E
i
(t) . E

i
(t)|  1 for any pair of unit vectors, we must have E

i
(t) . E

i
(t) = 1 for

all t. Therefore, E
i
(t) = E

i
(t) for all t.

Next, consider

(x(t) � x(t))� = p
i
(t)E

i
(t) � p

i
(t)E

i
(t) = p

i
(t)E

i
(t) � p

i
(t)E

i
(t) = 0 .
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NotesSince the origins of the two frames coincide at the value t0, we have

x(t) � x(t) = x(t
0
) � x(t

0
) = 0

for all t.

This completes the proof that two families of frames satisfying the same set of differential
equations differ at most by a single affine motion.

Exercise 13: Prove that the equations '
iE (t)  = q

ij
(t)E

j
(t) can be written '

iE (t)  = d(t) × E
i
(t), where

d(t) = q
23

(t)E
1
(t) + q

31
(t)E

2
(t) + q

12
(t)E

3
(t). This vector is called the instantaneous axis of rotation.

Exercise 14: Under a rotation about the x
3
-axis, a point describes a circle x(t) = (a cos(t), a sin(t), b).

Show that its velocity vector satisfies x�(t) = d × x(t) where d = (0, 0, 1). (Compare with the
previous exercise.).

Exercise 15: Prove that (v . v)(w·w)�(v·w)2 = 0 if and only if the vectors v and w are linearly
dependent.

5 .5 Curves at a Non-inflexional Point and the Frenet Formulas

A curve x is called non-inflectional if the curvature (t) is never zero. By our earlier calculations,
this condition is equivalent to the requirement that x�(t) and x�(t) are linearly independent at
every point x(t), i.e. x�(t) × x�(t)  0 for all t. For such a non-inflectional curve x, we may define a
pair of natural unit normal vector fields along x.

Let b(t) = 
x'(t) × x"(t)

,
|x'(t)× x"(t)|

 called the binormal vector to the curve x(t). Since b(t) is always

perpendicular to T(t), this gives a unit normal vector field along x.

We may then take the cross product of the vector fields b(t) and T(t) to obtain another unit
normal vector field N(t) = b(t) × T(t), called the principal normal vector. The vector N(t) is a unit
vector perpendicular to T(t) and lying in the plane determined by x�(t) and x�(t). Moreover,
x�(t) · N(t) = k(t)s�(t)2, a positive quantity.

Note that if the parameter is arclength, then x�(s) = T(s) and x�(s) is already perpendicular to T(s).

It follows that x�(s) = k(s)N(s) so we may define N(s) = 
x"(s)
k(s)

 and then define b(s) = T(s) × N(s).

This is the standard procedure when it happens that the parametrization is by arclength. The
method above works for an arbitrary parametrization.

We then have defined an orthonormal frame x(t)T(t)N(t)b(t) called the Frenet frame of the
non-inflectional curve x.

By the previous section, the derivatives of the vectors in the frame can be expressed in terms of
the frame itself, with coefficients that form an antisymmetric matrix. We already have
x�(t) = s�(t)T(t), so

p
1
(t) = s�(t), p

2
(t) = 0 = p

3
(t) .

Also T�(t) = k(t)s�(t)N(t), so

q
12

(t) = k(t)s�(t) and q
13

(t) = 0 .

We know that

b�(t) = q
31

(t)T(t) + q
32

(t)N(t), and q
31

(t) = �q
13

(t) = 0 .
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Notes Thus b�(t) is a multiple of N(t), and we define the torsion w(t) of the curve by the condition

b�(t) = �w(t)s�(t)N(t),

so q
32

(t) = �w(t)s�(t) for the Frenet frame. From the general computations about moving frames,
it then follows that

N�(t) = q
21

(t)T(t) + q
23

(t)b(t) = �k(t)s�(t)T(t) + w(t)s�(t)b(t) .

The formulas for T�(t), N�(t), and b�(t) are called the Frenet formulas for the curve x.

If the curve x is parametrized with respect to arclength, then the Frenet formulas take on a
particularly simple form:

x�(s) = T(s)

T�(s) = k(s)N(s)

N�(s) = �k(s)T(s) + w(s)b(s)

b�(s) = �w(s)b(s) .

The torsion function w(t) that appears in the derivative of the binormal vector determines
important properties of the curve. Just as the curvature measures deviation of the curve from
lying along a straight line, the torsion measures deviation of the curve from lying in a plane.
Analogous to the result for curvature, we have:

Proposition 6. If w(t) = 0 for all points of a non-inflectional curve x, then the curve is contained
in a plane.

Proof. We have b�(t) = �w(t)s�(t)N(t) = 0 for all t so b(t) = a, a constant unit vector. Then, T(t)a = 0
for all t so (x(t) . a)� = x�(t) . a = 0 and x(t) . a = x(a) . a, a constant. Therefore, (x(t) � x(a)) . a = 0
and x lies in the plane through x(a) perpendicular to a.

If x is a non-inflectional curve parametrized by arclength, then

w(s) = b(s) . N�(s) = [T(s),N(s),N�(s)] .

Since N(s) = 
x"(s)

,
k(s)

 we have,

N�(s) = 2

x"'(s) k '(s)
x"(s) ,

k(s) k(s)




so

w(s) = 2

x"(s) x'''(s) k '(s) [x'(s),x"(s),x"'(s)]
x'(s), , x"(s) .

k(s) k(s) k(s) 2

 
  

 

We can obtain a very similar formula for the torsion in terms of an arbitrary parametrization of
the curve x. Recall that

x�(t) = s�(t)T(t) + k(t)s�(t)T�(t) = s�(t)T(t) + k(t)s�(t)2N(t),

so

x��(t) = s��(t)T(t)+s�(t)s�(t)k(t)N(t) + [k(t)s�(t)2]�N(t) + k(t)s�(t)2N�(t) .

Therefore,

x��(t)b(t) = k(t)s�(t)2N�(t)b(t) = k(t)s�(t)2w(t)s�(t),
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x��(t) · x�(t) × x�(t) = k2(t)s�(t)6w(t) .

Thus, we obtain the formula

w(t) = 2

x"'(t).x'(t)xx"(t)
,

x'(t) x"(t)

valid for any parametrization of x.

Notice that although the curvature k(t) is never negative, the torsion w(t) can have either algebraic

sign. For the circular helix x(t) = (r cos(t), r sin(t), pt) for example, we find w(t) = 2 2

p
,

r + p
 so the

torsion has the same algebraic sign as p. In this way, the torsion can distinguish between a right-
handed and a left-handed screw.

Changing the orientation of the curve from s to �s changes T to �T, and choosing the opposite
sign for k(s) changes N to �N. With different choices, then, we can obtain four different right-
handed orthonormal frames, xTNb, x(�T)N(�b), xT(�N)(�b), and x(�T)(�N)b. Under all these
changes of the Frenet frame, the value of the torsion w(t) remains unchanged.

A circular helix has the property that its curvature and its torsion are both constant. Furthermore,
the unit tangent vector T(t) makes a constant angle with the vertical axis. Although the circular
helices are the only curves with constant curvature and torsion, there are other curves that have
the second property. We characterize such curves, as an application of the Frenet frame.

Proposition 7. The unit tangent vector T(t) of a non-inflectional space curve x makes a constant

angle with a fixed unit vector a if and only if the ratio 
w(t)
k(t)

 is constant.

Proof. If T(t) · a = constant for all t, then differentiating both sides, we

obtain

T�(t) . a = 0 = k(t)s�(t)N(t) . a,

so a lies in the plane of T(t) and b(t). Thus, we may write a = cos()T(t) + sin()b(t) for some
angle . Differentiating this equation, we obtain 0 = cos()T�(t) + sin()b�(t) = cos()k(t)s�(t)N(t) �

sin()w(t)s�(t)N(t), so 
w(t) sin( )

tan( ).
k(t) cos( )


  


 This proves the first part of the proposition and

identifies the constant ratio of the torsion and the curvature.

Conversely, if 
w(t)
k(t)

 = constant = tan() for some , then, by the same calculations, the expression

cos()T(t) + sin()b(t) has derivative 0 so it equals a constant unit vector. The angle between T(t)
and this unit vector is the constant angle .

Curves with the property that the unit tangent vector makes a fixed angle with a particular unit
vector are called generalized helices. Just as a circular helix lies on a circular cylinder, a generalized
helix will lie on a general cylinder, consisting of a collection of lines through the curve parallel
to a fixed unit vector. On this generalized cylinder, the unit tangent vectors make a fixed angle
with these lines, and if we roll the cylinder out onto a plane, then the generalized helix is rolled
out into a straight line on the plane.
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Notes We have shown in the previous section that a moving frame is completely determined up to an
affine motion by the functions p

i
(t) and q

ij
(t). In the case of the Frenet frame, this means that if

two curves x and x have the same arclength s(t), the same curvature k(t), and the same torsion
w(t), then the curves are congruent, i.e. there is an affine motion of Euclidean three-space taking
x(t) to x(t) for all t. Another way of stating this result is:

Theorem 2. The Fundamental Theorem of Space Curves. Two curves parametrized by arclength
having the same curvature and torsion at corresponding points are congruent by an affine
motion.

Exercise 16: Compute the torsion of the circular helix. Show directly that the principal normals
of the helix are perpendicular to the vertical axis, and show that the binormal vectors make a
constant angle with this axis.

Exercise 17: Prove that if the curvature and torsion of a curve are both constant functions, then
the curve is a circular helix (i.e. a helix on a circular cylinder).

Exercise 18: Prove that a necessary and sufficient condition for a curve x to be a generalized helix
is that

x�(t) × x��(t) . xiv(t) = 0 .

Exercise 19: Let y(t) be a curve on the unit sphere, so that |y(t)| = 1 and y(t) . y�(t) × y�(t)  0 for

all t. Show that the curve x(t) = c y(u)× y"(u)du  with c  0 has constant torsion 
1

.
c

Exercise 20: (For students familiar with complex variables) If the coordinate functions of the
vectors in the Frenet frame are given by

T = (e
11

, e
12

, e
13

),

N = (e
21

, e
22

, e
23

),

b = (e
31

, e
32

, e
33

),

then we may form the three complex numbers

1j 2j 3 j
j

3j 1 j 2 j

e  + ie 1 e
z = .

1 �  e e ie






Then the functions z
j
 satisfy the Riccati equation

' 2
j j

i
z =-ik(s)zj+ w(s)( 1 z ).

2
 

This result is due to S. Lie and G. Darboux.

5 .6 Local Equations of a Curve

We can �see� the shape of a curve more clearly in the neighborhood of a point x(t
0
) when we

consider its parametric equations with respect to the Frenet frame at the point. For simplicity,
we will assume that t

0
 = 0, and we may then write the curve as

x(t) = x(0) + x
1
(t)T(0) + x

2
(t)N(0) + x

3
(t)b(0) .

On the other hand, using the Taylor series expansion of x(t) about the point t = 0, we obtain

2
3t t

x(t) = x(0) + tx'(0) + x"(0) + x"'(0) + higher order terms .
2 6
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x�(0) = s�(0)T(0),

x�(0) = s�(0)T(0) + k(0)s�(0)2N(0),

x��(0) = s��(0)T(0) + s�(0)s�(0)k(0)N(0) + (k(0)s�(0)2)�N(0) + k(0)s�(0)2(�k(0)s�(0)T(0) + w(0)s�(0)b(0)).

Substituting these equations in the Taylor series expression, we find:

x(t) = x(0) + 
2 3

2 3t t
ts'(0) s"(0) ["'(0) k(0) s'(0) ] ... T(0)

2 6

 
    

 

     + 
2 3

2 2t t
k(0)s'(0) [s"(0)s'(0)k(0) (k(0)s'(0) ] ... N(0)

2 6

 
   

 

     + 
3

3t
k(0)w(0)s'(0) ... b(0).

6

 
 

 

If the curve is parametrized by arclength, this representation is much simpler:

x(s) = 
2

3 2 3 3k(0) k(0) k '(0) k(0)w(0)
x(0) s s ... T(0) s s ... N(0) s ... b(0).

6 2 6 6

     
            

    

Relative to the Frenet frame, the plane with equation x
1
 = 0 is the normal plane; the plane with

x
2
 = 0 is the rectifying plane, and the plane with x

3
 = 0 is the osculating plane. These planes are

orthogonal respectively to the unit tangent vector, the principal normal vector, and the binormal
vector of the curve.

5 .7 Plane Curves and a Theorem on Turning Tangents

The general theory of curves developed above applies to plane curves. In the latter case there
are, however, special features which will be important to bring out. We suppose our plane to be
oriented. In the plane, a vector has two components and a frame consists of an origin and an
ordered set of two mutually perpendicular unit vectors forming a right-handed system. To an
oriented curve C defined by x(s) the Frenet frame at s consists of the origin x(s), the unit tangent
vector T(s) and the unit normal vector N(s). Unlike the case of space curves, this Frenet frame is
uniquely determined, under the assumption that both the plane and the curve are oriented.

The Frenet formulas are

x� = T,

T� = kN, (1)

N� = �kT .

The curvature k(s) is defined with sign. It changes its sign when the orientation of the plane or
the curve is reversed.

The Frenet formulas in (1) can be written more explicitly. Let

x(s) = (x
1
(s), x

2
(s)) ...(2)

Then,

T(s) = ' '
1 2(x (s),x (s)),
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Notes N(s) = ' '
2 1( x (s),x (s)). ...(3)

Expressing the last two equations of (1) in components, we have

" '
1 2x kx  ...(4)

" '
2 1x kx . ...(5)

These equations are equivalent to (1).

Since T is a unit vector, we can put

T(s) = (cos (s), sin (s)), ...(6)

so that t(s) is the angle of inclination of T with the x
1
-axis. Then

N(s) = (�sin (s), cos (s)),                                                            ...(7)

and (1) gives

d
k(s)

ds

 ...(8)

This gives a geometrical interpretation of k(s).

A curve C is called simple if it does not intersect itself. One of the most important theorems in
global differential geometry is the theorem on turning tangents:

Theorem 3. For a simple closed plane curve, we have

1
k ds 1.

2
 

 

To prove this theorem we give a geometrical interpretation of the integral at the left-hand side
of (3). By (8)

1 1
k ds d .

2 2
 

   

But , as the angle of inclination of (s), is only defined up to an integral multiple of 2, and this
integral has to be studied with care.

Let O be a fixed point in the plane. Denote by  the unit circle about O; it is oriented by the
orientation of the plane. The tangential mapping or Gauss mapping

g : C    ...(9)

is defined by sending the point x(s) of C to the point T(s) of . In other words, g(P), P  C, is the
end-point of the unit vector through O parallel to the unit tangent vector to C at P. Clearly, g is
a continuous mapping. If C is closed, it is intuitively clear that when a point goes along C once
its image point under g goes along Û a number of times. This integer is called the rotation index
of C. It is to be defined rigorously as follows:

We consider O to be the origin of our coordinate system. As above we denote by (s) the angle
of inclination of T(s) with the x

1
-axis. In order to make the angle uniquely determined, we

suppose O  (s) < 2. But (s) is not necessarily continuous. For in every neighborhood of s
0
 at

which (s
c
) = 0, there may be values of (s) differing from 2 by arbitrarily small quantities.
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Lemma 2. There exists a continuous function (s)  such that (s)   (s) mod 2.

Proof. We suppose C to be a closed curve of total length L. The continuous mapping g is
uniformly continuous. There exists therefore a number  > 0 such that for |s

1
 � s

2
| < , T(s

1
) and

T(s
2
) lie in the same open half-plane. Let s

0
(= O) < s

1
 < · · · < s

i
(= L) satisfy |s

i
 � s

i�1
| <  for i = 1,

. . ., m. We put 0(s )  = (s
0
). For s

0
  s  s

1
, we define (s)  to be 0(s )  plus the angle of rotation

from g(s
0
) to g(s) remaining in the same half-plane. Carrying out this process in successive

intervals, we define a continuous function (s)  satisfying the condition in the lemma. The

difference (L) (O)     is an integral multiple of 2. Thus, (L) (O)     = 2. We assert that the

integer  is independent of the choice of the function .  In fact let '(s)  be a function satisfying

the same conditions. Then we have '(s)  � (s)  = n(s)2p where n(s) is an integer. Since n(s) is

continuous in s, it must be constant. It follows that '(L)� (O) t(L) (O),        which proves the

independence of  from the choice of .  We call  the rotation index of C. In performing integration

over C we should replace t(s) by   in (8). Then we have

1 1
k ds d .

2 2
   

     ...(10)

We consider the mapping h which sends an ordered pair of points x(s
1
), x(s

2
), O  s

1
  s

2
  L, of C

into the end-point of the unit vector through O parallel to the secant joining x(s
1
) to x(s

2
). These

ordered pairs of points can be represented as a triangle  in the (s
1
, s

2
)-plane defined by O  s

1

 s
2
  L. The mapping h of  into  is continuous. Moreover, its restriction to the side s

1
 = s

2
 is the

tangential mapping g in (9).

To a point p   let (p) be the angle of inclination of Oh(p)  to the x
1
-axis, satisfying O  (p) <

2. Again this function need not be continuous. We shall, however, prove that there exists a

continuous function (p),p ,   such that (p) (p) mod 2 .     In fact, let m be an interior point

of . We cover  by the radii through m. By the argument used in the proof of the above lemma

we can define a function (p),p ,   such that (p) (p)    mod 2, and such that it is continuous

on every radius through m. It remains to prove that it is continuous in .

For this purpose let p
0
  4. Since h is continuous, it follows from the compactness of the segment

0mp  that there exists a number  = (p
0
) > 0, such that for 0 0q mp  and for any point q   for

which the distance d(q, q
0
) <  the points h(q) and h(q0) are never antipodal. The latter condition

can be analytically expressed by

0(q) (q ) mod .      ...(11)

Now let R / > 0, R / < 
2


 be given. We choose a neighborhood U of p
0
 such that U is contained

in the -neighborhood of p
0
 and such that, for p  U, the angle between 0Oh(p ) and Oh(p)  is

< R. This is possible, because the mapping h is continuous. The last condition can be expressed in
the form

  0(p) � t(p ) = R' + 2k(p) , ...(12)
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parallel to 0pp ,  with q on mp.  The function 0(q) t(q )    is continuous in q along mp  and equals

O when q coincides with m. Since d(q, q
0
) < , it follows from (11) that 0(q) t(q ) .     In

particular, for q
0
 = p

0
 this gives 0(p) (p ) .       Combining this with (12), we get k(p) = 0. Thus

we have proved that (p)  is continuous in 4, as asserted above. Since (p) (p)    mod 2, it is

clear that (p)  is differentiable.

Now let A(O,O), B(O,L), D(L,L) be the vertices of . The rotation index  of C is, by (10), defined
by the line integral

d
2 .

AD


  




Since �t(p) is defined in 4, we have

d d d .
AD AB BD

          

To evaluate the line integrals at the right-hand side, we suppose the origin O to be the point x(O)
and C to lie in the upper half-plane and to be tangent to the x

1
-axis at O. This is always possible

for we only have to take x(O) to be the point on C at which the x
2
-coordinate is a minimum. Then

the x
1
-axis is either in the direction of the tangent vector to C at O or opposite to it. We can

assume the former case, by reversing the orientation of C if necessary. The line integral along

AB  is then equal to the angle rotated by OP  as P goes once along C. Since C lies in the upper

half-plane, the vector OP  never points downward. It follows that the integral along AB  is equal

to . On the other hand, the line integral along BD  is the angle rotated by PO  as P goes once

along C. Since the vector PO  never points upward, this integral is also equal to . Hence, their
sum is 2 and the rotation index  is +1. Since we may have reversed the orientation of C, the
rotation index is ±1 in general.

Exercise 21: Consider the plane curve x(t) = (t, f(t)). Use the Frenet formulas in (1) to prove that
its curvature is given by

k(t) = 2 3 /2

f
.

(1 f )



 ...(13)

Exercise 22: Draw closed plane curves with rotation indices 0, �2, +3 respectively.

Exercise 23: The theorem on turning tangents is also valid when the simple closed curve C has
�corners.� Give the theorem when C is a triangle consisting of three arcs. Observe that the
theorem contains as a special case the theorem on the sum of angles of a rectilinear triangle.

Exercise 24: Give in detail the proof of the existence of  = (p
0
) used in the proof of the theorem

on turning tangents.  =  (p
0
) .
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A closed curve in the plane is called convex, if it lies at one side of every tangent line.

Proposition 8: A simple closed curve is convex, if and only if it can be so oriented that its
curvature k is  0.

The definition of a convex curve makes use of the whole curve, while the curvature is a local
property. The proposition, therefore, gives a relationship between a local property and a global
property. The theorem is not true if the closed curve is not simple. Counter examples can be
easily constructed.

Let (s)  be the function constructed above, so that we have k = 
d

.
ds


 The condition k  O is,

therefore, equivalent to the assertion that (s))  is a monotone non-decreasing function. We can

assume that (O) O.   By the theorem on turning tangents, we can suppose C so oriented that

(L) 2 .  

Suppose (s),  O  s  L, be monotone non-decreasing and that C is not convex. There is a point

A = x(s
0
) on C such that there are points of C at both sides of the tangent  to C at A. Choose a

positive side of k and consider the oriented perpendicular distance from a point x(s) of C to .
This is a continuous function in s and attains a maximum and a minimum at the points M and N
respectively. Clearly M and N are not on  and the tangents to C at M and N are parallel to x.
Among these two tangents and k itself there are two tangents parallel in the same sense. Call

s
1
 < s

2
 the values of the parameters at the corresponding points of contact. Since (s)  is monotone

non-decreasing and O   (s)   2, this happens only when 1(s) (s )     for all s satisfying s
1
  s

 s
2
. It follows that the arc s

1
  s  s

2
 is a line segment parallel to . But this is obviously

impossible.

Next let C be convex. To prove that (s)  is monotone non-decreasing, suppose 1 2(s ) (s )    ,

s
1
 < s

2
. Then the tangents at x(s

1
) and x(s

2
) are parallel in the same sense. But there exists a tangent

parallel to them in the opposite sense. From the convexity of C it follows that two of them
coincide.

We are, thus, in the situation of a line  tangent to C at two distinct points A and B. We claim that

the segment AB  must be a part of C. In fact, suppose this is not the case and let D be a point on

AB  not on C. Draw through D a perpendicular  to  in the half-plane which contains C. Then 
intersects C in at least two points. Among these points of intersection let F be the farthest from
 and G the nearest one, so that F  G. Then G is an interior point of the triangle ABF. The tangent
to C at G must have points of C in both sides which contradicts the convexity of C.

It follows that under our assumption, the segment AB  is a part of C, so that the tangents at A and
B are parallel in the same sense. This proves that the segment joining x(s

1
) to x(s

2
) belongs to C.

Hence, (s)  remains constant in the interval s
1
  s  s

2
. We have, therefore, proved that (s)  is

monotone and K  O.

A point on C at which k� = 0 is called a vertex. A closed curve has at least two vertices, e.g., the
maximum and the minimum of k. Clearly a circle consists entirely of vertices. An ellipse with
unequal axes has four vertices, which are its intersection with the axes.
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Notes Theorem 4 (Four-vertex Theorem.). A simple closed convex curve has at least four vertices.

Remark 4. This theorem was first given by Mukhopadhyaya (1909). The following proof was
due to G. Herglotz. It is also true for non-convex curves, but the proof will be more difficult.

5 .9 Isoperimetric Inequality in the Plane

Among all simple closed curves having a given length the circle bounds the largest area, and is
the only curve with this property. We shall state the theorem as follows:

Theorem 5. Let L be the length of a simple closed curve C and A be the area it bounds. Then

L2 � 4A  0 . ...(14)

Moreover, the equality sign holds only when C is a circle.

The proof given below is due to E. Schmidt (1939).

We enclose C between two parallel lines g, g�, such that C lies between g, g� and is tangent to
them at the points P, Q respectively. Let s = 0, s

0 
be the parameters of P, Q. Construct a circle C

tangent to g, g� at P, Q respectively. Denote its radius by r and take its center to be the origin
of a coordinate system. Let x(s) = (x

1
(s), x

2
(s)) be the position vector of C, so that

(x
1
(0), x

2
(0)) = (x

1
(L), x

2
(L)) .

As the position vector of C  we take 1 2(x (s), x ),  such that

1x (s)  = x
1
(s),

2x (s)  = 2 2
1 0r x (s),0 s s   

= 2 2
1 0r x (s),s s L.   

Denote by A  the area bounded by C . Now the area bounded by a closed curve can be expressed
by the line integral

L L L
' ' ' '

1 2 2 1 1 2 2 1

0 0 0

1
A x x ds x x ds (x x x x )ds.

2
      

Applying this to our two curves C and C , we get

L
'
2

0

L L
2 ' '

2 1 2 1
0 0

A x1x ds,

A r x x ds x x ds.



     



 

Adding these two equations, we have

A + r2 =
L L

' ' ' ' 2
1 2 2 1 1 2 2 1

0 0

(x x x x )ds (x x x x ) ds   



L
2 2 '2 ' 2
1 2 1 2

0

(x x )(x x )ds                       ...(15)
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=
L

2 2
1 2

0

x x ds Lr. 

Since the geometric mean of two numbers is  their arithmetic mean, it follows that

2 21 1
A r (A r ) Lr.

2 2
    

This gives, after squaring and cancellation of r, the inequality (14).

Suppose now that the equality sign in (14) holds. A and r2 have then the same geometric and
arithmetic mean, so that A = r2 and L = 2r. The direction of the lines g, g� being arbitrary, this
means that C has the same �width� in all directions. Moreover, we must have the equality sign
everywhere in (15). It follows in particular that

' ' 2
1 2 2 1(x ,x x x )  = 2 2 '2 '2

1 2 1 2(x x )(x x ), 

which gives

2 2
1 21 2

' ' ' 2 '2
2 1 1 2

x xx x
r.

x x x x


   



From the first equality in (15), the factor of proportionality is seen to be r, i.e.,

' '
1 2 2 1x rx , x rx .  

This remains true when we interchange x
1
 and x

2
, so that

'
2 1x rx .

Therefore, we have

2 2 2
1 2x x r , 

which means that C is a circle.

5 .10 Summary

 A parametrized curve in Euclidean three-space e3 is given by a vector function

x(t) = (x
1
(t), x

2
(t), x

3
(t))

that assigns a vector to every value of a parameter t in a domain interval [a, b]. The
coordinate functions of the curve are the functions x

i
(t). In order to apply the methods of

calculus, we suppose the functions x
i
(t) to have as many continuous derivatives as needed

in the following treatment.

 One of the most useful ways to parametrize a curve is by the arc length s itself. If we let
s = s(t), then we have

s�(t) = |x�(t)| = |x�(s)|s�(t),

from which it follows that |x�(s)| = 1 for all s. So the derivative of x with respect to arc
length is always a unit vector.
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Notes  If x is an immersed curve, with x�(t)  0 for all t in the domain, then we may define the unit

tangent vector T(t) to be 
x'(t)

.
|x'(t)|

 If the parameter is arclength, then the unit tangent vector

T(s) is given simply by x�(s). The line through x(t
0
) in the direction of T(t

0
) is called the

tangent line at x(t
0
). We can write this line as y(u) = x(t

0
) + uT(t

0
), where u is a parameter

that can take on all real values.

Since T(t) · T(t) = 1 for all t, we can differentiate both sides of this expression, and we obtain
2T�(t)· T(t) = 0. Therefore T�(t) is orthogonal to T(t). The curvature of the space curve x(t) is

defined by the condition (t) = 
T'(t)

,
|x'(t)|

 so = (t)s�(t) = |T�(t)|. If the parameter is arclength,

then x�(s) = T(s) and (s) = |T�(s)| = |x�(s)|.

 The unit tangent vectors emanating from the origin form a curve T(t) on the unit sphere
called the tangential indicatrix of the curve x.

 W. Scherrer proved that this property characterized a sphere, i.e. if the total twist of every
curve on a closed surface is zero, then the surface is a sphere.

 T. Banchoff and J. White proved that the total twist of a closed curve is invariant under
inversion with respect to a sphere with center not lying on the curve.

 The total twist plays an important role in modern molecular biology, especially with
respect to the structure of DNA.

 Let x be the circle x(t) = (r cos(t), r sin(t), 0), where r is a constant > 1. Describe the collection
of points x(t) + z(t) where z(t) is a unit normal vector at x(t).

5 .11 Keywords

Curvature is one of the simplest and at the same time one of the most important properties of a
curve.

Fenchel�s Theorem: The total curvature of a closed space curve x is greater than or equal to 2.

(s)ds  2

Non-inflectional: A curve x is called non-inflectional if the curvature (t) is never zero. By our
earlier calculations, this condition is equivalent to the requirement that x�(t) and x�(t) are linearly
independent at every point x(t), i.e. x�(t) × x�(t)  0 for all t.

5 .12 Self Assessment

1. If k(t) = 0 for all t, then the curve lies along a ....................

2. The unit tangent vectors emanating from the origin form a curve T(t) on the unit sphere
called the ................... of the curve x.

3. ................... The total curvature of a closed space curve x is greater than or equal
to 2.

(s)ds  2

4. A curve x is called ................... if the curvature k(t) is never zero. By our earlier calculations,
this condition is equivalent to the requirement that x�(t) and x�(t) are linearly independent
at every point x(t), i.e. x�(t) × x�(t)  0 for all t.
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Notes5. If ................... for all points of a non-inflectional curve x, then the curve is contained in a
plane.

5 .13 Review Questions

1. One of the most important space curves is the circular helix x(t) = (a cos t, a sin t, bt), where
a  0 and b are constants. Find the length of this curve over the interval [0, 2].

2. Find a constant c such that the helix x(t) = (a cos(ct), a sin(ct), bt) is parametrized by
arclength, so that |x�(t)| = 1 for all t.

3. The astroid is the curve defined by x(t) = (a cos3 t, a sin3 t, 0), on the domain [0, 2]. Find the
points at which x(t) does not define an immersion, i.e., the points for which x�(t) = 0.

4. The trefoil curve is defined by x(t) = ((a + b cos(3t)) cos(2t), (a + b cos(3t)) sin(2t), b sin(3t)),
where a and b are constants with a > b > 0 and 0  t  2. Sketch this curve, and give an
argument to show why it is knotted, i.e. why it cannot be deformed into a circle without
intersecting itself in the process.

5. Let x be a curve with x�(t
0
)  0. Show that the tangent line at x(t

0
) can be written as

y(u) = x(t
0
) + ux�(t

0
) where u is a parameter that can take on all real values.

6. The plane through a point x(t
0
) perpendicular to the tangent line is called the normal plane

at the point. Show that a point y is on the normal plane at x(t
0
) if and only if

x�(t
0
) . y = x�(t

0
) . x(t

0
)

7. Show that the curvature k of a circular helix

x(t) = (r cos(t), r sin(t), pt)

is equal to the constant value  = 2 2

|r|
.

r + p
 Are there any other curves with constant

curvature? Give a plausible argument for your answer.

8. Assuming that the level surfaces of two functions f(x
1
, x

2
, x

3
) = 0 and g(x

1
, x

2
, x

3
) = 0 meet in

a curve, find an expression for the tangent vector to the curve at a point in terms of the
gradient vectors of f and g (where we assume that these two gradient vectors are linearly

independent at any intersection point.) Show that the two level surfaces x
2
 � 2

1x  = 0 and

x
3
x

1
 � 2

2x 0  consists of a line and a �twisted cubic� x
1
(t) = t, x

2
(t) = t2, x

3
(t) = t3. What is the

line?

9. What is the geometric meaning of the function f(t) = x(t) . m used in the proof of Fenchel�s
theorem?

10. Let m be a unit vector and let x be a space curve. Show that the projection of this curve into
the plane perpendicular to m is given by

y(t) = x(t) � (x(t) . m)m.

Under what conditions will there be a t
0
 with y�(t

0
) = 0?

11. W. Scherrer proved that this property characterized a sphere, i.e. if the total twist of every
curve on a closed surface is zero, then the surface is a sphere.

12. T. Banchoff and J. White proved that the total twist of a closed curve is invariant under
inversion with respect to a sphere with center not lying on the curve.

70



LOVELY PROFESSIONAL UNIVERSITY

Notes 13. The total twist plays an important role in modern molecular biology, especially with
respect to the structure of DNA.

14. Let x be the circle x(t) = (r cos(t), r sin(t), 0), where r is a constant > 1. Describe the collection
of points x(t) + z(t) where z(t) is a unit normal vector at x(t).

15. Prove that the total twist of a closed curve not passing through the origin is the same as the
total twist of its image by inversion through the sphere S of radius r centered at the origin.

16. Prove that the equations '
iE (t)  = q

ij
(t)E

j
(t) can be written '

iE (t)  = d(t) × E
i
(t), where d(t) =

q
23

(t)E
1
(t) + q

31
(t)E

2
(t) + q

12
(t)E

3
(t). This vector is called the instantaneous axis of rotation.

17. Under a rotation about the x
3
-axis, a point describes a circle x(t) = (a cos(t), a sin(t), b). Show

that its velocity vector satisfies x�(t) = d × x(t) where d = (0, 0, 1). (Compare with the
previous exercise.).

18. Prove that (v . v)(w·w)�(v·w)2 = 0 if and only if the vectors v and w are linearly dependent.

19. Draw closed plane curves with rotation indices 0, �2, +3 respectively.

20. The theorem on turning tangents is also valid when the simple closed curve C has �corners.�
Give the theorem when C is a triangle consisting of three arcs. Observe that the theorem
contains as a special case the theorem on the sum of angles of a rectilinear triangle.

21. Give in detail the proof of the existence of  = (p
0
) used in the proof of the theorem on

turning tangents.  =  (p
0
) .

Answers: Self Assessment

1. straight line 2. tangential indicatrix

3. Fenchel�s Theorem 4. non-inflectional

5. w(t) = 0

5 .14 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati, T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H. Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.

71



LOVELY PROFESSIONAL UNIVERSITY

Serret-Frenet Formulae

NotesUnit 6 : Serret-Frenet Formulae
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Objectives

After studying this unit, you will be able to:

 Define serret-frenet formula

 Explain serret frenet formula

Introduction

In the last unit, you have studied about space theory of curve. Depending on how the arc is
defined, either of the two end points may or may not be part of it. When the arc is straight, it is
typically called a line segment. The derivatives of the vectors t, p, and b can be expressed as a
linear combination of these vectors. The formulae for these expressions are called the Frenet-
Serret Formulae. This is natural because t, p, and b form an orthogonal basis for a three-
dimensional vector space.

6 .1 Serret-Frenet Formulae

Given a curve f: ]a, b[  En (or f: [a, b]  En) of class Cp, with p  n, it is interesting to consider
families (e

1
(t), . . ., e

n
(t)) of orthonormal frames. Moreover, if for every k, with 1  k  n, the kth

derivative f(k)(t) of the curve f(t) is a linear combination of (e
1
(t), . . ., e

k
(t)) for every t ]a, b[, then

such a frame plays the role of a generalized Frenet frame. This leads to the following definition:

Lemma 1. Let f: ]a, b[  En (or f : [a, b]  En) be a curve of class Cp, with p  n. A family (e
1
(t), . .

., e
n
(t)) of orthonormal frames, where each e

i
 : ]a, b[  En is Cn�i continuous for i = 1, . . ., n � 1 and

en is C1-continuous, is called a moving frame along f. Furthermore, a moving frame (e
1
(t), . . .,

e
n
(t)) along f so that for every k, with 1  k  n, the kth derivative f(k)(t) of f(t) is a linear

combination of (e
1
(t), . . ., e

k
(t)) for every t  ]a, b[, is called a Frenet n-frame or Frenet frame.

If (e
1
(t), . . ., e

n
(t)) is a moving frame, then

e
i
(t) . e

j
(t) = 

ij
 for all i, j, 1  i, j  n.

Richa Nandra, Lovely Professional University
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Notes Lemma 2. Let f: ]a, b[  En (or f: [a, b]  En) be a curve of class Cp, with p  n, so that the
derivatives f(1)(t), . . ., f(n�1)(t) of f(t) are linearly independent for all t  ]a, b[. Then, there is a
unique Frenet n-frame (e

1
(t), . . ., e

n
(t)) satisfying the following conditions:

(1) The k-frames (f(1)(t), . . ., f(k)(t)) and (e
1
(t), . . ., e

k
(t)) have the same orientation for all k, with

1  k  n � 1.

(2) The frame (e
1
(t), . . ., e

n
(t)) has positive orientation.

Proof. Since (f(1)(t), . . ., f(n�1)(t)) is linearly independent, we can use the Gram-Schmidt
orthonormalization procedure to construct (e

1
(t), . . ., e

n�1
(t)) from (f(1)(t), . . ., f(n�1)(t)). We use the

generalized cross-product to define e
n
, where

e
n
 = e

1
 × · · · × e

n�1
.

From the Gram-Schmidt procedure, it is easy to check that ek(t) is Cn�k for 1  k  n � 1, and since
the components of e

n
 are certain determinants involving the components of (e

1
, . . ., e

n�1
), it is also

clear that en is C1.

The Frenet n-frame given by Lemma 2 is called the distinguished Frenet n-frame. We can now
prove a generalization of the Frenet-Serret formula that gives an expression of the derivatives
of a moving frame in terms of the moving frame itself.

Lemma 3. Let f: ]a, b[  En (or f: [a, b]  En) be a curve of class Cp, with p  n, so that the
derivatives f(1)(t), . . ., f(n�1)(t) of f(t) are linearly independent for all t  ]a, b[ . Then, for any moving

frame (e
1
(t), . . ., e

n
(t)), if we write 

ij
(t) = '

i je (t) e (t),  we have

n
'
i ij j

j 1

e (t) (t)e (t),


 

with

ij ij(t) (t),  

and there are some functions 
i
(t) so that

n

i i
i 1

f '(t) (t)e (t).


 

Furthermore, if (e
1
(t), . . ., e

n
(t)) is the distinguished Frenet n-frame associated with f, then we

also have

1 i(t) = f'(t) , (t) = 0 for i  2,  

and


ij
(t) = 0 for j > i + 1.

Proof. Since (e
1
(t), . . ., e

n
(t)) is a moving frame, it is an orthonormal basis, and thus, f�(t) and '

te (t)

are linear combinations of (e
1
(t), . . ., 

e
n(t)). Also, we know that

n
' '
i i j j

j 1

e (t) (e (t) e (t))e (t),


 

and since e
i
(t) · e

j
(t) = 

ij
, by differentiating, if we write 

ij
(t) = '

i je (t) e (t),  we get


ji
(t) = �

ij
(t).
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NotesNow, if (e
1
(t), . . ., e

n
(t)) is the distinguished Frenet frame, by construction, e

i
(t) is a linear

combination of f(1)(t), . . ., f(i)(t), and thus '
ie (t)  is a linear combination of f(2)(t), . . ., f(i+1)(t), hence, of

(e
1
(t), . . ., e

i+1
(t)).

In matrix form, when (e
1
(t), . . ., e

n
(t)) is the distinguished Frenet frame, the row vector

' '
i n(e (t),...,e (t))  can be expressed in terms of the row vector (e

1
(t), . . ., e

n
(t)) via a skew symmetric

matrix , as shown below:

' '
i n 1 n(e (t),...,e (t)) (e (t),...,e (t)) (t)   ,

where

 = 

12

2312

23

n 1n

n 1n

0

0

0

0





 
 

 
 
 

 
  



 

The next lemma shows the effect of a reparametrization and of a rigid motion.

Lemma 4. Let f: ]a, b[  En (or f: [a, b]  En) be curve of class Cp, with p  n, so that the derivatives
f(1)(t), . . ., f(n�1)(t) of f(t) are linearly independent for all t  ]a, b[ . Let h : En  En be a  rigid motion,

and assume that the corresponding linear isometry is R. Let f = h o f.  The following properties

hold:

(1) For any moving frame (e
1
(t), . . ., e

n
(t)), the n-tuple 1 n(e (t), . . . , e (t)),   where i ie (t) = R(e (t)),

is a moving frame along ef, and we have

ij ij(t) = (t)) and f '(t) f '(t) .  

(2) For any orientation-preserving diffeomorphism  : ]c, d[  ]a, b[ (i.e., �(t) > 0 for all

t  ]c, d[ ), if we write f f r,   then for any moving frame (e
1
(t), . . ., e

n
(t)) on f, the n-tuple

1 n(e (t), . . . , e (t)),   where ie (t)  = e
i
((t)), is a moving frame on f.

More on Frenet . . .

Furthermore, if f'(t) 0, then

ij ij(t) ( (t))
.

f '( (t))f '(t)

  








The proof is straightforward and is omitted.
More on Frenet . . .

The above lemma suggests the definition of the curvatures 
1
, . . ., 

n�1
.

Lemma 5. Let f : ]a, b[  En (or f: [a, b]  En) be a curve of class Cp, with p  n, so that the
derivatives f(1)(t), . . ., f(n�1)(t) of f(t) are linearly independent for all t ]a, b[ . If (e

1
(t), . . ., e

n
(t)) is

the distinguished Frenet frame associated with f, we define the ith curvature, 
i
, of f, by


i
(t) = ii 1(t)

,
f '(t)


with 1  i  n � 1.
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w(t) = ||f�(t)||(t),

where

 = 

12

2312

23

n 1n

n 1n

0

0
.0

k 0





 
 

 
 
 

 
  



 

The matrix  is sometimes called the Cartan matrix.

Lemma 6. Let f : ]a, b[  En (or f : [a, b]  En) be a curve of class Cp, with p  n, so that the
derivatives f(1)(t), . . ., f(n�1)(t) of f(t) are linearly independent for all t  ]a, b[ . Then for every i,
with 1  i  n � 2, we have 

i
(t) > 0.

Proof. Lemma 2 shows that e
1
, . . ., e

n�1
 are expressed in terms of f(1), . . ., f(n�1) by a triangular matrix

(aij), whose diagonal entries a
ii
 are strictly positive, i.e., we have

e
i
 = 

i
( j)

ij
j 1

a f ,




for i = 1, . . ., n � 1, and thus,

f(i) = 
i

ij j
j 1

b e ,




for i = 1, . . ., n � 1, with b
i i
 = 1

iia 0.   Then, since e
i+1

 . f(j) = 0 for j  i, we get

if '   = 
i i+1

 = '
ie ei 1   = a

i i
f(i+1)  . e

i+1
 = a

i i
b

i+1i+1
,

and since a
i i
b

i+1 i+1
 > 0, we get 

i
 > 0 (i = 1, . . ., n � 2).

More on Frenet . . .

We conclude by exploring to what extent the curvatures 
1
, . . ., 

n�1
 determine a curve satisfying

the non-degeneracy conditions of Lemma 2. Basically, such curves are defined up to a rigid
motion.

Lemma 7. Let f : ]a, b[  En and f  : ]a, b[  En (or f : [a, b]  En and f  : [a, b]  En) be two curves
of class Cp, with p  n, and satisfying the non-degeneracy conditions of Lemma 2. Denote the

distinguished Frenet frames associated with f and f  by (e
1
(t), . . ., e

n
(t)) and 1 n(e (t),...,e (t)). 

If 
i
(t) = i(t)  for every i, with 1  i  n � 1, and f '(t) f '(t)   for all t  ]a, b[, then there is a

unique rigid motion h so that

f h f. 

Proof. Fix t
0
  ]a, b[ . First of all, there is a unique rigid motion h so that

h(f(t
0
)) = f (t0

) and R(e
i
(t

0
)) = i 0e (t ),

75



LOVELY PROFESSIONAL UNIVERSITY

Serret-Frenet Formulae

Notesfor all i, with 1  i  n, where R is the linear isometry associated with h (in fact, a rotation).

Consider the curve f  = h   f. The hypotheses of the lemma and Lemma 4, imply that

ij ij ij(t) = (t) = (t), f'(t) = f '(t) f '(t) ,   

and, by construction,

1 n0 0 1 0 n 0(e (t ), . . . , e (t )) = (e (t ), . . . , e (t ))   and 0 0f(t ) = f(t ).

Let

(t)  =
n

i ii i
i 1

(e (t) e (t) (e (t) e (t)).


    

Then, we have

�(t)  = i i

n ' '
i i

i 1

2 (e (t) e (t) (e (t) e (t))


    

=
i i

n
' '

i i
i 1

2 (e (t) e (t) e (t) e (t)).


    

Using the Frenet equations, we get

�(t)  =
n n n n

ij i j ij j i
i 1 j 1 i 1 j 1

2 e e 2 e e
   

       

=
n n n n

ij i j ij i j
i 1 j 1 j 1 i 1

2 e e 2 e e
   

       

=
n n n n

ij i j ij i j
i 1 j 1 j 1 i 1

2 e e 2 e e
   

       

= 0,

since  is skew symmetric. Thus, (t) is constant, and since the Frenet frames at t
0
 agree, we get

(t) = 0.

Then, i ie (t) = e (t)  for all i, and since f'(t) f '(t) ,   we

have

1 1f '(t) f '(t) e (t) f '(t) e (t) f '(t),   

so that f (t) f(t)   is constant. However, 0 0f(t ) = f(t ),  and so, f(t) = f(t),  and f = f = h f. 

Lemma 8. Let 
1
, . . ., 

n�1
 be functions defined on some open ]a, b[ containing 0 with


i
 Cn�i�1 continuous for i = 1, . . ., n � 1, and with 

i
(t) > 0 for i = 1, . . ., n � 2 and all t  ]a, b[ . Then,

there is curve f : ]a, b[  En of class Cp, with p  n, satisfying the non-degeneracy conditions of

Lemma 2, so that f'(t) = 1  and f has the n � 1 curvatures 
1
(t), . . ., 

n�1
(t).
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1
(t), . . ., e

n
(t) of the Frenet frame

along f. Consider the system of ODE�s,

X�(t) = �X(t)(t),

with initial conditions X(0) = I, where (t) is the skew symmetric matrix of curvatures. By a
standard result in ODE�s, there is a unique solution X(t).

We claim that X(t) is an orthogonal matrix. For this, note

that

(XXT)� = X�XT + X(XT)� = �XXT � XTXT

= �XXT + XXT = 0.

Since X(0) = I, we get XXT = I. If F(t) is the first column of X(t), we define the curve f by

f(s) = 
s

0

F(t)dt,

with s  ]a, b[. It is easily checked that f is a curve parametrized by arc length, with Frenet frame
X(s), and with curvatures 

i
�s.

6 .2 Summary

 Lemma 1. Let f: ]a, b[  En (or f : [a, b]  En) be a curve of class Cp, with p  n. A family (e
1
(t),

. . ., e
n
(t)) of orthonormal frames, where each e

i
 : ]a, b[  En is Cn�i continuous for i = 1, . . .,

n � 1 and en is C1-continuous, is called a moving frame along f. Furthermore, a moving
frame (e

1
(t), . . ., e

n
(t)) along f so that for every k, with 1  k  n, the kth derivative f(k)(t) of

f(t) is a linear combination of (e
1
(t), . . ., e

k
(t)) for every t  ]a, b[, is called a Frenet n-frame

or Frenet frame.

 Lemma 2. Let f: ]a, b[  En (or f: [a, b]  En) be a curve of class Cp, with p  n, so that the
derivatives f(1)(t), . . ., f(n�1)(t) of f(t) are linearly independent for all t  ]a, b[. Then, there is
a unique Frenet n-frame (e

1
(t), . . ., e

n
(t)) satisfying the following conditions:

 The k-frames (f(1)(t), . . ., f(k)(t)) and (e
1
(t), . . ., e

k
(t)) have the same orientation for all k,

with 1  k  n � 1.

 The frame (e
1
(t), . . ., e

n
(t)) has positive orientation.

 Let f: ]a, b[  En (or f: [a, b]  En) be curve of class Cp, with p  n, so that the derivatives
f(1)(t), . . ., f(n�1)(t) of f(t) are linearly independent for all t  ]a, b[ . Let h : En  En be a  rigid

motion, and assume that the corresponding linear isometry is R. Let f = h o f.  The following

properties hold:

 For any moving frame (e
1
(t), . . ., e

n
(t)), the n-tuple 1 n(e (t), . . . , e (t)),   where

i ie (t) = R(e (t)),  is a moving frame along ef, and we have

ij ij(t) = (t)) and f '(t) f '(t) .  

 For any orientation-preserving diffeomorphism  : ]c, d[  ]a, b[ (i.e., �(t) > 0 for all

t  ]c, d[ ), if we write f f r,   then for any moving frame (e
1
(t), . . ., e

n
(t)) on f, the

n-tuple 1 n(e (t), . . . , e (t)),   where ie (t)  = e
i
((t)), is a moving frame on f.
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Moving frame along f: Let f: ]a, b[  En (or f : [a, b]  En) be a curve of class Cp, with p  n. A family
(e

1
(t), . . ., e

n
(t)) of orthonormal frames, where each e

i
 : ]a, b[  En is Cn�i continuous for i = 1, . . .,

n � 1 and en is C1-continuous, is called a moving frame along f.

Frenet n-frame or Frenet frame: A moving frame (e
1
(t), . . ., e

n
(t)) along f so that for every k, with

1  k  n, the kth derivative f(k)(t) of f(t) is a linear combination of (e
1
(t), . . ., e

k
(t)) for every t  ]a,

b[, is called a Frenet n-frame or Frenet frame.

Linear isometry: Let f: ]a, b[  En (or f: [a, b]  En) be curve of class Cp, with p  n, so that the
derivatives f(1)(t), . . ., f(n�1)(t) of f(t) are linearly independent for all t  ]a, b[ . Let h : En  En be a

rigid motion, and assume that the corresponding linear isometry is R. Let f = h o f.

6 .4 Self Assessment

1. Let f: ]a, b[  En (or f : [a, b]  En) be a curve of class Cp, with p  n. A family (e
1
(t), . . ., e

n
(t))

of orthonormal frames, where each e
i
 : ]a, b[  En is Cn�i continuous for i = 1, . . ., n � 1 and

en is C1-continuous, is called a ....................

2. A moving frame (e
1
(t), . . ., e

n
(t)) along f so that for every k, with 1  k  n, the kth derivative

f(k)(t) of f(t) is a linear combination of (e
1
(t), . . ., e

k
(t)) for every t  ]a, b[, is called a

....................

3. Let f: ]a, b[  En (or f: [a, b]  En) be curve of class Cp, with p  n, so that the derivatives
f(1)(t), . . ., f(n�1)(t) of f(t) are linearly independent for all t  ]a, b[ . Let h : En  En be a  rigid

motion, and assume that the corresponding .................... is R. Let f = h o f.

4. Let 
1
, . . ., 

n�1
 be functions defined on some open ]a, b[ containing 0 with 

i
 Cn�i�1 continuous

for i = 1, . . ., n � 1, and with 
i
(t) > 0 for i = 1, . . ., n � 2 and all t  ]a, b[. Then, there is curve

f : ]a, b[  En of class Cp, with p  n, satisfying the ....................

5. Let X(t) be the matrix whose columns are the vectors e
1
(t), . . ., e

n
(t) of the Frenet frame

along f. Consider the system of ODE�s, ....................

6 .5 Review Questions

1. Show that the helix

8 s s s
: [0,10] E : s (2 cos( ),2sin( ), )

5 5 5
  

is a unit speed curve and has constant curvature and torsion.

2. Why do we always have k[]  0?

3. For all s, ��(s) . (s) = 0; so the acceleration is always perpendicular to the acceleration
along unit-speed curves. What about a�(t) . a��(t) on arbitrary speed curves?

4. Derive the Frenet-Serret equations for an arbitrary-speed regular curve  and show that the

following hold for a curve  with speed '. ' ' v 0 :      :

' ''
T '/v, N B T, B

' ''
 

    
 
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3

' ''
k

v

 


2

' '' . '''
.

' ''

  
 

 

5. Viviani's curve2 is the intersection of the cylinder (x � a)2 + y2 = a2 and the sphere x2 + y2 +
z2 = 4a2 and has parametric equation:

8 t
a : [0, 4 ] E : t a(1 cos t,sin t,2sin ).

2
  

Show that it has curvature and torsion given by s
2

t
6cos13 3cost 2k(t) and (t) .

a(13 3cos t)
a(3 cos t)


  




6. Investigate the following curves for n = 0, 1, 2, 3

8 s 3 s 3 ns
: [0,2 6] E : s ( 6 cos( ), sin( ), sin( ))

2 26 6 6
   

7. Show that for all q  [0, 2] the matrix s

cos sin 0

R ( ) sin cos 0

0 0 1

  
 

     
 
 

 when applied to the

coordinates of a curve in E8 rotates the curve through angle  in the (x,y)-plane, that is,
round the z-axis. Find a matrix R

y
() representing rotation round the y-axis and hence

obtain explicitly the result of rotating the curves in the previous question by 60º round the
y-axis.

8. On plane curves,  = 0 everywhere and we sometimes use the signed curvature k2
,
 defined

by

2
3

''(t).J '(t)
k [a](t) ,

a'(t)

 
  where J is the linear operator 2 2J : : (p,g) ( g,p).   

We call 1/k2[] the radius of curvature. Find the radius of curvature of some plane curves.

9. (i) Find two matrices, R
y
 and R

z
 from SO(3) which represent, respectively, rotation by

/3 about the y-axis and rotation by /4 about the z-axis; each rotation must be in a
right-hand-screw sense in the positive direction of its axis. Find the product matrix
R

y
R

z
 and show that its transpose is its inverse.

(ii) By considering (R
y
R

z
)-1, or otherwise, show that the curve

                 8 1 t t 3 3t
: [0, ) E : t ( cos h t /2 , 2 cosh t /2 , cosh t/2 )

2 2 2 2 2 2 2
       

lies in a plane and find its curvature function and arc length function.
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Notes10. Vertical projection from E8 onto its xy-plane is given by the map

 : E8  E8 : (x, y, z)  (x, y, 0).

A unit speed curve b : [0, L]  E8 lies above the xy-plane and has vertical projection

8 s s
: [0,L] E : s ( cos(log s/2), sin(log s/2),0).

2 2
   

Find explicitly a suitable  and for it compute the Frenet-Serret frame, curvature and
torsion.

Answers: Self Assessment

1. moving frame along f 2. Frenet n-frame or Frenet frame

3. linear isometry 4. non-degeneracy conditions

5. X�(t) = �X(t)k(t)

6 .6 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati, T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H. Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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Objectives

After studying this unit, you will be able to:

 Define Preliminaries

 Explain Plane Curves

 Identify Fenchel�s Theorem

Introduction

In last unit, you have studied about serret-frenet formula. In this unit, you will read about
curves.

7 .1 Preliminaries

Definition 1. A parametrized curve is a smooth (C) function n: I .g ®   A curve is regular if

' 0.g ¹

When the interval I is closed, we say that  is C on I if there is an interval J and a C function 
on J which agrees with  on I.

Definition 2. Let n: Ig ®   be a parametrized curve, and let n: Jb ®   be another parametrized

curve. We say that  is a reparametrization (orientation preserving reparametrization) of  if

there is a smooth map : J It ®  with ' 0t >  such that .b = g t

Richa Nandra, Lovely Professional University
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Notes The relation  is a reparametrization of  is an equivalence relation. A curve is
an equivalence class of parametrized curves. Furthermore, if  is regular then every
reparametrization of  is also regular, so we may speak of regular curves.

Definition 3. Let n: Ig ®   be a regular curve. For any compact interval [a, b]  I, the arclength

of  over [a, b] is given by:

  
b

a
L a,b ' dt.  

Note that if  is a reparametrization of  then  and  have the same length. More specifically, if

,     then

   L [ (c), (d)] L [c,d] .   

Definition 4. Let  be a regular curve. We say that  is parametrized by arc length if ' 1 

Note that this is equivalent to the condition that for all t  I = [a, b] we have:

 L [a, t] t a.  

Furthermore, any regular curve can be parametrized by arclength. Indeed, if  is a regular curve,
then the function

t

a

s(t) ' , 

is strictly monotone increasing. Thus, s(t) has an inverse function (s) function, satisfying:

d 1
.

ds '




It is now straightforward to check that      is parametrized by arclength.

7 .2 Local Theory for Curves in 3

We will assume throughout this section that 3: I    is a regular curve in 3 parametrized by

arclength and that " 0.   Note that ' " 0.   

Definition 5. Let 3: I    be a curve in 3. The unit vector T '   is called the unit tangent of

. The curvature  is the scalar " .    The unit vector N = k-1 T� is called the principal normal.

The binormal is the unit vector B = T × N. The positively oriented orthonormal frame (T, N, B)
is called the Frenet frame of .

It is not difficult to see that N� + T is perpendicular to both T and N, hence, we can define the
torsion  of  by: N� + T = B. Note that the torsion, unlike the curvature, is signed. Finally, it is
easy to check that B� = �N. Let X denote the 3 × 3 matrix whose columns are (T, N, B). We will call
X also the Frenet frame of . Define the rotation matrix of :

0 0

: 0

0 0

 
 

    
  

                       ...(1)
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X� = X.                                                             ...(2)

The Frenet frame equations, Equation (2), form a system of nine linear ordinary differential
equations.

Definition 6. A rigid motion of 3 is a function of the form R(x) = x
0
 + Qx where Q is orthonormal

with det Q = 1.

Note that if X is the Frenet frame of  and R(x) = x
0
 + Qx is a rigid motion of 3, then QX is the

Frenet frame of R .   This follows easily from the fact that Q is preserves the inner product and

orientation of 3.

Theorem 1 (Fundamental Theorem). Let  > 0 and  be smooth scalar functions on the interval [0,
L]. Then there is a regular curve  parametrized by arclength, unique up to a rigid motion of 3,
whose curvature is  and torsion is .

Proof. Let  be given by (1). The initial value problem

X� = X,

X(0) = I

can be solved uniquely on [0,L]. The solution X is an orthogonal matrix with det X = 1 on [0, L].
Indeed, since  is anti-symmetric, the matrix A = XXt is constant. Indeed,

A� = X Xt + Xt Xt = X( + t)Xt = 0,

and since A(0) = I, we conclude that A  I, and X is orthogonal. Furthermore, detX is continuous,

and detX(0) = 1, so detX = 1 on [0,L]. Let (T,N,B) be the columns of X, and let T,    then (T, N,

B) is orthonormal and positively oriented on [0, L]. Thus,  is parametrized by arclength, ' T, 

and N = k-1 T� is the principal normal of . Similarly, B is the binormal, and consequently,  is the
curvature of  and  its torsion.

Now suppose that   is another curve with curvature  and torsion , and let X  be its Frenet

frame. Then there is a rigid motion R(x) = Qx + x
0
 of 3 such that  R (0) (0),  and QX(0) X(0).   

By the remark preceding the theorem, QX is the Frenet frame of the curve R ,   and thus, both

QX and X  satisfy the initial value problem:

Y� = Y,

Y(0) = QX(0).

By the uniqueness of solutions of the initial value problem, it follows that QX X.  In particular,

(R )' ',     and since R (0) (0)     we conclude R .   

Assuming (0) 0,   the Taylor expansion of  of order 3 at s = 0 is:

2 3 41 1
(s) '(0)s "(0)s "'(0)s O(s ).

2 6
       

Denote T
0
 = T(0), N

0
 = N(0), B

0
 = B(0), 

0
 = (0), and 

0
 = (0). We have 0 0 0'(0) T , "(0) N ,     and

 0 0 0 0 0"'(0) '(0)N k T B .         Substituting these into the equation above, decomposing

into T, N, and B components, and retaining only the leading order terms, we get:

      3 2 3 3 4(s) s O s T s O s N s O s B
2 6
    

            
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(1) T and N � the osculating plane;

(2) N and B � the normal plane;

(3) T and B � the rectifying plane.

We see that to second order the curve stays within its osculating plane, where it traces a parabola

y = (k/2) s2. The projection onto the normal plane is a cusp to third order:  
2 /3

x (3 /2)y .   The

projection onto the rectifying plane is to second order a line, whence its name.

Here are a few simple applications of the Frenet frame.

Theorem 2. Let  be a regular curve with k  0. Then  is a straight line.

Proof. Since T' k 0,   it follows that T is constant and  is linear.

Theorem 3. Let  be a regular curve with k > 0, and  = 0. Then  is planar.

Proof. Since B� = 0, B is constant. Thus the function  (0) .      B vanishes identically:

(0) 0, T B 0.     

It follows that remains in the plane through (0) perpendicular to B.

Theorem 4. Let be a regular curve with k constant and  = 0. Then  is a circle.

Proof. Let b =  + k-1 N. Then

1
' T ( kT B) 0.

k
      

Thus,  is constant, and 1k .     It follows that  lies in the intersection between a plane and

a sphere, thus  is a circle.

7 .3 Plane Curves

7 .3.1 Local Theory

Let 2: [a,b]    be a regular plane curve parametrized by arclength, and let k be its curvature.

Note that k is signed, and in fact changes sign (but not magnitude) when the orientation of  is
reversed. The Frenet frame equations are:

1 2 2 1e ke , e ke   

Proposition 2. Let 2: [a,b]    be a regular curve with ' 1.   Then there exists a differentiable

function : [a,b]    such that

e
1
 = (cos , sin ).                                                              ...(3)

Moreover,  is unique up to a constant integer multiple of 2, and in particular (b) � (a) is
independent of the choice of . The derivative of  is the curvature:  = k.
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0
 < t

1
 < · · · < t

n
 = b be a partition of [a, b] so that the diameter of e

1
([t

i-1
, t

i
]) is less

than 2, i.e., e
1
 restricted to each subinterval maps into a semi-circle. Such a partition exists since

e
1
 is uniformly continuous on [a, b]. Choose (a) so that (3) holds at a, and proceed by induction

on i: if  is defined at t
i
 then there is a unique continuous extension so that (3) holds. If  is any

other continuous function satisfying (3), then k (1/2 )( )     is a continuous integer-valued

function, hence is constant. Finally, e
2
 = (�sin , cos ) hence

1 2e ke ( sin ,cos ),      

and we obtain  = k.

7 .3.2 Global Theory

Definition 7. A curve n: [a,b]    is closed if (k ) (k )(a) (b).    A closed curve n: [a,b]    is

simple if (a ,b)  is one-to-one. The rotation number of a smooth closed curve is:

 
1

n (a) (b) ,
2    


                       ...(4)

where  is the function defined in Proposition 2.

We note that the rotation number is always an integer. For reference, we also note that the
rotation number of a curve is the winding number of the map e

1
. Finally, in view of the last

statement in Proposition 2, we have:

[0 ,L]

1
n k ds.

2 
 

Theorem 5 (Rotation Theorem). Let 2: [0,L]    be a smooth, regular, simple, closed curve.

Then n 1.    In particular,

[0 ,L]

1
k ds 1.

2
 

 

For the proof, we will need the following technical lemma. We say that a set n    is star-

shaped with respect to 0x   if for every y  the line segment 0x y  lies in .

Lemma 1. Let n    Rn be star-shaped with respect to 0x ,  and let 1e :     be a continuous

function. Then there exists a continuous function :    such that:

e = (cos , sin ).           ...(5)

Moreover, if  is another continuous function satisfying (5), then     2 k  where k is a

constant integer.

In fact, it is sufficient to assume that  is simply connected, but we will not prove this more
general result here.

Proof. Define (x
0
) so that (5) holds at x

0
. For each x , define  continuously along the line

segment 0x x  as in the proof of Proposition 2. Since  is star-shaped with respect to x
0
, this
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compact, it is possible to choose  small enough that the following holds: 0 0y' x y  and y y'  

implies e(y) e(y') 2   or equivalently e(y) and e(y�) are not antipodal. Let 0 <  < . Then there

exists a neighborhood 0U B (y )  of y
0
 such that y  U implies 0(y) (y ) 2 k(y) '(y)      

where '(y)  and k(y)    is integer-valued. It remain to prove that k  0. Let y  U and consider

the continuous function:

   0 0 0 0(s) x s(y x ) x0 s(y x ) , 0 s 1.          

Since

 0 0 0 0 0 0x s(y x ) (x s(y x )) s(y y ) ,        

it follows from our choice of  that    0 0 0 0 0e x s(y x )  and e x s(y x )     are not antipodal.

Thus, (s)    for all 0 s 1,   and since (0) = 0 we conclude that .    In particular,

02 k(y) '(y) (y) (y ) (1) ,          

and it follows that

2 k(y) 2 k(y) '(y) '(y) 2 .        

Since k(y) is integer-valued this implies k(y) = 0.

Proof of the Rotation Theorem. Pick a line which intersects the curve  and pick a last point p on
this line, i.e., a point with the property that one ray of the line from p has no other intersection
points with . Let h be the unit vector pointing in the direction of that ray. We assume without

loss of generality that  is parametrized by arclength, (0) (L) 0.     Now, let

 2
1 2 1 2(t ,t ) : 0 t t L ,       and note that  is star-shaped. Define the 1-valued function:

1 1 2

1 2 1 2

2 1

2 1

'(t ) if t t ;

e(t , t ) '(0) if (t , t ) (0,L);

(t ) (t )
otherwise.

(t ) (t )



 



  
   

  

It is straightforward to check that e is continuous on . By the Lemma, there is a continuous

function :    such that e = (cos , sin ). We claim that (L,L) � (0, 0) = ±2 which proves the
theorem, since (t, t) is a continuous function satisfying (3) in Proposition 6, and thus can be used
on the right-hand side of (4) to compute the rotation number.

To prove this claim, note that, for any 0 < t < L, the unit vector

(t) (0)
e(0, t)

(t) (0)

  

  

is never equal to h. Hence, there is some value  such that (0, t) � (0, 0)  + 2k for any integer

k. Thus, (0, t) (0,0) 2 ,      and since e(0,L) = �e(0, 0) it follows that (0,L) � (0, 0) = ±.
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rotation by , it follows that            (t) (t,L) (0,L) (0, t) (0,0)  is a constant. Since clearly

 (0) 0,  we get (0, L) � (0, 0) = (L,L) � (0,L), and we conclude:

   (L,L) (0,0) (t,L) (0,L) (0, t) (0,0) 2 .             

Definition 8. A piecewise smooth curve is a continuous function n: [a,b]    such that there is

a partition of [a, b]:

a = a
0
 < a

1
 < · · · < b

n
 = b

such that for each 1  j  n the curve segment j j 1 ja ,a
       is smooth. The points j(a )  are

called the corners of . The directed angle     j  from j j'(a ) to '(a )     is called the exterior

angle at the j-th corner. Define j j 1 j: [a ,a ]   as in Proposition 2, i.e., so that  j j j' cos ,sin .   

The rotation number of  is given by:

  

 

     
 
 

n n

j j j j 1 j
j 1 j 1

1 1
n (a ) (a ) .

2 2

Again, n

 is an integer, and we have:





  
 


n

j
j 1[a ,b]

1 1
n k ds .

2 2

The Rotation Theorem can be generalized to piecewise smooth curves provided corners are
taken into account.

Theorem 6. Let 2: [0,L]    be a piecewise smooth, regular, simple, closed curve, and assume

that none of the exterior angles are equal to . Then n 1.  

7 .3.3 Convexity

Definition 9. Let 2: [0,L]    be a regular closed plane curve. We say that  is convex if for each

t
0
  [0, L] the curve lies on one side only of its tangent at t

0
, i.e., if one of the following inequality

holds:

  2(t0) e 0,    

  2(t0) e 0,    

Theorem 7. Let 2: [0,L]    be a regular simple closed plane curve, and let k be its curvature.

Then  is convex if and only if either k  0 or k  0.

We note that an orientation reversing reparametrization of  changes k  0 into k  0 and vice
versa. Thus, ignoring orientation, those two conditions are equivalent. We also note that the
theorem fails if  is not assumed simple.
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function given in Proposition 2 satisfying:

e
1
 = (cos , sin ),

and � = k.

Suppose that  is convex. We will show that  is weakly monotone, i.e., if t
1
 < t

2
 and (t

1
) = (t

2
) then

 is constant on [t
1
, t

2
]. First, we note that since  is simple, we have n 1    by the Rotation

Theorem, and it follows that e
1
 is onto 1, see Exercise 5. Thus, there is t

3
  [0,L] such that

e
1
(t

3
) = �e

1
(t

1
) = �e

1
(t

2
).

By convexity, the three parallel tangents at t
1
, t

2
, and t

3
 cannot be distinct, hence at least two must

coincide. Let 1 1p (s )   and 2 2 1 2p (s ),s s    denote these two points, then the line 1 2p p  is

contained in . Otherwise, if q is a point on 1 2p p  not on , then the line through q perpendicular

to 1 2p p  intersects  in at least two points r and s, which by convexity must lie on one side of

1 2p p .  Without loss of generality, assume that r is the closer of the two to 1 2p p .  Then r lies in the

interior of the triangle p
1
p

2
s. Regardless of the inclination of the tangent at r, the three points p

1
,

p
2
 and s, all belonging to , cannot all lie on one side of the tangent, in contradiction to convexity.

If  1 2 1 2p p (s) : s s s ,     then    1 2 2 1p p (s) : s s L (s) : 0 s s .         However, in that

case, we would have (s
2
) � (s

1
) = (L) � (0) = 2, a contradiction. Thus, we have

   1 2 1 2 1 2p p (s) : s s s (t) : t t t .       

In particular (t) = (t
1
) = (t

2
).

Conversely, suppose that  is not convex. Then, there is t
0
  [0, L] such that the function

 0 2(t ) e       changes sign. We will show that � also changes sign. Let t
+
, t
�
  [0,L] be such

that

0
[0,L] [0 ,L]
min (t ) 0 (t ) (t ) max .          

Note that the three tangents at t
�
, t

+
 and t

0
 are parallel but distinct. Since '(t ) '(t ) 0,      we

have that e
1
(t
�
) and e

1
(t

+
) are both equal to ±e

1
(t

0
).

Thus, at least two of these vectors are equal. We may assume, after reparametrization, that there
exists 0 < s < L such that e

1
(0) = e

1
(s). This implies that

(s) � (0) = 2k, (L) � (s) = 2k

with k, k  . By the Rotation Theorem, n k k 1.       Since (0) and (s)   do not lie on a line

parallel to e
1
(t

0
), it follows that  is not constant on either [0, s] or [0, L]. If k = 0 then  changes sign

on [0, s], and similarly if k = 0 then changes sign on [s, L]. If kk 0, then since k + k = ±1, it
follows that kk < 0 and  changes sign on [0, L].

Definition 8. Let 2: [0,L]    be a regular plane curve. A vertex of  is a critical point of the

curvature k.

Theorem 11 (The Four Vertex Theorem). A regular simple convex closed curve has at least four
vertices.

Proof. Clearly, k has a maximum and minimum on [0,L], hence  has at least two vertices. We
will assume, without loss of generality, that  is parametrized by arclength, has its minimum at
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Notes t = 0, its maximum at t = t
0
 where 0 < t

0
 < L, that 0(0) and (t )   lie on the x-axis, and that  enters

the upper-half plane in the interval [0, t
0
]. All these properties can be achieved by reparametrizing

and rotating .

We now claim that 0p (0) and q (t )     are the only points of  on the x-axis. Indeed, suppose

that there is another point 1r (t )   on the x-axis, then one of these points lies between the other

two, and the tangent at that point must, by convexity, contain the other two. Thus, by the
argument used in the proof of Theorem 10 the segment between the outer two is contained in ,

and in particular pq  is contained in . If follows that k  0 at p and q where k has its minimum

and maximum, hence k  0, a contradiction since then  is a line and cannot be closed. We
conclude that  remains in the upper half-plane in the interval [0, t

0
] and remains in the lower

half-plane in the interval [t
0
, L].

Suppose now by contradiction that 0(0) and (t )   are the only vertices of . Then it follows that:

k  0 on [0, t
0
], k0 on [t

0
, L].

Thus, if we write  = (x, y), then we have k y  0 on [0, L], and x = �ky, hence:

L L L

0 0 0
0 x ds ky ds k y ds.         

Since the integrand in the last integral is non-negative, we conclude that ky  0, hence y  0,
again a contradiction.

It follows that k has another point where k changes sign, i.e., an extremum.

Since extrema come in pairs, k has at least four extrema.

7 .4 Fenchel�s Theorem

We will use without proof the fact that the shortest path between two points on a sphere is
always an arc of a great circle. We also use the notation 

1
 + 

2
 to denote the curve 

1
 followed by

the curve 
2
.

Definition 11. Let n: [0,L]    be a regular curve parametrized by arclength. The spherical

image of  is the curve n 1: [0,L] .
     The total curvature of n: [0,L]    is:

I
K ds.  

We note that the total curvature is simply the length of the spherical image.

Theorem 9. Let  be a regular simple closed curve in n parametrized by arclength. Then the total
curvature of  is at least 2:

K

 2,

with equality if and only if  is planar and convex.

The proof will follow from two lemmata which are interesting in their own right.

Lemma 2. Let n: [0,L]    be a regular closed curve parametrized by arclength. Then the

spherical image of  cannot map into an open hemisphere. If  maps into a closed hemisphere,
then  maps into an equator.
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Then

L

0 0
0 L ds 0.             

If 0,     then the same inequality shows that 0,     hence,  lies in the plane perpendicular

to  through (0).

Lemma 3. Let n  3, and let n 1: [0,L]     be a regular closed curve on the unit sphere

parametrized by arclength.

1. If the arclength of  is less than 2 then  is contained in an open hemisphere.

2. If the arclength of  is equal to 2then  is contained in a closed hemisphere.

Proof

1. First observe that no piecewise smooth curve of arclength less than 2 contains two antipodal
points. Otherwise the two segments of the curve between p and q would each have length
at least , and hence, the length of the curve would have to be at least 2. Now pick a point
p on  and let q on  be chosen so that the two segments 

1
 and 

2
 from p to q along  have

equal length. Note that p and q cannot be antipodal. Let  be the midpoint along the
shorter of the two segments of the great circle between p and q. Suppose that 

1
 intersects

the equator, the great circle x 0.   Let  1 be the reflection of  with respect to , then the

length of 
1 1    is the same as the length of  hence is less than 2. But 

1 1    contains

two antipodal points, a contradiction. Thus, 
1
 cannot intersect the equator. Similarly, 

2

cannot intersect the equator, and we conclude  stays in the open hemisphere x 0. 

2. If the arclength of  is 2, we refine the above argument. If p and q are antipodal, then both


1
 and 

2
 are great semi-circle, thus,  stays in a closed hemisphere.1 So we can assume that

p and q are not antipodal and proceed as before, defining  to be the midpoint on the

shorter arc of the great circle between p and q. Now, if 
1
 crosses the equator, then 

1 1  

contains two antipodal points on the equator, and the two segments joining these points
enter both hemispheres. Thus, these segments are not semi-circle, and consequently both

have arclength strictly greater than . Thus the arclength of 
1 1    is strictly larger than

2 a contradiction. Similarly, 
2
 does not cross the equator, and we conclude that  stays in

the closed hemisphere x 0. 

Proof of Fenchel�s Theorem. Note that the total curvature is simply the arclength of the spherical
image of . By Lemma 2  is not contained in an open hemisphere, so by Lemma 3

I
K ds 2 .    

If the arclength of  is 2, then by Lemma 3,  is contained in a closed hemisphere, and by
Lemma 2,  maps into an equator. If n > 3, we may proceed by induction until we obtain that is

planar. Once we have that  is planar, the Rotation Theorem gives n 1.    Without loss of

generality,2 we may assume that n 1.   Hence,

1 In fact, since  is smooth, 1 and 1 are contained in the same great circle, and hence  is itself a great
circle.

2 Reversing the orientation of  if necessary
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 

I
0 k k ds K 2 0,     

and it follows that k k 0,   which by Theorem 7 implies that  is convex.

7 .5 Summary

 Definition 1. A parametrized curve is a smooth (C) function n: I .g ®   A curve is regular if

' 0.g ¹

When the interval I is closed, we say that  is C on I if there is an interval J and a C

function  on J which agrees with  on I.

 Definition 2. Let n: Ig ®   be a parametrized curve, and let n: Jb ®   be another

parametrized curve. We say that  is a reparametrization (orientation preserving

reparametrization) of  if there is a smooth map : J It ®  with ' 0t >  such that .b = g t

 Definition 4. Let  be a regular curve. We say that  is parametrized by arclength if ' 1 

Note that this is equivalent to the condition that for all t  I = [a, b] we have:

 L [a, t] t a.  

Furthermore, any regular curve can be parametrized by arclength. Indeed, if  is a regular
curve, then the function

t

a

s(t) ' , 

 Definition 5. Let 3: I    be a curve in 3. The unit vector T '   is called the unit

tangent of . The curvature  is the scalar " .    The unit vector N = k-1 T� is called the

principal normal. The binormal is the unit vector B = T × N. The positively oriented
orthonormal frame (T, N, B) is called the Frenet frame of .

 Theorem 3. Let  be a regular curve with k  0. Then  is a straight line.

Proof. Since T' k 0,   it follows that T is constant and  is linear.

 Theorem 4. Let  be a regular curve with k > 0, and  = 0. Then  is planar.

Proof. Since B� = 0, B is constant. Thus the function  (0) .      B vanishes identically:

(0) 0, T B 0.     

It follows that remains in the plane through (0) perpendicular to B.

 Theorem 5. Let be a regular curve with k constant and  = 0. Then  is a circle.

Proof. Let b =  + k-1 N. Then

1
' T ( kT B) 0.

k
      

Thus,  is constant, and 1k .     It follows that  lies in the intersection between a

plane and a sphere, thus  is a circle.
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Notes7 .6 Keywords

Parametrized curve: A parametrized curve is a smooth (C) function n: I .g ®   A curve is

regular if ' 0.g ¹

Frenet frame equations. The Frenet frame X = (T, N, B) of a curve in 3 satisfies: (1.2) X� = X. The
Frenet frame equations, form a system of nine linear ordinary differential equations.

Fundamental Theorem: Let  > 0 and  be smooth scalar functions on the interval [0, L]. Then
there is a regular curve  parametrized by arclength, unique up to a rigid motion of 3, whose
curvature is  and torsion is .

7 .7 Self Assessment

1. A ................ is a smooth (C) function n: I .g ®   A curve is regular if ' 0.g ¹

2. Let 3: I    be a curve in 3. The unit vector T '   is called the ................ of . The

curvature  is the scalar " .  

3. The Frenet frame X = (T, N, B) of a curve in 3 satisfies: (1.2) X� = X. The ................,
Equation (1.2), form a system of nine linear ordinary differential equations.

4. A rigid ................ is a function of the form R(x) = x
0
 + Qx where Q is orthonormal with det

Q = 1.

7 .8 Review Questions

1. A regular space curve 3: [a,b]   is a helix if there is a fixed unit vector 3u  such that

1e u  is constant. Let k and  be the curvature and torsion of a regular space curve , and

suppose that k  0. Prove that  is a helix if and only if  = ck for some constant c.

2. Let 4: I   be a smooth curve parameterized by arclength such that , ,      are

linearly independent. Prove the existence of a Frenet frame, i.e., a positively oriented
orthonormal frame X = (e

1
, e

2
, e

3
, e

4
) satisfying e

1
 = , and X = Xw, where w is anti-

symmetric, tri-diagonal, and w
i,i+1

 > 0 for i  n � 2. The curvatures of  are the three
functions k

i
 = w

i,i+1
, i = 1, 2, 3. Note that k

1
, k

2
 > 0, but k

3
 has a sign.

3. Prove the Fundamental Theorem for curves in 4: Given functions k
1
, k

2
, k

3
 on I with k

1
, k

2

> 0, there is a smooth curve  parameterized by arclength on I such that k
1
, k

2
, k

3
 are the

curvatures of . Furthermore,  is unique up to a rigid motion of 4.

4. Let 2: [a,b]   be a regular plane curve with non-zero curvature k  0, and let

 + k-1 N be the locus of the centers of curvature of .

(a) Prove that  is regular provided that k = 0.

(b) Prove that each tangent  of  intersects  at a right angle.

(c) Prove that each regular plane curve 2: [a,b]   has at most one evolute.
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Notes 5. A convex plane curve 2: [a,b]   is strictly convex if k  0. Prove that if 2: [a,b]   is

a strictly convex simple closed curve, then for every 1 ,  there is a unique t [a,b]  such

that e
1
(t) = .

6. Let 2: [0,L]   be a strictly convex simple closed curve. The width w(t) of  at t [0,L]

is the distance between the tangent line at (t)  and the tangent line at the unique point

(t )   satisfying 1 1e (t ) e (t)  . A curve has constant width if w is independent of t. Prove

that if  has constant width then:

(a) The line between (t) and (t )    is perpendicular to the tangent lines at those points.

(b) The curve  has length L = w.

7. Let 2: [0,L]   be a simple closed curve. By the Jordan Curve Theorem, the complement

of  has two connected components, one of which is bounded. The area enclosed by  is the
area of this component, and according to Green�s Theorem, it is given by:

A x dy xy dt,
 

   

where the orientation is chosen so that the normal e
2
 points into the bounded component.

Let L be the length of , and let  be a circle of width 2r equal to some width of . Prove:

(a)  
1

A xy yx dt.
2 

  

(b) A + r2  Lr.

(c) The isoperimetric inequality: 4A  L2.

(d) If equality holds in (3) then  is a circle.

8. Prove that if a convex simple closed curve has four vertices, then it cannot meet any circle
in more than four points.

Answers: Self Assessment

1. parametrized curve

2. unit tangent

3. Frenet frame equations

4. motion of 3

7 .9 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati, T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable
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8 .7 Self Assessment
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Objectives

After studying this unit, you will be able to:

 Define Preliminaries

 Explain Tangent Bishop Spherical Images

 Identify M
1
 and M

2
 Bishop

Introduction

In the existing literature, it can be seen that, most of classical differential geometry topics have
been extended to Lorentzian manifolds. In this process, generally, researchers used standard
moving Frenet-Serret frame. Using transformation matrix among derivative vectors and frame
vectors, some of kinematical models were adapted to this special moving frame. Researchers
aimed to have an alternative frame for curves and other applications. Bishop frame, which is
also called alternative or parallel frame of the curves, was introduced by L.R. Bishop in 1975 by
means of parallel vector fields.

Spherical images of a regular curve in the Euclidean space are obtained by means of Frenet-
Serret frame vector fields, so this classical topic is a well-known concept in differential geometry
of the curves. In the light of the existing literature, this unit aims to determine new spherical
images of regular curves using Bishop frame vector fields. We shall call such curves, respectively,
Tangent, M

1
 and M

2
 Bishop spherical images of regular curves. Considering classical methods,

we investigated relations among Frenet-Serret invariants of spherical images in terms of Bishop
invariants. Additionally, two examples of Bishop spherical indicatrices are presented.

Richa Nandra, Lovely Professional University
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Notes8 .1 Preliminaries

To meet the requirements in the next sections, here, the basic elements of the theory of curves in
the space E3 are briefly presented; a more complete elementary treatment can be found further.

The Euclidean 3-space E3 provided with the standard flat metric given by

2 2 2
1 2 3, dx dx dx ,  

where (x
1
, x

2
, x

3
) is a rectangular coordinate system of E3. Recall that, the norm of an arbitrary

vector a  E3 is given by a a,a .   is called a unit speed curve if velocity vector v of 

satisfies v  = 1. For vectors v, w  E3 it is said to be orthogonal if and only if v,w 0.  Let

v = v(s) be a regular curve in E3. If the tangent vector of this curve forms a constant angle with a
fixed constant vector U, then this curve is called a general helix or an inclined curve. The sphere
of radius r > 0 and with center in the origin in the space E3 is defined by

2 3 2
1 2 3S = {p = (p ; p ; p ) E : p; p = r }.

Denote by {T, N, B} the moving Frenet-Serret frame along the curve  in the space E3. For an
arbitrary curve  with first and second curvature, K and T in the space E3, the following Frenet-
Serret formulae are written under matrix form

0 0KT' T

0N' K T N ,

0 0TB' B

    
    

     
    

    

where

T,T N,N B,B 1,  

T,N = T,B = T,N = N,B = 0.

Here, curvature functions are defined by K = K(s) = T'(s)  and T(s) = N,B .

Let u = (u
1
, u

2
, u

3
), v = (v

1
, v

2
, v

3
) and w = (w

1
,w

2
,w

3
) be vectors in E3 and e

1
, e

2
, e

3
 be positive

oriented natural basis of E3. Cross product of u and v is defined by

u × v = 
31 2

31 2

31 2

ee e

uu u .

vv v

Mixed product of u; v and w is defined by the determinant

[u, v, w] = 
31 2

31 2

31 2

uu u

vv v .

ww w

Torsion of the curve  is given by the aid of the mixed product

 
2

', '', '''
T .

K

  

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Notes The Bishop frame or parallel transport frame is an alternative approach to defining a moving
frame that is well defined even when the curve has vanishing second derivative. One can express
parallel transport of an orthonormal frame along a curve simply by parallel transporting each
component. The tangent vector and any convenient arbitrary basis for the remainder of the
frame are used.

1 2
'
1 1 1
'
2 2 2

k k0T' T
M k M .0 0
M k M0 0

     
     

      
         

(1)

Here, we shall call the set {T, M
1
, M

2
} as Bishop trihedra and k

1
 and k

2
 as Bishop curvatures. The

relation matrix may be expressed as

1

2

0 0T 1 T
cos (s) sin (s)N 0 M ,
sin (s) cos (s)0 MB

     
           
           

where (s) = arctan 2

1

k
,

k
 T(s) = �(s) and k(s) = 2 2

1 2k k .  Here, Bishop curvatures are defined by

1

2

k = K cos µ(s)
.

k = K sin µ(s)




Izumiya and Takeuchi have introduced the concept of slant helix in the Euclidean 3-space E3

saying that the normal lines makes a constant angle with a fixed direction. They characterized a
slant helix by the condition that the function

'2

2 2 3 /2

k T
(k t ) K

 
 

  

is constant. In further researches, spherical images, the tangent and the binormal indicatrix and
some characterizations of such curves are presented. In the same space, the authors defined and
gave some characterizations of slant helices according to Bishop frame with the following
definition and theorem:

Definition 1. A regular curve  : I  E3 is called a slant helix according to Bishop frame provided
the unit vector M

1
(s) of  has constant angle  with some fixed unit vector u; that is,

1M , u  = cos 

for all s  I.

Theorem 1. Let  : I  E3 be a unit speed curve with nonzero natural curvatures. Then  is a slant
helix if and only if

1

2

k
constant.

k


To separate a slant helix according to Bishop frame from that of Frenet-Serret frame, in the rest
of the paper, we shall use notation for the curve defined above as �B-slant helix�.
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NotesIt is well-known that for a unit speed curve with non-vanishing curvatures the following
propositions hold:

Proposition 1. Let  = (s) be a regular curve with curvatures K and T. The curve  lies on the
surface of a sphere if and only if

''T 1 1
0.

K T K

  
   

   

Proposition 2. Let  = (s) be a regular curve with curvatures K and T.  is a general helix if and
only if

K
constant.

T


Proposition 3. Let  = (s) be a regular curve with curvatures K and T.  is a slant helix if and only
if

2

3
2 2 2

k T
(s) ' constant.

K
(K T )

 
       

  

8 .2 Tangent Bishop Spherical Images of a Regular Curve

Definition 2. Let  = (s) be a regular curve in E3. If we translate of the first (tangent) vector field
of Bishop frame to the center O of the unit sphere S2, we obtain a spherical image  = (s


). This

curve is called tangent Bishop spherical image or indicatrix of the curve  = (s).

Let  = (s

) be tangent Bishop spherical image of a regular curve  = (s). One can differentiate of

 with respect to s :

1 1 2 2

dsd
'= k M K M .

ds ds





  

Here, we shall denote differentiation according to s by a dash, and differentiation according to
s

 by a dot. In terms of Bishop frame vector fields, we have the tangent vector of the spherical

image as follows:

1 1 2 2

2 2
1 2

k M k M
T ,

k k







where

2 2
1 2

ds
k k k(s).

ds

  

In order to determine the first curvature of , we write

' '3 3
2 1 1 2

1 22 2 2 2 2 2
1 2 2 1 2 1

k k k k
T T M M .

(k k ) k (k k ) k

   
      

    


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2 2' '3 3
2 1 1 2

2 2 2 2 2 2
1 2 2 1 2 1

k k k k
K T 1 .

(k k ) k (k k ) k 

      
         

          

 (2)

Therefore, we have the principal normal

' '3 3
2 1 1 2

1 22 2 2 2 2 2
1 2 2 1 2 1

1 k k k k
N T M M .

K (k k ) k (k k ) k



     
       

      

By the cross product of T

 × N


, we obtain the binormal vector field

B

 = 

' '4 4
1 2 2 1 2 1

1 25 5 2 2 2 2
2 2 2 21 22 2 1 2 1 2
1 2 1 2

1 k k k k k k
� T M M .

K k k k k k k(k k ) (k k )

                                     

By means of obtained equations, we express the torsion of the tangent Bishop spherical image

' ' ' 2 2 " 2 2 ' ' ' 2 2 " 2 2
1 2 1 1 2 2 1 2 2 2 1 2 2 1 1 1 2 2 1 2 1 1 1 2

2'

2 2 2 32
1 1 2

1

( k {3k (k k k k ) (k k )[k k (k k )]} k {3k (k k k k ) (k k )[k k (k k )}
T

k
k (k k )

k



           


  
   

   

 (3)

Consequently, we determined Frenet-Serret invariants of the tangent Bishop spherical indicatrix
according to Bishop invariants.

Corollary 1. Let  = (s

) be the tangent Bishop spherical image of a regular curve  = (s).

If  = (s) is a B-slant helix, then the tangent spherical indicatrix  is a circle in the osculating
plane.

Proof. Let  = (s

) be the tangent Bishop spherical image of a regular curve  = (s): If  = (s) is a

B-slant helix, then Theorem 1 holds. So, 1

2

k
constant.

k
  Substituting this to equations (2) and (3),

we have K

 = constant and T


 = 0, respectively. Therefore,  is a circle in the osculating plane.

Remark 1. Considering 
s

0

= T ds


     and using the transformation matrix, one can obtain the

Bishop trihedra {T

, M

1
, M

2
} of the curve  = (s


).

Here, one question may come to mind about the obtained tangent spherical image, since, Frenet-
Serret and Bishop frames have a common tangent vector field. Images of such tangent images
are the same as we shall demonstrate in subsequent section. But, here we are concerned with the
tangent Bishop spherical image�s Frenet-Serret apparatus according to Bishop invariants.

8 .3 M
1
 Bishop Spherical Images of a Regular Curve

Definition 3. Let  = (s) be a regular curve in E3. If we translate of the second vector field of
Bishop frame to the center O of the unit sphere S2, we obtain a spherical image  = (s


). This curve

is called M
1
 Bishop spherical image or indicatrix of the curve  = (s).
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NotesLet  = (s

) be M

1
 Bishop spherical image of a regular curve  = (s). We follow the same

procedure to investigate the relations among Bishop and Frenet-Serret invariants. Thus, we
differentiate

1

d ds
' k T.

ds ds





   

First, we have

T

 = T and 1

ds
k .

ds
    (4)

So, one can calculate

'
1 1 2 2

ds
T T k M k M

ds


   

or

' 2
1 2

1

k
T M M .

k   

Since, we express

2

2

1

k
K T 1

k 

 
    

 

  (5)

and

1 2
2

1

M k
N M .

K k K

 

  

Cross product of T

 × N


 gives us the binormal vector field of M

1
 spherical image of  = (s)

2
1 2

1

k 1
B M M .

k K K

 

 

Using the formula of the torsion, we write

'

2
1

1
2 2
1 2

k
k

k
T .

k k

 
 
 

 


 (6)

Considering equations (5) and (6) by the Theorem 1, we get:

Corollary 2. Let  = (s

) be the M

1
 Bishop spherical image of the curve  = (s). If  = (s) is a

B-slant helix, then, the M
1
 Bishop spherical indicatrix (s


) is a circle in the osculating plane.

Theorem 2. Let  = (s

) be the M

1
 Bishop spherical image of a regular curve  = (s). There exists

a relation among Frenet-Serret invariants (s

) and Bishop curvatures of  = (s) as follows:

s
22

1 0

k
K T ds .

k



     (7)
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Notes Proof. Let  = (s

) be M

1
 Bishop spherical image of a regular curve  = (s). Then, the equations

(4) and (6) hold. Using (4) in (6), we have

2
1

1
2 2
1 2

d k ds
k

ds k ds
T .

k k







 
 
 

 


 (8)

Substituting (5) to (8) and integrating both sides, we have (7) as desired.

In the light of the Propositions 2 and 3, we state the following theorems without proofs:

Theorem 3. Let  = (s

) be M

1
 Bishop spherical image of a regular curve  = (s). If  is a general

helix, then, Bishop curvatures of  satisfy

'

2 2
1

1
3

2 2 2
1 2

k
k

k
constant.

(k k )

 
 
 





Theorem 4. Let  = (s

) be the M

1
 Bishop spherical image of a regular curve  = (s). If  is a slant

helix, then, the Bishop curvatures of  satisfy

''

2 2
1 2 2 4

1 1 2
3 3

'22 2 2 2
1 2 3 2 2 32

1 1 2
1

k
k

k (k k )
constant.

(k k ) k
k (k k )

k

  
  

    
    

      
   

We know that  is a spherical curve, so, by the Proposition 3 one can prove.

Theorem 5. Let  be the M
1
 Bishop spherical image of a regular curve  = (s). The Bishop

curvatures of the regular curve  = (s) satisfy the following differential equation

'

2 2 '
1

1 1 2
3 2 2

2 2 2 1 2
1 2

k
k

k k k
constant.

k k(k k )

 
   
 

  
  

Remark 2. Considering 

 = 

s

0

T ds


   and using the transformation matrix, one can obtain the

Bishop trihedra {T

, M

1
, M

2
} of the curve  = (s


).

8 .4 M
2
 Bishop Spherical Images of a Regular Curve

Definition 11. Let  = (s) be a regular curve in E3. If we translate of the third vector field of
Bishop frame to the center O of the unit sphere S2, we obtain a spherical image of  = (s


). This

curve is called the M
2
 Bishop spherical image or the indicatrix of the curve  = (s).

Let  = (s

) be M

2
 spherical image of the regular curve  = (s): We can write

2

dsd
' k T.

ds ds





   
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1
 Bishop spherical image, one can have

T

 = T and 2

ds
k .

ds

   (9)

So, by differentiating of the formula (9), we get

'
1 1 2 2

ds
T T k M k M

ds


    

or, in another words,

' 1
1 2

2

k
T M M ,

k   

since, we express

2

1
y

2

k
k T 1

k

 
    

 

            (10)

and

1 2
1

2

k M
N M .

k K K

 

  

The cross product T

 × N


 gives us

1
1 2

2

1 k
B M M .

K k K

 

  

By the formula of the torsion, we have

'

1
2

2
2 2
1 2

k
k

k
T .

k k

 
 
 




           (11)

In terms of equations (10) and (11) and by the Theorem 2, we may obtain:

Corollary 3. Let  = (s

) be the M

2
 spherical image of a regular curve  = (s). If  = (s) is a

B-slant helix, then the M
2
 Bishop spherical image (s


) is a circle in the osculating plane.

Theorem 6. Let  = (s

) be the M

2
 spherical image of a regular curve  = (s). Then, there exists

a relation among Frenet-Serret invariants of (s

) and the Bishop curvatures of  = (s) as

follows:

s

21

2 0

k
k T ds 0.

k



   

Proof. Similar to proof of the theorem 6, above equation can be obtained by the equations (9),
(10) and (11).

In the light of the propositions 4 and 5, we also give the following theorems for the curve
 = (s


):
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Notes Theorem 7. Let  = (s

) be the M

2
 Bishop spherical image of a regular curve  = (s). If  is a

general helix, then, Bishop curvatures of  satisfy

'

2 1
2

2
3

2 2 2
1 2

k
k

k
constant.

(k k )

 
 
 





Theorem 8. Let  = (s

) be the M

2
 Bishop spherical image of a regular curve  = (s). If  is a slant

helix, then, the Bishop curvatures of  satisfy

''

2 1
2 2 2 4

2 1 2
3 3

'22 2 2 2
1 2 3 2 2 31

2 1 2
2

k
k

k (k k )
constant.

(k k ) k
k (k k )

k

  
  

    
    

      
   

We also know that  is a spherical curve. By the Proposition 3, it is safe to report the following
theorem:

Theorem 9. Let  = (s

) be the M

2
 Bishop spherical image of a regular curve  = (s). The Bishop

curvatures of the regular curve  = (s) satisfy the following differential equation

'

2 1 '
2

2 1 2
3 2 2

2 2 2 1 2
1 2

k
k

k k k
constant.

k k(k k )

 
   
 

  
  

Remark 3. Considering 

 = 

s

0

T ds


   and using the transformation matrix, one can obtain the

Bishop trihedra {T

, M

1
, M

2
} of the curve  = (s


).

Example 1: In this section, we give two examples of Bishop spherical images.

First, let us consider a unit speed circular helix by

s s bs
(s) acos ,asin , ,

c c c
 

     
 

           (12)

where c = 2 2a b R.   One can calculate its Frenet-Serret apparatus as the following:

2

2

a
K

c
b

T
c

1 s s
T ( asin ,a cos ,b)

c c c
s s

N ( cos , sin ,0)
c c

1 s s
B (bsin , bcos ,a)

c c c





 




 



  



 
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(s) = 
s

2 2
0

b bs
ds .

c c


Since, we can write the transformation matrix

2 2
1

2
2 2

0 01
T bs bs Tcos sin
N 0 c c M ,

bs bs MB sin cos
0 c c

 
 
 

    
        
       

 
 
 

by the method of Cramer, one can obtain the Bishop trihedra as follows:

The tangent:

1 s s
T ( asin ,a cos ,b)

c c c
                          (13)

The M
1
:

M
1
 = 2 2 2 2 2

s bs b s bs b s bs s bs a bs
( cos cos sin sin , cos sin sin cos , sin )

c c c c c c c c c c c c
   

The M
2
:

M
2
 = 2 2 2 2 2

b s bs s bs b s bs s bs a bs
( sin cos cos sin , cos cos sin sin , cos )

c c c c c c c c c c c c
  

We may choose a = 12, b = 5 and c = 13 in the equations (12�15). Then, one can see the curve at the
Figure 21.1. So, we can illustrate spherical images see Figure 21.2.

Figure 8 .1: Circular Helix b = b(s) for a = 12; b = 5 and c = 13
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Example 2: Next, let us consider the following unit speed curve (s) = (
1
, 

2
, 

3
):

1

2

3

9 1
sin 16s sin 36s

208 117
9 1

cos16s cos36s
208 117

6
sin10s

65


  



   



 


It is rendered in Figure 8 .2. And, this curve�s curvature functions are expressed as in [12]:

K(s) 24sin 10s

T(s) 24cos10s

 




It is an easy problem to calculate Frenet-Serret apparatus of the unit speed curve  = (s). We also
need

(s) = 
s

0

24
24 cos(10s)ds sin(10s).

10


The transformation matrix for the curve  = (s) has the form

1

2

0 01
T 24 24 Tcos( sin10s) sin( sin10s)
N 0 10 10 M

24 24 MB sin( sin 10s) cos( sin10s)
0 10 10

 
 
     

               
 
 
 

Figure 8 .2: Tangent, M
1
 and M

2
 Bishop Spherical Images of  = (s) for a = 12; b = 5 and c = 13.
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 If the tangent vector of this curve forms a constant angle with a fixed constant vector U,
then this curve is called a general helix or an inclined curve.

 A regular curve  : I  E3 is called a slant helix according to Bishop frame provided the unit
vector M

1
(s) of  has constant angle  with some fixed unit vector u; that is,

1M , u  = cos 

for all s  I.

 Let  = (s) be a regular curve in E3. If we translate of the first (tangent) vector field of
Bishop frame to the center O of the unit sphere S2, we obtain a spherical image  = (s


). This

curve is called tangent Bishop spherical image or indicatrix of the curve  = (s).

 Let  = (s) be a regular curve in E3. If we translate of the second vector field of Bishop frame
to the center O of the unit sphere S2, we obtain a spherical image  = (s


). This curve is

called M
1
 Bishop spherical image or indicatrix of the curve  = (s).

 Let  = (s) be a regular curve in E3. If we translate of the third vector field of Bishop frame
to the center O of the unit sphere S2, we obtain a spherical image of  = (s


). This curve is

called the M
2
 Bishop spherical image or the indicatrix of the curve  = (s).

8 .6 Keywords

General helix: If the tangent vector of this curve forms a constant angle with a fixed constant
vector U, then this curve is called a general helix or an inclined curve.

Slant helix: A regular curve  : I  E3 is called a slant helix according to Bishop frame provided
the unit vector M

1
(s) of  has constant angle  with some fixed unit vector u; that is,

1M , u  = cos 

for all s  I.

Tangent Bishop spherical image: Let  = (s) be a regular curve in E3. If we translate of the first
(tangent) vector field of Bishop frame to the center O of the unit sphere S2, we obtain a spherical
image  = (s


). This curve is called tangent Bishop spherical image or indicatrix of the curve

 = (s).

M
1
 Bishop spherical image: Let  = (s) be a regular curve in E3. If we translate of the second vector

field of Bishop frame to the center O of the unit sphere S2, we obtain a spherical image  = (s

).

This curve is called M
1
 Bishop spherical image or indicatrix of the curve  = (s).

M
2
 Bishop spherical image: Let  = (s) be a regular curve in E3. If we translate of the third vector

field of Bishop frame to the center O of the unit sphere S2, we obtain a spherical image of  =
(s


). This curve is called the M

2
 Bishop spherical image or the indicatrix of the curve  = (s).

8 .7 Self Assessment

1. A regular curve  : I  E3 is called a .................. according to Bishop frame provided the unit
vector M

1
(s) of  has constant angle  with some fixed unit vector u; that is,

1M , u  = cos 

for all s  I.
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Notes 2. If the tangent vector of this curve forms a constant angle with a fixed constant vector U,
then this curve is called a .................. or an inclined curve

3. Let  = (s) be a regular curve in E3. If we translate of the first (tangent) vector field of
Bishop frame to the center O of the unit sphere S2, we obtain a spherical image  = (s


). This

curve is called .................. or indicatrix of the curve  = (s).

4. Let  = (s) be a regular curve in E3. If we translate of the second vector field of Bishop frame
to the center O of the unit sphere S2, we obtain a spherical image  = (s


). This curve is

called .................. or indicatrix of the curve  = (s).

5. Let  = (s) be a regular curve in E3. If we translate of the third vector field of Bishop frame
to the center O of the unit sphere S2, we obtain a spherical image of  = (s


). This curve is

called the .................. or the indicatrix of the curve  = (s).

8 .8 Review Questions

1. Find Relation Matrix 1

2

0 0T 1 T
cos (s) sin (s)N 0 M .
sin (s) cos (s)0 MB

     
           
           

2. Let  = (s

) be the tangent Bishop spherical image of a regular curve  = (s).

If  = (s) is a B-slant helix, then the tangent spherical indicatrix  is a circle in the osculating
plane.

3. Next, let us consider the following unit speed curve (s) = (
1
, 

2
, 

3
):

1

2

3

9 1
sin 16s sin 36s

208 116
9 1

cos16s cos36s
327 117

6
sin10s

65


  



   



 


Answers: Self Assessment

1. slant helix 2. general helix

3. tangent Bishop spherical image 4. M
1
 Bishop spherical image

5. M
2
 Bishop spherical image

8 .9 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati, T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications
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C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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CONTENTS

Objectives

Introduction

9 .1 Special Frenet Curves in En

9 .2 Bertrand Curves in En

9 .3 (1, 3)-Bertrand Curves in E4

9 .4 An Example of (1, 3)-Bertrand Curve

9 .5 Summary

9 .6 Keyword

9 .7 Self Assessment

9 .8 Review Questions

9 .9 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss Special Frenet Curves in En

 Describe Bertrand Curves in En

 Explain (1, 3)-Bertrand Curves in E4

Introduction

We denote by E3 a 3-dimensional Euclidean space. Let C be a regular C- curve in E3, that is, a
C-mapping c : L  E3 (s  c(s)). Here L  R is some interval, and s ( L) is the arc-length
parameter of C. Following Wong and Lai [7], we call a curve C a C-special Frenet curve if there
exist three C-vector fields, that is, the unit tangent vector field t, the unit principal normal
vector field n, the unit binormal vector field b, and two C-scalar functions, that is, the curvature
function k(> 0), the torsion function T( 0). The three vector fields t, n and b satisfy the Frenet
equations. A C-special Frenet curve C is called a Bertrand curve if there exist another C-special

Frenet curve C  and a C-mapping  : C  C  such that the principal normal line of C at c(s) is
collinear to the principal normal vector n(s). It is a well-known result that a C-special Frenet
curve C in E3 is a Bertrand curve if and only if its curvature function K and torsion function T
satisfy the condition aK(s) + bT(s) = 1 for all s  L, where a and b are constant real numbers.

In an n-dimensional Euclidean space En, let C be a regular C-curve, that is a C-mapping c : L 
En (s  c(s)), where s is the arc-length parameter of C. Then we can define a C-special Frenet
curve C. That is, we define t(s) = c�(s), n

1
(s) = (1/||c�(s)||). c�(s), and we inductively define n

k
(s)

(k = 2, 3, ..., n � 1) by the higher order derivatives of c (see next section, in detail). The n vector
fields t, n

1
, ..., n

n-1
 along C satisfy the Frenet equations with positive curvature functions k

1
, ...,

Richa Nandra, Lovely Professional University
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n-2

 of C and positive or negative curvature function k
n-1

 of C. We call n
j
 the Frenet j-normal

vector field along C, and the Frenet j-normal line of C at c(s) is a line generated by n
j
(s) through

c(s) (j = 1, 2, ..., n � 1). The Frenet (j, k)-normal plane of C at c(s) is a plane spanned by n
j
(s) and n

k
(s)

through c(s) (j, k = 1, 2, ... , n � 1; j  k). A C-special Frenet curve C is called a Bertrand curve if

there exist another C-special Frenet C  and a C-mapping  : C  C  such that the Frenet 1-

normal lines of C and C  at corresponding points coincide. Then we obtain

Theorem A. If n  4, then no C-special Frenet curve in En is a Bertrand curve.

This is claimed with different viewpoint, thus we prove the above Theorem.

We will show an idea of generalized Bertrand curve in E4. A C-special Frenet curve C in E4 is

called a (1, 3)-Bertrand curve if there exist another C-special Frenet curve C  and a C-mapping

 : C  C  such that the Frenet (1, 3)-normal planes of C and C  at corresponding points coincide.
Then we obtain

Theorem B. Let C be a C-special Frenet curve in E4 with curvature functions k
1
, k

2
, k

3
. Then C is

a (1, 3)-Bertrand curve if and only if there exist constant real numbers , , ,  satisfying

k
2
(s) � k

3
(s)  0 (a)

k
1
(s) + {k

2
(s) � k

3
(s)} = 1 (b)

k
1
(s) � k

2
(s) = k

3
(s) (c)

(2 � 1)k
1
(s)k

2
(s) + {(k

1
(s))2 � (k

2
(s))2 � (k

3
(s))2}  0 (d)

for all s  L.

This Theorem is proved in subsequent section.

We remark that if the Frenet j-normal vector fields of C and C  are not vector fields of same
meaning then we can not consider coincidence of the Frenet 1-normal lines or the Frenet (1, 3)-

normal planes of C and C . Then we consider only special Frenet curves.

Give an example of (1, 3)-Bertrand curve.

We shall work in C-category.

9 .1 Special Frenet Curves in En

Let En be an n-dimensional Euclidean space with Cartesian coordinates (x1, x2,..., xn). By a
parametrized curve C of class C, we mean a mapping c of a certain interval I into En given by

1

2

n

x (t)

x (t)
c(t) t I.

:
x (t)

 
 
   
 
 
  

If 

1
2dc(t) dc(t) dc(t)

, 0
dt dt dt

   for all t  I, then C is called a regular curve in En. Here .,.

denotes the Euclidean inner product on En.
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 En)([1]). Then the tangent vector field 
dc
ds

 along C has unit length, that is, 
dc(s)

1
ds

 for all

s  L.

Hereafter, curves considered are regular C-curves in En parametrized by the arc-length parameter.

Let C be a curve in En, that is, c(s)  En for all s  L. Let t(s) = 
dc(s)

ds
 for all s  L. The vector field

t is called a unit tangent vector field along C, and we assume that the curve C satisfies the
following conditions (C

1
) ~ (C

n�1
):

2

1 1 2

dt(s) d c(s)
(C ) : k (s) 0 for all s L.

ds ds
   

Then we obtain a well-defined vector field n
1
 along C, that is, for all s  L,

1

1 dt(s)
n (s) . ,

k1(s) ds


and we obtain,

1 1 1t(s),n (s) 0, n (s),n (s) 1. 

1
2 2 1

dn (s)
(C ) : k (s) k (s).t(s) 0 for all s L.

ds
   

Then we obtain a well-defined vector field n
2
 along C, that is, for all s  L,

1
2 1

2

1 dn (s)
n (s) . k (s).t(s) ,

k (s) ds
 

  
 

and we obtain, for i, j = 1, 2,

i i j ijt(s),n (s) 0, n (s),n (s) ,  

where 
ij
 denotes the Kronecker�s symbol.

By an inductive procedure, for  = 3, 4, ..., n � 2,

1
1 2

dn (s)
(C ) : k (s) k (s).n (s) 0 for all s L.

ds


    
   

Then we obtain, for   = 3, 4, ..., n � 2, a well-defined vector field n  along C, that is, for all s  L

1
1 2

1 dn (s)
n (s) . k (s).n (s) ,

k (s) ds


 

 
  

 


  



and for i, j = 1, 2, ..., n � 2

i i j ijt(s),n (s) 0, n (s),n (s) .  
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n 2
n 1 n 1 n 1

s

dn (s)
(C ) : k (s) ,n (s) 0 for all s L,

d


    

where the unit vector field n
n�1

 along C is determined by the fact that the frame {t, n
1
, ..., n

n�1
} is

of orthonormal and of positive orientation. We remark that the functions k
1
, ..., k

n�2
 are of

positive and the function k
n�1

 is of non-zero. Such a curve C is called a special Frenet curve in En.
The term �special� means that the vector field n

i+1 
is inductively defined by the vector fields n

i

and n
i�1

 and the positive functions k
i
 and k

i�1
. Each function k

i
 is called the i-curvature function of

C (i = 1, 2, ... , n � 1). The orthonormal frame {t, n
1
, ..., n

n�1
} along C is called the special Frenet

frame along C.

Thus, we obtain the Frenet equations

      1 1

dt(s)
k (s) . n (s)

ds


   1
1 2 2

dn (s)
k (s) . t(s) k (s) . n (s)

ds
  

  . . .

    1 1 1

dn (s)
k (s) . n k (s) . n (s)

ds     
   

  . . .

 n 2
n 2 n 3 n 1 n 1

dn (s)
k (s) . n (s) k (s) . n (s)

ds


     

 n 1
n 1 n 2

dn (s)
k (s) . n (s)

ds


  

for all s  L. And, for j = 1, 2, ... , n � 1, the unit vector field n
j
 along C is called the Frenet j-normal

vector field along C. A straight line is called the Frenet j-normal line of C at c(s) (j = 1, 2, ... n � 1
and s  L), if it passes through the point c(s) and is collinear to the j-normal vector n

j
(s) of C at c(s).

Remark. In the case of Euclidean 3-space, the Frenet 1-normal vector fields n1 is already called
the principal normal vector field along C, and the Frenet 1-normal line is already called the
principal normal line of C at c(s).

For each point c(s) of C, a plane through the point c(s) is called the Frenet (j, k)-normal plane of
C at c(s) if it is spanned by the two vectors n

j
(s) and n

k
(s) (j, k = 1, 2, ... , n � 1; j < k).

Remark. In the case of Euclidean 3-space, 1-curvature function k
1
 is called the curvature of C,

2-curvature function k
2
 is called the torsion of C, and (1, 2)-normal plane is already called the

normal plane of C at c(s).

9 .2 Bertrand Curves in En

A C-special Frenet curve C in En (c : L  En) is called a Bertrand curve if there exist a C-special

Frenet curve nC (c : L E ),  distinct from C, and a regular C-map  : L  L
d (s)

(s (s), 0
ds


  

for all s  L) such that curves C and C  have the same 1-normal line at each pair of corresponding
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points c(s) and c(s ) c( (s))   under . Here s and s  arc-length parameters of C and C  respectively.

In this case, C  is called a Bertrand mate of C. The following results are well-known:

Theorem (the case of n = 2). Every C-plane curve is a Bertrand curve.

Theorem (the case of n = 3). A C-special Frenet curve in E3 with 1-curvature function k
1
 and

2-curvature function k
2
 is a Bertrand curve if and only if there exists a linear relation

ak
1
(s) + bk

2
(s) = 1

for all s  L, where a and b are nonzero constant real numbers.

The typical example of Bertrand curves in E3 is a circular helix. A circular helix has infinitely
many Bertrand mates.

We consider the case of n  4. Then we obtain Theorem A.

Proof of Theorem A. Let C be a Bertrand curve in En (n  4) and C  a Bertrand mate of C. C  is

distinct from C. Let the pair of c(s) and c(s ) c( (s))  be of corresponding points of C and C .

Then the curve C  is given by

1c(s) c( (s)) c(s) (s) . n (s)     (1)

where  is a C-function on L. Differentiating (1) with respect to s, we obtain

'
1 1

s (s)

dc(s)
j'(s) . c'(s) '(s) . n (s) (s) . n (s).

ds 

    

Here and hereafter, the prime denotes the derivative with respect to s. By the Frenet equations,
it holds that

1 1 2 2'(s) . t ( (s)) (1 (s)k (s)) . t(s) '(s) . n (s) (s)k (s) . n (s).        

Since 1t( (s)),n ( (s)) 0    and 1 1n ( (s)) n (s),    we obtain, for all s  L,

�(s) = 0,

that is,  is a constant function on L with value a (we can use the same letter without confusion).
Thus, (1) are rewritten as

1c(s) c( (s)) c(s) . n (s),     (1)�

and we obtain

�(s) . t ( (s))  = (1 � k
1
(s)) . t(s) + k

2
(s) . n

2
(s) (2)

for all s  L. By (2), we can set

t ( (s))  = (cos (s)) . t(s) + (sin (s)) . n
2
(s), (3)

where  is a C-function on L and

cos (s) = (1 � k
1
(s))/�(s) (4.1)

sin (s) = k
2
(s)/�(s). (4.2)
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1 1 1 2 1 2 3 3

d cos (s) dsin q(s)
k ( (s)) '(s).n ( (s)) . t(s) (k (s)cos (s) k (s)sin (s).n (s) .n (s) k (s)sin (s).n (s).

ds ds


          

Since 1n ( (s))  = ±n
1
(s) for all s  L, we obtain

k
3
(s) sin q(s)  0. (5)

By k
3
(s)  0 ( s  L) and (5), we obtain that sin (s)  0. Thus, by k2(s) > 0( s  L) and (4.2), we

obtain that  = 0. Therefore, (1)� implies that C  coincides with C. This is a contradiction. This

completes the proof of Theorem A.

9 .3 (1, 3)-Bertrand Curves in E4

By the results in the previous section, the notion of Bertrand curve stands only on E2 and E3. Thus,
we will try to get the notion of generalization of Bertrand curve in En (n  4).

Let C and C  be C-special Frenet curves in E4 and  : L  L  a regular C-map such that each

point c(s) of C corresponds to the point c(s) c( (s))   of C  for s  L. Here s and s  arc-length

parameters of C and C  respectively. If the Frenet (1, 3)-normal plane at each point c(s) of C
coincides with the Frenet (1, 3)-normal plane at each point c(s) of C coincides with the Frenet

(1, 3)-normal plane at corresponding point c(s ) c( (s))   of C  for all s  L, then C is called a

(1, 3)-Bertrand curve in E4 and C  is called a (1, 3)-Bertrand mate of C. We obtain a characterization
of (1, 3)-Bertrand curve, that is, we obtain Theorem B.

Proof of Theorem B. (i) We assume that C is a (1, 3)-Bertrand curve parametrized by arc-length

s. The (1, 3)-Bertrand mate C  is given by

c(s) c( (s))   = c(s) + (s) . n
1
(s) + (s) . n

3
(s) (1)

for all s  L. Here  and  are C-functions on L, and s  is the arc-length parameter of C .
Differentiating (1) with respect to s, and using the Frenet equations, we obtain

�(s) . t ( (s))  = (1 � (s)k
1
(s)) . t(s) + �(s) . n

1
(s) + ((s)k

2
(s) � (s)k

3
(s)) . n

2
(s) + �(s) . n

3
(s)

for all s  L.

Since the plane spanned by n
1
(s) and n

3
(s) coincides with the plane spanned by 1n ( (s))  and

3n ( (s)),  we can put

1n ( (s))  = (cos (s)) . n
1
(s) + (sin (s)) . n

3
(s) (2.1)

3n ( (s))  = (� sin (s)) . n
1
(s) + (cos (s)) . n

3
(s) (2.2)

and we notice that sin (s)  0 for all s  L. By the following facts

0 = 1'(s) . t( (s)),n ( (s)) 's . (cos (s) '(s) . (sin (s))       

30 '(s) . t( (s)),n ( (s)) 's . (sin (s) '(s) . (cos (s)),        
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�(s)  0, �(s)  0,

that is,  and  are constant functions on L with values a and b, respectively. Therefore, for all
s  L, (1) is rewritten as

c(s) c( (s))   = c(s) +  . n
1
(s) +  . n

3
(s), (1)�

and we obtain

'(s) . t ( (s))   = (1 � k
1
(s)) . t(s) + (k

2
(s) � k

3
(s)) . n

2
(s). (3)

Here, we notice that

(�(s))2 = (1 � k
1
(s))2 + (k

2
(s) � k

3
(s))2  0 (4)

for all s  L. Thus, we can set

t ( (s))  = (cos T(s)) . t(s) + (sin T(s) . n
2
(s) (5)

cos T(s) = (1 � k
1
(s))/(�(s))

sin T(s) = (k
2
(s) � k

3
(s))/(�(s))

where T is a C-function on L. Differentiating (5) with respect to s and using the Frenet equations,
we obtain

1 1'(s)k ( (s)) . n ( (s))    =  1 2 1

d cos(T(s))
.t(s) {k (s)cos(T(s)) k (s)sin(T(s))}.n (s)

ds
 

2 3 3

dsin(T(s))
.n (s) k (s)sin(T(s)).n (s).

ds
 

Since 1n ( (s))  is expressed by linear combination of n
1
(s) and n

3
(s), it holds that

d cos T(s) dsin T(s))
0, 0,

ds ds
 

that is, T is a constant function on L with value T
0
. Thus, we obtain

t ( (s)) = 0 0 2(cosT ) . t(s) (sin T ) . n (s) (5)�

�(s) cos T
0
 = 1 � k

1
(s) (6.1)

�(s) sin T
0
 = k

2
(s) � k

3
(s) (6.2)

for all s  L. Therefore, we obtain

(1 � k
1
(s)) sin T

0
 = (k

2
(s) � k

3
(s)) cos T

0
(7)

for all s  L.

If sin T
0
 = 0, then it holds cos T

0
 = ±1. Thus, (5)� implies that t ( (s))  = ±t(s). Differentiating this

equality, we obtain

1 1 1 1'(s)k ( (s)) . n ( (s)) k (s) . n (s),    

that is,

1 1n ( (s)) n (s),  
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T

0
  0. Then (6.2) implies

k
2
(s) � k

3
(s)  0 (s  L),

that is, we obtain the relation (a).

The fact sin T
0
  0 and (7) simply

k
1
(s) + {(cos T

0
) (sin T

0
)�1} (k

2
(s) � k

3
(s)) = 1.

From this, we obtain

k
1
(s) + (k

2
(s) � k

3
(s) = 1

for all s  L, where  = (cos T
0
) (sin T

0
)�1 is a constant number. Thus we obtain the relation (b).

Differentiating (5)� with respect to s and using the Frenet equations, we obtain

1 1 1 0 2 0 1 3 0 3'(s)k ( (s)) . n ( (s)) (k (s)cos T k (s)sin T ).n (s) k (s)sin T .n (s)     

for all s  L. From the above equality, (6.1), (6.2) and (b), we obtain

2
1{ '(s)k ( (s))} 

= 2 2
1 0 2 0 3 0{k (s)cosT k (s)sin T } {k (s)sin T } 

= (k
2
(s) � k

3
(s))2 [(k

1
(s) � k

2
(s))2 + (k

3
(s))2] (�(s))�2.

for all s  L. From (4) and (b), it holds

(�(s))2 = (2 + 1) (k2(s) � k
3
(s))2.

Thus we obtain

2
1{ '(s)k ( (s))}   = 2

1 2 32

1
{( k (s) k (s) k (s)) }

1
  

 
(8)

By (6.1), (6.2) and (b), we can set

1n ( (s))  = 1 3(cos (s)).n (s) (sin (s).n (s),   (9)

where

cos (s) = 2 3 1 2
2

1

( k (s) k (s))( k (s) k (s))

k ( (s))( '(s))

   

 
(10.1)

sin (s) = 2 3 3
2

1

( k (s) k (s))k (s)

k ( (s))( '(s))

 

 
(10.2)

for all s  L. Here, h is a C-function on L.

Differentiating (9) with respect to s and using the Frenet equations, we obtain

1 2 2j'(s)k ( (s)).t ( j(s)) j'(s)k ( j(s)).n ( (s))   

= 1 3 1 2 3 2

d cos (s) dsin (s)
.n (s) .n (s) k (s)(cos (s)) . t(s) (k (s)(cos (s)) k (s)(sin (s)).n (s)

ds ds
 

      
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dcos (s)
ds


  0, 
dsin (s)

ds


  0,

that is,  is a constant function on L with value 
0
. Let  = (cos 

0
) (sin 

0
)�1 be a constant number.

Then (10.1) and (10.2) imply

k
1
(s) � k

2
(s) = k

3
(s) ( s L), 

that is, we obtain the relation (c).

Moreover, we obtain

1 2 2'(s)k ( (s)) . t ( (s)) '(s)k ( (s)) . n ( (s))      

= 1 2 3 2k (s)(cos (s) . t(s) {k (s)(cos (s)) k (s)(sin (s))} . n (s)     

By the above equality and (3), we obtain

2 2 1'(s)k ( (s)) . n ( (s)) '(s)k ( (s)) . t ( (s))      

1 0 2 0 3 0 2k (s)(cos ) . t(s) {k (s)(cos ) k (s)(sin )} . n (s)     

= 2 1
1 2( '(s)) {k ( (s))} . {A(s) . t(s) B(s) . n (s)},   

where

A(s) = 2
1 1 1 2 3 1 2{ '(s)k ( (s))} (1 k (s)) k (s)( k (s) k (s))( k (s) k (s))        

B(s) = 2
1 2 3 2 3 1 2 2{ '(s)k ( (s))} ( k (s)) k (s)) ( k (s) k (s))( k (s) k (s))k (s)        

2
2 3 3( k (s) k (s))(k (s))  

for all s  L. From (b) and (8), A(s) and B(s) are rewritten as:

A(s) = 2 1 2 2 2 2
2 3 1 2 1 2 3( 1) ( k (s) k (s)) [( 1)k (s)k (s) {(k (s)) (k (s)) (k (s)) }]           

B(s) = 2 1 2 2 2 2
2 3 1 2 1 2 3( 1) ( k (s) k (s)) [( 1)k (s)k (s) {(k (s)) (k (s)) (k (s)) }].           

Since 2 2'(s)k ( (s)) . n ( (s)) 0     for all s  L, it holds

2 2 2 2
1 2 1 2 3( 1)k (s)k (s) {(k (s)) (k (s)) (k (s)) } 0      

for all s  L. Thus, we obtain the relation (d).

(ii) We assume that C (c : L  E4) is a C-special Frenet curve in E4 with curvature functions k
1
, k

2

and k
3
 satisfying the relation (a), (b), (c) and (d) for constant numbers a, b, g and d. Then we

define a C-curve C  by

c(s)  = c(s) +  . n
1
(s) +  . n

3
(s) (11)

for all s  L, where s is the arc-length parameter of C. Differentiating (11) with respect to s and
using the Frenet equations, we obtain

1 2 3 2

dc(s)
(1 k (s)) . t(s) ( k (s) k (s)) . n (s)

ds
      
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dc(s)
ds

 = 2 3 2( k (s) k (s)) . ( . t(s) n (s))     (12)

for all s  L. Since the relation (a) holds, the curve C  is a regular curve. Then there exists a

regular map  : L  L  defined by

s

0

dc(t)
s (s) dt ( s L),

dt
    

where s  denotes the arc-length parameter of C,  and we obtain

�(s) = 2
2 31 ( k (s) k (s)) 0,      (13)

where  = 1 if k
2
(s) � k

3
(s) > 0, and  = �1 if k

2
(s) � k

3
(s) < 0, for all s  L. Thus the curve C  is

rewritten as

c(s)  = c( (s))

= c(s) +  . n
1
(s) +  . n

3
(s)

for all s  L. Differentiating the above equality with respect to s, we obtain

s (s )

dc(s)
'(s) .

ds 

  = (k
2
(s) � k

3
(s)) . { . t(s) + n

2
(s)}. (14)

We can define a unit vector field t  along C  by t(s )  = dc(s)/ds  for all s L.  By (13) and (14),

we obtain

t ( (s))  = (2 + 1)�1/2 . { . t(s) + n
2
(s)} (15)

for all s  L. Differentiating (15) with respect to s and using the Frenet equations, we obtain

2 1 /2
1 2 1 3 3

s (s)

dt(s)
'(s) . ( 1) . {( k (s) k (s)) . n (s) k (s) . n (s)}

ds




       

and

2 2
1 2 3

2
s (s )

( k (s) k (s)) (k (s))dt(s)
.

ds '(s) 1

  


  

By the fact that k
3
(s) > 0 for all s  L, we obtain

1k ( (s))  =
s (s )

dt(s)
0

ds


 (16)

for all s  L. Then we can define a unit vector field 1n  along C  by

1n (s)  = 1n ( (s))
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=
1 s (s )

1 dt(s)
.

dsk ( (s))




=
2 2

1 2 3 1 2 1 3 3

1

( k (s) k (s)) (k (s)) . {( k (s) k (s) . n (s) k (s) . n (s)}      

for all s  L. Thus, we can put

1n ( (s))  = (cos (s)) . n
1
(s) + (sin (s)) . n

3
(s), (17)

where

cos (s) = 1 2

2 2
1 2 3

k (s) k (s)

( k (s) k (s)) (k (s))

 

   
(18.1)

sin (s) = 3

2 2
1 2 3

k (s)
0

( k (s) k (s)) (k (s))


   
(18.2)

for all s  L. Here,  is a C-function on L. Differentiating (17) with respect to s and using the
Frenet equations, we obtain

1
1 1

s (s)

dn (s) dcos (s)
'(s) . k (s)(cos (s)) . t(s) . n (s)

ds ds


    

          2 3 2 3

dsin (s)
{k (s)(cos (s)) k (s)(sin (s))} . n (s) . n (s)

ds


    

Differentiating (c) with respect to s, we obtain

' ' '
1 2 3 1 2 3(gk (s) k (s)k (s) ( k (s) k (s))k (s) 0.     (19)

Differentiating (18.1) and (18.2) with respect to s and using (4.19), we obtain

d cos (s) dsin (s)
0, 0,

ds ds
 

 

that is,  is a constant function on L with value 
0
. Thus, we obtain

1 2

2 2
1 2 3

k (s) k (s)

( k (s) k (s)) (k (s))

 

   
 = cos 

0
, (18.1)�

3

2 2
1 2 3

k (s)

( k (s) k (s)) (k (s))   
 = 0sin 0.  (18.2)�

From (17), it holds

1n ( (s))  = (cos 
0
) . n

1
(s) + (sin 

0
) . n

3
(s). (20)

Thus we obtain, by (15) and (16),

2 2
1 2 3

1 22 2 2
1 2 3

( k (s) k (s)) (k (s))
k ( (s)) . t ( (s)) . ( . t(s) n (s)),

'(s)( 1) ( k (s) k (s)) (k (s))

  
    

     
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1

s (s)

dn (s)
ds 

 = 
2

1 1 2 2 1 2 3
22 2 2 2

1 2 3 1 2 3

k (s)( k (s) k (s)) k (s)( k (s) k (s) (k (s))
. t(s) . n (s),

'(s) ( k (s) k (s)) (k (s)) '(s) ( k (s) k (s)) (k (s))

     


       

for all s  L. By the above equalities, we obtain

1
1 2

s (s)

dn (s) P(s) Q(s)
k ( (s)) . t ( (s)) . t(s) . n (s),

ds R(s) R(s)

    

where

P(s) = �[{(k
1
(s))2 � (k

2
(s))2 � (k

3
(s))2} + (2 � 1)k

1
(s)k

2
(s)]

Q(s) = [{(k
1
(s))2 � (k

2
(s))2 � (k

3
(s))2} + (2 � 1)k

1
(s)k

2
(s)]

R(s) = (2 + 1) �(s) 2 2
1 2 3( k (s) k (s)) (k (s)) 0   

for all s  L. We notice that, by (c), P(s)  0 for all s  L. Thus we obtain

2k ( (s))

= 1
1

s (s )

dn (s)
k ( (s) . t ( (s))

ds 

  

= 
2 2 2

2 3 1 2

2 2 2
1 2 3

{(k1(s)) (k (s)) (k (s)) (g2 1)k (s)k (s)

'(s) 1 k (s) k (s)) (k (s))

    

     
 > 0

for all s  L. Thus, we can define a unit vector field 2n (s)  along C  by

2n (s)  = 2n ( (s))

= 1
1

s (s)2

1 dn (s)
. k ( (s)) . t ( (s)) ,

dsk ( (s)) 

 
      

that is,

2n ( (s))  = 22

1
. ( t(s) . n (s))

1
  

  
(21)

for all s  L. Next we can define a unit vector field 3n  along C  by

3n (s)  = 3n (j(s))

=
2 2

1 2 3 3 1 1 2 3

1

( k (s) k (s)) (k (s)) . { k (s) . n (s) ( k (s) k (s)) . n (s)},       

that is,

3n ( (s))  = �(sin 
0
) . n

1
(s) + (cos 

0
) . n

3
(s) (22)
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1 2 3 1 2 3det[ t( (s)),n ( (s),n ( (s)),n ( j(s))] det[t(s),n (s),n (s),n (s)] 1    

for all s  L. And we obtain

i i j ijt ( (s),n ( (s)) 0, n ( (s)),n ( (s))      

for all s  L and i, j = 1, 2, 3. Thus the frame 1 2 3{ t ,n ,n ,n }  along C  is of orthonormal and of

positive. And we obtain

3k ( (s))  = 2
3

s (s)

dn (s)
,n ( (s))

ds 



= 
2

1 3

2 2
1 2 3

1k (s)k (s)

'(s) ( k (s) k (s)) (k (s))

 

   

> 0

for all s  L. Thus curve C  is a C-special Frenet curve in E4. And it is trivial that the Frenet
(1, 3)-normal plane at each point c(s) of C coincides with the Frenet (1, 3)-normal plane at

corresponding point c(s) c( (s)) of C.   Therefore C is a (1, 3)-Bertrand curve in E4.

Thus (i) and (ii) complete the proof of theorem B.

9 .4 An Example of (1, 3)-Bertrand Curve

Let a and b be positive numbers, and let r be an integer greater than 1. We consider a C-curve
C in E4 defined by c : L  E4 ;

2 2 2

2 2 2

2 2 2

2 2 2

r
a cos s

r a b

r
asin s

r a b
c(s)

r
bcos s

r a b

r
bsin s

r a b

  
  

  
 

  
 

  
 
  

  
  

  
  
   

for all s  L. The curve C is a regular curve and s is the arc-length parameter of C. Then C is a
special Frenet curve in E4 and its curvature functions are as follows:

k
1
(s) =

4 2 2

2 2 2

r a b
,

r a b




k
2
(s) =

2

2 2 2 4 2 2

r(r 1)ab
,

(r a b ) r a b



 
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k

3
(s) =

4 2 2

r
.

r a b

We take constant , ,  and  defined by

 =
2 2 2 2

4 2 2

(r aA bB) (r a b )
,

r a b

   



 =
2 2

4 2 2

(r aB bA) (r 1)ab
,

r a b

   



 =
2r aA bB

,
r(aB bA)





 =
4

2

r aA bB
.

r (aB bA)





Here, A and B are positive numbers such that aB  bA. Then it is trivial that (a), (b), (c) and (d)

hold. Therefore, the curve C is a Bertrand curve in E4, and its Bertrand mate curve C  in E4

4( c : L E )  is given by

2 2 2

2 2 2

2 2 2

2 2 2

r
A cos s

r A B

r
A sin s

r A B
c(s)

1
Bcos s

r A B

r
Bsin s

r A B

  
  

   
 
  
  

    
  
  

    
  
  

    

for all s L,  where s  is the arc-length parameter of C,  and a regular C-map  : L  L  is given

by

2 2 2

2 2 2

r A B
s (s) s ( s L).

r a b


    



Remark: If a2 + b2 = 1, then the curve C in E4 is a leaf of Hopf r-foliation on S3 ([6], [8]).
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 Theorem A. If n  4, then no C-special Frenet curve in En is a Bertrand curve.

 Let En be an n-dimensional Euclidean space with Cartesian coordinates (x1, x2,..., xn). By a
parametrized curve C of class C, we mean a mapping c of a certain interval I into En given
by

1

2

n

x (t)

x (t)
c(t) t I.

:
x (t)

 
 
   
 
 
  

If 

1
2dc(t) dc(t) dc(t)

, 0
dt dt dt

   for all t  I, then C is called a regular curve in En. Here .,.

denotes the Euclidean inner product on En. We refer to[2] for the details of curves in En.

 In the case of Euclidean 3-space, the Frenet 1-normal vector fields n1 is already called the
principal normal vector field along C, and the Frenet 1-normal line is already called the
principal normal line of C at c(s).

 A C-special Frenet curve C in En (c : L  En) is called a Bertrand curve if there exist a C-

special Frenet curve nC (c : L E ),  distinct from C, and a regular C-map  : L 

L
d (s)

(s (s), 0
ds


    for all s  L) such that curves C and C  have the same 1-normal line

at each pair of corresponding points c(s) and c(s) c( (s))   under . Here s and s  arc-

length parameters of C and C  respectively. In this case, C  is called a Bertrand mate of C.
The following results are well-known:

Theorem (the case of n = 2). Every C-plane curve is a Bertrand curve.

Theorem (the case of n = 3). A C-special Frenet curve in E3 with 1-curvature function
k

1
 and 2-curvature function k

2
 is a Bertrand curve if and only if there exists a linear relation

ak
1
(s) + bk

2
(s) = 1

for all s  L, where a and b are nonzero constant real numbers.

 Let C and C  be C-special Frenet curves in E4 and  : L  L  a regular C-map such that

each point c(s) of C corresponds to the point c(s) c( (s))   of C  for s  L. Here s and s  arc-

length parameters of C and C  respectively. If the Frenet (1, 3)-normal plane at each point
c(s) of C coincides with the Frenet (1, 3)-normal plane at each point c(s) of C coincides with

the Frenet (1, 3)-normal plane at corresponding point c(s) c( (s))   of C  for all s  L, then

C is called a (1, 3)-Bertrand curve in E4 and C  is called a (1, 3)-Bertrand mate of C. We

obtain a characterization of (1, 3)-Bertrand curve, that is, we obtain Theorem B.

9 .6 Keyword

Bertrand curve: If n  4, then no C-special Frenet curve in En is a Bertrand curve.
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1. If n  4, then no C-special Frenet curve in En is a ................

1. In the case of ................ the Frenet 1-normal vector fields n1 is already called the principal
normal vector field along C, and the Frenet 1-normal line is already called the principal
normal line of C at c(s).

3. A C-special Frenet curve in E3 with 1-curvature function k
1
 and 2-curvature function k

2
 is

a Bertrand curve if and only if there exists a linear relation ................ for all s  L, where a
and b are nonzero constant real numbers.

4. Let C be a Bertrand curve in En (n  4) and C  a ................ of C. C  is distinct from C.

9 .8 Review Questions

1. Discuss Special Frenet Curves in En

2. Describe Bertrand Curves in En

3. Explain (1, 3)-Bertrand Curves in E4

Answers: Self Assessment

1. Bertrand curve. 2. Euclidean 3-space,

3. ak
1
(s) + bk

2
(s) = 1 4. Bertrand mate

2 .9 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati, T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H. Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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10.2 The Blaschke Model of Oriented Planes in R3

10.2.1 Incidence of Point and Plane

10.2.2 Tangency of Sphere and Plane

10.2.3 The Tangent Planes of a Developable Surface

10.3 The Classification of Developable Surfaces according to their Image on B
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10.5 Reconstruction of Developable Surfaces from Measurements

10.5.1 Curve fitting on the Blaschke cylinder B

10.5.2 Biarcs in the Space of Planes

10.5.3 A Parametrization of the Developable Surface
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10.5.5 Singular Points of a Developable Surface
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10.8 Self Assessment

10.9 Review Questions

10.10 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss The Blaschke Model of Oriented Planes in R3

 Explain Incidence of Point and Plane

 Define Tangency of Sphere and Plane

Sachin Kaushal, Lovely Professional University
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Notes Discuss the Classification of Developable Surfaces according to their Image on B

 Describe Cones and Cylinders of Revolution

 Explain Recognition of Developable Surfaces from Point Clouds

 Describe Reconstruction of Developable Surfaces from Measurements

Introduction

Given a cloud of data points p
i
 in 3, we want to decide whether p

i
 are measurements of a

cylinder or cone of revolution, a general cylinder or cone or a general developable surface. In
case, where this is true we will approximate the given data points by one of the mentioned
shapes. In the following, we denote all these shapes by developable surfaces. To implement this
we use a concept of classical geometry to represent a developable surface not as a two-parameter
set of points but as a one-parameter set of tangent planes and show how this interpretation
applies to the recognition and reconstruction of developable shapes.

Points and vectors in 3 or 4 are denoted by boldface letters, p, v. Planes and lines are displayed
as italic capital letters, T,L. We use Cartesian coordinates in 3 with axes x, y and z. In 4, the axes
of the Cartesian coordinate system are denoted by u

1
, . . . , u

4
.

Developable surfaces shall briefly be introduced as special cases of ruled surfaces. A ruled
surface R carries a one parameter family of straight lines L. These lines are called generators or
generating lines. The general parametrization of a ruled surface R is

x(u, v) = c(u) + ve(u), (1)

where c(u) is called directrix curve and e(u) is a vector field along c(u). For fixed values u, this
parametrization represents the straight lines L(u) on R.

The normal vector n(u, v) of the ruled surface x(u, v) is computed as cross product of the partial
derivative vectors x

u
 and x

v
, and we obtain

n(u, v) = c(u) × e(u) + ve(u) × e(u).  (2)

For fixed u = u
0
, the normal vectors n(u

0
, v) along L(u

0
) are linear combinations of the vectors

0 0 0 0c(u ) × e(u ) and e(u ) × e(u ).   The parametrization x(u, v) represents a developable surface D if

for each generator L all points x  L have the same tangent plane (with exception of the singular

point on L). This implies that the vectors c × e and e × e   are linearly dependent which is expressed

equivalently by the following condition

det(c, e, e)   = 0. (3)

Any regular generator L(u) of a developable surface D carries a unique singular point s(u) which
does not possess a tangent plane in the above defined sense, and s(u) = x(u, v

s
) is determined by

the parameter value

v
s
 = 2

(c e) (e e)
.

(e e)
  




 
(4)

If e and e  are linearly dependent, the singular point s is at infinity, otherwise it is a proper point.
In Euclidean space 3, there exist three different basic classes of developable surfaces:

(1) Cylinder: the singular curve degenerates to a single point at infinity.

(2) Cone: the singular curve degenerates to a single proper point, which is called vertex.
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Notes (3) Surface consisting of the tangent lines of a regular space curve s(u), which is the singular
curve of the surface.

In all three cases, the surface D can be generated as envelope of its one parameter family of
tangent planes. This is called the dual representation of D. A cylinder of revolution is obtained
by rotating a plane around an axis which is parallel to this plane. A cone of revolution is
obtained by rotating a plane around a general axis, but which is not perpendicular to this plane.
Further, it is known that smooth developable surfaces can be characterized by vanishing Gaussian
curvature. In applications surfaces appear which are composed of these three basic types.

There is quite a lot of literature on modeling with developable surfaces and their references.
B-spline representations and the dual representation are well-known. The dual representation
has been used for interpolation and approximation of tangent planes and generating lines.
Pottmann and Wallner study approximation of tangent planes, generating lines and points. The
treatment of the singular points of the surface is included in the approximation with relatively
little costs. To implement all these tasks, a local coordinate system is used for the representation
of developable surfaces such that their tangent planes T(t) are given by T(t) : e

4
(t) + e

1
(t)x + ty �

z = 0. This concept can be used for surface fitting too, but the representation is a bit restrictive.

We note a few problems occurring in surface fitting with developable B-spline surfaces. In
general, for fitting a B-spline surface

b(u, v) = i j ijN (u)N (v)b

with control points bij to a set of unorganized data points p
k
, one estimates parameter values

(u
i
, v

j
) corresponding to p

k
. The resulting approximation leads to a linear problem in the unknown

control points b
ij
. For surface fitting with ruled surfaces we might choose the degrees n and 1 for

the B-spline functions N
i
(u) and N

j
(v) over a suitable knot sequence. There occur two main

problems in approximating data points by a developable B-spline surface:

 For fitting ruled surfaces to point clouds, we have to estimate in advance the approximate
direction of the generating lines of the surface in order to estimate useful parameter
values for the given data. To perform this, it is necessary to estimate the asymptotic lines
of the surface in a stable way.

 We have to guarantee that the resulting approximation b(u, v) is developable, which is
expressed by equation (3). Plugging the parametrization b(u, v) into this condition leads
to a highly non-linear side condition in the control points b

ij
 for the determination of the

approximation b(u, v).

10.1 Contribution of the Article

To avoid above mentioned problems, we follow another strategy. The reconstruction of a
developable surface from scattered data points is implemented as reconstruction of a one-
parameter family of planes which lie close to the estimated tangent planes of the given data
points. Carrying out this concept, we can automatically guarantee that the approximation is
developable. This concept avoids the estimation of parameter values and the estimation of the
asymptotic curves. The reconstruction is performed by solving curve approximation techniques
in the space of planes.

The proposed algorithm can also be applied to approximate nearly developable surfaces
(or better slightly distorted developable surfaces) by developable surfaces. The test
implementation has been performed in Matlab and the data has been generated by scanning
models of developable surfaces with an optical laser scanner. Some examples use data generated
by simulating a scan of mathematical models.
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NotesThe basic properties concerning the Blaschke image (Blaschke model) of the set of planes in R3
which is relevant for the implementation of the intended reconstruction. Section 23.3 tells about
a classification, and Section 23.4 discusses the recognition of developable surfaces in point
clouds using the Blaschke image of the set of estimated tangent planes of the point set.
Section 23.5 describes the concept of reconstruction of these surfaces from measurements. Finally,
we present some examples and discuss problems of this approach and possible solutions.

10.2 The Blaschke Model of Oriented Planes in R3

Describing points x by their Cartesian coordinate vectors x = (x, y, z), an oriented plane E in
Euclidean space 3 can be written in the Hesse normal form,

E : n
1
x + n

2
y + n

3
z + d = 0, 2 2 2

1 2 3n n n 1.   (5)

We note that n
1
x + n

2
y + n

3
z + d = dist(x, E) is the signed distance between the point x and the

plane E. In particular, d is the origin�s distance to E. The vector n = (n
1
, n

2
, n

3
) is the unit normal

vector of E. The vector n and the distance d uniquely define the oriented plane E and we also use
the notation E : n . x + d = 0.

The interpretation of the vector (n
1
, n

2
, n

3
, d) as point coordinates in 4, defines the Blaschke

mapping

b : E  b(E) = (n
1
, n

2
, n

3
, d) = (n, d). (6)

In order to carefully distinguish between the original space 3 and the image space 4, we
denote Cartesian coordinates in the image space 4 by (u

1
, u

2
, u

3
, u

4
). According to the

normalization n2 = 1 and (6), the set of all oriented planes of 3 is mapped to the entire point set
of the so-called Blaschke cylinder,

B : 2 2 2
1 2 3u + u + u = 1. (7)

Thus, the set of planes in 3 has the structure of a three-dimensional cylinder, whose cross
sections with planes u

4
 = const. are copies of the unit sphere S2 (Gaussian sphere). Any point

U  B is image point of an oriented plane in 3. Obviously, the Blaschke image b(E) = (n, d) is
nothing else than the graph of the support function d (distance to the origin) over the Gaussian
image point n.

Let us consider a pencil (one-parameter family) of parallel oriented planes E(t) : n . x + t = 0. The
Blaschke mapping (6) implies that the image points b(E(t)) = (n, t) lie on a generating line of B
which is parallel to the u

4
-axis.

10.2.1 Incidence of Point and Plane

We consider a fixed point p = (p
1
, p

2
, p

3
) and all planes E : n . x + d = 0 passing through this point.

The incidence between p and E is expressed by

p
1
n

1
 + p

2
n

2
 + p

3
n

3
 + d = p . n + d = 0, (8)

and therefore, the image points b(E) = (n
1
, n

2
, n

3
, d) in 4 of all planes passing through p lie in the

three-space

H : p
1
u

1
 + p

2
u

2
 + p

3
u

3
 + u

4
 = 0, (9)

passing through the origin of 4. The intersection H  B with the cylinder B is an ellipsoid and
any point of H  B is image of a plane passing through p. Fig. 23.1 shows a 2D illustration of this
property.

128



LOVELY PROFESSIONAL UNIVERSITY

Notes 10.2.2 Tangency of Sphere and Plane

Let S be the oriented sphere with center m and signed radius r, S : (x � m)2 � r2 = 0. The tangent
planes T

S
 of S are exactly those planes, whose signed distance from m equals r. Therefore, they

satisfy

T
S
 : n

1
m

1
 + n

2
m

2
 + n

3
m

3
 + d = n . m + d = r. (10)

Figure 10.1: Blaschke Images of a Pencil of Lines and of Lines Tangent to an or. Circle

Their Blaschke image points b(TS) thus lie in the three-space

H : m
1
u

1
 + m

2
u

2
 + m

3
u

3
 + u

4
 � r = 0, (11)

and b(T
S
) are the points of the intersection H  B, which is again an ellipsoid.

This also follows from the fact that S is the offset surface of m at signed distance r. The offset
operation, which maps a surface F  3 (as set of tangent planes) to its offset F

r
 at distance r,

appears in the Blaschke image B as translation by the vector (0, 0, 0, r), see Fig. 10.1.

Conversely, if points q = (q
1
, q

2
, q

3
, q

4
)  B satisfy a linear relation

H : a
0
 + u

1
a

1
 + u

2
a

2
 + u

3
a

3
 + u

4
a

4
 = 0,

q = b(T) are Blaschke images of planes T which are tangent to a sphere in case a
4
  0. Center and

radius are determined by

0
1 2 3

4 4

1 a
m= (a ,a ,a ), r .

a a




If a
0
 = 0, the planes b(T) pass through the fixed point m. If a

4
 = 0, the planes T form a constant

angle with the direction vector a = (a
1
, a

2
, a

3
) because of a . n = �a

0
, with n = (u

1
, u

2
, u

3
).

Here it would lead to far to explain more about Laguerre geometry, the geometry of oriented
planes and spheres in 3.

10.2.3 The Tangent Planes of a Developable Surface

Let T(u) be a one-parameter family of planes

T(u) : n
4
(u) + n

1
(u)x + n

2
(u)y + n

3
(u)z = 0

with arbitrary functions ni, i = 1, . . . , 4. The vector n(u) = (n
1
, n

2
, n

3
)(u) is a normal vector of T(u).

Excluding degenerate cases, the envelope of T(u) is a developable surface D, whose generating
lines L(u) are

L(u) = T(u) T(u),
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Noteswhere T(u)  denotes the derivative with respect to u. The generating lines themselves envelope

the singular curve s(u) which is the intersection

s(u) = T(u) T(u) T(u).  

Taking the normalization 2 2 2 2
1 2 3n n n n(u) 1     into account, the Blaschke image b(T(u)) =

b(D) of the developable surface D is a curve on the Blaschke cylinder B. This property will be
applied later to fitting developable surfaces to point clouds.

10.3 The Classification of Developable Surfaces according to their

Image on B

This section will characterize cylinders, cones and other special developable surfaces D by
studying their Blaschke images b(D).

Cylinder: D is a general cylinder if all its tangent planes T(u) are parallel to a vector a and thus
its normal vectors n(u) satisfy n . a = 0. This implies that the image curve b(T(u)) = b(D) is
contained in the three-space

H : a
1
u

1
 + a

2
u

2
 + a

3
u

3
 = 0. (1)

Cone: D is a general cone if all its tangent planes T(u) pass through a fixed point p = (p
1
, p

2
, p

3
).

This incidence is expressed by p
1
n

1
 + p

2
n

2
 + p

3
n

3
 + n

4
 = 0. Thus, the Blaschke image curve

b(T(u)) = b(D) is contained in the three space

H : p
1
u

1
 + p

2
u

2
 + p

3
u

3
 + u

4
 = 0. (2)

There exist other special types of developable surfaces. Two of them will be mentioned here.

The surface D is a developable of constant slope, if its normal vectors n(u) form a constant angle

 with a fixed direction vector a. Assuming a  = 1, we get cos() = a . n(u) =  = const. This implies

that the Blaschke images of the tangent planes of D are contained in the three-space

H : � + a
1
u

1
 + a

2
u

2
 + a

3
u

3
 = 0. (3)

The developable surface D is tangent to a sphere with center m and radius r, if the tangent planes
T(u) of D satisfy n

4
 + n

1
m

1
 + n

2
m

2
 + n

3
m

3
 � r = 0, according to (11). Thus, the image curve b(D) is

contained in the three-space

H : �r + u
1
m

1
 + u

2
m

2
 + u

3
m

3
 + u

4
 = 0. (4)

10.3.1 Cones and Cylinders of Revolution

For applications, it is of particular interest if a developable surface D is a cone or cylinder of
revolution.

Let D be a cylinder of revolution with axis A and radius r. The tangent planes T of D are tangent to
all spheres of radius r, whose centers vary on A. Let

S
1
 : (x � p)2 � r2 = 0, S

2
 : (x � q)2 � r2 = 0

be two such spheres with centers p, q. According to (11), the images b(T) of the tangent planes T
satisfy the relations

H
1
 : �r + u

1
p

1
 + u

2
p

2
 + u

3
p

3
 + u

4
 = 0, (5)

H
2
 : �r + u

1
q

1
 + u

2
q

2
 + u

3
q

3
 + u

4
 = 0.
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Notes Since p  q, the image curve b(D) lies in the plane P = H
1
  H

2
 and b(D) is a conic.

Cones of revolution D can be obtained as envelopes of the common tangent planes of two oriented
spheres S

1
, S

2
 with different radii r  s. Thus, b(D) is a conic contained in the plane

P = H
1
  H

2
 which is defined by

H
1
 : �r + u

1
p

1
 + u

2
p

2
 + u

3
p

3
 + u

4
 = 0, (6)

H
2
 : �s + u

1
q

1
 + u

2
q

2
 + u

3
q

3
 + u

4
 = 0.

Conversely, if the Blaschke image b(D) of a developable surface is a planar curve  P, how can
we decide whether D is a cone or cylinder of revolution?

Let b(D) = b(T(u)) be a planar curve  P and let P be given as intersection of two independent
three-spaces H

1
, H

2
, with

H
i
 : h

i0
 + h

i1
u

1
 + h

i2
u

2
 + h

i3
u

3
 + h

i4
u

4
 = 0. (7)

Using the results of Section 23.2.2, the incidence relation b(T(u))  H
1
 implies that T(u) is tangent

to a sphere, or is passing through a point (h
10

 = 0), or encloses a fixed angle with a fixed direction
(h

14
 = 0). The same argumentation holds for H

2
.

Thus, by excluding the degenerate case h
14

 = h
24

 = 0, we can assume that P = H
1
  H

2
 is the

intersection by two three-spaces H
1
, H

2
 of the form (5) or (6).

(1) Let the plane P = H
1
  H

2
 be given by equations (5). Then, the developable surface D is a

cylinder of revolution. By subtracting the equations (5) it follows that the normal vector
n(u) of T(u) satisfies

n . (p � q) = 0.

Thus, the axis A of D is given by a = p � q and D�s radius equals r.

(2) Let the plane P = H
1
  H

2
 be given by equations (6). The pencil of three spaces H

1
 + H

2

contains a unique three-space H, passing through the origin in 4, whose equation is

3

i i i 4
i=1

H : u (sp � rq ) + u (s � r) = 0.

Thus, the tangent planes of the developable surface D are passing through a fixed point
corresponding to H, and D is a cone of revolution. Its vertex v and the inclination angle 
between the axis A : a = p � q and the tangent planes T(u) are


   

 

1
( ), and sin

s r
V sp rq

s r q p

10.4 Recognition of Developable Surfaces from Point Clouds

Given a cloud of data points p
i
, this section discusses the recognition and classification of

developable surfaces according to their Blaschke images. The algorithm contains the following
steps:

(1) Estimation of tangent planes T
i
 at data points p

i
 and computation of the image points b(T

i
).

(2) Analysis of the structure of the set of image points b(T
i
).

(3) If the set b(T
i
) is curve-like, classification of the developable surface which is close to p

i
.
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Notes10.4.1 Estimation of Tangent Planes

We are given data points p
i
, i = 1, . . . , N, with Cartesian coordinates x

i
, y

i
, z

i
 in 3 and a

triangulation of the data with triangles t
j
. The triangulation gives topological information

about the point cloud, and we are able to define adjacent points q
k
 for any data point p.

The estimated tangent plane T at p shall be a plane best fitting the data points q
k
. T can be

computed as minimizer (in the l
1
 or l

2
-sense) of the vector of distances dist(q

k
, T) between the

data points q
k
 and the plane T. This leads to a set of N estimated tangent planes T

i
 corresponding

to the data points p
i
. For more information concerning reverse engineering.

Assuming that the original surface with measurement points p
i
 is a developable surface D, the

image points b(T
i
) of the estimated tangent planes T

i
 will form a curve-like region on B. To check

the property �curvelike�, neighborhoods with respect to a metric on B will be defined. Later, we
will fit a curve c(t) to the curve-like set of image points b(T

i
), and this fitting is implemented

according to the chosen metric.

10.4.2 A Euclidean Metric in the Set of Planes

Now we show that the simplest choice, namely the canonical Euclidean metric in the surrounding
space R4 of the Blaschke cylinder B, is a quite useful metric for data analysis and fitting. This says
that the distance dist(E, F) between two planes E, F

E : e
1
x

1
 + e

2
x

2
 + e

3
x

3
 + e

4
 = 0, F : f

1
x

1
 + f

2
x

2
 + f

3
x

3
 + f

4
 = 0,

with normalized normal vectors e = (e
1
, e

2
, e

3
) and f = (f

1
, f

2
, f

3
) ( e = f = 1)  is defined to be the

Euclidean distance of their image points b(E) and b(F). Thus, the squared distance between E and
F is defined by

dist(E, F)2 = (e
1
 � f

1
)2 + (e

2
 � f

2
)2 + (e

3
 � f

3
)2 + (e

4
 � f

4
)2. (1)

To illustrate the geometric meaning of dist(E, F)2 between two planes E and F we choose a fixed
plane M(= F) in 3 as x � m = 0. Its Blaschke image is b(M) = (1, 0, 0, �m). All points of the Blaschke
cylinder, whose Euclidean distance to b(M) equals r, form the intersection surface S of B with the

three-dimensional sphere (u
1
 � 1)2 + 2 2

2 3u u  +(u
4
 + m)2 = r2. Thus, S is an algebraic surface of

order 4 in general. Its points are Blaschke images b(E) of planes E in 3 which have constant
distance r from M and their coordinates ei satisfy

(e
1
 � 1)2 + 2 2

2 3e + e  + (e
4
 + m)2 � r2 = 0. (2)

The coefficients e
i
 satisfy the normalization 2 2 2

1 2 3e e e 1.    If we consider a general homogeneous

equation E : w
1
x

1
 + w

2
x

2
 + w

3
x

3
 + w

4
 = 0 of E, these coefficients wi are related to e

i
 by

e
i
 = i

2 2 2
1 2 3

w
, i 1, 2, 3, 4.

w w w


 

We plug this into (2) and obtain the following homogeneous relation of degree four in plane
coordinates w

i
,

2 2 2 2 2 2 2 2 2 2 2
1 2 3 4 1 4 1 2 3[(2 r m )(w w w ) w ] 4(w mw ) (w w w ).                                   (3)

Hence, all planes E, having constant distance dist(E, M) = r from a fixed plane M, form the
tangent planes of an algebraic surface b�1(S) = U of class 4, and U bounds the tolerance region of
the plane M. If a plane E deviates from a plane M in the sense, that b(E) and b(M) have at most
distance r, then the plane E lies in a region of 3, which is bounded by the surface U (3).
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Notes For visualization, we choose the 2D-case. Figure 10.2 shows the boundary curves of tolerance
regions of lines M : x = m, for values m = 0, 1.25, 2.5 and radius r = 0.25. The lines M

i
 are drawn

dashed. The largest perpendicular distance of E(|| M) and M within the tolerance regions is r.
The largest angle of E and M is indicated by the asymptotic lines (dotted style) of the boundary
curves. For m = 0, the intersection point of the asymptotic lines lies on M

0
, but for increasing

values of |m|, this does not hold in general and the tolerance regions will become
asymmetrically. For large values of |m|, this intersection point might even be outside the
region, and the canonical Euclidean metric in 4 is then no longer useful for the definition of
distances between planes.

The tolerance zone of an oriented plane M is rotationally symmetric with respect to the normal
n of M passing through the origin. In the planes through n there appears the 2D-case, so that the
2D-case is sufficient for visualization.

The introduced metric is not invariant under all Euclidean motions of the space 3. The metric is
invariant with respect to rotations about the origin, but this does not hold for translations. If the
distance d = m of the plane

Figure 10.2: Boundary Curves of the Tolerance Regions of the Center Lines M
i
.

M to the origin changes, then the shape of the tolerance region changes, too. However, within an
area of interest around the origin (e.g. |m| < 1), these changes are small and thus the introduced
metric is useful.

In practice, we uniformly scale the data in a way that the absolute values of all coordinates x
i
, y

i
,

z
i
 are smaller than c = 1/ 3.  Then the object is contained in a cube, bounded by the planes

x = ±c, y = ±c, z = ±c and the maximum distance of a data point p
i
 to the origin is 1. Considering

planes passing through the data points p
i
, the maximum distance dist(O, E) of a plane E to the

origin is also 1.
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NotesAccording to the normalization 2 2 2
1 2 3e e e 1,    the distance of the Blaschke image b(E) to the

origin in 4 is bounded by 1. This is also important for a discretization of the Blaschke cylinder
which we discuss in the following.

10.4.3 A Cell Decomposition of the Blaschke Cylinder

For practical computations on B, we use a cell decomposition of B to define neighborhoods of

image points b(T) of (estimated) tangent planes T. We recall that B�s equation is 2 2 2
1 2 3u u u 1.  

Any cross section with a plane u
4
 = const. is a copy of the unit sphere S2 in 3. In order to obtain

a cell decomposition of B, we start with a triangular decomposition of S2 and lift it to B.

A tessellation of S2 can be based on the net of a regular icosahedron. The vertices v
i
, i = 1, . . . , 12,

with iv  = 1 of a regular icosahedron form twenty triangles t
j
 and thirty edges. All edges have

same arc length. This icosahedral net is subdivided by computing the midpoints of all edges
(geodesic circles). Any triangle t

j
 is subdivided into four new triangles. The inner triangle has

equal edge lengths, the outer three have not, but the lengths of the edges to not vary too much.
By repeated subdivision, one obtains a finer tessellation of the unit sphere.

The cell decomposition of the Blaschke cylinder consists of triangular prismatic cells which are
lifted from the triangular tessellation of S2 in u

4
-direction. Since we measure distances according

to (1), the height of a prismatic cell has to be approximately equal to the edge length of a
triangle. When each triangle of the tessellation is subdivided into four children, each interval in
u

4
-direction is split into two subintervals.

According to the scaling of the data points p
i
, the coordinates of the image points b(E) on B are

bounded by ±1. We start with 20 triangles, 12 vertices and 2 intervals in u
4
-direction. The test-

implementation uses the resolution after three subdivision steps with 1280 triangles, 642 vertices
and 16 intervals in u

4
-direction. In addition to the cell structure on B, we store adjacency

information of these cells.

Remark concerning the visualization: It is easy to visualize the spherical image (first three
coordinates) on S2, but it is hard to visualize the Blaschke image on B. We confine ourself to plot
the spherical image on S2, and if necessary, we add the fourth coordinate (support function) in a
separate figure. This seems to be an appropriate visualization of the geometry on the Blaschke
cylinder, see Figures 10.3 to Figure 10.7.

10.4.4 Analysis and Classification of the Blaschke Image

Having computed estimates T
i
 of the tangent planes of the data points and their images b(T

i
), we

check whether the Blaschke image of the considered surface is curve-like. According to
Section 23.4.3, the interesting part of the Blaschke cylinder B is covered by 1280 × 16 cells C

k
. We

compute the memberships of image points b(T
i
) and cells C

k
 and obtain a binary image on the

cell structure C of B. Let us recall some basic properties of the Blaschke image of a surface.

(1) If the data points p
i
 are contained in a single plane P, the image points b(T

i
) of estimated

tangent planes T
i
 form a point-like cluster around b(P) on B.

(2) If the data points p
i
 are contained in a developable surface, the image points b(T

i
) form a

curve-like region in B.

(3) If the data points p
i
 are contained in a doubly curved surface S, the image points b(T

i
) cover

a two-dimensional region on B.
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Notes (4) If the data points p
i
 are contained in a spherical surface S, the image points b(T

i
) cover a

two-dimensional region on B which is contained in a three-space.

In the following, we assume that the data comes from a smooth developable surface. Since the
estimation of tangent planes gives bad results on the boundary of the surface patch and near
measurement errors, there will be outliers in the Blaschke image. To find those, we search for
cells C

k
 carrying only a few image points. These cells and image points are not considered for

the further computations. The result is referred to as cleaned Blaschke image. In addition, a
thinning of the Blaschke image can be performed.

After having analyzed and cleaned the Blaschke image from outliers we are able to decide
whether the given developable surface D is a general cone or cylinder, a cone or cylinder of
revolution, another special developable or a general developable surface.

So, let T
i
, i = 1, . . . ,M be the reliable estimated tangent planes of D after the cleaning and let

b(T
i
) = b

i
 be their Blaschke images. As we have worked out in Section 10.4.3 we can classify the

type of the developable surface D in the following way.

To check if the point cloud bi on B can be fitted well by a hyperplane H,

H : h
0
 + h

1
u

1
 + . . . + h

4
u

4
 = 0, 2

1h + . . . + 2
4h  = 1. (4)

we perform a principal component analysis on the points b
i
. This is equivalent to computing the

ellipsoid of inertia of the points bi. It is known that the best fitting hyperplane passes through

the barycenter c = i( b ) /M of the M data points b
i
. Using c as new origin, the coordinate vectors

of the data points are q
i
 = b

i
 � c and the unknown three-space H has vanishing coefficient, h

0
 = 0.

The signed Euclidean distance d(b
i
, H) of a point qi and the unknown three space H is

d(q
i
, H) = h

1
q

i
,1 + . . . + h

4
q

i,4
 = h . q

i
, (5)

where h = (h
1
, . . . , h

4
) denotes the unit normal vector of H. The minimization of the sum of

squared distances,

F(h
1
, h

2
, h

3
, h

4
) =

M M
2 2

i i i
i 1 i 1

1 1
d (q ,H) (q . h ) .

M M 

  (6)

with respect to h2 = 1 is an ordinary eigenvalue problem. Using a matrix notation with vectors
as columns, it is written as

F(h) = hT . C . h, with C : = 
M

T
i i

i 1

1
q . q .

M 

 (7)

The symmetric matrix C is known as covariance matrix in statistics and as inertia tensor in
mechanics. Let i be an eigenvalue of C and let v

i
 be the corresponding normalized eigenvector

2
i(v  = 1).  Then, 

i
 = F

2
(v

i
) holds and thus the best fitting three-space V

1
 belongs to the smallest

eigenvalue 
1
. The statistical standard deviation of the fit with V

1
 is


1
 = 1/(n � 4). (8)

The distribution of the eigenvalues 
1
  

2
  · · ·  

4
 of the covariance matrix C (and the

corresponding standard deviations 
1
  · · ·  

4
) gives important information on the shape of the

surface D:

(1) Two small eigenvalues 
1
, 

2
 and different coefficients h

10
, h

20
, (|h

10
 � h

20
| > ): The surface

D can be well approximated by a cone of revolution, compare 6 in section 10.3.1. The
vertex and the inclination angle are computed according to Section 10.3.
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Notes(2) Two small eigenvalues 
1
, 

2
 but nearly equal coefficients h

10
, h

20
, (|h

10
 � h

20
|  ): The

surface D can be well approximated by a cylinder of revolution, compare with (5) in
section 10.3.1. The axis and the radius are computed according to Section 10.3.

(3) One small eigenvalue 
1
 and small coefficient h

10
 : The surface D is a general cone and its

vertex is

v = 
14

1
h

(h
11

, h
12

, h
13

).

(4) One small eigenvalue 
1
 and small coefficients h

10
 and h

14
 : The surface D is a general

cylinder and its axis is parallel to the vector

a = (h
11

, h
12

, h
13

).

(5) One small eigenvalue 
1
 and small coefficient h

14
 : The surface D is a developable of

constant slope. The tangent planes of D form a constant angle with respect to an axis. The
angle and the axis are found according to formula (3) in section 10.3. An example is
displayed in Figure 10.4.

(6) One small eigenvalue 
1
 characterizes a developable surface D whose tangent planes T

i
 are

tangent to a sphere (compare with (4)) in section 10.3

Figure 10.3: Left: General cylinder. Middle: Triangulated data points and approximation.
Right: Original Blaschke image (projected onto S2).

Its centre and radius are:

10
11 12 13

14 14

1 h
m= (h ,h ,h ), r .

h h




Figure 10.4: Left: Developable of constant slope (math. model).
Middle: Triangulated data points and approximation. Stars represent the singular curve.

Right: Spherical image of the approximation with control points.
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Notes For this classification, we need to fix a threshold , to decide what small means. This value
depends on the accuracy of the measurement device, the number of data points per area unit and
the accuracy of the object. Some experience is necessary to choose this value for particular
applications.

10.5 Reconstruction of Developable Surfaces from Measurements

In this section we describe the construction of a best-fitting developable surface to data points p
i

or to estimated tangent planes T
i
. In addition we address some problems, in particular the

control of the singular curve of the approximation. First we note some general demands on the
surface D to be approximated.

(1) D is a smooth surface not carrying singular points. D is not necessarily exactly developable,
but one can run the algorithm also for nearly developable surfaces (one small principal
curvature).

(2) The density of data points pi has to be approximately the same everywhere.

(3) The image b(T
i
) of the set of (estimated) tangent planes T

i
 has to be a simple, curve-like

region on the Blaschke cylinder which can be injectively parameterized over an interval.

According to the made assumptions, the reconstruction of a set of measurement point p
i
 of a

developable surface D can be divided into the following tasks:

(1) Fitting a curve c(t)  B to the curve-like region formed by the data points b(T
i
).

(2) Computation of the one-parameter family of planes E(t) in 3 and of the generating lines
L(t) of the developable D* which approximates measurements p

i
.

(3) Computation of the boundary curves of D* with respect to the domain of interest in 3.

10.5.1 Curve fitting on the Blaschke cylinder B

We are given a set of unorganized data points b(T
i
)  B and according to the made assumptions

these points form a curve-like region on the Blaschke cylinder B. The aim is to fit a parametrized
curve c(t)  B to these points. In order to satisfy the constraint c(t)  B we have to guarantee that

c
1
(t)2 + c

2
(t)2 + c

3
(t)2 = 1, (9)

which says that the projection c�(t) = (c
1
, c

2
, c

3
)(t) of c(t) = (c

1
, c

2
, c

3
, c

4
)(t) to 3 is a spherical curve

(in S2). The computation of a best fitting curve to unorganized points is not trivial, but there are
several methods around. Estimation of parameter values or sorting the points are useful
ingredients to simplify the fitting. We do not go into detail here but refer to the moving least
squares method to estimate parameter values and to the approach by Lee [11] who uses a
minimum spanning tree to define an ordering of the points. These methods apply also to
thinning of the curve-like point cloud.

After this preparation we perform standard curve approximation with Baselines and project the
solution curve to the Blaschke cylinder B in order to satisfy the constraint (9). If the projection
c�  S2 of c(t) is contained in a hemisphere of S2 and if additionally the fourth coordinate c

4
(t) does

not vary to much, it is appropriate to perform a stereographic projection so that we finally end
up with a rational curve c(t) on B. For practical purposes it will often be sufficient to apply a
projection to B with rays orthogonally to u

4
, the axis of B.

Figure 23.5 shows a curve-like region in S2 with varying width, an approximating curve c�(t) to
this region and the approximation c

4
(t) of the support function to a set of image points b(T

i
)  B.
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NotesWe mention here that the presented curve fitting will fail in the case when inflection generators
occur in the original developable shape, because inflection generators correspond to singularities
of the Blaschke image. Theoretically, we have to split the data set at an inflection generator and
run the algorithm for the parts separately and join the partial solutions. In practice, however, it
is not so easy to detect this particular situation and it is not yet implemented.

Figure 10.5: Blaschke image (left) (projected onto S2), approximating curve to thinned point
cloud (right) and support function (fourth coordinate)

10.5.2 Biarcs in the Space of Planes

We like to mention an interesting relation to biarcs. Biarcs are curves composed of circular arcs
with tangent continuity and have been studied at first in the plane. It is known that the G1-
Hermite interpolation problem of Hermite elements (points plus tangent lines) P

1
, V

1
 and P

2
, V

2

possesses a one-parameter solution with biarcs which can be parameterized over the projective
line. Usually one can expect that suitable solutions exist, but for some configurations there are
no solutions with respect to a given orientation of the tangent lines V

j
 .

The construction of biarcs can be carried out on quadrics too, in particular on the sphere S2 or on
the Blaschke cylinder B. If we consider a biarc (elliptic) c = b(D)  B then the corresponding
developable surface D in 3 is composed of cones or cylinders of revolution with tangent plane
continuity along a common generator. To apply this in our context, we sample Hermite elements
P

j
 , V

j
 , j = 1, . . . , n from an approximation c(t)  B of the set b(T

i
). Any pair of Hermite elements

P
j
 , V

j
 and P

j+1
, V

j+1
 is interpolated by a pair of elliptic arcs on B with tangent continuity. Applying

this concept, the final developable surface is composed of smoothly joined cones of revolution.
This has the advantage that the development (unfolding) of the surface is elementary.
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Notes 10.5.3 A Parametrization of the Developable Surface

Once we have computed a curve c(t)  B that approximates the image points b(T
i
) well, the one-

parameter family E(t) determining the approximating developable surface D* is already given
by

E(t) : c
4
(t) + c

1
(t)x + c

2
(t)y + c

3
(t)z = 0.

The generating lines L(t) of D* are the intersection lines E(t)  E(t).  We assume that there exist

two bounding planes H
1
 and H

2
 of the domain of interest in a way that all generating lines L(t)

intersect H
1
 and H

2
 in proper points. The intersection curves f

i
(t) of L(t) and H

i
, i = 1, 2 are

computed by

f
i
(t) = E(t)  E(t)   H

i
, (10)

and the final point representation of D* is

x(t, u) = (1 � u)f
1
(t) + uf

2
(t). (11)

Figures 10.3, 10.4, 10.6 and 10.7 show developable surfaces which approximate data points
(displayed as dots).

The deviation or distance between the given surface D and the approximation D* can be defined
according to distances between estimated planes T

i
, i = 1, . . . , N (with corresponding parameter

values t
i
) and the approximation E(t) by

d2(D, D*) = 2

i

1
dist

N
(T

i
, E(t

i
)). (12)

If more emphasis is on the deviation of the measurements p
i
 from the developable D*, one can

use

d2(D, D*) = 2

i

1
dist

N
(p

i
, E(t

i
)). (13)

with respect to orthogonal distances between points p
i
 and planes E(t

i
).

Figure 10.6: Left: Developable surface approximating the data points. Right: Projection of the
Blaschke image onto S2, approximating curve with control polygon and support function.
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Notes10.5.4 Fitting Developable Surfaces to nearly Developable Shapes

The proposed method can be applied also to fit a developable surface to data which comes from
a nearly developable shape. Of course, we have to specify what nearly developable means in
this context. Since the fitting is performed by fitting a one-parameter family of tangent planes,
we will formulate the requirements on the data pi in terms of the Blaschke image of the estimated
tangent planes T

i
.

If the data points p
i
 are measurements of a developable surface D and if the width in direction of

the generators does not vary too much, the Blaschke image b(D) = R will be a tubular-like
(curve-like) region on B with nearly constant thickness. Its boundary looks like a pipe surface.

Putting small distortions to D, the normals of D will have a larger variation near these distortions.
The Blaschke image b(D) possesses a larger width locally and will look like a canal surface. As
long as it is still possible to compute a fitting curve to b(D), we can run the algorithm and obtain
a developable surface approximating D. Figures 10.5 and 10.7 illustrate the projection of b(D)
onto the unit sphere S2.

The analysis of the Blaschke image b(D) gives a possibility to check whether D can be
approximated by a developable surface or not. By using the cell structure of the cleaned Blaschke
image b(D), we pick a cell C and an appropriately chosen neighborhood U of C. Forming the
intersection R = U  b(D), we compute the ellipsoid of inertia (or a principal component analysis)
of R. The existence of one significantly larger eigenvalue indicates that R can be approximated
by a curve in a stable way. Thus, the point set corresponding to R can be fitted by a developable
surface.

Since approximations of nearly developable shapes by developable surfaces are quite useful for
practical purposes, this topic will be investigated in more detail in the future.

10.5.5 Singular Points of a Developable Surface

So far, we did not pay any attention to singular points of D*. The control and avoidance of the
singular points within the domain of interest is a complicated topic because the integration of
this into the curve fitting is quite difficult.

If the developable surface D* is given by a point representation, formula (4) represents the
singular curve s(t). If D* is given by its tangent planes E(t), the singular curve s(t) is the envelope
of the generators L(t) and so it is computed by

s(t) = E(t) E(t) E(t).   (14)

Thus, the singular curve s(t) depends in a highly nonlinear way on the coordinate functions of
E(t).
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Notes Figure 10.7: Left: Nearly developable surface and developable approximation. Right: Projection
of the original Blaschke image onto S2 and thinned Blaschke image with approximating curve.

In order to compute the singular curve s(t), let n = c ^ c ^ c,   where ^ denotes the vector product

in 4. The Cartesian coordinates of the singular curve are then found by

s(t) =
4

1
n (t)

(n
1
(t), n

2
(t), n

3
(t)). (15)

Zeros of the function n
4
 correspond to points at infinity of s(t). In Section 10.4.2, we have assumed

that all coordinates of data points are bounded by ±c such that we have ip   1. In order to

approximate the data with singularity-free developable surfaces, we have to guarantee

s(t)  > 1, (16)

when we fit curves c(t) to image points b(T
i
)  B of estimated tangent planes T

i
. Since the data

comes from a developable surface without singularities, we

Assuming that the curve c(t)  B fitted to the data b(T
i
) is composed of biarcs, we obtain the

following: For two consecutive Hermite elements P
j 
, V

j
 and P

j+1
, V

j+1
 there exists a one-parameter

family of interpolating pairs of arcs and condition (16) leads to a quadratic inequality. Thus,
solutions can be computed explicitly. However, as we have mentioned in Section 10.5.2, there is
no guarantee that feasible solutions exist and the construction clearly depends on the choice of
the Hermite elements which have been sampled from an initial solution of the curve fitting.
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Notes10.5.6 Conclusion

We have proposed a method for fitting a developable surface to data points coming from a
developable or a nearly developable shape. The approach applies curve approximation in the
space of planes to the set of estimated tangent planes of the shape. This approach has advantages
compared to usual surface fitting techniques, like

 avoiding the estimation of parameter values and direction of generators,

 guaranteeing that the approximation is developable.

The detection of regions containing inflection generators, and the avoidance of singular points
on the fitted developable surface have still to be improved. The approximation of nearly
developable shapes by developable surface is an interesting topic for future research. In particular
we will study the segmentation of a non-developable shape into parts which can be well
approximated by developable surfaces. This problem is relevant in certain applications
(architecture, ship hull manufacturing), although one cannot expect that the developable parts
will fit together with tangent plane continuity.

Acknowledgements This research has been supported partially by the innovative project �3D
Technology� of Vienna University of Technology.

10.6 Summary

 For fitting ruled surfaces to point clouds, we have to estimate in advance the approximate
direction of the generating lines of the surface in order to estimate useful parameter
values for the given data. To perform this, it is necessary to estimate the asymptotic lines
of the surface in a stable way.

 We have to guarantee that the resulting approximation b(u, v) is developable, which is
expressed by equation. Plugging the parametrization b(u, v) into this condition leads to a
highly non-linear side condition in the control points b

ij
 for the determination of the

approximation b(u, v).

 We consider a fixed point p = (p
1
, p

2
, p

3
) and all planes E : n . x + d = 0 passing through this

point. The incidence between p and E is expressed by

p
1
n

1
 + p

2
n

2
 + p

3
n

3
 + d = p . n + d = 0,

and therefore the image points b(E) = (n
1
, n

2
, n

3
, d) in 4 of all planes passing through p lie

in the three-space

H : p
1
u

1
 + p

2
u

2
 + p

3
u

3
 + u

4
 = 0,

passing through the origin of 4. The intersection H  B with the cylinder B is an ellipsoid
and any point of H  B is image of a plane passing through p. shows a 2D illustration of
this property.

 Let D be a cylinder of revolution with axis A and radius r. The tangent planes T of D are
tangent to all spheres of radius r, whose centers vary on A. Let

S
1
 : (x � p)2 � r2 = 0, S

2
 : (x � q)2 � r2 = 0

142



LOVELY PROFESSIONAL UNIVERSITY

Notes be two such spheres with centers p, q. According to (11), the images b(T) of the tangent
planes T satisfy the relations

H
1
 : �r + u

1
p

1
 + u

2
p

2
 + u

3
p

3
 + u

4
 = 0,

H
2
 : �r + u

1
q

1
 + u

2
q

2
 + u

3
q

3
 + u

4
 = 0.

Since p  q, the image curve b(D) lies in the plane P = H
1
  H

2
 and b(D) is a conic.

 Given a cloud of data points p
i
, this section discusses the recognition and classification of

developable surfaces according to their Blaschke images. The algorithm contains the
following steps:

 Estimation of tangent planes T
i
 at data points p

i
 and computation of the image points

b(T
i
).

 Analysis of the structure of the set of image points b(T
i
).

 If the set b(T
i
) is curve-like, classification of the developable surface which is close to

p
i
.

 D is a smooth surface not carrying singular points. D is not necessarily exactly developable,
but one can run the algorithm also for nearly developable surfaces (one small principal
curvature).

 The density of data points pi has to be approximately the same everywhere.

 The image b(T
i
) of the set of (estimated) tangent planes T

i
 has to be a simple, curve-like

region on the Blaschke cylinder which can be injectively parameterized over an interval.

 According to the made assumptions, the reconstruction of a set of measurement point p
i
 of

a developable surface D can be divided into the following tasks:

 Fitting a curve c(t)  B to the curve-like region formed by the data points b(T
i
).

 Computation of the one-parameter family of planes E(t) in 3 and of the generating
lines L(t) of the developable D* which approximates measurements p

i
.

 Computation of the boundary curves of D* with respect to the domain of interest
in 3.

10.7 Keywords

Cylinder: D is a general cylinder if all its tangent planes T(u) are parallel to a vector a and thus
its normal vectors n(u) satisfy n . a = 0. This implies that the image curve b(T(u)) = b(D) is
contained in the three-space H : a

1
u

1
 + a

2
u

2
 + a

3
u

3
 = 0.

Cone: D is a general cone if all its tangent planes T(u) pass through a fixed point p = (p
1
, p

2
, p

3
).

This incidence is expressed by p
1
n

1
 + p

2
n

2
 + p

3
n

3
 + n

4
 = 0. Thus, the Blaschke image curve

b(T(u)) = b(D) is contained in the three space H : p
1
u

1
 + p

2
u

2
 + p

3
u

3
 + u

4
 = 0.

10.8 Self Assessment

1. Let S be the oriented sphere with center m and signed radius r, ................ = 0. The tangent
planes T

S
 of S are exactly those planes, whose signed distance from m equals r.

2. The surface D is a ................ of constant slope, if its normal vectors n(u) form a constant
angle  with a fixed direction vector a.

3. Let D be a cylinder of revolution with axis A and radius r. The ................ T of D are tangent
to all spheres of radius r, whose centers vary on A.
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Notes4. Let the plane P = H
1
  H

2
 be given by equations. The pencil of three spaces H

1
 + H

2

contains a unique three-space H, passing through the origin in 4, whose equation is
................

5. D is a smooth surface not carrying singular points. D is not necessarily exactly developable,
but one can run the ................ also for nearly developable surfaces (one small principal
curvature).

6. Computation of the boundary curves of D* with respect to the domain of interest in
................

10.9 Review Questions

1. Discuss The Blaschke Model of Oriented Planes in R3.

2. Explain Incidence of Point and Plane.

3. Define Tangency of Sphere and Plane.

4. Discuss the Classification of Developable Surfaces according to their Image on B.

5. Describe Cones and Cylinders of Revolution.

6. Explain Recognition of Developable Surfaces from Point Clouds.

7. Describe Reconstruction of Developable Surfaces from Measurements.

Answers: Self Assessment

1. S : (x � m)2 � r2 2. developable

3. tangent planes 4.
3

i i i 4
i=1

H : u (sp � rq ) + u (s � r) = 0.

5. algorithm 6.  3.
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Objectives

After studying this unit, you will be able to:

 Define surfaces

 Explain the first fundamental form

 Describe the second fundamental form

 Discuss some example related to fundamental forms

Introduction

In last unit, you have studied about development surfaces. In mathematics, specifically in topology,
a surface is a two-dimensional topological manifold. The most familiar examples are those that
arise as the boundaries of solid objects in ordinary three-dimensional Euclidean space R3 - for
example, the surface of a ball. There are surfaces, such as the Klein bottle, that cannot be embedded
in three-dimensional Euclidean space without introducing singularities or self-intersections.

11.1 Surfaces

Definition 1. A parametric surface patch is a smooth mapping:

3X : U ,

where 2U    is open, and the Jacobian dX is non-singular.

Sachin Kaushal, Lovely Professional University
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NotesWrite X = (x1, x2, x3), and each xi = xi(u1, u2), then the Jacobian has the matrix representation:

1 1
1 2

2 2
1 2

3 3
1 2

x x

dX x x

x x

 
 

  
 
 

where we have used the notation i
i

i uf f f / u .     According to the definition, we are requiring

that this matrix has rank 2, or equivalently that the vectors X
1
 =    1 2 3 1 2 3

2 1 1 2 2 2 2x , x , x  and X x , x , x

are linearly independent. Another equivalent requirement is that 2 3dX :    is injective.

Example: Let 2U    be open, and suppose that f : U    is smooth. Define the graph
of f as the parametric surface X(u1, u2) = (u1, u2, f(u1, u2)). To verify that X is indeed a parametric
surface, note that:

1 2

1 0

dX 0 1

f f

 
 

  
 
 

so that clearly X is non-singular.

A diffeomorphism between open sets U, 2V    is a map : U V   which is smooth, one-to-
one, and whose inverse is also smooth. If det(d) > 0, then we say that  is an orientation-
preserving diffeomorphism.

Definition 2. Let  3 3X : U ,  and X : U    be parametric surfaces. We say that X  is

reparametrization of X if  X X ,  where : U U     is a diffeomorphism. If  is an orientation-

preserving diffeomorphism, then X  is an orientation-preserving reparametrization.

Clearly, the inverse of a diffeomorphism is a diffeomorphism. Thus, if X  is a reparametrization

of X, then X is a reparametrization of X.

Definition 3. The tangent space T
u 

| X of the parametric surface 3X : U    at u  U is the
2-dimensional linear subspace of 3 spanned by the two vectors X

1
 and X

2
.1

If Y  T
u
 X, then it can be expressed as a linear combination in X

1
 and X

2
:

2
1 2 i

1 2 i
i 1

Y y X y X y X ,


  

where iy   are the components of the vector Y in the basis X
1
, X

2
 of T

u
 X. We will use the

Einstein Summation Convention: every index which appears twice in any product, once as a subscript
(covariant) and once as a superscript (contravariant), is summed over its range. For example, the
above equation will be written Y = yi X

i
. The next proposition show that the tangent space is

invariant under reparametrization, and gives the law of transformation for the components of

1 Note that the tangent plane to the surface X(U) at u is actually the affine subspace X(u) + Tu X.
However, it will be very convenient to have the tangent space as a linear subspace of 3.

146



LOVELY PROFESSIONAL UNIVERSITY

Notes a tangent vector. Note that covariant and contravariant indices have different transformation
laws, cf. (1) and (2).

Proposition 1. Let 3X : U    be a parametric surface, and let X X   be a reparametrization

of X. Then 
 


uuT X T X.  

 Furthermore, if 
 
 ji

jiuZ T X,  and Z z X z X ,


     then:

i
ji

j

u
z z ,

u





                        ...(1)

where  jid u / u .    

Proof. By the chain rule, we have:

i

j ij

u
X X .

u






           ...(2)

Thus u (u)T X T X, 
  and since we can interchange the roles of X and X,  we conclude that

u (u)T X T X. 
  Substituting (2) in j

jz X ,  we find:

i
ji

i ij

u
z X z X ,

du


 


and (1) follows.

Definition 4. A vector field along a parametric surface 3X : U ,  is a smooth mapping
3Y : U .  2  A vector field Y is tangent to X if Y (u)  T

u
X for all u  U. A vector field Y is normal

to X if Y(u)  T
u
X for all u  U.

Example: The vector fields X
1
 and X

2
 are tangent to the surface. The vector field X

1
 × X

2

is normal to the surface.

We call the unit vector field

1 2

1 2

X X
N

X X





the unit normal. Note that the triple (X
1
, X

2
, N), although not necessarily orthonormal, is positively

oriented. In particular, we can see that the choice of an orientation on X, e.g., X
1
  X

2
, fixes a unit

normal, and vice-versa, the choice of a unit normal fixes the orientation. Here we chose to use
the orientation inherited from the orientation u1  u2 on U.

Definition 5. We call the map 2N : U    the Gauss map.

The Gauss map is invariant under orientation-preserving reparametrization.

Proposition 2. Let 3X : U    be a parametric surface, and let 2N : U    be its Gauss map. Let

X X    be an orientation-preserving reparametrization of X. Then the Gauss map of X is N . 

2 We often visualize Y(u) as being attached at X(u), i.e. belonging to the tangent space of 3 at X(u); cf.
see footnote 1.
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Proof. Let   V . The unit normal N( ) of X at    is perpendicular to T X.

  By Proposition 1, we

have ( )T X T X.     Thus, N( )  is perpendicular to ( )T X,   as is  N ( ) .   It follows that the two

vectors are co-linear, and hence  N( ) N ( ) .      But since  is orientation preserving, the two

pairs (X
1
, X

2
) and  1 2X ,X   have the same orientation in the plane T X.


  Since also, the two triples

      X1 ( ) ,X2 ( ) ,N ( )       and  1 2X ( ),X ( ),N( )     have the same orientation in 3, it follows

that  N ( ) N( ).   

11.2 The First Fundamental Form

Definition 6. A symmetric bilinear form on a vector space V is function B : V V    satisfying:

1. B(aX + bY,Z) = aB(X,Z) + bB(Y,Z), for all X, Y  V and a, b  R.

2. B(X, Y) = B(Y, X), for all X, Y  V.

The symmetric bilinear form B is positive definite if B(X, X)  0, with equality if and only if
X = 0.

With any symmetric bilinear form B on a vector space, there is associated a quadratic form Q(X)

= B(X, X). Let V and W be vector spaces and let T : V W  be a linear map. If B is a symmetric
bilinear form on W, we can define a symmetric bilinear form T* Q on V by T* Q(X, Y) = Q(TX,
TY). We call T* Q the pull-back of Q by T. The map T is then an isometry between the inner-
product spaces (V, T* Q) and (W,Q).

Example: Let V = 3 and define B(X, Y) = X  Y , then B is a positive definite symmetric
bilinear form. The associated quadratic form is Q(X) = |X|2.

Example: Let A be a symmetric 2 × 2 matrix, and let B(X, Y) = AX  Y, then B is a
symmetric bilinear form which is positive definite if and only if the eigenvalues of A are both
positive.

Definition 7. Let 3X : U    be a parametric surface. The first fundamental form is the symmetric
bilinear form g defined on each tangent space T

u
 X by:

g(Y, Z) = Y  Z, Y, Z  T
u 
X.

Thus, g is simply the restriction of the Euclidean inner product in above Example to each tangent
space of X. We say that g is induced by the Euclidean inner product.

Let g
ij
 = g(X

i
, X

j
), and let Y = yi X

i
 and Z = zi X

i
 be two vectors in T

u
 X, then

g(Y,Z) = g
ij
 yi zj.           ...(3)

Thus, the so-called coordinate representation of g is at each point u
0
  U an instance of above

example. In fact, if A = (g
ij
), and B(, ) =   A for 

  as in the above example, then B is the

pull-back by 2
u udX : T X  of the restriction of the Euclidean inner product on T

u
 X.
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Notes The classical (Gauss) notation for the first fundamental form is g
11

 = E, g
12

 = g
21

 = F, and G = g
22

,
i.e.,

 ij

E F
g

F G
 

   

Clearly, F2 < EG, and another condition equivalent to the condition that X
1
 and X

2
 are linearly

independent is that det(g
ij
) = EG  F2 > 0. The first fundamental form is also sometimes written:

ds2 = g
ij
 dui duj = E (du1)2 + 2F du1 du2 + G(du2)2.

Note that the g
ij
�s are functions of u. The reason for the notation ds2 is that the square root of the

first fundamental form can be used to compute length of curves on X. Indeed, if 3: [a,b]   is

a curve on X, then X ,    where  is a curve in U. Let  1 2(t) (t), (t) ,     and denote time

derivatives by a dot, then

 
b b ji

ija a
L [a,b] dt g dt.       

Accordingly, ds is also called the line element of the surface X.

Note that g contains all the intrinsic geometric information about the surface X. The distance
between any two points on the surface is given by:

 d(p,q) inf L :  is a curve on X between p and q . 

Also the angle  between two vectors Y, Z  T
x
 X is given by:

g(Y,Z)
cos ,

g(Y,Y) g(Z,Z)
 

and the angle between two curves  and  on X is the angle between their tangents  and .  

Intrinsic geometry is all the information which can be obtained from the three functions g
ij
 and

their derivatives.

Clearly, the first fundamental form is invariant under reparametrization. The next proposition
shows how the g

ij
�s change under reparametrization.

Proposition 3. Let 3X : U    be a parametric surface, and let X X    be a reparametrization

of X. Let g
ij
 be the coordinate representation of the first fundamental form of X, and let ijg  be the

coordinate representation of the first fundamental form of X.  Then, we have:

 


 


 

k l

ij kl ji

u u
g g ,

u u
          ...(4)

where  jid u / u .    

Proof. In view of (2), we have:

   
k l k l k l

ij i j k l k l klj j ji i i

u u u u u u
g g X ,X g X , X g X ,X g .

u u du du u u

      
        

 
     
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We now turn to the second fundamental form. First, we need to prove a technical proposition.
Let Y and Z be vector fields along X, and suppose that Y = yi X

i
 is tangential. We define the

directional derivative of Z along Y by:

i i
Y i i

Z
Z y Z y .

u


  


Note that the value of 
Y
 Z at u depends only on the value of Y at u, but depends on the values of

Z in a neighborhood of u. In addition, 
Y
 Z is reparametrization invariant, but even if Z is

tangent, it is not necessarily tangent. Indeed, if we write i
iY y X ,   then we see that:

i k
i i i

i j jji k i

Z u Z u
y Z y y y Z.

u u u u

   
    

   

 
 

The commutator of Y and Z can now be defined as the vector field:

[Y,Z] = 
Y
 Z 

Z
 Y.

Proposition 4. Let 3X : U    be a surface, and let N be its unit normal.

(1) If Y and Z are tangential vector fields then [Y,Z]  T
u
 X.

(2) If Y, Z  T
u
 X then 

Y
 N Z = 

Z
 N Y.

Proof. Note first that since X is smooth, we have X
ij
 = X

ji
, where we have used the notation X

ij
 =

2 X/ui uj. Now, write Y = yi X
i
 and Z = zj X

j
, and compute:


Y
 Z  

Z
 Y = yizjX

ji
 + yi

i
zj X

j
  yizj X

ij
  zj

j
yi X

i

 j ji i
i i jy z z y X .   

To prove (2), extend Y and Z to be vector fields in a neighborhood of u, and use (1):


Y
 N Z  

Z
 N Y = N  (

Y
 Z  

Z
 Y) = 0.

Note that while proving the proposition, we have established the following formula for the
commutator:

 j ji i
i i j[Y,Z] y z z y X              ...(5)

Definition 8. Let 3X : U    be a surface, and let 2N : U    be its unit normal. The second
fundamental form of X is the symmetric bilinear form k defined on each tangent space T

u
 X by:

k(Y, Z) = 
Y
 N Z.           ...(6)

We remark that since N  N = 1, we have 
Y
 N N = 0, hence 

Y
 N is tangential. Thus, according to

(6), the second fundamental form is minus the tangential directional derivative of the unit
normal, and hence measures the turning of the tangent plane as one moves about on the surface.
Note that part (2) of the proposition guarantees that k is indeed a symmetric bilinear form. Note
that it is not necessarily positive definite. Furthermore, if we set k

ij
 = k(X

i
, X

j
) to be the coordinate

representation of the second fundamental form, then we have:

k
ij
 = X

ij
  N.           ...(7)
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Notes This equation leads to another representation. Consider the Taylor expansion of X at a point, say
0  U:

 3ji i
i ij

1
X(u) X(0) X (0)u X(0)u u O u

2
    

Thus, the elevation of X above its tangent plane at u is given up to second-order terms by:

   3ji i
i ij

1
X(u) X(0) X (0)u N k (0)u u O u .

2
    

The paraboloid on the right-hand side of the equation above is called the osculating paraboloid.
A point u of the surface is called elliptic, hyperbolic, parabolic, or planar, depending on whether
this paraboloid is elliptic, hyperbolic, cylindrical, or a plane.

In classical notation, the second fundamental form is:

 ij

L M
k .

M N
 

   

Clearly, the second fundamental form is invariant under orientation-preserving
reparametrizations. Furthermore, the k

ij
�s, the coordinate representation of k, changes like the

first fundamental form under orientation-preserving reparametrization:

 
m l

ij u j ml ji

u u
k k X ,X k ,

u u

 
 

 
  

 

Yet another interpretation of the second fundamental form is obtained by considering curves on
the surface. The following theorem is essentially due to Euler.

Theorem 1. Let 3X :[a,b]      be a curve on a parametric surface 3X : U ,   where

: [a,b] U.   Let k be the curvature of , and let  be the angle between the unit normal N of X,

and the principal normal e
2
 of . Then:

 k cos k , .               ...(8)

Proof. We may assume that  is parametrized by arclength. We have:

i
iX ,  

and

ji i
2 i ijke X X .        

The theorem now follows by taking inner product with N, and taking (7) into account.

The quantity k cos  is called the normal curvature of . It is particularly interesting to consider
normal sections, i.e., curves  on X which lie on the intersection of the surface with a normal
plane. We may always orient such a plane so that the normal e

2
 to  in the plane coincide with the

unit normal N of the surface. In that case, we obtain the simpler result:

 k k , .   

Thus, the second fundamental form measures the signed curvature of normal sections in the
normal plane equipped with the appropriate orientation.
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NotesDefinition 9. Let 3X : U    be a parametric surface, and let k be its second fundamental form.

Denote the unit circle in the tangent space at u by  u uS X Y T X : Y 1 .    For u  U, define the

principal curvatures of X at u by:

u
1 2

Y S X Y SsX
k min k(Y,Y), k maxk(Y,Y).

 
 

The unit vectors Y  S
u
X along which the principal curvatures are achieved are called the principal

directions. The mean curvature H and the Gauss curvature K of X at u are given by:

 1 2 1 2

1
H k k , K k k .

2
  

If we consider the tangent space T
u
X with the inner product g and the unique linear transformation

u u: T X T X  satisfying:

  ug (Y),Z k(Y,Z), Z T X,             ...(9)

then k
1
  k

2
 are the eigenvalues of  and the principal directions are the eigenvectors of . If

k
1
 = k

2
 then k = g and every direction is a principal direction. A point where this holds is called

an umbilical point. Otherwise, the principal directions are perpendicular. We have that H is the
trace and K the determinant of . Let(gij) be the inverse of the 2 × 2 matrix (gij):

im i
mj jg g . 

Set   j
i iX Xj,  then since   m

ij i j i mjk g (X ),X g ,    we find:

j mj
i imk g .

It is customary to say that g raises the index of k and to write the new object j mj
i imk k g .  Here

since k
ij
 is symmetric, it is not necessary to keep track of the position of the indices, and hence we

write: j j
i ik .  In particular, we have:

 
 

iji
i

ij

det k1
H k , K .

2 det g
          ...(10)

Now, ij im il
lmk g g k ,  and we have

2 ij 2 2 2 2
ij 1 2k k k tr k k 4H 2K.     

Hence, we conclude

22 1
K 2H k

2
          ...(11)

11.4 Examples

In this section, we use u1 = u, and u2 =  in order to simplify the notation.

24.4.1. Planes. Let 2U    be open, and let 3X : U    be a linear function:

X(u, ) = Au + B,
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Notes with 3A,B  linearly independent. Then X is a plane. After reparametrization, we may assume

that A and B are orthonormal. In that case, the first fundamental form is:

ds2 = du2 + d2.

Furthermore, |A × B| = 1, and N = A × B is constant, hence k = 0. In particular, all the points of
X are planar, and we have for the mean and Gauss curvatures: H = K = 0.

It is of interest to note that if all the points of a parametric surface are planar, then X(U) is
contained in a plane. We will later prove a stronger result: X has a reparametrization which is
linear.

Proposition 5. Let 3X : U    be a parametric surface, and suppose that its second fundamental
form k = 0. Then, there is a fixed vector A and a constant b such that X A = b, i.e., X is contained
in a plane.

Proof. Let A be the unit normal N of X. Let 1  i  2, and note that N
i
 is tangential. Indeed, N  N

= 1, and differentiating along ui, we get N N
i
 = 0. However, since k = 0 it follows from (2.6) that

N
i
  X

j
 = �k

ij
 = 0. Thus, N

i
 = 0 for i = 1, 2, and we conclude that N is constant. Consequently, (X N)

i

= X
i
 N = 0, and X N is also constant, which proves the proposition.

11.4.2. Spheres. Let U 2(0, ) (0,2 ) ,       and let 2X : U    be given by:

X(u, v) = (sin u cos v, sin u sin v, cos u).

The surface X is a parametric representation of the unit sphere. A straightforward calculation
shows that the first fundamental form is:

ds2 = du2 + sin2 u dv2,

and the unit normal is N = X. Thus, N
i
 = X

i
, and consequently k

ij
 = �N

i
  X

j
 = �X

i
  X

j
 = �g

ij
 , i.e., k =

�g. In particular, the principal curvatures are both equal to �1 and all the points are umbilical.
We have for the mean and Gauss curvatures:

H = �1, K = 1

Proposition 6. Let 3X : U    be a parametric surface and suppose that all the points of X are
umbilical. Then, X(U) is either contained in a plane or a sphere.

Proof. By hypothesis, we have

N
i
 = X

i
.         ...(12)

We first show that  is a constant. Differentiating, we get N
ij
 = 

j
X

i
 + X

ij
. Interchanging i and j,

subtracting these two equations, and taking into account N
ij
 � N

ji
 = X

ij
 � X

ji
 = 0, we obtain 

i
X

j
 � 

j
X

i

= 0, e.g.,


1
X

2
 � 

2
X

1
 = 0.

Since X
1
 and X

2
 are linearly independent, we conclude that 

1
 = 

2
 = 0 and it follows that  is

constant. Now, if  = 0 then all points are planar, and by Proposition 6, X is contained in a plane.
Otherwise, let A = X � -1 N, then A is constant:

A
i
 = X

i
 � -1 N

i
 = 0,

and 1X A 
    is also constant, hence X is contained in a sphere.

11.4.3. Ruled Surfaces. A ruled surface is a parametric surface of the form:

X(u,v) (u) vY(u)  
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Two Fundamental Form

Notesfor a curve 3: [a,b] ,    and a vector field 3Y :[a,b]   along . The curve  is the directrix,

and the lines (u) tY(u)   for u fixed are the generators of X. We may assume that Y is a unit

vector field. Provided Y 0.  We will also assume that Y 0.  In this case, it is possible to

arrange by reparametrization that Y 0,    in which case  is said to be a line of striction.

Indeed, if this is not the case, then we can set  
2

Y / Y ,       and note that the curve

Y    

lies on the surface X, and satisfies Y 0.    Consequently, the surface:

X(s, t) (s) tY(s)  

is a reparametrization of X. Furthermore, there is only one line of striction on X. Indeed, if  and
 are two lines of striction, then since both  is a curve on X we may write  =  + Y for some
function  and consequently:

Y Y.       

Taking inner product with Y  and using the fact that Y is a unit vector, we obtain 
2

Y 0   which

implies that  = 0 and thus,  = .

We have u v vX Y,X Y,     and X
vv

 = 0. Thus, the first fundamental is:

 
22

ij

Y1 v Y
g

1Y

  
  
   

 



and

   
2 222 2

ijdet g 1 v Y Y v Y .      

Hence, dX is non-singular except possibly on the line of striction. Furthermore, k
vv

 = N  X
vv

 = 0,

hence   2
ij uvdet k k   and if  ijdet k 0  then v u v vN X N X 0,     is constant along generators.

We have proved the following proposition.

Proposition 7. Let X be a ruled surface. Then X has non-positive Gauss curvature K  0, and
K(u) = 0 if and only if N is constant along the generator through u.

11.4.3.1. Cylinders. Let 3: [a,b]    be a planar curve, and A be a unit normal to the plane

which contains . Define 3X :[a,b]    by:

X(u,v) (u) vA.  

The surface X is a cylinder. The first fundamental form is:

ds2 = du2 + dv2,

and we see that for a cylinder dX is always non-singular. After possibly reversing the orientation
of A, the unit normal is N = e

2
. Clearly, N

v
 = 0, and N

u
 = �ke

1
.
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Notes Thus, the second fundamental form is:

kdu2

The principal curvatures are 0 and k. We have for the mean and Gauss curvatures:

1
H k, K 0.

2
  

A surface on which K = 0 is called developable.

11.4.3.2. Tangent Surfaces. Let 3: [a,b]   be a curve with nonzero curvature k  0. Its tangent

surface is the ruled surface:

X(u,v) (u) v (u).   

Since 0,      the curve  is the line of striction of its tangent surface. We have X
u
 = e

1
 + vk e

2
 and

X
v
 = e

1
, hence the first fundamental form is:

 
2 2

ij

11 v k
g .

11

 
  
 

The unit normal is N = �e
3
, and clearly N

v
 = 0. Thus,

11.4.3.3. Hyperboloid. Let 3: (0,2 )     be the unit circle in the x1 x2-plane:   (t) cos(t), sin(t),0 . 

Define a ruled surface 3X : (0,2 )     by:

   3X(u,v) (u) v (u) e cos(u) v sin(u), sin(u) vcos(u),v .       

Note that (x1)2 + (x2)2 � (x3)3 = 1 so that X(U) is a hyperboloid of one sheet. A straightforward
calculation gives:

 
2

1
N cos(u) vsin(u),sin(u) vcos(u), v ,

1 2v
   



and

2

v 2 4

2
N .

1 4v 4v


 

It follows from Proposition 7 that X has Gauss curvature K < 0.

11.5 Summary

 A parametric surface patch is a smooth mapping:

3X : U ,

where 2U    is open, and the Jacobian dX is non-singular.

Write X = (x1, x2, x3), and each xi = xi(u1, u2), then the Jacobian has the matrix representation:

1 1
1 2

2 2
1 2

3 3
1 2

x x

dX x x

x x

 
 

  
 
 
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Two Fundamental Form

Noteswhere we have used the notation i
i

i uf f f / u .     According to the definition, we are

requiring that this matrix has rank 2, or equivalently that the vectors

   1 2 3 1 2 3
2 1 1 2 2 2 2x , x , x  and X x , x , x  are linearly independent. Another equivalent requirement

is that 2 3dX :    is injective.

 Let  3 3X : U ,  and X : U    be parametric surfaces. We say that X  is reparametrization

of X if  X X ,  where : U U     is a diffeomorphism. If  is an orientation-preserving

diffeomorphism, then X  is an orientation-preserving reparametrization.

 If Y  T
u
 X, then it can be expressed as a linear combination in X

1
 and X

2
:

2
1 2 i

1 2 i
i 1

Y y X y X y X ,


  

where iy   are the components of the vector Y in the basis X
1
, X

2
 of T

u
 X. We will use the

Einstein Summation Convention: every index which appears twice in any product, once as
a subscript (covariant) and once as a superscript (contravariant), is summed over its range.

 A vector field along a parametric surface 3X : U ,  is a smooth mapping 3Y : U .  2  A

vector field Y is tangent to X if Y (u)  T
u
X for all u  U. A vector field Y is normal to X if

Y(u)  T
u
X for all u  U.

 A symmetric bilinear form on a vector space V is function B : V V    satisfying:

 B(aX + bY,Z) = aB(X,Z) + bB(Y,Z), for all X, Y  V and a, b  R.

 B(X, Y) = B(Y, X), for all X, Y  V.

The symmetric bilinear form B is positive definite if B(X, X)  0, with equality if and only
if X = 0.

With any symmetric bilinear form B on a vector space, there is associated a quadratic form

Q(X) = B(X, X). Let V and W be vector spaces and let T : V W  be a linear map. If B is a
symmetric bilinear form on W, we can define a symmetric bilinear form T* Q on V by
T* Q(X, Y) = Q(TX, TY). We call T* Q the pull-back of Q by T. The map T is then an isometry
between the inner-product spaces (V, T* Q) and (W,Q).

11.6 Keywords

Diffeomorphism: A diffeomorphism between open sets U, 2V    is a map : U V   which is
smooth, one-to-one, and whose inverse is also smooth. If det(d) > 0, then we sa that  is an
orientation-preserving diffeomorphism.

Einstein Summation Convention: every index which appears twice in any product, once as a
subscript (covariant) and once as a superscript (contravariant), is summed over its range.

Gauss map: The Gauss map is invariant under orientation-preserving reparametrization.
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Notes 11.7 Self Assessment

1. Let  3 3X : U ,  and X : U    be parametric surfaces. We say that X  is reparametrization

of X if  X X ,  where : U U     is a ...................

2. The tangent space T
u
 X of the parametric surface ................... at u  U is the 2-dimensional

linear subspace of 3 spanned by the two vectors X
1
 and X

2
.1

3. A ...................  Y is tangent to X if Y (u)  T
u
X for all u  U. A vector field Y is normal to X

if Y(u)  T
u
X for all u  U.

4. The ................... is invariant under orientation-preserving reparametrization.

5. Let 3X : U    be a parametric surface, and let 2N : U    be its Gauss map. Let X X  

be an orientation-preserving ................... of X. Then the Gauss map of X is N . 

11.8 Review Questions

1. Let 3 3X : U  and X : U     be two parametric surfaces. The angle  between them is

the angle between their unit normals: cos N N.     Let  be a regular curve which lies on

both X and X,  and suppose that the angle between X and X  is constant along . Show that

 is a line of curvature of X if and only if it is a line of curvature of X.

2. Let 3X : U    be a parametric surface, and let  be an asymptotic line with curvature k 

0, and torsion . Show that K  

3. Denote by SO(n) the set of orthogonal n × n matrices, and by D(n) the set of n × n diagonal

matrices. Let n nA : (a,b) S   be a Ck function, and suppose that A maps into the set of

matrices with distinct eigenvalues. Show that there exist Ck functions Q: (a, b)  SO(n) and
 : (a, b)  D(n) such that Q�1 AQ = . Conclude the matrix function A has Ck eigenvector

fields n
1 n j j je , ,e : (a,b) ,Ae e .     Give a counter-example to show that this last

conclusion can fail the eigenvalues of A are allowed to coincide.

4. Let Mn×n be the space of all n × n matrices, and let B: (a, b)  Mn×n be continuously
differentiable. Prove that:

   det B tr B * B ,  

where B* is the matrix of co-factors of B.

5. Two harmonic surfaces 3X,Y : U  are called conjugate, if they satisfy the Cauchy-

Riemann Equations:

X
u
 = Y

v
, X

v
 = �Y

u
,

where (u, v) denote the coordinates in U. Prove that if X is conformal then Y is also
conformal. Let X and Y be conformal conjugate minimal surfaces. Prove that for any t:

Z = X cos t + Y sin t

is also a minimal surface. Show that all the surfaces Z above have the same first fundamental
form.
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Two Fundamental Form

NotesAnswers: Self Assessment

1. diffeomorphism 2. 3X : U  

3. vector field 4. Gauss map

5. reparametrization

11.9 Further Readings
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P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis
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Bansi Lal : Differential Geometry.
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Notes Unit 12: Curvature
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Objectives

After studying this unit, you will be able to:

 Discuss the Curvature of plane curves

 Explain the Curvature of a graph

 Define Signed curvature

 Describe Curvature of space curves

 Explain Curves on surfaces

Introduction

In mathematics, curvature refers to any of a number of loosely related concepts in different areas
of geometry. Intuitively, curvature is the amount by which a geometric object deviates from
being flat, or straight in the case of a line, but this is defined in different ways depending on the
context. There is a key distinction between extrinsic curvature, which is defined for objects
embedded in another space (usually a Euclidean space) in a way that relates to the radius of
curvature of circles that touch the object, and intrinsic curvature, which is defined at each point
in a Riemannian manifold. This unit deals primarily with the first concept. The canonical example
of extrinsic curvature is that of a circle, which everywhere has curvature equal to the reciprocal
of its radius. Smaller circles bend more sharply, and hence have higher curvature. The curvature
of a smooth curve is defined as the curvature of its osculating circle at each point.

Richa Nandra, Lovely Professional University
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Curvature

NotesIn a plane, this is a scalar quantity, but in three or more dimensions it is described by a curvature
vector that takes into account the direction of the bend as well as its sharpness. The curvature of
more complex objects (such as surfaces or even curved n-dimensional spaces) is described by
more complex objects from linear algebra, such as the general Riemann curvature tensor. The
remainder of this article discusses, from a mathematical perspective, some geometric examples
of curvature: the curvature of a curve embedded in a plane and the curvature of a surface in
Euclidean space. See the links below for further reading.

12.1 Curvature of Plane Curves

Cauchy defined the center of curvature C as the intersection point of two infinitely close normals
to the curve, the radius of curvature as the distance from the point to C, and the curvature itself as
the inverse of the radius of curvature.

Let C be a plane curve (the precise technical assumptions are given below). The curvature of C at
a point is a measure of how sensitive its tangent line is to moving the point to other nearby
points. There are a number of equivalent ways that this idea can be made precise.

One way is geometrical. It is natural to define the curvature of a straight line to be identically
zero. The curvature of a circle of radius R should be large if R is small and small if R is large.
Thus, the curvature of a circle is defined to be the reciprocal of the radius:

1
k= .

R

Given any curve C and a point P on it, there is a unique circle or line which most closely
approximates the curve near P, the osculating circle at P. The curvature of C at P is then defined
to be the curvature of that circle or line. The radius of curvature is defined as the reciprocal of the
curvature.

Another way to understand the curvature is physical. Suppose that a particle moves along the
curve with unit speed. Taking the time s as the parameter for C, this provides a natural
parametrization for the curve. The unit tangent vector T (which is also the velocity vector, since
the particle is moving with unit speed) also depends on time. The curvature is then the magnitude
of the rate of change of T. Symbolically,

dT
k= .

ds

This is the magnitude of the acceleration of the particle. Geometrically, this measures how fast
the unit tangent vector to the curve rotates. If a curve keeps close to the same direction, the unit
tangent vector changes very little and the curvature is small; where the curve undergoes a tight
turn, the curvature is large.
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Notes These two approaches to the curvature are related geometrically by the following observation.
In the first definition, the curvature of a circle is equal to the ratio of the angle of an arc to its
length. Likewise, the curvature of a plane curve at any point is the limiting ratio of d, an
infinitesimal angle (in radians) between tangents to that curve at the ends of an infinitesimal
segment of the curve, to the length of that segment ds, i.e., d/ds. If the tangents at the ends of the
segment are represented by unit vectors, it is easy to show that in this limit, the magnitude of the
difference vector is equal to d, which leads to the given expression in the second definition of
curvature.

Figure 12.1

In figure,  T and N vectors at two points on a plane curve, a translated version of the second frame (dotted),

and the change in T: äT�. äs is the distance between the points. In the limit 
dT

ds
 will be in the direction N and

the curvature describes the speed of rotation of the frame.

Suppose that C is a twice continuously differentiable immersed plane curve, which here means
that there exists parametric representation of C by a pair of functions ã(t) = (x(t), y(t)) such that
the first and second derivatives of x and y both exist and are continuous, and

2 2 2' x'(t) y'(t) 0   

throughout the domain. For such a plane curve, there exists a reparametrization with respect to
arc length s. This is a parametrization of C such that

2 2 2' x '(s) y'(s) 1.   

The velocity vector T(s) is the unit tangent vector. The unit normal vector N(s), the curvature
ê(s), the oriented or signed curvature k(s), and the radius of curvature R(s) are given by

1
T(s) '(s), T'(s) k(s)N(s), k(s) T '(s) ''(s) k(s) , R(s) .

k(s)
       

Expressions for calculating the curvature in arbitrary coordinate systems are given below.

12.1.1 Signed Curvature

The sign of the signed curvature k indicates the direction in which the unit tangent vector rotates
as a function of the parameter along the curve. If the unit tangent rotates counterclockwise, then
k > 0. If it rotates clockwise, then k < 0.

The signed curvature depends on the particular parametrization chosen for a curve. For example
the unit circle can be parametrised by (cos(), sin()) (counterclockwise, with k > 0), or by
(cos(�), sin(�)) (clockwise, with k < 0). More precisely, the signed curvature depends only on
the choice of orientation of an immersed curve. Every immersed curve in the plane admits two
possible orientations.
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Curvature

Notes12.1.2 Local Expressions

For a plane curve given parametrically in Cartesian coordinates as ã(t) = (x(t),y(t)), the curvature
is

' 2 ' 2 3 /2

x'y" y'x"
k ,

(x y )






where primes refer to derivatives with respect to parameter t. The signed curvature k is

' " ' "

' 2 '2 3 /2

x y y x
k .

(x y )






These can be expressed in a coordinate-independent manner via

3 3

det( ', ")det( ', ")
k , k

' '

  
 

 

12.1.3 Curvature of a Graph

For the less general case of a plane curve given explicitly as y = f(x), and now using primes for
derivatives with respect to coordinate x , the curvature is

2 3 /2

y"
k ,

(1 y' )




and the signed curvature is

2 3 /2

y"
k .

(1 y' )




This quantity is common in physics and engineering; for example, in the equations of bending
in beams, the 1D vibration of a tense string, approximations to the fluid flow around surfaces (in
aeronautics), and the free surface boundary conditions in ocean waves. In such applications, the
assumption is almost always made that the slope is small compared with unity, so that the
approximation:

2

2

d y
k

dx


may be used. This approximation yields a straightforward linear equation describing the
phenomenon, which would otherwise remain intractable.

If a curve is defined in polar coordinates as r(), then its curvature is

2 r2

2 r2 3 /2

r 2r rr"
k( )

(r r )

 
 



where here the prime now refers to differentiation with respect to .

Example: Consider the parabola y = x2. We can parametrize the curve simply as
(t) = (t,t2) = (x,y). If we use primes for derivatives with respect to parameter t , then

x' 1, x" 0, y' 2t, y" 2.   
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Notes Substituting and dropping unnecessary absolute values, get

r2 r2 3 /2 3 /2 2 3 /2

x'y" y'x" 1.2 (2t)(0) 2
k(t) .

(x y ) (1 (2t)2) (1 4t )

 
  

  

12.2 Curvature of Space Curves

As in the case of curves in two dimensions, the curvature of a regular space curve C in three
dimensions (and higher) is the magnitude of the acceleration of a particle moving with unit
speed along a curve. Thus if (s) is the arc length parametrization of C then the unit tangent
vector T(s) is given by

T(s) = �(s)

and the curvature is the magnitude of the acceleration:

k(s) T'(s) "(s) .  

The direction of the acceleration is the unit normal vector N(s), which is defined by

T'(s)
N(s) .

T '(s)


The plane containing the two vectors T(s) and N(s) is called the osculating plane to the curve at
(s). The curvature has the following geometrical interpretation. There exists a circle in the
osculating plane tangent to (s) whose Taylor series to second order at the point of contact agrees
with that of (s). This is the osculating circle to the curve. The radius of the circle R(s) is called the
radius of curvature, and the curvature is the reciprocal of the radius of curvature:

1
k(s) .

R(s)


The tangent, curvature, and normal vector together describe the second-order behavior of a
curve near a point. In three-dimensions, the third order behavior of a curve is described by a
related notion of torsion, which measures the extent to which a curve tends to perform a corkscrew
in space. The torsion and curvature are related by the Frenet�Serret formulas (in three dimensions)
and their generalization (in higher dimensions).

12.2.1 Local Expressions

For a parametrically defined space curve in three-dimensions given in Cartesian coordinates by
ã(t) = (x(t),y(t),z(t)), the curvature is

2 2 2

r2 r2 r2 3 /2

(z"y' y"z') (x"z' z"x') (y"x' x"y')
k .

(x y z )

    


 

where the prime denotes differentiation with respect to time t. This can be expressed
independently of the coordinate system by means of the formula

3

' "
k

'

  




where × is the vector cross product. Equivalently,

t

3

det(( ', ") ( ', ")
k .

'

   



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NotesHere the t denotes the matrix transpose. This last formula is also valid for the curvature of curves
in a Euclidean space of any dimension.

12.2.2 Curvature from Arc and Chord Length

Given two points P and Q on C, let s(P,Q) be the arc length of the portion of the curve between
P and Q and let d(P,Q) denote the length of the line segment from P to Q. The curvature of C at
P is given by the limit

3Q P

24(s(P,Q) d(P,Q))
k(P) lim

s(P,Q)




where the limit is taken as the point Q approaches P on C. The denominator can equally well be
taken to be d(P,Q)3. The formula is valid in any dimension. Furthermore, by considering the
limit independently on either side of P, this definition of the curvature can sometimes
accommodate a singularity at P. The formula follows by verifying it for the osculating circle.

12.3 Curves on Surfaces

When a one dimensional curve lies on a two dimensional surface embedded in three dimensions
R3, further measures of curvature are available, which take the surface�s unit-normal vector, u
into account. These are the normal curvature, geodesic curvature and geodesic torsion. Any non-
singular curve on a smooth surface will have its tangent vector T lying in the tangent plane of
the surface orthogonal to the normal vector. The normal curvature, k

n
, is the curvature of the

curve projected onto the plane containing the curve�s tangent T and the surface normal u; the
geodesic curvature, k

g
, is the curvature of the curve projected onto the surface�s tangent plane;

and the geodesic torsion (or relative torsion), ô
r
, measures the rate of change of the surface

normal around the curve�s tangent.

Let the curve be a unit speed curve and let t = u × T so that T, u, t form an orthonormal basis: the
Darboux frame. The above quantities are related by:

g n

g n

n

o K KT' T

t' K o T t

u' K T o u

    
    

     
         

Figure 12.2: Saddle Surface with Normal Planes in Directions of Principal Curvatures

                            Principal curvature
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All curves with the same tangent vector will have the same normal curvature, which is the same
as the curvature of the curve obtained by intersecting the surface with the plane containing T
and u. Taking all possible tangent vectors then the maximum and minimum values of the
normal curvature at a point are called the principal curvatures, k

1
 and k

2
, and the directions of the

corresponding tangent vectors are called principal directions.

This is explained in detail in Unit 27 of this book.

12.4 Summary

 Curvature refers to any of a number of loosely related concepts in different areas of
geometry. Intuitively, curvature is the amount by which a geometric object deviates from
being flat, or straight in the case of a line, but this is defined in different ways depending
on the context. There is a key distinction between extrinsic curvature, which is defined for
objects embedded in another space (usually a Euclidean space) in a way that relates to the
radius of curvature of circles that touch the object, and intrinsic curvature, which is defined
at each point in a Riemannian manifold. This article deals primarily with the first concept.
Cauchy defined the center of curvature C as the intersection point of two infinitely close
normals to the curve, the radius of curvature as the distance from the point to C, and the
curvature itself as the inverse of the radius of curvature.

 Let C be a plane curve (the precise technical assumptions are given below). The curvature
of C at a point is a measure of how sensitive its tangent line is to moving the point to other
nearby points. There are a number of equivalent ways that this idea can be made precise.
The sign of the signed curvature k indicates the direction in which the unit tangent vector
rotates as a function of the parameter along the curve. If the unit tangent rotates
counterclockwise, then k > 0. If it rotates clockwise, then k < 0. The signed curvature
depends on the particular parametrization chosen for a curve. For example the unit circle
can be parametrised by (cos (), sin()) (counterclockwise, with k > 0), or by (cos(�),
sin(�)) (clockwise, with k < 0). As in the case of curves in two dimensions, the curvature
of a regular space curve C in three dimensions (and higher) is the magnitude of the
acceleration of a particle moving with unit speed along a curve. The tangent, curvature,
and normal vector together describe the second-order behavior of a curve near a point. In
three-dimensions, the third order behavior of a curve is described by a related notion of
torsion, which measures the extent to which a curve tends to perform a corkscrew in space.

12.5 Keywords

Curvature: Curvature refers to any of a number of loosely related concepts in different areas of
geometry.

Extrinsic curvature: Extrinsic curvature, which is defined for objects embedded in another space
(usually a Euclidean space) in a way that relates to the radius of curvature of circles that touch the
object

Intrinsic curvature: Intrinsic curvature, which is defined at each point in a Riemannian manifold.
This article deals primarily with the first concept.
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Notes12.6 Self Assessment

1. ...................... refers to any of a number of loosely related concepts in different areas of
geometry.

2. ......................, which is defined at each point in a Riemannian manifold.

3. ...................... defined the center of curvature C as the intersection point of two infinitely
close normals to the curve, the radius of curvature as the distance from the point to C, and
the curvature itself as the inverse of the radius of curvature.

4. The ...................... and normal vector together describe the second-order behavior of a
curve near a point.

12.7 Review Question

1. Discuss the concept of Curvature of plane curves.

2. Explain the Curvature of a graph.

3. Define Signed curvature and discuss it in detail.

4. Describe Curvature of space curves.

5. Explain Curves on surfaces.

Answers: Self Assessment

1. Curvature 2. Intrinsic curvature

3. Cauchy 4. tangent, curvature

12.8 Further Readings
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Conway, J.B. : Function of one complex variable

Pati, T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H. Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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Objectives

After studying this unit, you will be able to:

 Define lines of curvature

 Explain the examples of lines of curvature

 Describe the surface area and Bernstein's theorem

Introduction

In last unit, you have studied about curvature. In general, there are two important types of
curvature: extrinsic curvature and intrinsic curvature. The extrinsic curvature of curves in two-
and three-space was the first type of curvature to be studied historically, culminating in the
Frenet formulas, which describe a space curve entirely in terms of its "curvature," torsion, and
the initial starting point and direction. This unit will explains the concept of lines of curvature.

13.1 Lines of Curvature

Definition 1. A curve  on a parametric surface X is called a line of curvature if   is a principal

direction.

The following proposition, due to Rodriguez, characterizes lines of curvature as those curves
whose tangents are parallel to the tangent of their spherical image under the Gauss map.

Richa Nandra, Lovely Professional University
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NotesProposition 1. Let  be a curve on a parametric surface X with unit normal N, and let N     be

its spherical image under the Gauss map. Then  is a line of curvature if and only if

0.                            ...(1)

Proof. Suppose that (1) holds, then we have:

N 0.    

Let  be the linear transformation on T
u
X associated with k. Then, we have for every uY T X :

 g ( ),Y k( ,Y) N Y g( ,Y).          

Thus,   ,     and   is a principal direction. The proof of the converse is similar.

It is clear from the proof that  in (1) is the associated principal curvature. The coordinate curves
of a parametric surface X are the two family of curves 

c
(t) = X(t, c) and 

c
(t) = X(c, t). A surface is

parametrized by lines of curvature if the coordinate curves of X are lines of curvature. We will
now show that any non-umbilical point has a neighborhood in which the surface can be
reparametrized by lines of curvature. We first prove the following lemma which is also of
independent interest.

Lemma 1. Let 3X : U    be a parametric surface, and let Y
1
 and Y

2
 be linearly independent

vector fields. The following statements are equivalent:

1. Any point u
0
  U has a neighborhood U

0
 and a reparametrization 0 0: V U   such that if

i iX X  then X Y .     

2.  1 2Y ,Y 0.

Proof. Suppose that (1) holds. Then Equation shows that 1 2X ,X 0.   
   However, since the

commutator is invariant under reparametrization, it follows that  1 2Y ,Y 0.

Conversely, suppose that  1 2Y ,Y 0.  Express j
i i jX a Y  and j

i i jY b X ,  note that  jib  is the

inverse of  jia .  We now calculate:

0 i jX ,X   

k l
i k j la Y ,a Y   

   l k l k k l
i l j j l i k i j k la Y a a Y a Y a a Y ,Y    

 l m k l m k
i l m j j l m i ka b a a b a Y   

 k k
i j j i ka a Y .   

Since Y
1
 and Y

2
 are linearly independent, we conclude that:

k k
i j j ia a 0.                           ...(2)
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Notes Now, fix 1  k  2, and consider the over-determined system:

k
k
ii

u
a , i 1,2.

u


 





The integrability condition for this system is exactly (2), hence there is a solution in a

neighborhood of u
0
. Furthermore, since the Jacobian of the map    1 2 1 2u ,u u ,u     is  k

id a , 

and  k
idet a 0,  it follows from the inverse function theorem, that perhaps on yet a smaller

neighborhood,   is a diffeomorphism. Let 1 ,    then  is a diffeomorphism on a

neighborhood V
0
 of 0(u ),  and if we set X X ,    then:

j
j

i j j i ii

u
X X X b Y .

u


  




Proposition 2. Let 3X : U    be a parametric surface, and let Y
1
 and Y

2
 be linearly independent

vector fields. Then for any point u
0
  U there is a neighborhood of u

0
 and a reparametrization

X X    such that i i iX f Y   for some functions f
i
.

Proof. By Lemma 1 is suffices to show that there are function f
i
 such that f

1
 Y

1
 and f

2
 Y

2
 commute.

Write  1 2 1 1 2 2Y ,Y a Y a Y ,   and compute:

       1 1 2 2 1 2 1 1 2 2 1 1 2 2 2 2 1 1f Y , f Y f f a Y a Y f Y f Y f Y f Y .     

Thus, the commutator  1 1 2 2f Y , f Y  vanishes if and only if the following two equations are satisfied:

Y
2
f

1
 � a

1
f

1
 = 0

Y
1
f

2
 � a

2
f

2
 = 0.

We can rewrite those as:

Y
2
 log f

1
 = a

1

Y
1
 log f

2
 = a

2
.

Each of those equation is a linear first-order partial differential equation, and can be solved for
a positive solution in a neighborhood of u

0
.

In a neighborhood of a non-umbilical point, the principal directions define two orthogonal unit
vector fields. Thus, we obtain the following Theorem as a corollary to the above proposition.

Theorem 1. Let 3X : U    be a parametric surface, and let u
0
 be a non-umbilical point. Then

there is neighborhood U
0
 of u

0
 and a diffeomorphism 0 0: U U   such that X X    is

parametrized by lines of curvature.

If X is parametrized by lines of curvature, then the second fundamental form has the coordinate
representation:

  1 11
ij

2 22

0k g
k

0 k g
 

   

Definition 2. A curve  on a parametric surface X is called an asymptotic line if it has zero normal

curvature, i.e.,  k , 0.   
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NotesThe term asymptotic stems from the fact that those curve have their tangent   along the

asymptotes of the Dupin indicatrix, the conic section ji
ijk 1    in the tangent space. Since the

Dupin indicatrix has no asymptotes when K > 0, we see that the Gauss curvature must be
non-positive along any asymptotic line.

The following Theorem can be proved by the same method as used above to obtain Theorem 1.

Theorem 2. Let 3X : U    be a parametric surface, and let u
0
 be a hyperbolic point. Then there

is neighborhood U
0
 of u

0
 and a diffeomorphism 0 0: U U   such that X X    is parametrized

by asymptotic lines.

13.2 Examples

A surface of revolution is a parametric surface of the form:

 X(u,v) f(u)cos(v), f(u)sin(v),g(u) ,

where  f(t), g(t)  is a regular curve, called the generator, which satisfies f(t)  0. Without loss of

generality, we may assume that f(t) > 0. The curves

 v(t) f(t)cos(v), f(t)sin(v),g(t) ,  v fixed.

are called meridians and the curves

 u(t) f(u)cos(t), f(u)sin(t),g(u) ,  u fixed.

are called parallels. Note that every meridian is a planar curve congruent to the generator and
is furthermore also a normal section, and every parallel is a circle of radius f(u). It is not difficult
to see that parallels and meridians are lines of curvature. Indeed, let 

v
 be a meridian, then

choosing as in the paragraph following the correct orientation in the plane of 
v
, its spherical

image under the Gauss map is v v 2N e ,    and by the Frenet equations, v 1 vke k .      

Thus, using Proposition 1 and the comment immediately following it, we see that 
v
 is a line of

curvature with associated principal curvature k. Since the parallels 
u
 are perpendicular to the

meridians 
v
, it follows immediately that they are also lines of curvature. We derive this also

follows from Proposition 1 and furthermore obtain the associated principal curvature. A
straightforward computation gives that the spherical image of 

u
 under the Gauss map is:

u u uN c B     

where 3B  and c  are constants. Thus, u u uc  and      is a line of curvature with associated

principal curvature c.

The plane, the sphere, the cylinder, and the hyperboloid are all surfaces of revolution. We
discuss one more example.

The catenoid is the parametric surface of revolution obtained from the generating curve

 cosh(t), t :

 X(u,v) cosh(u), cos(v), cosh(u),sin(v),u .
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cos(v) sin(v) sinh(u)
N(u,v) , ,

cosh(u) cosh(u) cosh(u)

  
  
 

If 
v
(t) is a meridian, then 

v
(t) = N(t, v) is its spherical image under the Gauss map, and

differentiating with respect to t, we get the principal curvature associated with meridians:
k(u, v) = �1/cosh(u). Similarly, the principal curvature associated with parallels is: 1/cosh(u).
Thus, we conclude that

2

1
H 0, K .

cosh(u)
  

Definition 3. A parametric surface X is minimal if it has vanishing mean curvature H = 0.

For example, the catenoid is a minimal surface. The justification for the terminology will be
given in the next section.

Proposition 3. Let X be a minimal surface. Then X has non-positive Gauss curvature K  0, and
K(u) = 0 if and only if u is a planar point.

We will set out to construct a large class of minimal surfaces. We will use the Weierstrass
Representation.

Definition 4. A parametric surface X is conformal if the first fundamental form satisfies g
11

 = g
22

and g
12

 = 0. A parametric surface X is harmonic if X = X
11

 + X
22

 = 0.

Proposition 4. Let 3X : U    be a parametric surface which is both conformal and harmonic.
Then X is a minimal surface.

Proof. We can write the first fundamental form  ijg ,  its inverse  ijg ,  and the second fundamental

form  ijk  as:

     
1

11 12ij
ij ij1

12 22

00 X N X N
g , g , k .

0 X N X N0





      
      

      

Thus, the mean curvature vanishes:

 ij 1
ij 11 22H g k X X N 0.

     

In order to construct parametric surfaces which are both conformal and harmonic, we will use

complex analysis in the domain U. Let  = u+iv where i denotes 1,  and let  f   and  h   be

two complex analytic functions on U. Define

F
1
 = f2 � h2,  2 2

2F i f h ,  F
3
 = 2fh.

We have:

     
22 2

1 2 3F F F 0.  

If we write F
j
 = 

j
 + in

j
 , then this can be written as:

   
23 32 2

j j j j
j 1 j 1

n 2i n 0.
 

     
   
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NotesNow, in any simply connected subset of U, we can always find analytic functions G
j
 = x

j
 +iy

j

satisfying  j jG F .

  We let  1 2 3X x , x , x .  Then X is conformal and harmonic. Indeed, x

j
 being

the real parts of complex analytic functions, are harmonic, and hence X is harmonic. Furthermore,

we have  j ju
x ,   and by the Cauchy-Riemann equations    j j jv u

x y n .     Thus, we see

that

   
23 2 2

u u v v j j
j 1

X X X X 0,


        
  

and

3

u v j j
j 1

X X 0,


     

and hence, X is conformal.3 Since X is real analytic, the zeroes of  i jdet X X  are isolated. Removing

the set Z of those zeroes from U, we get that 3X : U \Z    is a harmonic and conformal

parametric surface, hence, X is a minimal surface4.

If we carry out this procedure starting with the complex analytic functions f() = 1 and
h() = 1/, then X is another parametrization of the catenoid.

13.3 Surface Area

In this section, we will give interpretations of the Gauss curvature and the mean curvature. Both
of these involve the concept of surface area. Before introducing the definition, we first prove a
proposition which will show that the definition is reparametrization invariant.

Proposition 5. Let 3X : U    be a parametric surface with first fundamental form  ijg ,  and

V U.  Let 3X : U     be a reparametrization of X, let 1V (V),
   and let  ijg  be the coordinate

representation of the first fundamental form of X.  Then, we have:

   1 2 1 2
ij ijV V

det g du du det g du du . 
             ...(3)

Proof. Now, we have

     i
ij ij jdet g det g det 

where ji i
j u / u .      Thus, for any open subset V  U, and 1V (V),   we have:

       1 2 i 1 2 1 2
ij ij j ijV V V

det g du du det g det du du det g du du     
    

Thus, the integral on the right-hand side of (3) is reparametrization invariant. This justifies the
following definition.

3 Of course, Y = (y1, y2, y3) is also conformal.

4 X is also said to be a branched minimal surface on U. The zeroes of det(gij) are called branched points.
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Definition 5. Let 3X : U    be a parametric surface and let  ijg  be its first fundamental form.

The surface area element of X is:

  1 2
ijdA det g du du .

If V  U is open then the surface area of X over V is:

  1 2
ijV V

AX(V) dA det g du du             ...(4)

By Proposition 5, the surface area of X over V is reparametrization invariant, and we can thus
speak of the surface area of X(V).

Definition 6. Let 3X : U    be a parametric surface, and let V  U be open. The total curvature
of X over V is:

X V
K (V) K dA. 

It is easy to show, as in the proof of Proposition 5 that the total curvature of X over V is invariant
under reparametrization. We now introduce the signed surface area, a variant of Definition 5
which allows for smooth maps Y into a surface X, with Jacobian dY not necessarily everywhere
non-singular, and which also accounts for multiplicity.

Definition 7. Let 3X : U    be a parametric surface, and let X : U X(U)  be a smooth map.

Define (u) to be 1, �1, or 0, according to whether the pair Y
1
(u), Y

2
(u) has the same orientation

as the pair X
1
(u), X

2
(u), the opposite orientation, or is linearly dependent, and let h

ij
 = Y

i
  Y

j
. If

V  U is open then the signed surface area of Y over V is:

  1 2
Y ijV

�A (V) det h du du 

For a regular parametric surface, this definition reduces to Definition 5. Next, we prove that the
total curvature of a surface X over an open set U is the area of the image of U under the Gauss
map counted with multiplicity.

Theorem 3. Let 3X : U    be a parametric surface, and let V  U be open. Let 2N : U    be the
Gauss map of X, then:

X N
�K (V) A (V).

Proof. We first derive a formula which is of independent interest:

j
i i jN k X            ...(5)

To verify this formula, it suffices to check that the inner product of both sides with the three

linearly independent vectors X
1
,X

2
,N are equal. Since N  N = 1, we have j

i i jN N 0 k X N 0,     

and j j
i j l i jl ij i kk X X k g k N X .          In particular, if h

ij
 = N

i
  N

j
 , then we find:

   m n m n mn
ij l m j n i j mn im jnh k X k X k k g k k g .   
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NotesIn particular,

 
  
 

2

ij

ij

ij

det k
det h

det g


Note also that Equation (5) implies that the pair N
1
, N

2
 has the same orientation as X

1
, X

2
 if and

only if  ijdet k 0.  Furthermore, since N(u) is also the outward normal to the unit sphere at

N(u), and since X
1
, X

2
, N is positively oriented in 3, it follows that X

1
(u), X

2
(u) also gives the

positive orientation on the tangent space to the 2 at N(u). Thus, we deduce that sign  ijdet k . 

Consequently, we obtain:

 
   

 
 

ij ij

ij ij

ij

sign det k det h
det h K det g

det g
  

The proposition follows by integrating over V.

We now turn to an interpretation of the mean curvature. Let X: U  be a parametric surface. A

variation of X is a smooth family 3F(u;t) : U ( , )     such that F(u; 0) = X. Note that since

dF(u; 0) is non-singular, the same is true of dF(u; t
0
) for any fixed u

0
, perhaps after shrinking the

interval (, ). Thus, all the maps F(u; t
0
) for t

0
 close enough to 0 are parametric surfaces. The

generator of the variation is the vector field dF/dt(u; 0). The variation is compactly supported if
F(u; t) = X(u) outside a compact subset of U. The smallest such compact set is called the support
of the variation F. Clearly, if a variation is compactly supported, then the support of its generator
is compact in U. We say that a variation is tangential if the generator is tangential; we say it is

normal if the generator is normal. Suppose now that the closure V  is compact in U. We consider
the area AF (V) of F(u; t) as a function of t. The next proposition shows that the derivative of this
function depends only on the generator, and in fact is a linear functional in the generator.

Proposition 6. Let 3X : U    be a parametric surface, and let F(u; t) be a variation with generator

Y. Then:

ijF
i jVt 0

dA (V)
g X Y dA

dt 

            ...(6)

We first need the following lemma from linear algebra. We denote by Sn×n the space of n × n

symmetric matrices, and by n nS 

  the subset of those which are positive definite.

Lemma 2. Let n nB : (a,b) S 

  be continuously differentiable. Then we have:

   log det B tr B 1 B .              ...(7)

Proof. First note that (7) follows directly if we assume that B is diagonal. Next, suppose that B is
symmetric with distinct eigenvalues. Then there is a continuously differentiable orthogonal
matrix Q such that B = Q�1 DQ, where D is diagonal. Note that dQ�1 /dt = �Q�1 (dQ/dt)Q, hence:

B�1 B = �Q�1 D�1 Q Q�1 DQ + Q�1 D�1 D Q + Q�1 Q,

and in view of tr(AB) = tr(BA), we obtain:

   1 1tr B B tr D D .  
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       1 1logdetB logdet D tr D D tr B B .     

In order to prove the general case, it is more convenient to look at the equivalent identity:

    1detB tr detB B B .                          ...(8)

Note that by Kramer�s rule, the matrix (detB)B�1 is the matrix of co-factors of B, hence its
components being determinants of minors of B, are multivariate polynomials in the components
of B. Thus, both sides of the identity (8) are linear polynomials

   
n n

ij ij
i , j 1 i , j 1

p B ;B pij(B)b , q B ;B qij(B)b ,
 

    

in the components ijb  of B, whose coefficients p
ij
(B) and q

ij
(B) are themselves multivariate

polynomials in the components b
ij
 of B. Since the set of matrices with distinct eigenvalues is an

open set n nU S ,

  we have already proved that    p B ;B q B ;B   holds for all values of B, and

all B  U. For each such B  U the equality    p B ;B q B ;B   for all B implies that p
ij
(B) = q

ij
(B)

for i, j = 1, �, n. Since this holds for all B in an open set, we conclude that p
ij
 = q

ij
, and hence

p = q.

We remark that the more general identity (8) in fact holds, as easily shown, for all square
matrices B. An immediate consequence of the proposition is that:

   11
det B tr B B detB ,

2


            ...(9)

for any continuously differentiable family of symmetric positive definite matrices B. We are
now ready to prove the proposition.

Proof of Proposition 6. Differentiating the area (4) under the integral sign, and using (9), we get:

 ij ijij ij1 2F
ijV V

dg dgdA (V) 1 1
g det g du du g dA.

dt 2 dt 2 dt
  

Since Y is smooth, we have at t = 0 that dF
i
/dt = (dF/dt)

i
 = Y

i
, and thus

 ijij ij ij
i j i j i j

dg
g g Y X X X 2g X Y .

dt
     

This completes the proof of the proposition.

Since the variation of the area dA
F
(V)/dt is a linear functional in the generator dF/dt of the

variation, it is possible to decompose any variation into tangential and normal components. We
begin by showing that the area doesn�t change under a tangential variation. This is simply the
infinitesimal version of Proposition (5).

Proposition 7. Let 3X : U    be a parametric surface, and let F(u; t) be a compactly supported

tangential variation. If V  U is open with V  compact in U, and the support of F contained in V,
then dA

F
(V)/dt = 0.
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diffeomorphisms  : U , U      such that Y is also the generator of the variation G = X  f.

This proves the proposition since Proposition 5 gives that A
G
(U) is constant. Since Y is tangential,

we can write Y = yi X
i
. Consider the initial value problem:

i
i i idv

y (v), v (0) u .
dt

 

Since the yi�s are compactly supported, a solution v = v(u; t) exists for all t. Defining (u; t) =
v(u; t), then an application of the inverse function theorem shows that (u; t) is a diffeomorphism
for t in some small interval (�, ). Finally, we see that:

i
i i

i

dX dv
X X y Y.

dt dt

  



Our next theorem gives an interpretation of the mean curvature as a measure of surface area
variation under normal perturbations.

Theorem 4. Let 3X : U    be a parametric surface, and let F(u; t) be a compactly supported

variation with generator Y . If V  U is open with V  compact in U, and the support of F

contained in V , then

V

dAF(V)
2 (Y N)H dA.

dt
           ...(10)

Proof. By Propositions 6 and 7, it suffices to consider normal variations with generator Y = fN.

In that case, we find that Y
j
 = f

j
N + fN

j
, so that gij X

i
  Y

j
 = fgij X

i
  N

j
 i

ifk   = �2fH. The theorem

follows by substituting into (6).

Definition 8. A parametric surface X is area minimizing if X X(U)
A (U) A   for any parametric

surface X  such that X X  on the boundary of U. A parametric surface 3X : U    is locally area
minimizing if for any compactly supported variation F(u; t), the area A

F
 (U) has a local minimum

at t = 0.

Clearly, an area-minimizing surface is locally area-minimizing. The following theorem is an
immediate corollary of Theorem 4.

Theorem 5. A locally area minimizing surface is a minimal surface.

Note that in general a minimal surface is only a stationary point of the area functional.

13.4 Bernstein�s Theorem

In this section, we prove Bernstein�s Theorem: A minimal surface which is a graph over an entire

plane must itself be a plane. We say that a surface X is a graph over a plane 2 3Y : ,   where

Y is linear, if there is a function 2f :    such that X = Y + fN where N is the unit normal of Y.

Theorem 6 (Bernstein�s Theorem). Let X be a minimal surface which is a graph over an entire
plane. Then X is a plane.
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 X(u, v) u, v,f(u, v) . It is then straightforward to check that X is a minimal surface if and only

if f satisfies the non-parametric minimal surface equation:

   2 2
u v v1 q p 2pqp 1 p q 0,             ...(11)

where we have used the classical notation: p = f
u
, q = f

v
. We say that a solution of a partial

differential equation defined on the whole (u, v)-plane is entire. Thus, to prove Bernstein�s
Theorem, it suffices to prove that any entire solution of (11) is linear.

Proposition 8. Let f be an entire solution of (11). Then f is a linear function.

If f satisfies (11), then p and q satisfy the following equations:

2

2 2 2 2

1 q pq
,

u v1 p q 1 p q

     
   
          

        ...(12)

2

2 2 2 2

pq 1 p
.

u v1 p q 1 p q

     
   
          

        ...(13)

Since the entire plane is simply connected, Equation (13) implies that there exists a function 
satisfying:

2

u v2 2 2 2

1 p pq
, ,

1 p q 1 p q


   

   

and Equation (12) implies that there exists a function satisfying:

2

u v2 2 2 2

pq 1 q
, .

1 p q 1 p q


   

   

Furthermore, 
v
 = 

u
, hence there is a function h so that h

u
 = , h

v
 = . The Hessian of the function

h is:

  uu uv u v
ij

vu vv u v

h h
h ,

h h

   
        

hence, h satisfies the Monge-Ampère equation:

 ijdet h 1.         ...(14)

In addition, h
11

 > 0, thus  ijh  is positive definite, and we say that h is convex. Proposition 15

now follows from the following result due to Nitsche.

Proposition 9. Let  2 2h C   be an entire convex solution of the Monge-Ampère Equation (14).

Then h is a quadratic function.
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 (u,v) , (u p,v q)      

where p = h
u
, and q = h

v
. Clearly,  is continuously differentiable, and its Jacobian is:

1 r s
d ,

s 1 t

 
    

where r = h
uu

, s = h
uv

, and t = h
vv

. Since  det d 2 r t 0,      it follows from the inverse function

theorem that  is a local diffeomorphism, i.e., each point has a neighborhood on which  is a
diffeomorphism. In particular,  is open.

In view of the convexity of the function h, we have :

     2 1 2 1 2 1 2 1u u v v        

           
2 2

2 1 2 1 2 1 2 1 2 1 2 1u u v v u u p p v v q q         

   
2 2

2 1 2 1u u v v ,   

and therefore:

       
2 2 2 2

2 1 2 1 2 1 2 1u u v v ,          

i.e.,  is an expanding map. This implies immediately that  is one-to-one. Thus,  has an inverse
(u, v) = �1 (, ) which is also a diffeomorphism. Consider now the function

   f i u p i(v q) 2u i 2v ,             

where i 1.   In view of

1
u u 1 t s1

d ,
v v s 1 r2 r t





    
           

it is straightforward to check that f satisfies the Cauchy-Riemann equations, and consequently
f is analytic. In fact, f is an entire functions and so is f. Furthermore,

2(t r) 2is 4
f ( ) , f ( ) 1 1,

2 r t 2 r t
 

      
   

and Liouville�s Theorem gives that f is constant. Finally, the relations:

 2 2

2 2 2

i f f1 f 1 f
f , s , t ,

1 f 1 f 1 f

    
  

    

show that r, s, t are constants.

13.5 Theorema Egregium

In this section, we prove that the Gauss curvature can be computed in terms of the first fundamental
form and its derivatives. We then prove the Fundamental Theorem for surfaces in 3, analogous
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Notes to curves, which states that a parametric surface is uniquely determined by its first and second
fundamental form. Partial derivatives with respect to ui will be denoted by a subscript i following
a comma, unless there is no ambiguity in which case the comma may be omitted.

Proposition 10. Let 3X : U    be a parametric surface. Then the following equations hold:

m
ij ij m ijX X k N,   ...(15)

where,

 m mn
ij ni , j nj ,i ij ,n

1
g g g g ,

2
    ...(16)

and    ij ijg  and k  are the coordinate representations of its first and second fundamental form.

Proof. Clearly, X
ij
 can be expanded in the basis X

1
, X

2
, N of 3. We already saw, that the component

of X
ij
 along N is k

ij
, hence Equation (15) holds with the coefficients m

ij  given by

n
ij m ij mnX X g .  

In order to derive (16), we differentiate g
ij
 = X

i
  X

j
, and substitute the above equation to obtain:

n n
ij ,m im nj jm nig g g .    ...(17)

Now, permute cyclically the indices i, j,m, add the first two equations and subtract the last one:

n
ij ,m mi , j im ,i jm nig g g 2 g .   

Multiplying by gil and dividing by 2 yields (16).

The coefficients m
ij  are called the Christoffel symbols of the second kind.5 It is important to note

that the Christofell symbols can be computed from the first fundamental form and its first
derivatives. Furthermore, they are not invariant under reparametrization.

Theorem 6. Let 3X : U    be a parametric surface. Then the following equations hold:

 m m n m n m mn
ij ,l il , j ij nl il nj ij ln il jng k k k k ,           ...(18)

m m
ij ,l il , j ij lm il jmk k k k 0.      ...(19)

Proof. If we differentiate (15), we get:

   m m m
ijl ij m ij ij ,l m ij ml ij ,l ij ll l

X X k N X X k N k N .        

Substituting X
ml

 from (15) and N
l
 from (5), and decomposing into tangential and normal

components, we obtain:

m
ijl ijl m ijlX A X B N, 

where:

m m n m mn
ijl ij ,l ij nl ij lnA g k k ,     

m
ijl ij ,l ij lmB k k .    
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ijl
 = X

ilj
, we now interchange j and l and subtract to obtain (18) and

(19).

Equation (18) is called the Gauss Equation, and Equation (19) is called the Codazzi Equation. The
Gauss Equation has the following corollary which has been coined Theorema Egregium. It�s
discovery marked the beginning of intrinsic geometry, the geometry of the first fundamental
form.

Corollary 1. Let 3X : U    be a parametric surface. Then the Gauss curvature K of X can be

computed in terms of only its first fundamental form  ijg  and its derivatives up to second

order:

 ij m m n m n m
ij,m im ,j ij nm im nj

1
K g ,

2
         

where m
ij  are the Christoffel symbols of the first kind.

Proof.

We now show, in a manner quite analogous to Theorem 6, that provided they satisfy the Gauss-
Codazzi Equations, the first and second fundamental form uniquely determine the parametric
surface up to rigid motion.

Theorem 7 (Fundamental Theorem). Let 2U    be open and simply connected, let   2 2
ijg : U S 



and   2 2
ijk : U S 

  be smooth, and suppose that they satisfy the Gauss-Codazzi Equations

(18)�(19). Then there is a parametric surface 3X : U    such that  ijg  and  ijk  are its first and

second fundamental forms. Furthermore, X is unique up to rigid motion: if X  is another
parametric surface with the same first and second fundamental forms, then there is a rigid

motion R of 3 such that X R X. 

Proof. We consider the following over-determined system of partial differential equations for
X

1
,X

2
,N:6

m
i , j ij m ijX X k N,   ...(20)

im
i ij mN k g X ,  ...(21)

where m
ij  is defined in terms of  ijg  by (16). The integrability conditions for this system are:

   m m
ij m ij il m il jl

X k N X k N     ...(22)

   jm jm
ij m lj ml i

k g X k g X . ...(23)

The proof of Theorem 18 also shows that the Gauss-Codazzi Equations (18)�(19) imply (22) if Xi

and N satisfy (20) and (21). We now check that (19) also implies (23). First note that since m
ij  is

defined by (16), we have

 m
ij mn ni , j nj ,i ij ,n

1
g g g g .

2
   
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that ij bjia
,l ab ,lg g g g ,   substitute (17) to get:

 jm ja n n bm
i ,l ij ,l m ij al nb bl na mN k g X k g g g g X     

   jm jm jm jma n
ij ml a m l ij ,l in jl m ij m lk g X k g N k k g X k k g N.       

Note that the last term is symmetric in i and l so that interchanging i and l, and subtracting, we
get:

  jmn n
i ,l l ,i ij ,l il , j ij ln il jn mN N k k k k g X       

which vanishes by (19). Thus, it follows that (23) is satisfied. We conclude that given values for
X

1
, X

2
, N at a point u

0
  U there is a unique solution of (20)�(21) in U. We can choose the initial

values to that X
i
  X

j
 = g

ij
, N  X

i
 = 0, and N  N = 1 at u

0
. Using (20) and (21), it is straightforward

to check that the functions h
ij
 = X

i
  X

j
, p

i
 = N  X

i
 and q = N  N, satisfy the differential equations:

h
ij,l

n n
il nj jl ni il j jl ih h k p k p ,     

p
i,j

lm m
jl mi il m ijk g h p k q,    

q
i

jm
ij m2k g p . 

However, the functions ij ij ih g ,p 0   and q = 1 also satisfy these equations, as well as the same

initial conditions as ij i j i ih X X ,p N X     and 0q N N at u .   Thus, by the uniqueness statement

mentioned above, it follows that i j ij iX N g , N N 0,     and N  N = 1. Clearly, in view of (20) we

have X
i,j
 = X

j,i
, hence there is a function 3X : U    whose partial derivatives are X

i
. Since  ijg  is

positive definite we have that X
1
, X

2
 are linearly independent, hence X is a parametric surface

with first fundamental form  ijg .  Furthermore, it is easy to see that the unit normal of X is N,

and i j ij ijX X N X k ,       hence, the second fundamental form of X is k
ij
. This completes the

proof of the existence statement.

Assume now that X  is another surface with the same first and second fundamental forms. Since

X and X  have the same first fundamental form, it follows that there is a rigid motion R(x) = Qx

+ y with Q SO(n; )   such that             0 0 i 0 i 0 0 0R X u X u , QX u X u , QN u N u .      Let

�X R X.   Since the two triples  1 2X , X , N    and  1 2
� � �X , X , N  both satisfy the same partial

differential equations (20) and (21), it follows that they are equal everywhere, and consequently

�X X R X.  
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 A curve  on a parametric surface X is called a line of curvature if   is a principal direction.

The following proposition, due to Rodriguez, characterizes lines of curvature as those
curves whose tangents are parallel to the tangent of their spherical image under the Gauss
map.

 Let  be a curve on a parametric surface X with unit normal N, and let N     be its

spherical image under the Gauss map. Then  is a line of curvature if and only if

0.    

 Let 3X : U    be a parametric surface, and let Y
1
 and Y

2
 be linearly independent vector

fields. The following statements are equivalent:

 Any point u
0
  U has a neighborhood U

0
 and a reparametrization 0 0: V U   such

that if i iX X  then X Y .     

  1 2Y ,Y 0.

 Let 3X : U    be a parametric surface, and let Y
1
 and Y

2
 be linearly independent vector

fields. Then for any point u
0
  U there is a neighborhood of u

0
 and a reparametrization

X X    such that i i iX f Y   for some functions f
i
.

 Let 3X : U    be a parametric surface, and let u
0
 be a hyperbolic point. Then there is

neighborhood U
0
 of u

0
 and a diffeomorphism 0 0: U U   such that X X    is

parametrized by asymptotic lines.

13.7 Keywords

Line of curvature: A curve  on a parametric surface X is called a line of curvature if   is a

principal direction.

Bernstein�s Theorem: Let X be a minimal surface which is a graph over an entire plane. Then X is
a plane.

13.8 Self Assessment

1. A curve  on a parametric surface X is called a ................. if   is a principal direction.

2. Let  be a curve on a parametric surface X with unit normal N, and let N    be its

spherical image under the Gauss map. Then  is a line of curvature if and only if .................

3. Let 3X : U    be a ................., and let Y
1
 and Y

2
 be linearly independent vector fields.

4. A curve  on a parametric surface X is called an ................. if it has zero normal curvature,

i.e.,  k , 0.   

5. A parametric surface X is minimal if it has vanishing mean .................
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Notes 6. Let 3X : U    be a parametric surface, and let V  U be open. Let 2N : U    be the Gauss
map of X, then .................

7. ................. Let X be a minimal surface which is a graph over an entire plane. Then X is a
plane.

13.9 Review Questions

1. Prove that setting    f 1, g 1/      in the Weierstrass representation, we get the catenoid.

Find the conjugate harmonic surface of the catenoid.

2. Let 2U , let f : U    be a smooth function, and let 3X : U    be given by (u, v, f(u,

v)), where (u, v) denote the variables in U. Show that X is a minimal surface if and only if
it satisfies the non-parametric minimal surface equation:

   2 2
u u v1 q p 2pqp 1 p q 0,    

where we have used the classical notation: p = f
u
, q = f

v
. Show that if f satisfies the equation

above then the following equations are also satisfied:

2

2 2 2 2

1 q pq
,

u v1 p q 1 p q

     
   
          

2

2 2 2 2

pq 1 p
.

u v1 p q 1 p q

     
   
          

3. Let 2f C (U)  be a convex function defined on a convex open set U, and let

2f (p,q) : U     denote the gradient of f. Prove that for any u
1
, u

2
  U the following

inequality holds:

      2 1 2 1u u f u f u 0.     

4. Let nU    be open. A map ': U ! Rn is expanding if x y (x) (y)     for all x, y  U. Let

n: U    be an open expanding map. Show that the image of the ball B
R
(x

0
) of radius R

centered at x
0
  U contains the disk   R 0B x  of radius R centered at  0x .  Conclude that

if U = n, then  is onto n.

Answers: Self Assessment

1. line of curvature 2. 0.    

3. parametric surface 4. asymptotic line

5. curvature H = 0. 6. X N
�K (V) A (V).

7. Bernstein�s Theorem
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Notes13.10 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati,T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H. Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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14.1 Principal Curvatures
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14.2.2 Mean Curvature
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14.7 Self Assessment
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14.9 Further Reading

Objectives

After studying this unit, you will be able to:

 Define Principal curvatures

 Discuss the concept of two dimensions: Curvature of surfaces

 Explain the Mean curvature

 Explain the Higher dimensions: Curvature of space

Introduction

In last unit, you have studied about the meaning and concept of curvature. Gaussian curvature,
sometimes also called total curvature, is an intrinsic property of a space independent of the
coordinate system used to describe it. The Gaussian curvature of a regular surface in 3 at a point
p is formally defined as (S(p)) where S is the shape operator and det denotes the determinant
K(p) = det. This unit will provides you information related to principal curvatures.

14.1 Principal Curvatures

All curves with the same tangent vector will have the same normal curvature, which is the same
as the curvature of the curve obtained by intersecting the surface with the plane containing T
and u.

Sachin Kaushal, Lovely Professional University
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Principal Curvatures

NotesTaking all possible tangent vectors then the maximum and minimum values of the normal
curvature at a point are called the principal curvatures, k

1
 and k

2
, and the directions of the

corresponding tangent vectors are called principal directions.

14.2 Two Dimensions: Curvature of Surfaces

14.2.1 Gaussian Curvature

In contrast to curves, which do not have intrinsic curvature, but do have extrinsic curvature (they
only have a curvature given an embedding), surfaces can have intrinsic curvature, independent
of an embedding. The Gaussian curvature, named after Carl Friedrich Gauss, is equal to the
product of the principal curvatures, k

1
k

2
. It has the dimension of 1/length2 and is positive for

spheres, negative for one-sheet hyperboloids and zero for planes. It determines whether a
surface is locally convex (when it is positive) or locally saddle (when it is negative).

This definition of Gaussian curvature is extrinsic in that it uses the surface�s embedding in R3,
normal vectors, external planes etc. Gaussian curvature is, however, in fact an intrinsic property
of the surface, meaning it does not depend on the particular embedding of the surface; intuitively,
this means that ants living on the surface could determine the Gaussian curvature. For example,
an ant living on a sphere could measure the sum of the interior angles of a triangle and determine
that it was greater than 180 degrees, implying that the space it inhabited had positive curvature.
On the other hand, an ant living on a cylinder would not detect any such departure from
Euclidean geometry, in particular the ant could not detect that the two surfaces have different
mean curvatures which is a purely extrinsic type of curvature.

Formally, Gaussian curvature only depends on the Riemannian metric of the surface. This is
Gauss�s celebrated Theorema Egregium, which he found while concerned with geographic surveys
and map-making.

An intrinsic definition of the Gaussian curvature at a point P is the following: imagine an ant
which is tied to P with a short thread of length r. She runs around P while the thread is completely
stretched and measures the length C(r) of one complete trip around P. If the surface were flat, she
would find C(r) = 2. On curved surfaces, the formula for C(r) will be different, and the Gaussian
curvature K at the point P can be computed by the Bertrand�Diquet�Puiseux theorem as

3r 0

3
K lim(2 r C(r)) . .

r
  



The integral of the Gaussian curvature over the whole surface is closely related to the surface�s
Euler characteristic.

The discrete analog of curvature, corresponding to curvature being concentrated at a point and
particularly useful for polyhedra, is the (angular) defect; the analog for the Gauss-Bonnet theorem
is Descartes� theorem on total angular defect.

Because curvature can be defined without reference to an embedding space, it is not necessary
that a surface be embedded in a higher dimensional space in order to be curved. Such an
intrinsically curved two-dimensional surface is a simple example of a Riemannian manifold.

14.2.2 Mean Curvature

The mean curvature is equal to half the sum of the principal curvatures, (k
1
+k

2
)/2. It has the

dimension of 1/length. Mean curvature is closely related to the first variation of surface area, in
particular a minimal surface such as a soap film, has mean curvature zero and a soap bubble has
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Notes constant mean curvature. Unlike Gauss curvature, the mean curvature is extrinsic and depends
on the embedding, for instance, a cylinder and a plane are locally isometric but the mean
curvature of a plane is zero while that of a cylinder is non-zero.

14.2.3 Second Fundamental Form

The intrinsic and extrinsic curvature of a surface can be combined in the second fundamental
form. This is a quadratic form in the tangent plane to the surface at a point whose value at a
particular tangent vector X to the surface is the normal component of the acceleration of a curve
along the surface tangent to X; that is, it is the normal curvature to a curve tangent to X.
Symbolically,

XII(X,X) N ( X)  

where N is the unit normal to the surface. For unit tangent vectors X, the second fundamental
form assumes the maximum value k

1
 and minimum value k

2
, which occur in the principal

directions u
1
 and u

2
, respectively. Thus, by the principal axis theorem, the second fundamental

form is

2 2
1 1 2 2II(X,X) k (X u ) k (X u ) .   

Thus, the second fundamental form encodes both the intrinsic and extrinsic curvatures.

A related notion of curvature is the shape operator, which is a linear operator from the tangent
plane to itself. When applied to a tangent vector X to the surface, the shape operator is the
tangential component of the rate of change of the normal vector when moved along a curve on
the surface tangent to X. The principal curvatures are the eigenvalues of the shape operator, and
in fact the shape operator and second fundamental form have the same matrix representation
with respect to a pair of orthonormal vectors of the tangent plane. The Gauss curvature is, thus,
the determinant of the shape tensor and the mean curvature is half its trace.

14.3 Higher Dimensions: Curvature of Space

By extension of the former argument, a space of three or more dimensions can be intrinsically
curved; the full mathematical description is described at curvature of Riemannian manifolds.
Again, the curved space may or may not be conceived as being embedded in a higher-dimensional
space.

After the discovery of the intrinsic definition of curvature, which is closely connected with
non-Euclidean geometry, many mathematicians and scientists questioned whether ordinary
physical space might be curved, although the success of Euclidean geometry up to that time
meant that the radius of curvature must be astronomically large. In the theory of general relativity,
which describes gravity and cosmology, the idea is slightly generalised to the �curvature of
space-time�; in relativity theory space-time is a pseudo-Riemannian manifold. Once a time
coordinate is defined, the three-dimensional space corresponding to a particular time is generally
a curved Riemannian manifold; but since the time coordinate choice is largely arbitrary, it is the
underlying space-time curvature that is physically significant.

Although an arbitrarily-curved space is very complex to describe, the curvature of a space which
is locally isotropic and homogeneous is described by a single Gaussian curvature, as for a
surface; mathematically these are strong conditions, but they correspond to reasonable physical
assumptions (all points and all directions are indistinguishable). A positive curvature corresponds
to the inverse square radius of curvature; an example is a sphere or hypersphere. An example of
negatively curved space is hyperbolic geometry. A space or space-time with zero curvature is
called flat. For example, Euclidean space is an example of a flat space, and Minkowski space is an
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Notesexample of a flat space-time. There are other examples of flat geometries in both settings,
though. A torus or a cylinder can both be given flat metrics, but differ in their topology. Other
topologies are also possible for curved space.

14.4 Generalizations

Figure 14.1

In above figure, Parallel transporting a vector from A  N  B yields a different vector. This failure to
return to the initial vector is measured by the holonomy of the surface.

The mathematical notion of curvature is also defined in much more general contexts. Many of
these generalizations emphasize different aspects of the curvature as it is understood in lower
dimensions.

One such generalization is kinematic. The curvature of a curve can naturally be considered as a
kinematic quantity, representing the force felt by a certain observer moving along the curve;
analogously, curvature in higher dimensions can be regarded as a kind of tidal force (this is one
way of thinking of the sectional curvature). This generalization of curvature depends on how
nearby test particles diverge or converge when they are allowed to move freely in the space.

Another broad generalization of curvature comes from the study of parallel transport on a
surface. For instance, if a vector is moved around a loop on the surface of a sphere keeping
parallel throughout the motion, then the final position of the vector may not be the same as the
initial position of the vector. This phenomenon is known as holonomy. Various generalizations
capture in an abstract form this idea of curvature as a measure of holonomy. A closely related
notion of curvature comes from gauge theory in physics, where the curvature represents a field
and a vector potential for the field is a quantity that is in general path-dependent: it may change
if an observer moves around a loop.

Two more generalizations of curvature are the scalar curvature and Ricci curvature. In a curved
surface such as the sphere, the area of a disc on the surface differs from the area of a disc of the
same radius in flat space. This difference (in a suitable limit) is measured by the scalar curvature.
The difference in area of a sector of the disc is measured by the Ricci curvature. Each of the scalar
curvature and Ricci curvature are defined in analogous ways in three and higher dimensions.
They are particularly important in relativity theory, where they both appear on the side of
Einstein�s field equations that represents the geometry of spacetime (the other side of which
represents the presence of matter and energy). These generalizations of curvature underlie, for
instance, the notion that curvature can be a property of a measure.
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Notes Another generalization of curvature relies on the ability to compare a curved space with another
space that has constant curvature. Often this is done with triangles in the spaces. The notion of a
triangle makes senses in metric spaces, and this gives rise to CAT (k) spaces.

14.5 Summary

 All curves with the same tangent vector will have the same normal curvature, which is the
same as the curvature of the curve obtained by intersecting the surface with the plane
containing T and u.  Taking all possible tangent vectors then the maximum and minimum
values of the normal curvature at a point are called the principal curvatures, k

1
 and k

2
, and

the directions of the corresponding tangent vectors are called principal directions.

 In contrast to curves, which do not have intrinsic curvature, but do have extrinsic curvature
(they only have a curvature given an embedding), surfaces can have intrinsic curvature,
independent of an embedding. Gaussian curvature is, however, in fact an intrinsic property
of the surface, meaning it does not depend on the particular embedding of the surface;
intuitively, this means that ants living on the surface could determine the Gaussian
curvature. Formally, Gaussian curvature only depends on the Riemannian metric of the
surface. This is Gauss�s celebrated Theorema Egregium, which he found while concerned
with geographic surveys and map-making.

 An intrinsic definition of the Gaussian curvature at a point P is the following: imagine an
ant which is tied to P with a short thread of length r. She runs around P while the thread is
completely stretched and measures the length C(r) of one complete trip around P

 The mean curvature is equal to half the sum of the principal curvatures, (k
1
+k

2
)/2. It has

the dimension of 1/length. Mean curvature is closely related to the first variation of
surface area, in particular a minimal surface such as a soap film, has mean curvature zero
and a soap bubble has constant mean curvature.  Although an arbitrarily-curved space is
very complex to describe, the curvature of a space which is locally isotropic and
homogeneous is described by a single Gaussian curvature, as for a surface; mathematically
these are strong conditions, but they correspond to reasonable physical assumptions (all
points and all directions are indistinguishable). A positive curvature corresponds to the
inverse square radius of curvature; an example is a sphere or hypersphere. An example of
negatively curved space is hyperbolic geometry. A space or space-time with zero curvature
is called flat. For example, Euclidean space is an example of a flat space, and Minkowski
space is an example of a flat space-time

14.6 Keywords

Principal directions: Taking all possible tangent vectors then the maximum and minimum
values of the normal curvature at a point are called the principal curvatures, k

1
 and k

2
, and the

directions of the corresponding tangent vectors are called principal directions.

Gaussian curvature: An intrinsic definition of the Gaussian curvature at a point P is the following:
imagine an ant which is tied to P with a short thread of length r.

Arbitrarily-curved space: An arbitrarily-curved space is very complex to describe, the curvature
of a space which is locally isotropic and homogeneous is described by a single Gaussian curvature,
as for a surface; mathematically these are strong conditions, but they correspond to reasonable
physical assumptions.
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Notes14.7 Self Assessment

1. All curves with the same tangent vector will have the same ..................., which is the same
as the curvature of the curve obtained by intersecting the surface with the plane containing
T and u.

2. ................... is however in fact an intrinsic property of the surface, meaning it does not
depend on the particular embedding of the surface; intuitively, this means that ants living
on the surface could determine the Gaussian curvature.

3. Gaussian curvature only depends on the ................... of the surface.

4. An ................... definition of the Gaussian curvature at a point P is the following: imagine
an ant which is tied to P with a short thread of length r

5. A ................... corresponds to the inverse square radius of curvature; an example is a sphere
or hypersphere.

14.8 Review Question

1. Define Principal curvatures.

2. Discuss the concept of two dimensions.

3. Describe the Curvature of surfaces.

4. Explain the Mean curvature.

5. Explain the Higher dimensions: Curvature of space.

Answers: Self Assessment

1. normal curvature 2. Gaussian curvature

3. Riemannian metric 4. Intrinsic

5. positive curvature

14.9 Further Reading

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati,T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H. Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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Objectives

After studying this unit, you will be able to:

 Define Riemannian Surfaces

 Discuss Lie Derivative

 Explain the Concept of Covariant Differentiation

Introduction

In this unit, we change our point of view, and study intrinsic geometry, in which the starting
point is the first fundamental form. Thus, given a parametric surface, we will ignore all
information which cannot be recovered from the first fundamental form and its derivatives
only.

15.1 Riemannian Surfaces

Definition 1. Let 2U    be open. A Riemannian metric on U is a smooth function 2 2g : U .

 
A Riemannian surface patch is an open set U equipped with a Riemannian metric.

The tangent space of U at u  U is 2. The Riemannian metric g defines an inner-product on each
tangent space by:

g(Y,Z) = g
ij
yizj,

where yi and zj are the components of Y and Z with respect to the standard basis of 2. We will

write 2

gY g(Y,Y),  and omit the subscript g when it is not ambiguous.

Sachin Kaushal, Lovely Professional University
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Notes
Two Riemannian surface patches (U, g) and  U, g   are isometric if there is a diffeomorphism

: U U   such that

l m
ij lm i jg g ,   ...(1)

where l l i
i u / u .      In fact, Equation (1) reads:

d * g g,  

where d* g is the pull-back of g by the Jacobian of  at u.  We then say that  is an isometry

between (U, g) and  U, g .   As before, we denote by gij the inverse of the matrix g
ij
.

We also denote the Riemannian metric:

ds2 = g
ij
 dui duj,

and at times refer to it as a line element. The arc length of a curve : [a,b] U   is then given by:

b ji
ija

L g dt.     

Note that the arc length is simply the integral of  g , .  

Example: Let 2U    be open, and let  ijlet   be the identity matrix, then (U, ) is a
Riemannian surface. The Riemannian metric d will be called the Euclidean metric.

Example: Let 3X : U    be a parametric surface, and let g be the coordinate
representation of its first fundamental form, then (U, g) is a Riemannian surface patch. We say

that the metric g is induced by the parametric surface X. If 3X X : U      is a reparametrization

of X and g  the coordinate representation of its first fundamental form, then  U, g   is isometric

to (U, g).

Example: (The Poincaré Disk). Let  2 2D (u,v) : u v 1    be the unit disk in 2, and let

 
ij ij22

4
g

1 r
 



where 2 2r u v   is the Euclidean distance to the origin. We can write this line element also as

 

2 2
2

22 2

du dv
ds 4 .

1 u v




  ...(2)

The Riemannian surface (D, g) is called the Poincar´e Disk. Let U = {(x, y) : y > 0} be the upper half-
plane, and let

ij ij2

1
h .

y
 
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Then it is not difficult to see that  ijD, g  and  ijU, h  are isometric with the isometry given by:

 

2 2

2 2 2 2

2v 1 u v
: (u,v) (x,y) ,

(1 u) v 1 u v

  
   

    


In fact, a good bookkeeping technique to check this type of identity is to compute the differentials:

   

2 2

2 22 2 2 2

v(1 u) (1 u) v
dx 4 du 2 dv

(1 u) v (1 u) v

  
  

   

   

2 2

2 22 2 2 2

(1 u) v v(1 u)
dy 2 du 4 dv,

(1 u) v (1 u) v

  
  

   

substitute into

2 2

2

dx dy
,

y


and then simplify using du dv = dv du to obtain (2). It is not difficult to see that this is equivalent
to checking (1).

Definition 2. Let (U, g) be a Riemannian surface. The Christoffel symbols of the second kind of
g are defined by:

 m mn
ij ni , j nj ,i ij ,n

1
g g g g .

2
    ...(3)

The Gauss curvature of g is defined by:

 ij m m m n m
ij,m ij nm im nj

1
K g .

2
        ...(4)

If (U, g) is induced by the parametric surface 3X : U ,   then these definitions agree with those

studied earlier.

15.2 Lie Derivative

Here, we study the Lie derivative. We denote the standard basis on 2
1 2 by , .   Let f be a

smooth function on U, and let i
i uY y T U    be a vector at u  U. The directional derivative of

f along Y is:

i i
Y i if y f y f .    ...(5)

Since i
i Yy u   where  1 2u ,u  are the coordinates on U, we see that Y = Z follows from Y Z  

as operators. The next proposition shows that the directional derivative of a function is
reparametrization invariant.

Proposition 1. Let : U U   be a diffeomorphism, and let Y  be a vector at u U.   Then for any

smooth function f on U, we have:

    Yd Y
f f .


      
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1 Indeed Y Z  as defined does depend only on the value of Y at a single point and satisfies fY YZ f Z.  

Proof. Denoting the coordinates on U by uj and the coordinates on iU by u ,   we let j j i
i u / u ,    

and we find, by the chain rule:

      ji i
i j i dY Y

f y f y ( f) f .              

We define the commutator of two tangent vector fields i
iY y   and i

iZ z ,   Equation (5):

 j ji i
i i j[Y,Z] y z z d y .     ...(6)

Note that

[Y ,Z] Y Z Z Yf f f.       ...(7)

This observation together with Proposition 3.1 are now used to show that the commutator is
reparametrization invariant.

Proposition 2. Let Y  and Z  be vector fields on U,  and let : U U   be a diffeomorphism, then

     d Y,Z d Y , d Z .        
  

Proof. For any smooth function f on U, we have:

  Z ZY YY,Zd Y,Z
f (f ) (f ) (f )

     

                    ...(8)

             ZY d Z d Z d Zd Y d Y d Y
f f f f

    
                        d Y ,d Z

f ,
  
 

   

and the proposition follows.

We note for future reference that in the proofs of propositions 1 and 2, only the smoothness of

the map  is used, and not the fact that it is a diffeomorphism. The operator YZ Z [Y,Z],

also called the Lie derivative, is a differential operator, in the sense that it is linear and satisfies

a Leibniz identity:  Y Y Y(fZ) f Z f Z.     However, YZ  depends on the values of Y in a

neighborhood of a point as can be seen from the fact that it is not linear over functions in Y , but

rather satisfies  fY Y ZZ f Z f Y.     Hence the Lie derivative cannot be used as an intrinsic

directional derivative of a vector field Z, which should only depend on the direction vector Y at
a single point1.

15.3 Covariant Differentiation

Definition 3. Let (U, g) be a Riemannian metric, and let Z be a vector field on U. The covariant

derivative of Z along i  is:

 j j k
i i ik jZ z z .      ...(9)
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i
Y ;iZ y Z . 

We write the components of YZ  as:

j j j k
;i ,i ikz z z ,   ...(10)

so that ji
Y ;i jZ y z .    Furthermore, note that

k
i j ij k .     ...(11)

Our first task is to show that covariant differentiation is reparametrization invariant. However,
since the metric g was used in the definition of the covariant derivative, it stands to reason that
it would be invariant only under those reparametrization which preserve the metric, i.e., under
isometries.

Proposition 3. Let  : U,g (U,g)    be an isometry. Let uY T U, 
   and let Z  be a vector field on

U.  Then

     Y d Y
d Z d Z .


     
   ...(12)

Proof. This proof, although tedious, is quite straightforward, and is relegated to the exercises.

Note that on the left hand-side of (12), the covariant derivative   is that obtained from the

metric g.

Our next observation, which follows almost immediately, gives an interpretation of the covariant
derivative when the metric g is induced by a parametric surface X.

Proposition 4. Let the Riemannian metric g be induced by the parametric surface X. Then the

image under dX of the covariant derivative  idX Z  is the projection of iZ  onto the tangent

space.

Proof. Note that  i idX X .   Thus, if j
jZ z   then we find:

   j j j j jk
i ;i j ;i j ik j i j ijdX Z z X z X z X z X k z N,       

which proves the proposition.

We now show that covariant differentiation is in addition well-adapted to the metric g.

Proposition 5. Let (U, g) be a Riemannian surface, and let Y and Z be vector fields on U. Then, we
have

   ig i i(Y,Z) g Y,Z g Y,Z .     ...(13)

Proof. We first note that, as in the proof of Theorem 2.29, the definition of the Christoffel
symbols (3) :

k k
ij ,l il kj jl kig g g .    ...(14)
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iY y   and i

iZ z ,   we compute:


ig
(Y,Z) j j j jk m k m i k k

i jk ji km ki mi ik ,i jk ,ig y z g y z g y z g y zk g y z       

       j j jm k k k m
jk ,i mi ik ,i mi ;i ;ig y y z g y z z g Y , Z g Y, Z .       

This completes the proof of (13) and of the proposition.

Definition 4. Let i
iY y   be a vector field on the Riemannian surface (U, g). Its divergence is the

function:

ji i i
i i ijdiv Y y y y .     

Note that:

 i im im
ij mi , j mj,i ij ,m im ,j j

1 1
g g g g g g log det g.

2 2
      

Thus, we see that:

 ii

1
div Y det g y

det g
  ...(15)

Observe that this implies

 i 1 2
iU U

div Y dA det g y du du .  

Thus, Green�s Theorem in the plane implies the following proposition.

Proposition 6. Let Y be a compactly supported vector field on the Riemannian surface (U, g).
Then, we have:

U
div Y dA 0.

Definition 5. If f : U   is a smooth function on the Riemannian surface (U, g), its gradient f

is the unique vector field which satisfies   Yg f,Y f.  

The Laplacian of f if the divergence of the gradient of f:

f = div f.

It is easy to see that ij
j jf g f ,    hence

 ij
i j

1
f g det g f .

det g
   ...(16)

Thus, in view of Proposition 6, if f is compactly supported, we have:

U
f dA 0. 
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 Let 2U    be open. A Riemannian metric on U is a smooth function 2 2g : U .

   A

Riemannian surface patch is an open set U equipped with a Riemannian metric.

The tangent space of U at u  U is 2. The Riemannian metric g defines an inner-product on
each tangent space by:

g(Y,Z) = g
ij
yizj,

where yi and zj are the components of Y and Z with respect to the standard basis of 2. We

will write 2

gY g(Y,Y),  and omit the subscript g when it is not ambiguous.

 Let 2U    be open, and let  ijlet   be the identity matrix, then (U, ) is a Riemannian

surface. The Riemannian metric d will be called the Euclidean metric.

 Let (U, g) be a Riemannian surface. The Christoffel symbols of the second kind of g are
defined by:

 m mn
ij ni , j nj ,i ij ,n

1
g g g g .

2
   

The Gauss curvature of g is defined by:

 ij m m m n m
ij,m ij nm im nj

1
K g .

2
       

If (U, g) is induced by the parametric surface 3X : U ,  then these definitions agree.

 Let Y  and Z  be vector fields on U,  and let : U U   be a diffeomorphism, then

     d Y,Z d Y , d Z .        
  

 Let Y be a compactly supported vector field on the Riemannian surface (U, g). Then, we
have:

U
div Y dA 0.

15.5 Keywords

Riemannian metric: A Riemannian metric on U is a smooth function 2 2g : U .

   A Riemannian

surface patch is an open set U equipped with a Riemannian metric.

Euclidean metric: Let 2U    be open, and let  ijlet   be the identity matrix, then (U, ) is a

Riemannian surface. The Riemannian metric d will be called the Euclidean metric.

15.6 Self Assessment

1. A ................. on U is a smooth function 2 2g : U .

   A Riemannian surface patch is an open

set U equipped with a Riemannian metric.

2. Let 2U    be open, and let  ijlet   be the identity matrix, then (U, ) is a Riemannian

surface. The Riemannian metric d will be called the .................
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3. Let : U U   be a diffeomorphism, and let Y  be a vector at u U.   Then for any smooth

function f on U, we have: .................

4. The ................. cannot be used as an intrinsic directional derivative of a vector field Z,
which should only depend on the direction vector Y at a single point.

5. Let the Riemannian metric g be induced by the parametric surface X. Then the image

under dX of the covariant derivative ................. is the projection of iZ  onto the tangent

space.

6. The Laplacian of f if the divergence of the gradient of f: .................

15.7 Review Questions

1. Prove that a parametric surface 3X : U    is conformal if and only if its first fundamental
form g is conformal to the Euclidean metric  on U.

2. Two Riemannian metrics g and g  on an open set 2U    are conformal if 2g e g  for

some smooth function .

Answers: Self Assessment

1. Riemannian metric 2. Euclidean metric.

3.     Yd Y
f f .


       4. Lie derivative

5.  idX Z 6. f = div f.

15.8 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati,T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H. Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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16.7 Review Questions

16.8 Further Readings

Objectives

After studying this unit, you will be able to:

 Define Geodesics

 Explain the Riemann Curvature Tensor

 Discuss the Second Variation of Arc length

Introduction

In particular, we will ignore the Gauss map and the second fundamental form. Thanks to Gauss�
Theorema Egregium, we will still be able to take the Gauss curvature into account. In last unit,
you have studied about local intrinsic Geometry of Surfaces.

16.1 Geodesics

Definition 1. Let (U, g) be a Riemannian surface, and let : I U   be a curve. A vector field along

 is a smooth function 2Y : I .   The covariant derivative of i
iY y   along  is the vector field:

 ji i k
jk iY y y .      

Note that if Z is any extension of Y, i.e., a any vector field defined on a neighborhood V of the

image  I  of  in U, then we have:

i
;iY Z Z .       

Richa Nandra, Lovely Professional University
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covariant differentiation along a curve.

Definition 2. A vector field Y along a curve  is said to be parallel along  if Y 0.  

Note that if Y and Z are parallel along , then g(Y,Z) is constant.

   g(Y,Z) g Y,Z g Y, Z 0.         

Proposition 1. Let : [a,b] U   be a curve into the Riemannian surface (U, g), let u
0
  U, and let

Y
0
  Tu

0
 U. Then there is a unique vector field Y along  which is parallel along  and satisfies

Y(a) = Y
0
.

Proof. The condition that Y is parallel along  is a pair of linear first-order ordinary differential
equations:

  j ji i
jky y .   

Given initial conditions i i
0(a) y ,   the existence and uniqueness of a solution on [a, b] follows

from the theory of ordinary differential equations.

The proposition together with the comment preceding it shows that parallel translation along a

curve  is an isometry between inner-product spaces a bP : T U T U. 

Definition 3. A curve  is a geodesic if its tangent   is parallel along :

0.   

If  is a geodesic, then   is constant and hence, every geodesic is parametrized proportionally

to arc length. In particular, if      is a reparametrization of , then  is not a geodesic unless

 is a linear map.

Proposition 2. Let (U, g) be a Riemannian surface, let u
0
  U and let 0 u00 Y T U.   Then there is

and  > 0, and a unique geodesic : ( , ) U,     such that 0(0) u ,   and 0(0) Y . 

Proof. We have:

 ji i k
jk i .            

Thus, the condition that  is a geodesic can written as a pair of non-linear second order ordinary
differential equations:

  ji i k
jk (t) .       

Given initial conditions i i i i
0 0(0) u , (0) y ,     there is a unique solution on defined on a small

enough interval (�, ).

Definition 4. Let : [a,b] U   be a curve. We say that  is length minimizing, or L-minimizing,

if:

L L 

for all curves  in U such that (a) (a)    and (b) (b).  
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such that (t;0) (t)    for all t [a,b].  For convenience, we will denote derivatives with respect

to t as usual by a dot, and derivatives with respect to s by a prime. The generator of a variation
 is the vector field Y (t) = (t; 0) along . We say that  is a fixed-endpoint variation, if

(a;s) (a),    and (b;s) (b)    for all s ( , ).    Note that the generator of a fixed-endpoint

variation vanishes at the end points. We say that a variation  is normal if its generator Y is

perpendicular to  : g ,Y 0.    A curve  is locally L-minimizing if

 
b

a
L (s) g , dt     

has a local minimum at s = 0 for all fixed-endpoint variations . Clearly, an L-minimizing curve
is locally L-minimizing.

If  is locally L-minimizing, then any reparametrization      of  is also locally L-minimizing.

Indeed, if  is any fixed-endpoint variation of , then  1(t;s) (t);s     is a fixed-endpoint

variation of , and since reparametrization leaves arc length invariant, we see that L

(s) = L


(s)

which implies that L


 also has a local minimum at s = 0. Thus, local minimizers of the functional
L are not necessarily parametrized proportionally to arc length. This helps clarify the following
comment: a locally length-minimizing curve is not necessarily a geodesic, but according to the
next theorem that is only because it may not be parametrized proportionally to arc length.

Theorem 1. A locally length-minimizing curve has a geodesic reparametrization.

To prove this theorem, we introduce the energy functional:

 
b

a

1
E g , dt

2     

We may now speak of energy-minimizing and locally energy-minimizing curves. Our first
lemma shows the advantage of using the energy rather than the arc length functional: minimizers
of E are parametrized proportionally to arc length.

Lemma 1. A locally energy-minimizing curve is a geodesic.

Proof. Suppose that  is a locally energy-minimizing curve. We first note that if Y is any vector

field along  which vanishes at the endpoints, then setting (t;s) (t) sY(t),     we see that there

is a fixed-endpoint variation of  whose generator is Y. Since  is locally energy-minimizing, we
have:

  
b

s 0a

1
E (0) g , dt 0.

2 

      

We now observe that:

 j j j j
s 0 s 0 s 0

d d
y .

dt dt  

    
           
 

where i
iY y   is the generator of the fixed-endpoint variation , and:

   k k
ij s 0 ij ,k s 0 ij ,kg g g y . 

 
  
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        j j ji i i
s 0 ij s 0 ij s 0 ij s 0

1 1 1
g , g g g

2 2 2   

                    j jk i i
ij ,k ij

1
g y g y .

2
       

Since Y vanishes at the endpoints, we can substitute into E (0),
  and integrate by parts the second

term to get:

 
b ik , j ji i k

ija

d 1
E (0) g g y .

dt 2

         
   

Since:

   i i i k i i k
ij ij ij ,k ij ij ,k kj ,i

d 1
g g g g g g ,

dt 2
                 

We now see that:

   
b bji m k

ij mj,k kj ,m mk ,ja a

1
E (0) g g g g y dt g ,Y dt.

2 

             
  

     

Since E (0) 0
   for all vector fields Y along  which vanish at the endpoints, we conclude that

0,     and  is a geodesic.

The Schwartz inequality implies the following inequality between the length and energy
functional for a curve .

Lemma 2. For any curve , we have

2L 2E (b a),  

with equality if and only if  is parametrized proportionally to arc length.

Finally, the last lemma we state to prove Theorem 1, exhibits the relationship between the L and
E functionals.

Lemma 3. A locally energy-minimizing curve is locally length-minimizing. Furthermore, if  is
locally length-minimizing and  is a reparametrization of  by arc length, then  is locally
energy-minimizing.

Proof. Suppose that  is locally energy-minimizing, and let  be a fixed endpoint variation of .

For each s, let s(t) :[a,b] U   be a reparametrization of the curve t (t;s)  proportionally to

arc length. Let s(t;s) (t),    then it is not difficult to see, using say the theorem on continuous

dependence on parameters for ordinary differential equations, that  is also smooth. By

Lemma 1,  is a geodesic, hence by Lemma 5, 2L 2E (b a).    It follows that:

2 2 2 2L (0) L 2E (b a) 2E (0)(b a) 2E (s)(b a) L (s) L (s).              

Thus,  is locally length-minimizing proving the first statement in the lemma.

Now suppose that  is locally length-minimizing, and let  be a reparametrization of  by arc
length. Then  is also locally length-minimizing, hence for any fixed-endpoint variation  of ,
we have:
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E (0) E E (s).

2(b a) 2(b a)
 

     
 

Thus,  is locally energy-minimizing.

We note that the same lemma holds if we replace locally energy-minimizing by energy-
minimizing. The proof of Theorem 3 can now be easily completed with the help of Lemmas 1
and 3.

Proof of Theorem 1. Let  be a reparametrization of  by arc length. By Lemma 3,  is locally
energy-minimizing. By Lemma 1,  is a geodesic.

16.2 The Riemann Curvature Tensor

Definition 5. Let X, Y, Z, W be vector fields on a Riemannian surface (U, g). The Riemann
curvature tensor is given by:

  X Y [X,Y]R(W, Z, X, Y) g , Z Z,W .   

We first prove that R is indeed a tensor, i.e., it is linear over functions. Clearly, R is linear in W,
additive in each of the other three variables, and anti-symmetric in X and Y . Thus, it suffices to
prove the following lemma.

Lemma 4. Let X, Y, Z, W be vector fields on a Riemannian surface (U, g). Then we have:

R(W, Z,  f X, Y) = R(W, f Z,X, Y) = fR(W, Z, X, Y).

Proof. We have:

fX Y Y fX [fX ,Y] X Y Y X f[X ,Y] ( Yf )XZ Z Z f X (f Z) Z           

   X Y Y X Y X [X,Y] Y Xf Z f Z f Z f Z f Z             

 X Y Y X [X,Y]f Z Z Z .     

The first identity follows by taking inner product with W. In order to prove the second identity,
note that:

    X Y X X YfZ Yf Z f Z               X Y Y X X Y X Yf Z f Z f Z f Z.           

Interchanging X and Y and subtracting we get:

   X Y [X ,Y] X , Y, fZ f Z f[ ]Z.      

On the other hand, we have also:

 [X ,Y] [X ,Y] [X ,Y]fZ f Z f Z.    

Thus, we conclude:

   X Y [X ,Y] X Y [X ,Y], fZ fZ f [ , ]Z Z .      
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Let

 ijkl i j k lR R , , , ,    

be the components of the Riemann tensor. The previous proposition shows that if i i i i
i i i iX x ,Y y ,Z z ,W w ,       

i i i i
i i i iX x ,Y y ,Z z ,W w ,         then

ji k l
ijklR(W, Z, X, Y) w z x y R ,

that is, the value of R(W, Z, X, Y) at a point u depends only on the values of W, Z, X, and Y at u.

Proposition 3. The components R
ijkl

 of the Riemann curvature tensor of any metric g satisfy the
following identities:

ijkl ijlk jikl klijR R R R     ...(1)

ijkl iljk ikljR R R 0.   ...(2)

Proof. We first prove (2). Since  k l, 0,    it suffices to prove

 k l j j k l l j k, , , 0.                  ...(3)

Note that the symmetry m m
lj jl    imply that l j j l .    

Thus, we can write:

 k l j k j l l k j, .          

Permuting the indices cyclically, and adding, we get (3.19). The first identity in (3.23) is obvious
from Definition 5. We now prove the identity:

R
ijkl

 = R
jikl

.

We observe that:

 l j ig k ,       k l j i l j k ig , ,         

      k l ij j l i l j k i j l k ig g , g , g ,                

     k l ji k j l i l j k i j l k ig g , g , g , .                 

It is easy to see that the first term, and the next two taken together, are symmetric in k and l.
Thus, interchanging k and l, and subtracting, we get:

        ijkl k l j i j l k i k l i j jiklR g , , g , , g , , R .                 

The last identity in (1) now follows from the first two and (2). We prove that B
ijkl

 = R
ijkl

 � R
klij

 = 0.
Note that B

ijkl
 satisfies (1) as well as B

ijkl
 = �B

klij
. Now, in view of the identities already established,

we see that:

R
ijkl

 = �R
iljk

 � R
iklj

 = �R
likj

 � R
iklj

 = R
ljik

 + R
lkji

 � R
iklj

 = B
ljik

 + R
klij

,
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ijkl

 = B
ljik

. Using the symmetries of B
ijkl

, we can rewrite this identity as:

B
ijkl

 + B
iklj

 = 0. ...(4)

We now permute the first three indices cyclically:

B
kijl

 + B
kjli

 = 0, ...(5)

B
jkil

 + B
jilk

 = 0, ...(6)

add (4) to (5) and subtract (6) to get, using the symmetries of B
ijkl

:

B
ijkl

 + B
iklj

 + B
iklj

 + B
kjli

 � B
kjli

 � B
ijkl

 = 2B
iklj

 = 0.

This completes the proof of the proposition.

It follows, that all the non-zero components of the Riemann tensor are determined by R
1212

:

R
1212

 = �R
2112

 = R
2121

 = �R
1221

,

and all other components are zero. The proposition also implies that for any vectors X, Y, Z, W,
the following identities hold:

R(W, Z, X, Y ) = �R(W, Z, Y, Z) = �R(Z, W, X, Y) = R(X, Y, W, Z), ...(7)

R(W, Z, X, Y) + R(W, Y, Z, X) + R(W, X, Y, Z) = 0. ...(8)

Proposition 4. The components R
ijkl

 of the Riemann curvature tensor of any metric g satisfy:

mj j j j jn n
imkl ik ,l il ,k ik nl il nkg R .          ...(9)

Furthermore, we have:

1212R
K ,

det(g)
 ...(10)

where K is the Gauss curvature of g.

Proof. Denote the right-hand side of (9) by j
iklS .  We have:

   j j jn
l k i k ik j ik ,l ik nl j ,            

or equivalently:

 j j jmn
ik ,l ik nl l k i mg g , .        

Interchanging k and l and subtracting we get:

  j jm jm jm
ikl l k i m milk imklS g g , , g R g R .      

According (9), we have:

jik ik il
ikj ijkl

1 1
K g S g g R .

2 2
 

In view of the comment following Proposition 8, the only non-zero terms in this sum are:

   11 22 12 21 21 12 22 11 1
1212 1221 2112 2121 1212

1
K g g R g g R g g R g g R det g R ,

2


    

which implies (10)
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 ijkl ik il i l jkR K g g g g .  ...(11)

Proof. Denote the right-hand side of (11) by S
ijkl

, and note that it satisfies (1). Thus, the same
comment which follows Proposition 8 applies and the only non-zero components of S

ijkl
 are

determined by S
1212

:

S
1212

 = �S
2112

 = S
2121

 = �S
1221

.

In view of (11), we have R
1212

 = S
1212

, thus it follows that R
ijkl

 = S
ijkl

In particular, we conclude that:

 R(Z,W,X,Y) K g(W,X)g(Z,Y) g(W,Y)g(Z,X) .  ...(12)

16.3 The Second Variation of Arc length

In this section, we study the additional condition E (0) 0
   necessary for a minimum. This leads

to the notion of Jacobi fields and conjugate points.

Proposition 5. Let : [a,b] U   be a geodesic parametrized by arc length on the Riemannian

surface (U, g), and let  be a fixed-endpoint variation of  with generator Y. Then, we have:

   
b 2 22

a
E (0) Y K Y g ,Y dt, 
         ...(13)

where K is the Gauss curvature of g.

Before we prove this proposition, we offer a second proof of the first variation formula:

 
b

a
E (0) g ,Y dt, 
      ...(14)

which is more in spirit with our derivation of the second variation formula. First note that if 

is a fixed-endpoint variation of  with generator  = Y, and with X,   then [X, Y] = 0. Here Y

denotes the vector field  along  rather than just along . Indeed, since X = d (d/dt) and
Y = d(d/ds), it follows, that for any smooth function f on U, we have

[X ,Y]

d d
f , f 0.

dt ds
 

     


In view of the symmetry i i
jk kj ,    this implies:

Y XX Y [X,Y] 0.   

We can now calculate:

E (s)
    

b b

Y Y Ya a

1
g(X,X)dt g X,X dt g X ,X dt

2
       

   
b b bb

X a Xa a a

d
g(Y,X)dt g Y, X dt g(Y,X) g Y, X dt

dt
       
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Proof of Proposition 5. We compute:

E
    

b b b

Y Yg Yg Y Yg Xa a a

1
(X,X)dt X,X dt Y,X dt

2
          

    
b

Y X X Ya
g Y,X g Y, X dt     

       
b

X Y Y X X Xa
g Y,X g , Y,X g Y, Y dt        

     
b

Y Y X X Xa

d
g Y,X g Y, X R(X,Y,Y,X) g Y, Y dt,

dt
 

         

where as above X ,   and Y = . Now, the first term integrates to   b
Y ag Y,X 0,   and when

we set s = 0, the second term also vanishes since XX 0.       Furthermore, the last term

becomes  g Y, Y .     Hence, we conclude:

E (0)
  

b 2

a
Y R(X,Y,X,Y) dt.    ...(15)

The proposition now follows from (12).

Thus, E (0)
  can be viewed as a quadratic form in the generator Y . The corresponding symmetric

bilinear form is called the index form of :

         
b

a
I(Y,Z) g Y, Z K g Y,Z g ,Y g ,Z dt.            

It is the Hessian of the functional E, and if E has a local minimum, I is positive semi-definite. We
will also write I(Y) = I(Y, Y).

Definition 6. Let  be a geodesic parametrized by arc length on the Riemannian surface (U, g). A
vector field Y along  is called a Jacobi field, if it satisfies the following differential equation:

  Y K Y g ,Y 0.          

Two points (a) and (b) along a geodesic  are called conjugate along  if there is a non-zero
Jacobi field along  which vanishes at those two points.

The Jacobi field equation is a linear system of second-order differential equations. Hence given
initial data specifying the initial value and initial derivative of Y, a unique solution exists along
the entire geodesic .

Proposition 6. Let  be a geodesic on the Riemannian surface (U, g). Then given two vectors

1 2 (a)Z , Z T U,  there is a unique Jacobi field Y along  such that Y(a) = Z
1
, and 2Y(a) Z . 

In particular, any Jacobi field which is tangent to  is a linear combination of   and t .  The

significance of Jacobi fields is seen in the following two propositions. We say that  is a variation

of  through geodesics if the curves t (t;s)  are geodesics for all s.
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generator Y =  of  is a Jacobi field.

Proof. As before, denote X  and Y .     We first prove the following identity:

   Y X, X K Y g(X,Y)X .    

Indeed, in the proof of Lemma 7, it was seen that the left-hand side above is a tensor, i.e., is linear
over functions, and hence depends only on the values of the vector fields X and Y at one point.
Fix that point. If X and Y are linearly dependent, then both sides of the equation above are zero.
Otherwise, X and Y are linearly independent, and it suffices to check the inner product of the
identity against X and Y. Taking inner product with X, both sides are zero, and equation (11)

implies that the inner products with Y are equal. Since XX 0,   we get:

   Y X X Y Y X X X0 X X , X Y K Y g(X,Y)X .             

Thus, Y is a Jacobi field.

We see that Jacobi fields are infinitesimal generators of variations through geodesics. If there is
a non-trivial fixed endpoint variation of  through geodesics, then the endpoints of  are conjugate
along . Unfortunately, the converse is not true but nevertheless, a non-zero Jacobi field which
vanishes at the endpoints can be perceived as a non-trivial infinitesimal fixed-endpoint variation
of  through geodesics. This makes the next proposition all the more important.

Proposition 8. Let  be a geodesic, and let Y be a Jacobi field. Then, for any vector field Z along
, we have:

  b
aI(Y,Z) g Y,Z .   ...(16)

In particular, if either Y or Z vanishes at the endpoints, then I(Y,Z) = 0.

Proof. Multiplying the Jacobi equation by Z and integrating, we obtain:

0        
b

a
g Y,Z K g(Y,Z) g ,Y g ,Z dt           

        
b

a

d
g Y,Z g Y, Z K g(Y,Z) g ,Y g ,Z dt

dt   

 
               

Thus, a Jacobi field which vanishes at the endpoints lies in the null space of the index form I
acting on vector fields which vanish at the endpoints.

Theorem 2. Let : [a,b] (U,g)   be a geodesic parametrized by arc length, and suppose that

there is a point  (c) with a < c < b which is conjugate to  (a). Then there is a vector field Z along
such that I(Z) < 0. Consequently,  is not locally-length minimizing.

Proof. Define:

Y a t c
V

0 c t b

 
 

 

and let W be a vector field supported in a small neighborhood of c which satisfies

W(c) Y(c) 0.    We denote the index form of  on [a, c] by I
1
, and the index form on [c, b] by

I
2
. Since V is piecewise smooth, we have, in view of (16):
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1 2 1I(V,W) I (V,W) I (V,W) I (Y,W) Y(c) 0      

It follows that:

I(V + W, V + W) = I(V) + 2I(V,W) + 2 I(W) = 2I(V,W) + 2 I(W)

is negative if  > 0 is small enough. Although V + W is not smooth, there is for any

 > 0 a smooth vector field Z

, satisfying 

22Y Z C     uniformly in  > 0, which differs from

V + W only on (c � , c + ). Since the contribution of this interval to both I(V + W, V + W) and

 I Z ,Z   tends to zero with , it follows that also  I Z ,Z 0    for  > 0 small enough. Thus,  is

not locally energy-minimizing. Since it is parametrized by arc length, if it was locally length
minimizing, it would by Lemma 6 also be locally energy-minimizing. Thus,  cannot be locally
length-minimizing.

A partial converse is also true: the absence of conjugate points along  guarantees that the index
form is positive definite.

Theorem 3. Let : [a,b] (U,g)   be a geodesic parametrized by arc length, and suppose that no

point  (t), a < t  b, is conjugate to  (a) along . Then the index form I is positive definite.

Proof. Let X ,   and let Y be a Jacobi field which is perpendicular to X, and vanishes at t = a.

Note that the space of such Jacobi fields is 1-dimensional, hence Y is determined up to sign if we

also require that Y(a) 1.  Since Y is perpendicular to X, it satisfies the equation:

X XY KY 0.   

Furthermore, since Y never vanishes along , the vectors X and Y span ( t )T U  for all t  (a, b].

Thus, if Z is any vector field along  which vanishes at the endpoints, then we can write Z = fX +
hY for some functions f and h. Note that f(a) = f(b) = h(b) = 0 and hY(a) = 0. We then have:

I(Z,Z) = I(fX, fX) + 2I(fX, hY) + I(hY, hY).

Since R(X, fX,X, fX) = 0 and XfX fX,    it follows from (3.31) that:

 
b b

2

a a
I(fX, fX) g fX, fX dt f dt.    

Furthermore,

I(fX, hY)  
b

Xa
g fX, hY dt  

     
b b

b
a Xa a

g fX,hY | g fX,hY dt g fX,hY dt 0.        

Finally, since  
2 22 2

X X XhY g Y, h Y h Y ,       it follows from Proposition 3.20 that:

b b2 22 2

a a
I(hY,hY) h Y dt I(Y,hY) h Y dt.   
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 
b 22 2

a
I(Z,Z) f h Y dt 0.    

If I(Z,Z) = 0, then f 0  and hY 0  on [a, b]. Since Y  0 on (a, b], we conclude that h 0  on (a,
b], and in view of h(b) = f(b) = 0, we get that Z = 0. Thus, I is positive definite.

16.4 Summary

 Let (U, g) be a Riemannian surface, and let : I U   be a curve. A vector field along  is a

smooth function 2Y : I .   The covariant derivative of i
iY y   along  is the vector field:

 ji i k
jk iY y y .      

Note that if Z is any extension of Y, i.e., a any vector field defined on a neighborhood V of

the image  I  of  in U, then we have:

i
;iY Z Z .       

 A vector field Y along a curve  is said to be parallel along  if Y 0.  

Note that if Y and Z are parallel along , then g(Y,Z) is constant.

   g(Y,Z) g Y,Z g Y, Z 0.         

 Let : [a,b] U   be a curve into the Riemannian surface (U, g), let u
0
  U, and let Y

0
  Tu

0

U. Then there is a unique vector field Y along  which is parallel along  and satisfies
Y(a) = Y

0
.

 A curve  is a geodesic if its tangent   is parallel along :

0.   

If  is a geodesic, then   is constant and hence, every geodesic is parametrized

proportionally to arc length. In particular, if      is a reparametrization of , then  is

not a geodesic unless  is a linear map.

 Let (U, g) be a Riemannian surface, let u
0
  U and let 0 u00 Y T U.   Then there is and  > 0,

and a unique geodesic : ( , ) U,     such that 0(0) u ,   and 0(0) Y . 

 Let : [a,b] U   be a curve. We say that  is length minimizing, or L-minimizing, if:

L L 

for all curves  in U such that (a) (a)    and (b) (b).  
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Notes 16.5 Keywords

Geodesic: A locally energy-minimizing curve is a geodesic.

Schwartz inequality: The Schwartz inequality implies the following inequality between the
length and energy functional for a curve .

16.6 Self Assessment

1. If Z is any extension of Y, i.e., a any vector field defined on a neighborhood V of the image

 I  of  in U, then we have ..................

2. A vector field Y along a curve  is said to be parallel along ..................

3. Let (U, g) be a Riemannian surface, let u
0
  U and let 0 u00 Y T U.   Then there is and  > 0,

and a unique geodesic .................., such that 0(0) u ,   and 0(0) Y . 

4. A locally length-minimizing curve has a ..................

5. The .................. implies the following inequality between the length and energy functional
for a curve .

6. Let  be a .................., and let Y be a Jacobi field. Then, for any vector field Z along , we have

  b
aI(Y,Z) g Y,Z .  

16.7 Review Questions

1. Let 2g e g  be conformal metrics on U, and let k k
ij ij and    be their Christoffel symbols.

Prove that:

k k k k km
ij ij i j j i ij mg g          

2. Let g  and g be two conformal metrics on 2U,g e g,  and let K and K  be their Gauss

curvatures. Prove that:

 2K e K . 
  

Answers: Self Assessment

1. i
;iY Z Z .        2.  if Y 0.  

3. : ( , ) U,    4. Geodesic reparametrization

5. Schwartz inequality 6. Geodesic
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CONTENTS

Objectives

Introduction

17.1 Geodesic Curvature and the Christoffel Symbols

17.2 Principal Curvatures, Gaussian Curvature, Mean Curvature

17.3 The Gauss Map and its Derivative dN

17.4 The Dupin Indicatrix

17.5 Clairaut�s Theorem

17.6 Gauss�Bonnet theorem

17.6.1 Statement of the Theorem

17.6.2 Interpretation and Significance

17.6.3 Special Cases

17.6.4 Combinatorial Analog

17.6.5 Generalizations

17.7 The Theorema Egregium of Gauss, the Equations of Codazzi-Mainardi, and Bonnet�s
Theorem

17.8 Lines of Curvature, Geodesic Torsion, Asymptotic Lines

17.9 Summary

17.10 Keywords

17.11 Self Assessment

17.12 Review Questions

17.13 Further Readings

Objectives

After studying this unit, you will be able to:

 Explain the Gauss Map and its Derivative dN

 Define the Dupin Indicatrix

 Describe the theorema Egregium of Gauss, the Equations of Codazzi-Mainardi, and Bonnet�s
Theorem

 Define Lines of Curvature, Geodesic Torsion, Asymptotic Lines

Richa Nandra, Lovely Professional University
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NotesIntroduction

In this unit, we focus exclusively on the study of Geoderic Curvature. In this unit, we will go
through the properties of the curvature of curves on a surface. The study of the normal and of the
tangential components of the curvature will lead to the normal curvature and to the geodesic
curvature. We will study the normal curvature, and this will lead us to principal curvatures,
principal directions, the Gaussian curvature, and the mean curvature. In turn, the desire to
express the geodesic curvature in terms of the first fundamental form alone will lead to the
Christoffel symbols. The study of the variation of the normal at a point will lead to the Gauss
map and its derivative, and to the Weingarten equations.

17.1 Geodesic Curvature and the Christoffel Symbols

We showed that the tangential part of the curvature of a curve C on a surface is of the form ggk n .


We now show that k
n
 can be computed only in terms of the first fundamental form of X, a result

first proved by Ossian Bonnet circa 1848.

The computation is a bit involved, and it will lead us to the Christoffel symbols, introduced in
1869.

Since gn


 is in the tangent space T
p
(X), and since (X

u
, X

v
) is a basis of T

p
(X), we can write

ggk n


 = AX
u
 + BX

v
,

form some A, B  .

However,

gN gkn = k N + k n ,
 

and since N is normal to the tangent space,

N . X
u
 = N . X

v
 = 0, and by dotting

ggk n


 = AX
u
 + BX

v

with X
u
 and X

v
, since E = X

u
 . X

u
, F = X

u
 . X

v
, and G = X

v
 . X

v
, we get the equations:

kn


 . X
u
 = EA + FB,

kn


 . X
v
 = FA + GB.

On the other hand,

kn


 = X� = X
u
u� + X

v
v� + X

uu
(u�)2 + 2X

uv
u�v� + X

vv
(v�)2.

Dotting with X
u
 and X

v
, we get

kn


 . X
u
 = Eu� + Fv� + (X

uu
 . X

u
)(u�)2 + 2(X

uv
 . X

u
)u�v� + (X

vv
 . X

u
)(v�)2,

kn


 . Xv = Fu� + Gv� + (X
uu

 . X
v
)(u�)2 + 2(X

uv
 . X

v
)u�v� + (X

vv
 . X

v
)(v�)2.
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Notes At this point, it is useful to introduce the Christoffel symbols (of the first kind) [ ; ], defined
such that

[ ; ] = X


 . X

,

where , ,   {u, v}. It is also more convenient to let u = u
1
 and v = u

2
, and to denote [u


 v


; u


]

as [ ; ].

Doing so, and remembering that

kn


 . X
u
 = EA + FB,

kn


 . X
v
 = FA + GB,

we have the following equation:

' '"
1
" ' '

1,22
1,2

[ ; 1]u uuE F A E F .
u [ ; 2]u uG GF B F

 

  


      
                



However, since the first fundamental form is positive definite,

EG � F2 > 0, and we have

1

2 1 GE F F(EG F ) .
GF F E



   
    

   

Thus, we get

A

B

 
 
 

 = 
"
1
"
2

u

u

 
 
 

 + 
' '

2 1

' '
1,2
1,2

[ ; 1]u uG F(EG F ) .
[ ; 2]u uF E

 

  


  
      



It is natural to introduce the Christoffel symbols (of the second kind) k
ij ,  defined such that

1
ij 2 1

2
ij

[ij ; 1]G F(EG F ) .
[ij ; 2]F E


    
           

Finally, we get

A = " 1 ' '
1 ij i j

i 1,2
j 1,2

u G u u ,



 

B = " 2 ' '
2 ij i j

i 1,2
j 1,2

u u u ,



 

Lemma 1. Given a surface X and a curve C on X, for any point p on C, the tangential part of the
curvature at p is given by

ggk n


= " 1 ' ' " 2 ' '
1 ij i j u 2 ij i j v

i 1,2 i 1,2
j 1,2 j 1,2

u u u X u u u X ,
 
 

   
   

    
   
   
   

 
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ij  are defined such that

1
ij

2
ij

 
 
  

 = 
1 [ij; 1]E F ,

[ij; 2]GF



  
  

   

and the Christoffel symbols [i j; k] are defined such that

[i j; k] = X
ij
 . X

k
.

Note that

[i j; k] = [j i; k] = X
ij
 . X

k
.

Looking at the formulae

[ ; ] = X


 . X


for the Christoffel symbols [ ; ], it does not seem that these symbols only depend on the first
fundamental form, but in fact they do!

After some calculations, we have the following formulae showing that the Christoffel symbols
only depend on the first fundamental form:

[1 1; 1] = 
1

Eu,
2

[1 1; 2] = u v

1
F E ,

2


[1 2; 1] = v

1
E ,

2
[1 2; 2] = u

1
G ,

2

[2 1; 1] = v

1
E ,

2
[2 1; 2] = u

1
G ,

2

[2 2; 1] = Fv � u

1
G ,

2
[2 2; 2] = u

1
G .

2

Another way to compute the Christoffel symbols [ ; ], is to proceed as follows. For this
computation, it is more convenient to assume that u = u

1
 and v = u

2
, and that the first fundamental

form is expressed by the matrix

11 12

21 22

g g E F ,
g g GF

   
   

   

where g


 = X

 . X


. Let

|

g
g .

u


 







Then, we have

|

g
g X X X X [ ; ] [ ; ].

u


     




          


From this, we also have

g
|

 = [ ; ] + [ ; ],
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g
|

 = [ ; ] + [ ; ].

From all this, we get

2[ ; ] = g
|

 + g
|

 � g
|

.

As before, the Christoffel symbols [ ; ] and 

  are related via the Riemannian metric by the

equations

1
11 12

21 22

g g
[ ; ].

g g







 
    

 

This seemingly bizarre approach has the advantage to generalize to Riemannian manifolds.

17.2 Principal Curvatures, Gaussian Curvature, Mean Curvature

We will now study how the normal curvature at a point varies when a unit tangent vector varies.

In general, we will see that the normal curvature has a maximum value k
1
 and a minimum value

k
2
, and that the corresponding directions are orthogonal. This was shown by Euler in 1760.

The quantity K = k
1
k

2
 called the Gaussian curvature and the quantity H = (k

1
 + k

2
)/2 called the

mean curvature, play a very important role in the theory of surfaces.

We will compute H and K in terms of the first and the second fundamental form. We also classify
points on a surface according to the value and sign of the Gaussian curvature.

Recall that given a surface X and some point p on X, the vectors X
u
, X

v
 form a basis of the tangent

space T
p
(X).

Given a unit vector t


 = X
u
x + X

v
y, the normal curvature is given by

k
N
( t


) = Lx2 + 2Mxy + Ny2,

since Ex2 + 2Fxy + Gy2 = 1.

Usually, (X
u
,X

v
) is not an orthonormal frame, and it is useful to replace the frame (X

u
,X

v
) with an

orthonormal frame.

One verifies easily that the frame 1 2(e ,e )
 

 defined such that

u v u
1 2

2

X EX FX
e , e .

E E(EG F )


 



 

is indeed an orthonormal frame.

With respect to this frame, every unit vector can be written as 1 2t cos e sin e ,   
  

 and expressing

1 2(e ,e )
 

 in terms of X
u
 and X

v
, we have

u v

w cos Fsin E sin
t X X ,

ww E

    
  
 



where w = 2EG F .
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We can now compute K

N
 (t),


 and we get

k
N (t)


 = 
2

w cos Fsin
L

w E

   
 
 

2

2 2

(w cos Fsin )sin Esin
2M N .

w w
     

  
 

We leave as an exercise to show that the above expression can be written as

k
N (t)


 = H + Acos 2

+ B sin 2,

where

H = 2

GL � 2FM + EN
,

2(EG � F )

A =
2 2

2

L(EG � 2F ) + 2EFM � E N

2E(EG � F )

B =
2

EM � FL
.

E EG � F

Letting C = 2 2A B ,  unless A = B = 0, the function

f() = H + Acos 2 + B sin 2

has a maximum k
1
 = H + C for the angles 

0
 and 

0
 + , and a minimum k

2
 = H � C for the angles


0
 + 

2


 and 
0
 + 

3
,

2


 where cos 2
0
 = 

A
C

 and sin 2
0
 = 

B
.

C

The curvatures k
1
 and k

2
 play a major role in surface theory.

Definition 1: Given a surface X, for any point p on X, letting A, B, H be defined as above, and C

= 2 2A + B ,  unless A = B = 0, the normal curvature k
N
 at p takes a maximum value k

1
 and a

minimum value k
2
 called principal curvatures at p, where k

1
 = H + C and k

2
 = H � C. The

directions of the corresponding unit vectors are called the principal directions at p.

The average H = 1 2k + k

2
 of the principal curvatures is called the mean curvature, and the

product K = k
1
k

2
 of the principal curvatures is called the total curvature, or Gaussian curvature.

Observe that the principal directions 
0
 and 


+ 

2


 corresponding k
1
 and k

2
 are orthogonal.

Notes K = k
1
k

2
 = (H � C)(H + C) = H2 � C2 = H2 � (A2 + B2).

After some laborious calculations, we get the following (famous) formulae for the mean curvature
and the Gaussian curvature:

H = 2

GL � 2FM + EN
,

2(EG � F )

K =
2

2

LN �M
.

EG � F
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Notes We showed that the normal curvature k
N
 can be expressed as

k
N
() = H + Acos 2 + B sin 2

over the orthonormal frame 1 2(e , e ).
 

We also showed that the angle 
0
 such that cos 2

0
 = 

A
C

 and sin 2
0
 = 

B
,

C
 plays a special role.

Indeed, it determines one of the principal directions.

If we rotate the basis 1 2(e , e )
 

 and pick a frame 1 2(f , f )
 

 corresponding to the principal directions,

we obtain a particularly nice formula for k
N
. Indeed, since A = C cos 2

0
 and B = C sin 2

0
, letting

=   � 
0
, we get

k
N
() = k

1
 cos2  + k

2
 sin2 .

Thus, for any unit vector t


 expressed as

1 2t = cos f + sin f 
 

with respect to an orthonormal frame corresponding to the principal directions, the normal
curvature k

N
() is given by

Euler�s formula (1760):

kN() = k
1
 cos2  + k

2
 sin2 .

Recalling that EG � F2 is always strictly positive, we can classify the points on the surface
depending on the value of the Gaussian curvature K, and on the values of the principal curvatures
k

1
 and k

2
 (or H).

Definition 2: Given a surface X, a point p on X belongs to one of the following categories:

(1) Elliptic if LN � M2 > 0, or equivalently K > 0.

(2) Hyperbolic if LN � M2 < 0, or equivalently K < 0.

(3) Parabolic if LN � M2 = 0 and L2 + M2 + N2 > 0, or equivalently K = k
1
k

2
 = 0 but either k

1
  0

or k
2
  0.

(4) Planar if L = M = N = 0, or equivalently k
1
 = k

2
 = 0.

Furthermore, a point p is an umbilical point (or umbilic) if K > 0 and k
1
 = k

2
.

 At an elliptic point, both principal curvatures are non-null and have the same sign. For
example, most points on an ellipsoid are elliptic.

 At a hyperbolic point, the principal curvatures have opposite signs. For example, all
points on the catenoid are hyperbolic.

 At a parabolic point, one of the two principal curvatures is zero, but not both. This is
equivalent to K = 0 and H  0. Points on a cylinder are parabolic.

 At a planar point, k
1
 = k

2
 = 0. This is equivalent to K = H = 0. Points on a plane are all planar

points! On a monkey saddle, there is a planar point. The principal directions at that point
are undefined.
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Figure 17.1: A Monkey Saddle

For an umbilical point, we have k
1
 = k

2
  0.

This can only happen when H � C = H + C, which implies that C = 0, and since C = 2 2A + B ,  we

have A = B = 0.

Thus, for an umbilical point, K = H2. In this case, the function k
N
 is constant, and the principal

directions are undefined. All points on a sphere are umbilics. A general ellipsoid (a, b, c pairwise
distinct) has four umbilics. It can be shown that a connected surface consisting only of umbilical
points is contained in a sphere. It can also be shown that a connected surface consisting only of
planar points is contained in a plane.

A surface can contain at the same time elliptic points, parabolic points, and hyperbolic points.
This is the case of a torus.

 The parabolic points are on two circles also contained in two tangent planes to the torus
(the two horizontal planes touching the top and the bottom of the torus on the following
picture).

 The elliptic points are on the outside part of the torus (with normal facing outward),
delimited by the two parabolic circles.

 The hyperbolic points are on the inside part of the torus (with normal facing inward).
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The normal curvature

k
N
(X

u
x + X

v
y) = Lx2 + 2Mxy + Ny2

will vanish for some tangent vector (x, y)  (0, 0) iff M2  LN  0.

Since

K = 
2

2

LN �M
,

EG � F

this can only happen if K  0.

If L = N = 0, then there are two directions corresponding to X
u
 and X

v
 for which the normal

curvature is zero.

If L  0 or N  0, say L  0 (the other case being similar), then the equation 

2
x x

L 2M N 0
y y

 
   

 

has two distinct roots iff K < 0.

The directions corresponding to the vectors X
u
x + X

v
y associated with these roots are called the

asymptotic directions at p. These are the directions for which the normal curvature is null at p.
There are surfaces of constant Gaussian curvature. For example, a cylinder or a cone is a surface
of Gaussian curvature K = 0. A sphere of radius R has positive constant Gaussian curvature

K = 2

1
.

R
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There are surfaces of constant negative curvature, say K = �1. A famous one is the pseudosphere,
also known as Beltrami�s pseudosphere. This is the surface of revolution obtained by rotating a
curve known as a tractrix around its asymptote. One possible parameterization is given by:

x = u �u

2 cos v
,

e + e

y = u �u

2 sin v
,

e + e

z = 
u �u

u �u

e � e
u ,

e + e


over ]0, 2[ × .

The pseudosphere has a circle of singular points (for u = 0). The figure below shows a portion of
pseudosphere.

Figure 17.3: A Pseudosphere

Again, perhaps surprisingly, there are other surfaces of constant negative curvature.

The Gaussian curvature at a point (x, y, x) of an ellipsoid of equation

22 2

2 2 2

yx z
1

a b c
  
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K = 
4

2 2 2

p
,

a b c

where p is the distance from the origin (0, 0, 0) to the tangent plane at the point (x, y, z).

There are also surfaces for which H = 0. Such surfaces are called minimal surfaces, and they show
up in physics quite a bit. It can be verified that both the helicoid and the catenoid are minimal
surfaces. The Enneper surface is also a minimal surface. We will see shortly how the classification
of points on a surface can be explained in terms of the Dupin indicatrix.

The idea is to dip the surface in water, and to watch the shorelines formed in the water by the
surface in a small region around a chosen point, as we move the surface up and down very
gently. But first, we introduce the Gauss map, i.e. we study the variations of the normal N

p
 as the

point p varies on the surface.

17.3 The Gauss Map and its Derivative dN

Given a surface X :   E3, given any point p = X(u, v) on X, we have defined the normal Np at
p (or really N

(u,v)
 at (u, v)) as the unit vector

N
p
 = u v

u v

X × X

X × X

Gauss realized that the assignment p  N
p
 of the unit normal Np to the point p on the surface

X could be viewed as a map from the trace of the surface X to the unit sphere S2. If N
p
 is a unit

vector of coordinates (x, y, z), we have x2 + y2 + z2 = 1, and N
p
 corresponds to the point

N(p) = (x, y, z) on the unit sphere. This is the so-called Gauss map of X, denoted as N : X  S2.

The derivative dN
p
 of the Gauss map at p measures the variation of the normal near p, i.e., how

the surface �curves� near p. The Jacobian matrix of dN
p
 in the basis (X

u
, X

v
) can be expressed

simply in terms of the matrices associated with the first and the second fundamental forms
(which are quadratic forms).

Furthermore, the eigenvalues of dN
p
 are precisely �k

1
 and �k

2
, where k

1
 and k

2
 are the principal

curvatures at p, and the eigenvectors define the principal directions (when they are well defined).

In view of the negative sign in �k
1
 and �k

2
, it is desirable to consider the linear map S

p
 = �dN

p
,

often called the shape operator.

Then, it is easily shown that the second fundamental form II
p (t)


 can be expressed as

p p p
II (t) = S (t), t ,
  

where �, �  is the inner product associated with the first fundamental form.

Thus, the Gaussian curvature is equal to the determinant of S
p
, and also to the determinant of

dN
p
, since (�k

1
)(�k

2
) = k

1
k

2
. We will see in a later section that the Gaussian curvature actually

only depends of the first fundamental form, which is far from obvious right now! Actually, if X
is not injective, there are problems, because the assignment p  N

p
 could be multivalued.

We can either assume that X is injective, or consider the map from  to S2 defined such that

(u, v)  N
(u,v)

.
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NotesThen, we have a map from  to S2, where (u, v) is mapped to the point N(u, v) on S2 associated
with N(u,v). This map is denoted as N :   S2. It is interesting to study the derivative dN of the
Gauss map N :  S2 (or N : X  S2). As we shall see, the second fundamental form can be defined
in terms of dN. For every (u, v)  , the map dN

(u,v)
 is a linear map dN

(u,v)
 : 2  2.

It can be viewed as a linear map from the tangent space T
(u,v)

(X) at X(u, v) (which is isomorphic to
2) to the tangent space to the sphere at N(u, v) (also isomorphic to 2).

Recall that dN
(u,v)

 is defined as follows: For every (x, y)  2,

dN
(u,v)

(x, y) = N
u
x + N

v
y.

Thus, we need to compute Nu and Nv. Since N is a unit vector, N . N = 1, and by taking
derivatives, we have Nu . N = 0 and N

v
 . N = 0.

Consequently, N
u
 and N

v
 are in the tangent space at (u, v), and we can write

N
u
 = aX

u
 + cX

v
,

N
v
 = bX

u
 + dX

v
.

Lemma 2. Given a surface X, for any point p = X(u, v) on X, the derivative dN
(u,v)

 of the Gauss map
expressed in the basis (X

u
, X

v
) is given by the equation

dN
(u,v)

 x a b x ,
y yc d

    
    

    

where the Jacobian matrix J(dN
(u,v)

) of dN
(u,v)

 is given by

a b

c d

 
 
 

 =
1

ME F L

G M NF



   
    
   

=
2

1 MF LG NF MG .
EG F LF ME MF NE

  
 

   

The equations

J(dN
(u,v)

)  = a b

c d

 
 
 

=
2

1 MF LG NF MG .
EG F LF ME MF NE

  
 

   

are know as the Weingarten equations (in matrix form).

If we recall the expressions for the Gaussian curvature and for the mean curvature

H = 2

GL � 2FM + EN
,

2(EG � F )

K = 
2

2

LN �M
,

EG � F

we note that the trace a + d of the Jacobian matrix J(dN
(u,v)

) of dN
(u,v)

 is �2H, and that its determinant
is precisely K.
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(u,v)

)
correspond to the principal directions:

Lemma 3. Given a surface X, for any point p = X(u, v) on X, the eigenvalues of the Jacobian matrix
J(dN

(u,v)
) of the derivative dN

(u,v)
 of the Gauss map are �k

1
, �k

2
, where k

1 
and k

2
 are the principal

curvatures at p, and the eigenvectors of dN
(u,v)

 correspond to the principal directions (when they
are defined). The Gaussian curvature K is the determinant of the Jacobian matrix of dN

(u,v)
, and

the mean curvature H is equal to 
1
2

  trace J(dN
(u,v)

).

The fact that Nu = �kX
u
 when k is one of the principal curvatures and when Xu corresponds to the

corresponding principal direction (and similarly N
v
 = �kX

v
 for the other principal curvature) is

known as the formula of Olinde Rodrigues (1815).

The somewhat irritating negative signs arising in the eigenvalues �k
1
 and �k

2
 of dN

(u,v)
 can be

eliminated if we consider the linear map S
(u,v)

 = �dN
(u,v)

 instead of dN
(u,v)

.

The map S
(u,v)

 is called the shape operator at p, and the map dN
(u,v)

 is sometimes called the
Weingarten operator.

The following lemma shows that the second fundamental form arises from the shape operator,

and that the shape operator is self-adjoint with respect to the inner product �,�  associated with

the first fundamental form:

Lemma 4. Given a surface X, for any point p = X(u, v) on X, the second fundamental form of X at
p is given by the formula

(u,v) (u,v)II (t) = S (t), t ,
  

for every t


  2. The map S(u,v) = �dN
(u,v)

 is self-adjoint, that is,

(u,v) (u,v)S (x), y = x, S (y) ,
   

for all x, y
 

  2.

Thus, in some sense, the shape operator contains all the information about curvature.

Remark: The fact that the first fundamental form I is positive definite and that S(u,v) is self-
adjoint with respect to I can be used to give a fancier proof of the fact that S(u,v) has two real
eigenvalues, that the eigenvectors are orthonormal, and that the eigenvalues correspond to the
maximum and the minimum of I on the unit circle.

17.4 The Dupin Indicatrix

The second fundamental form shows up again when we study the deviation of a surface from its
tangent plane in the neighborhood of the point of tangency.

A way to study this deviation is to imagine that we dip the surface in water, and watch the
shorelines formed in the water by the surface in a small region around a chosen point, as we
move the surface up and down very gently.

The resulting curve is known as the Dupin indicatrix (1813).

Formally, consider the tangent plane T
(u0,v0)

(X) at some point p = X(u
0
, v

0
), and consider the

perpendicular distance (u, v) from the tangent plane to a point on the surface defined by (u, v).
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(u, v) = (X(u, v) � X(u
0
, v

0
)) . N

(u0,v0)
.

However, since X is at least C3-continuous, by Taylor�s formula, in a neighborhood of (u
0
, v

0
),

we can write

X(u, v) = X(u
0
, v

0
) + X

u
(u � u

0
) + X

v
(v � v

0
) +

1
2

(X
uu

(u � u
0
)2 + 2X

uv
(u � u

0
)(v � v

0
) + X

vv
(v � v

0
)2) +

    ((u � u
0
)2 + (v � v

0
)2)h

1
(u, v),

where lim
(u,v)  (u0,v0)

 h
1
(u, v) = 0.

However, recall that X
u
 and X

v
 are really evaluated at (u

0
, v

0
) (and so are X

uu
, X

u,v
, and X

vv
), and so,

they are orthogonal to N
(u0,v0)

.

From this, dotting with N
(u0,v0)

, we get

(u, v) = 2 2 2 2
0 0 0 0 0 0(L(u � u ) + 2M(u � u )(v � v ) + N(v � v ) ) + ((u � u ) + (v � v ) )h(u, v),

where lim
(u,v)  (u0,v0)

 h(u, v) = 0.

Therefore, we get another interpretation of the second fundamental form as a way of measuring
the deviation from the tangent plane.

For  small enough, and in a neighborhood of (u
0
, v

0
) small enough, the set of points X(u, v) on

the surface such that (u, v) = 21
2

   will look like portions of the curves of equation

2 2 2
0 0 0 0

1 1
(L(u � u ) + 2M(u � u )(v � v ) + N(v � v ) ) .

2 2
  

Letting u � u
0
 = x and v � v

0
 = y, these curves are defined by the equations

Lx2 + 2Mxy + Ny2 = ±1.

These curves are called the Dupin indicatrix.

It is more convenient to switch to an orthonormal basis where 1e


 and 2e


 are eigenvectors of the
Gauss map dN

(u0,v0)
.

If so, it is immediately seen that

Lx2 + 2Mxy + Ny2 = k
1
x2 + k

2
y2,

where k
1
 and k

2
 are the principal curvatures. Thus, the equation of the Dupin indicatrix is

k
1
x2 + k

2
y2 = ±1.

There are several cases, depending on the sign of k
1
k

2
 = K, i.e., depending on the sign of LN � M2.

(1) If LN � M2 > 0, then k
1
 and k

2
 have the same sign. This is the case of an elliptic point.

If k
1
  k

2
, and k

1
 > 0 and k

2
 > 0, we get the ellipse of equation

22

1 2

yx
1,

1 1
k k

 
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1
 < 0 and k

2
 < 0, we get the ellipse of equation

22

1 2

yx
1.

1 1
k k

 

 

When k
1
 = k

2
, i.e. an umbilical point, the Dupin indicatrix is a circle.

(2) If LN � M2 = 0 and L2 + M2 + N2 > 0, then k
1
 = 0 or k

2
 = 0, but not both.

This is the case of a parabolic point.

In this case, the Dupin indicatrix degenerates to two parallel lines, since the equation is either

k
1
x2 = ±1

or

k
2
y2 = ±1.

(3) If LN � M2 < 0 then k
1
 and k

2
 have different signs. This is the case of a hyperbolic point.

In this case, the Dupin indicatrix consists of the two hyperbolae of equations

22

1 2

yx
1,

1 1
k k

 

if k
1
 > 0 and k

2
 < 0, or of equation

22

1 2

yx
1,

1 1
k k

  



if k
1
 < 0 and k

2
 > 0.

These hyperbolae share the same asymptotes, which are the asymptotic directions as defined,
and are given by the equation

Lx2 + 2Mxy + Ny2 = 0.

Therefore, analyzing the shape of the Dupin indicatrix leads us to rediscover the classification of
points on a surface in terms of the principal curvatures.

It also lends some intuition to the meaning of the words elliptic, hyperbolic, and parabolic (the
last one being a bit misleading).

The analysis of (u, v) also shows that in the elliptic case, in a small neighborhood of X(u, v), all
points of X are on the same side of the tangent plane. This is like being on the top of a round hill.
In the hyperbolic case, in a small neighborhood of X(u, v), there are points of X on both sides of
the tangent plane. This is a saddle point, or a valley (or mountain pass).

17.5 Clairaut�s Theorem

Clairaut�s theorem, published in 1743 by Alexis Claude Clairaut in his Théorie de la figure de la
terre, tirée des principes de l�hydrostatique, synthesized physical and geodetic evidence that the
Earth is an oblate rotational ellipsoid. It is a general mathematical law applying to spheroids of
revolution. It was initially used to relate the gravity at any point on the Earth�s surface to the
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Notesposition of that point, allowing the ellipticity of the Earth to be calculated from measurements
of gravity at different latitudes.

Formula

Clairaut�s formula for the acceleration of gravity g on the surface of a spheroid at latitude , was:

25
g G 1 m f sin ,

2
  

     
  

where G is the value of the acceleration of gravity at the equator, m the ratio of the centrifugal
force to gravity at the equator, and f the flattening of a meridian section of the earth, defined as:

a b
f ,

a




(where a = semimajor axis, b = semiminor axis).

Clairaut derived the formula under the assumption that the body was composed of concentric
coaxial spheroidal layers of constant density. This work was subsequently pursued by Laplace,
who relaxed the initial assumption that surfaces of equal density were spheroids. Stokes showed
in 1849 that the theorem applied to any law of density so long as the external surface is a
spheroid of equilibrium.

The above expression for g has been supplanted by the Somigliana equation:

2

2 2

1 k sin
g G ,

1 e sin

  
  

   

where, for the Earth, G = 9.7803267714 ms�2; k =0.00193185138639; e2 = 0.00669437999013.

17.6 Gauss�Bonnet theorem

The Gauss�Bonnet theorem or Gauss�Bonnet formula in differential geometry is an important
statement about surfaces which connects their geometry (in the sense of curvature) to their
topology (in the sense of the Euler characteristic). It is named after Carl Friedrich Gauss who was
aware of a version of the theorem but never published it, and Pierre Ossian Bonnet who published
a special case in 1848.

17.6.1 Statement of the Theorem

Suppose M is a compact two-dimensional Riemannian manifold with boundary M. Let K be the
Gaussian curvature of M, and let k

g
 be the geodesic curvature of M. Then

g xM
M

KdA k ds 2 (M),


   

where dA is the element of area of the surface, and ds is the line element along the boundary of
M. Here, (M) is the Euler characteristic of M.

If the boundary M is piecewise smooth, then we interpret the integral gM
k ds

  as the sum of the

corresponding integrals along the smooth portions of the boundary, plus the sum of the angles
by which the smooth portions turn at the corners of the boundary.
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The theorem applies in particular to compact surfaces without boundary, in which case the
integral

gM
k ds



can be omitted. It states that the total Gaussian curvature of such a closed surface is equal to 2
times the Euler characteristic of the surface. Note that for orientable compact surfaces without
boundary, the Euler characteristic equals 2 � 2g, where g is the genus of the surface: Any orientable
compact surface without boundary is topologically equivalent to a sphere with some handles
attached, and g counts the number of handles.

If one bends and deforms the surface M, its Euler characteristic, being a topological invariant,
will not change, while the curvatures at some points will. The theorem states, somewhat
surprisingly, that the total integral of all curvatures will remain the same, no matter how the
deforming is done. So for instance if you have a sphere with a �dent�, then its total curvature is
4 (the Euler characteristic of a sphere being 2), no matter how big or deep the dent.

Compactness of the surface is of crucial importance. Consider for instance the open unit disc, a
non-compact Riemann surface without boundary, with curvature 0 and with Euler characteristic
1: the Gauss�Bonnet formula does not work. It holds true, however, for the compact closed unit
disc, which also has Euler characteristic 1, because of the added boundary integral with value 2.

As an application, a torus has Euler characteristic 0, so its total curvature must also be zero. If the
torus carries the ordinary Riemannian metric from its embedding in R3, then the inside has
negative Gaussian curvature, the outside has positive Gaussian curvature, and the total curvature
is indeed 0. It is also possible to construct a torus by identifying opposite sides of a square, in
which case the Riemannian metric on the torus is flat and has constant curvature 0, again resulting
in total curvature 0. It is not possible to specify a Riemannian metric on the torus with everywhere
positive or everywhere negative Gaussian curvature.

The theorem also has interesting consequences for triangles. Suppose M is some 2-dimensional
Riemannian manifold (not necessarily compact), and we specify a �triangle� on M formed by
three geodesics. Then we can apply Gauss�Bonnet to the surface T formed by the inside of that
triangle and the piecewise boundary given by the triangle itself. The geodesic curvature of
geodesics being zero, and the Euler characteristic of T being 1, the theorem then states that the
sum of the turning angles of the geodesic triangle is equal to 2 minus the total curvature within
the triangle. Since the turning angle at a corner is equal to ð minus the interior angle, we can
rephrase this as follows:

The sum of interior angles of a geodesic triangle is equal to ð plus the total curvature enclosed
by the triangle.

In the case of the plane (where the Gaussian curvature is 0 and geodesics are straight lines), we
recover the familiar formula for the sum of angles in an ordinary triangle. On the standard
sphere, where the curvature is everywhere 1, we see that the angle sum of geodesic triangles is
always bigger than ð.

17.6.3 Special Cases

A number of earlier results in spherical geometry and hyperbolic geometry over the preceding
centuries were subsumed as special cases of Gauss�Bonnet.
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Notes1. Triangles

In spherical trigonometry and hyperbolic trigonometry, the area of a triangle is proportional to
the amount by which its interior angles fail to add up to 180°, or equivalently by the (inverse)
amount by which its exterior angles fail to add up to 360°.

The area of a spherical triangle is proportional to its excess, by Girard�s theorem � the amount by
which its interior angles add up to more than 180°, which is equal to the amount by which its
exterior angles add up to less than 360°.

The area of a hyperbolic triangle conversely is proportional to its defect, as established by
Johann Heinrich Lambert.

2. Polyhedra

Descartes� theorem on total angular defect of a polyhedron is the polyhedral analog: it states
that the sum of the defect at all the vertices of a polyhedron which is homeomorphic to the
sphere is 4. More generally, if the polyhedron has Euler characteristic  = 2 � 2g (where g is the
genus, meaning �number of holes�), then the sum of the defect is 2. This is the special case of
Gauss�Bonnet, where the curvature is concentrated at discrete points (the vertices).

Thinking of curvature as a measure, rather than as a function, Descartes� theorem is Gauss�
Bonnet where the curvature is a discrete measure, and Gauss�Bonnet for measures generalizes
both Gauss�Bonnet for smooth manifolds and Descartes� theorem.

17.6.4 Combinatorial Analog

There are several combinatorial analogs of the Gauss�Bonnet theorem. We state the following
one. Let M be a finite 2-dimensional pseudo-manifold. Let (v) denote the number of triangles
containing the vertex v. Then

v int M v M
(6 (x)) (4 (v)) 6 (M),

 
       

where the first sum ranges over the vertices in the interior of M, the second sum is over the
boundary vertices, and (M) is the Euler characteristic of M.

More specifically, if M is a closed digital 2-dimensional manifold, The genus

g = 1 + (M
5
 + 2M

6
 � M

3
)/8,

where M
i
 indicates the set of surface-points each of which has i adjacent points on the surface. See

digital topology

17.6.5 Generalizations

Generalizations of the Gauss�Bonnet theorem to n-dimensional Riemannian manifolds were
found in the 1940s, by Allendoerfer, Weil and Chern�Weil homomorphism. The Riemann�Roch
theorem can also be considered as a generalization of Gauss�Bonnet.

An extremely far-reaching generalization of all the above-mentioned theorems is the Atiyah�
Singer index theorem.
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Mainardi, and Bonnet�s Theorem

Here, we expressed the geodesic curvature in terms of the Christoffel symbols, and we also
showed that these symbols only depend on E, F, G, i.e., on the first fundamental form and
we expressed N

u
 and N

v
 in terms of the coefficients of the first and the second fundamental form.

At first glance, given any six functions E, F, G, L, M, N which are at least C3-continuous on some
open subset U of 2, and where E, F > 0 and EG � F2 > 0, it is plausible that there is a surface X
defined on some open subset  of U, and having Ex2 + 2Fxy + Gy2 as its first fundamental form,
and Lx2 + 2Mxy + Ny2 as its second fundamental form.

However, this is false! The problem is that for a surface X, the functions E, F, G, L, M, N are not
independent.

In this section, we investigate the relations that exist among these functions. We will see that
there are three compatibility equations. The first one gives the Gaussian curvature in terms of
the first fundamental form only. This is the famous Theorema Egregium of Gauss (1827).

The other two equations express M
u
 � L

v
 and N

u
 � M

v
 in terms of L, M, N and the Christoffel

symbols. These equations are due to Codazzi (1867) and Mainardi (1856).

Remarkably, these compatibility equations are just what it takes to insure the existence of a
surface (at least locally) with Ex2 + 2Fxy + Gy2 as its first fundamental form, and Lx2 + 2Mxy + Ny2

as its second fundamental form, an important theorem shown by Ossian Bonnet (1867).

Recall that

X� = " " ' 2 ' ' '
u 1 v 2 uu 1 uv 1 2 vv 2X u + X u + X (u ) + 2X u u + X (u )2,

= ' 2 ' ' ' 2
g1 1 2 2 g(L(u ) + 2Mu u + N(u ) )N + k n ,


and since

" 1 ' ' " 2 ' '
gg 1 ij i j u 2 ij i j v

i 1,2 i 1,2
j 1,2 j 1,2

k n = u u u X u u u X ,
 
 

   
   

    
   
   
   

 


we get the equations (due to Gauss):

X
uu

 = 1 2
11 u 11 vX + X + LN, 

X
uv

 = 1 2
12 u 12 vX + X + MN, 

X
vu

 = 1 2
12 u 21 vX + X + MN, 

X
vv

 = 1 2
22 u 22 vX + X + NN, 

where the Christoffel symbols k
ij  are defined such that

1 1
ij

2
ij

[ij ; 1]E F ,
[ij ; 2GF

    
           
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Notesand where

[1 1; 1] = u

1
E ,

2
 [1 1; 2] = F

u
 � v

1
E ,

2

[1 2; 1] = v

1
E ,

2
 [1 2; 2] = u

1
G ,

2

[2 1; 1] = v

1
E ,

2
 [2 1; 2] = u

1
G ,

2

[2 2; 1] = v u

1
F G ,

2
  [2 2; 2] = v

1
G .

2

Also, recall that we have the Weingarten equations

u

v

N

N
 
 
 

 = u

v

Xa c
Xb d

  
  
  

From the Gauss equations and the Weingarten equations

X
uu

 = 1 2
11 u 11 vX + X + LN, 

X
uv

 = 1 2
12 u 12 vX + X + MN, 

X
vu

 = 1 2
21 u 21 vX + X + MN, 

X
vv

 = 1 2
21 u 21 vX + X + NN, 

N
u
 = aX

u
 + cX

v
,

N
v
 = bX

u
 + dX

v
,

We see that the partial derivatives of X
u
, X

v
 and N can be expressed in terms of the coefficient E,

F, G, L, M, N and their partial derivatives.

Thus, a way to obtain relations among these coefficients is to write the equations expressing the
commutation of partials, i.e.,

(X
uu

)
v
 � (X

uv
)

u
 = 0,

(X
vv

)
u
 � (X

vu
)

v
 = 0,

N
uv

 � N
vu

 = 0.

Using the Gauss equations and the Weingarten equations, we obtain relations of the form

A
1
X

u
 + B

1
X

v
 + C

1
N = 0,

A
2
X

u
 + B

2
X

v
 + C

2
N = 0,

A
3
X

u
 + B

3
X

v
 + C

3
N = 0,

where A
i
, B

i
, and C

i
 are functions of E, F, G, L,M,N and their partial derivatives, for i = 1, 2, 3.

However, since the vectors X
u
, X

v
, and N are linearly independent, we obtain the nine equations

A
i
 = 0, B

i
 = 0, C

i
 = 0, for i = 1, 2, 3.

Although this is very tedious, it can be shown that these equations are equivalent to just three
equations.
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Notes Due to its importance, we state the Theorema Egregium of Gauss.

Theorem 5: Given a surface X and a point p = X(u, v) on X, the Gaussian curvature K at (u, v) can
be expressed as a function of E, F,G and their partial derivatives. In fact

(EG � F2)2K = 

v u v v u

u v

u v u

1 1 1 1
F G G E G

C 02 2 2 2
1 1

E E
2 E F 2 E F

1 1
F E G

G G2 F 2 F







where

vv vv uu

1
C (�E 2F G ).

2
  

Proof. Way of proving theorem is to start from the formula

K = 
2

2

LN �M

EG � F

and to go back to the expressions of L, M, N using D, D�, D� as determinants:

L = 
2

D
,

EG � F
 M = 

2

D'
,

EG � F
 N = 

2

D"
,

EG � F

where

D = (X
u
, X

v
, X

uu
),

D� = (X
u
, X

v
, X

uv
),

D� = (X
u
, X

v
, X

vv
).

Then, we can write

(EG � F2)2K = (X
u
, X

v
, X

uu
) (X

u
, X

v
, X

vv
) � (X

u
, X

v
, X

uv
)2,

and compute these determinants by multiplying them out. One will eventually get the expression
given in the theorem!

It can be shown that the other two equations, known as the Codazzi-Mainardi equations, are the
equations:

Mu � Lv = 2 2 1 1
11 12 11 12N ( )M L,      

Nu � Mv = 2 2 1 1
12 22 12 22N ( )M L.      

We conclude this section with an important theorem of Ossian Bonnet. First, we show that the
first and the second fundamental forms determine a surface up to rigid motion. More precisely,
we have the following lemma:

Lemma 6. Let X :   E3 and Y :   E3 be two surfaces over a connected open set . If X and Y
have the same coefficients E, F, G, L, M, N over , then there is a rigid motion mapping X()
onto Y ().

The above lemma can be shown using a standard theorem about ordinary differential equations.
Finally, we state Bonnet�s theorem.
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NotesTheorem 7: Let E, F, G, L, M, N be any C3-continuous functions on some open set U  2, and
such that E > 0, G > 0, and EG � F2 > 0. If these functions satisfy the Gauss formula (of the
Theorema Egregium) and the Codazzi-Mainardi equations, then for every (u, v)  U, there is an
open set   U such that (u, v)  , and a surface X :   E3 such that X is a diffeomorphism, and
E, F, G are the coefficients of the first fundamental form of X, and L, M, N are the coefficients of
the second fundamental form of X. Furthermore, if  is connected, then X() is unique up to a
rigid motion.

17.8 Lines of Curvature, Geodesic Torsion, Asymptotic Lines

Given a surface X, certain curves on the surface play a special role, for example, the curves
corresponding to the directions in which the curvature is maximum or minimum.

Definition 3: Given a surface X, a line of curvature is a curve C : t  X(u(t), v(t)) on X defined on
some open interval I, and having the property that for every t  I, the tangent vector C�(t) is
collinear with one of the principal directions at X(u(t), v(t)).

Notes we are assuming that no point on a line of curvature is either a planar point or
an umbilical point, since principal directions are undefined as such points.

The differential equation defining lines of curvature can be found as follows:

Remember from lemma that the principal directions are the eigenvectors of dN
(u,v)

.

Therefore, we can find the differential equation defining the lines of curvature by eliminating k
from the two equations from the proof of lemma:

2 2

MF � LG NF �MG
u' v' ku',

EG � F EG � F
  

2 2

LF �ME MF �NE
u' v' kv.

EG � F EG � F
  

It is not hard to show that the resulting equation can be written as

2 2(v') (u')u'u'

Gdet E F 0.

M NL

 
 

 
 
 
 

From the above equation, we see that the u-lines and the v-lines are the lines of curvatures iff F
= M = 0.

Generally, this differential equation does not have closed-form solutions.

There is another notion which is useful in understanding lines of curvature, the geodesic torsion.

Let C : S  X(u(s), v(s)) be a curve on X assumed to be parameterized by arc length, and let X(u(0),
v(0)) be a point on the surface X, and assume that this point is neither a planar point nor an
umbilic, so that the principal directions are defined.
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Notes
We can define the orthonormal frame 1 2(e , e , N),

 
 known as the Darboux frame, where 1e


 and

2e


 are unit vectors corresponding to the principal directions, N is the normal to the surface at

X(u(0), v(0)), and N = 1 2e × e .
 

It is interesting to study the quantity 
(u,v)dN

(0).
ds

If t


 = C�(0) is the unit tangent vector at X(u(0), v(0)), we have another orthonormal frame

considered in previous Section, namely g(t, n , N),
 

 where gn


 = N × t


, and if  is the angle

between 1e


 and t


 we have

1 2

g 1 2

t = cos e + sin e ,

n = �sin e + cos e .

 

 

  

  

Lemma 8. Given a curve C : s  X(u(s), v(s)) parameterized by arc length on a surface X, we have

(u,v)
gN g

dN
(0) k t T n ,

ds
  

 

where k
N
 is the normal curvature, and where the geodesic torsion T

g
 is given by

T
g
 = (k

1
 � k

2
) sin  cos .

From the formula

T
g
 = (k

1
 � k

2
) sin  cos ,

since  is the angle between the tangent vector to the curve C and a principal direction, it is clear
that the lines of curvatures are characterized by the fact that T

g
 = 0.

One will also observe that orthogonal curves have opposite geodesic torsions (same absolute
value and opposite signs).

If n


 is the principal normal, T is the torsion of C at X(u(0), v(0)), and  is the angle between N and

n


 so that cos  = N . n


, we claim that

T
g
 = T �

d
,

ds


which is often known as Bonnet�s formula.

Lemma 9. Given a curve C : s  X(u(s), v(s)) parameterized by arc length on a surface X, the
geodesic torsion T

g 
is given by

T
g
 = T � 

d
ds


 = (k
1
 � k

2
) sin  cos ,

where T is the torsion of C at X(u(0), v(0)), and  is the angle between N and the principal normal

n


 to C at s = 0.

Notes The geodesic torsion only depends on the tangent of curves C. Also, for a curve
for which  = 0, we have T

g
 = T.
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NotesSuch a curve is also characterized by the fact that the geodesic curvature k
g
 is null.

As we will see shortly, such curves are called geodesics, which explains the name geodesic
torsion for T

g
.

Lemma 10: can be used to give a quick proof of a beautiful theorem of Dupin (1813).

Dupin�s theorem has to do with families of surfaces forming a triply orthogonal system.

Given some open subset U of E3, three families F
1
, F

2
, F

3
 of surfaces form a triply orthogonal

system for U, if for every point p  U, there is a unique surface from each family F
i
 passing

through p, where i = 1, 2, 3, and any two of these surfaces intersect orthogonally along their
curve of intersection.

Theorem 11: The surfaces of a triply orthogonal system intersect each other along lines of
curvature.

A nice application of theorem 11 is that it is possible to find the lines of curvature on an ellipsoid.

We now turn briefly to asymptotic lines. Recall that asymptotic directions are only defined at
points where K < 0, and at such points, they correspond to the directions for which the normal
curvature k

N
 is null.

Definition 4: Given a surface X, an asymptotic line is a curve C : t  X(u(t), v(t)) on X defined on
some open interval I where K < 0, and having the property that for every t  I, the tangent vector
C0(t) is collinear with one of the asymptotic directions at X(u(t), v(t)).

The differential equation defining asymptotic lines is easily found since it expresses the fact that
the normal curvature is null:

L(u�)2 + 2M(u�v�) + N(v�)2 = 0.

Such an equation generally does not have closed-form solutions.

Notes The u-lines and the v-lines are asymptotic lines iff L = N = 0 (and F  0).

Perseverant readers are welcome to compute E, F, G, L, M, N for the Enneper surface:

x  =
3

2u
u uv

3
 

y  =
3

2u
v u v

3
 

z  = u2 � v2.

Then, they will be able to find closed-form solutions for the lines of curvatures and the asymptotic
lines.
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Notes Figure 17.4: The Enneper Surface

Parabolic lines are defined by the equation

LN � M2 = 0,

where L2 + M2 + N2 > 0.

In general, the locus of parabolic points consists of several curves and points.

We now turn briefly to geodesics.

17.9 Summary

 We now show that k
n
 can be computed only in terms of the first fundamental form of X, a

result first proved by Ossian Bonnet circa 1848.

The computation is a bit involved, and it will lead us to the Christoffel symbols, introduced
in 1869.

Since gn


 is in the tangent space T
p
(X), and since (X

u
, X

v
) is a basis of T

p
(X), we can write

ggk n


 = AX
u
 + BX

v
,

form some A, B  .

However,

gN gkn = k N + k n ,
 

and since N is normal to the tangent space,

N . X
u
 = N . X

v
 = 0, and by dotting

 In general, we will see that the normal curvature has a maximum value k
1
 and a minimum

value k
2
, and that the corresponding directions are orthogonal. This was shown by Euler

in 1760.
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NotesThe quantity K = k
1
k

2
 called the Gaussian curvature and the quantity H = (k

1
 + k

2
)/2 called

the mean curvature, play a very important role in the theory of surfaces.

We will compute H and K in terms of the first and the second fundamental form. We also
classify points on a surface according to the value and sign of the Gaussian curvature.

Recall that given a surface X and some point p on X, the vectors X
u
,X

v
 form a basis of the

tangent space T
p
(X).

Given a unit vector t


 = X
u
x + X

v
y, the normal curvature is given by

k
N
( t


) = Lx2 + 2Mxy + Ny2,

since Ex2 + 2Fxy + Gy2 = 1.

 Given a surface X, for any point p on X, letting A, B, H be defined as above, and

C = 2 2A + B ,  unless A = B = 0, the normal curvature k
N
 at p takes a maximum value k

1
 and

a minimum value k
2
 called principal curvatures at p, where k

1
 = H + C and k

2
 = H � C. The

directions of the corresponding unit vectors are called the principal directions at p.

 It can be shown that a connected surface consisting only of umbilical points is contained in
a sphere.

It can also be shown that a connected surface consisting only of planar points is contained
in a plane.

A surface can contain at the same time elliptic points, parabolic points, and hyperbolic
points. This is the case of a torus.

The parabolic points are on two circles also contained in two tangent planes to the torus
(the two horizontal planes touching the top and the bottom of the torus on the following
picture).

The elliptic points are on the outside part of the torus (with normal facing outward),
delimited by the two parabolic circles.

The hyperbolic points are on the inside part of the torus (with normal facing inward).

17.10 Keywords

Christoffel symbols: The computation is a bit involved, and it will lead us to the Christoffel
symbols, introduced in 1869.

Gaussian curvature: The quantity K = k
1
k

2
 called the Gaussian curvature and the quantity

H = (k
1
 + k

2
)/2 called the mean curvature, play a very important role in the theory of surfaces.

Elliptic: At an elliptic point, both principal curvatures are non-null and have the same sign. For
example, most points on an ellipsoid are elliptic.

Hyperbolic: At a hyperbolic point, the principal curvatures have opposite signs. For example, all
points on the catenoid are hyperbolic.

Jacobian matrix: The Jacobian matrix of dN
p
 in the basis (X

u
, X

v
) can be expressed simply in

terms of the matrices associated with the first and the second fundamental forms (which are
quadratic forms).
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Notes 17.11 Self Assessment

1. The computation is a bit involved, and it will lead us to the ............... , introduced in 1869.

2. The quantity K = k
1
k

2
 called the ............... and the quantity H = (k

1
 + k

2
)/2 called the mean

curvature, play a very important role in the theory of surfaces.

3. At a parabolic point, one of the two principal curvatures is ..............., but not both. This is
equivalent to K = 0 and H ¹ 0. Points on a cylinder are parabolic.

4. At a planar point, k
1
 = k

2
 = 0. This is equivalent to K = H = 0. Points on a plane are all planar

points! On a monkey saddle, there is a planar point. The principal directions at that point
are ...............

5. The derivative dN
p
 of the ............... at p measures the variation of the normal near p, i.e.,

how the surface �curves� near p.

6. The ............... of dN
p
 in the basis (X

u
, X

v
) can be expressed simply in terms of the matrices

associated with the first and the second fundamental forms (which are quadratic forms).

17.12 Review Questions

1. Explain the Gauss Map and its Derivative dN.

2. Define the Dupin Indicatrix.

3. Describe the theorema Egregium of Gauss, the Equations of Codazzi-Mainardi, and Bonnet�s
Theorem.

4. Define Lines of Curvature, Geodesic Torsion, Asymptotic Lines.

Answers: Self Assessment

1. Christoffel symbols 2. Gaussian curvature

3. zero 4. undefined.

5. Gauss map 6. Jacobian matrix

17.13 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati,T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H. Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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NotesUnit 18: Joachimsthal's Notations

CONTENTS

Objectives

Introduction

18.1 Geodesic Lines, Local Gauss-Bonnet Theorem

18.2 Covariant Derivative, Parallel Transport, Geodesics Revisited

18.3 Joachimsthal Theorem and Notation

18.4 Tissot�s Theorem

18.5 Summary

18.6 Keywords

18.7 Self Assessment

18.8 Review Questions

18.9 Further Readings

Objectives

After studying this unit, you will be able to:

 Define Geodesic Lines, Local Gauss-Bonnet Theorem

 Discuss Covariant Derivative, Parallel Transport, Geodesics Revisited

 Describe Joachimsthal's Notations

Introduction

In this unit you will go through, Bonnet�s theorem about the existence of a surface patch with
prescribed first and second fundamental form. This will require a discussion of the Theorema
Egregium and of the Codazzi-Mainardi compatibility equations. We will take a Joachimsthal's
Notations

18.1 Geodesic Lines, Local Gauss-Bonnet Theorem

Geodesics play a very important role in surface theory and in dynamics. One of the main reasons
why geodesics are so important is that they generalize to curved surfaces the notion of �shortest
path� between two points in the plane.

More precisely, given a surface X, given any two points p = X(u
0
, v

0
) and q = X(u

1
, v

1
) on X, let us

look at all the regular curves C on X defined on some open interval I such that p = C(t
0
) and

q = C(t
1
) for some t

0
, t

1
  I.

It can be shown that in order for such a curve C to minimize the length l
C
(pq) of the curve

segment from p to q, we must have k
g
(t) = 0 along [t

0
, t

1
], where k

g
(t) is the geodesic curvature at

X(u(t), v(t)).

Richa Nandra, Lovely Professional University
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Notes In other words, the principal normal n


 must be parallel to the normal N to the surface along the
curve segment from p to q.

If C is parameterized by arc length, this means that the acceleration must be normal to the
surface.

It is then natural to define geodesics as those curves such that k
g
 = 0 everywhere on their domain

of definition.

Actually, there is another way of defining geodesics in terms of vector fields and covariant
derivatives, but for simplicity, we stick to the definition in terms of the geodesic curvature.

Definition 1. Given a surface X :   E3, a geodesic line, or geodesic, is a regular curve
C : I  E3 on X, such that k

g
(t) = 0 for all t  I.

Notes By regular curve, we mean that C(t) 0  for all t  I, i.e., C is really a curve, and
not a single point.

Physically, a particle constrained to stay on the surface and not acted on by any force, once set in
motion with some non-null initial velocity (tangent to the surface), will follow a geodesic
(assuming no friction).

Since k
g
 = 0 if the principal normal n


 to C at t is parallel to the normal N to the surface at X(u(t),

v(t)), and since the principal normal n


 is a linear combination of the tangent vector C(t)  and

the acceleration vector C(t),  the normal N to the surface at t belongs to the osculating plane.

Since the tangential part of the curvature at a point is given by

" 1 ' ' " 2 ' '
gg 1 ij i j u 2 ij i j v

i 1,2 i 1,2
j 1,2 j 1,2

k n u u u X u u u X ,
 
 

   
   

     
   
   
   

 


the differential equations for geodesics are

" 1 ' '
1 ij i j

i 1,2
j 1,2

u u u 0,



  

" 2 ' '
2 ij i j

i 1,2
j 1 ,2

u u u 0,



  

or more explicitly (letting u = u
1
 and v = u

2
),

1 2 1 1 2
11 12 22

2 2 2 2 2
11 12 22

u" (u') 2 u'v' (v') 0,

v" (u') 2 u'v' (v') 0.

      

      

In general, it is impossible to find closed-form solutions for these equations.
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NotesNevertheless, from the theory of ordinary differential equations, the following lemma showing
the local existence of geodesics can be shown :

Lemma 1: Given a surface X, for every point p = X(u, v) on X, for every non-null tangent vector

(u,v)v T


(X) at p, there is some  > 0 and a unique curve  : ] �, [  E3 on the surface X, such

that  is a geodesic, (0) = p, and �(0) = v.


To emphasize that the geodesic  depends on the initial direction v,


 we often write (t, v


)

instead of (t).

The geodesics on a sphere are the great circles (the plane sections by planes containing the center
of the sphere).

More generally, in the case of a surface of revolution (a surface generated by a plane curve
rotating around an axis in the plane containing the curve and not meeting the curve), the
differential equations for geodesics can be used to study the geodesics.

Example: The meridians are geodesics (meridians are the plane sections by planes through
the axis of rotation: they are obtained by rotating the original curve generating the surface).

Also, the parallel circles such that at every point p, the tangent to the meridian through p is
parallel to the axis of rotation, is a geodesic.

It should be noted that geodesics can be self-intersecting or closed. A deeper study of geodesics
requires a study of vector fields on surfaces and would lead us too far.

Technically, what is needed is the exponential map, which we now discuss briefly.

The idea behind the exponential map is to parameterize locally the surface X in terms of a map
from the tangent space to the surface, this map being defined in terms of short geodesics.

More precisely, for every point p = X(u, v) on the surface, there is some open disk B

 of center

(0, 0) in 2 (recall that the tangent plane T
p
(X) at p is isomorphic to 2), and an injective map

exp
p
 : B


  X(),

such that for every v B


 with v 0,
 

pexp (v) (1,v), 
 

where (t, v)


 is the unique geodesic segment such that (0,v) p 


 and '(0,v) v. 
 

 Furthermore,

for B

 small enough, exp

p
 is a diffeomorphism. It turns out that pexp (v)


 is the point q obtained

by �laying off� a length equal to v


 along the unique geodesic that passes through p in the

direction v.


Lemma 2: Given a surface X :   E3, for every v 0
 

 in 2, if

3( , v) :] � , [ E    


is a geodesic on the surface X, then for every  > 0, the curve

3( , v) :] � / , / [ E       

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Notes is also a geodesic, and

(t, v) = ( t, v).   
 

From lemma 2, for v 0,
 

 if (1, v)


 is defined, then

v
v , (1,v).

v

 
   
 
 


 


This leads to the definition of the exponential map.

Definition 2: Given a surface X :   E3 and a point p = X(u, v) on X, the exponential map expp
is the map

exp
p
: U  X()

defined such that

p

v
exp (v) v , (1,v),

v

 
    
 
 


  



where (0,v) p 


 and U is the open subset of 2(= T
p
(X)) such that for every v 0,

 
 

v
v ,

v

 
 
 
 



  is

defined. We let pexp (0) = p.


 It is immediately seen that U is star-like. One should realize that in

general, U is a proper subset of .

Example: In the case of a sphere, the exponential map is defined everywhere. However,

given a point p on a sphere, if we remove its antipodal point �p, then pexp (v)


 is undefined for

points on the circle of radius .

Nevertheless, expp is always well-defined in a small open disk.

Lemma 3: Given a surface X :   E3, for every point p = X(u, v) on X, there is some  > 0, some
open disk B


 of center (0, 0), and some open subset V of X() with p  V, such that the exponential

map exp
p
 : B  V is well defined and is a diffeomorphism.

A neighborhood of p on X of the form exp
p
(B) is called a normal neighborhood of p.

The exponential map can be used to define special local coordinate systems on normal
neighborhoods, by picking special coordinates systems on the tangent plane.

In particular, we can use polar coordinates (, ) on 2. In this case, 0 <  < 2. Thus, the closed
half-line corresponding to  = 0 is omitted, and so is its image under exp

p
. It is easily seen that in

such a coordinate system, E = 1 and F = 0, and the ds2 is of the form

ds2 = dr2 + G d2.

The image under exp
p
 of a line through the origin in 2 is called a geodesic line, and the image

of a circle centered in the origin is called a geodesic circle. Since F = 0, these lines are orthogonal.
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NotesIt can also be shown that the Gaussian curvature is expressed as follows:

2

2

1 ( G )
K = � .

G





Polar coordinates can be used to prove the following lemma showing that geodesics locally
minimize arc length:

However, globally, geodesics generally do not minimize arc length.

For instance, on a sphere, given any two non-antipodal points p, q, since there is a unique great
circle passing through p and q, there are two geodesic arcs joining p and q, but only one of them
has minimal length.

Lemma 4: Given a surface X :   E3, for every point p = X(u, v) on X, there is some  > 0 and
some open disk B


 of center (0, 0) such that for every q  exp

p
(B


), for every geodesic  : ] � ,

[  E3 in exp
p
(B


) such that (0) = p and (t

1
) = q, for every regular curve  : [0, t

1
]  E3 on X such

that (0) = p and (t
1
) = q, then

l

(pq)  l


(pq),

where l

(pq) denotes the length of the curve segment  from p to q (and similarly for ).

Furthermore, l

(pq) = l


(pq) if the trace of  is equal to the trace of  between p and q.

As we already noted, lemma 4 is false globally, since a geodesic, if extended too much, may not
be the shortest path between two points (example of the sphere).

However, the following lemma shows that a shortest path must be a geodesic segment:

Lemma 5: Given a surface X :   E3, let  : I  E3 be a regular curve on X parameterized by arc
length. For any two points p = (t

0
) and q = (t

1
) on , assume that the length l


(pq) of the curve

segment from p to q is minimal among all regular curves on X passing through p and q. Then,
 is a geodesic.

At this point, in order to go further into the theory of surfaces, in particular closed surfaces, it is
necessary to introduce differentiable manifolds and more topological tools.

Nevertheless, we can�t resist to state one of the �gems� of the differential geometry of surfaces,
the local Gauss-Bonnet theorem.

The local Gauss-Bonnet theorem deals with regions on a surface homeomorphic to a closed disk,
whose boundary is a closed piecewise regular curve  without self-intersection.

Such a curve has a finite number of points where the tangent has a discontinuity.

If there are n such discontinuities p
1
, . . . , p

n
, let 

i
 be the exterior angle between the two tangents

at p
i
.

More precisely, if (t
i
) = p

i
, and the two tangents at p

i
 are defined by the vectors

i i
it t , t t

lim '(t) '_(t ) 0,
 

   


and

i i
i

t t , t t
lim '(t) ' (t ) 0,
 

   

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i
 is defined as follows:

Let 
i
 be the angle between �

�
(t

i
�) and � + (t

i
) such that 0 <|

i
|  , its sign being determined as

follows:

If p
i
 is not a cusp, which means that |

i
|  , we give i the sign of the determinant

(�
�
(t

i
), �

+
(t

i
), N

pi
).

If p
i
 is a cusp, which means that |

i
| = , it is easy to see that there is some  > 0 such that the

determinant

(�(t
i
 � ), �(t

i
 + ), N

pi
)

does not change sign for  ] � ,  [ , and we give 
i
 the sign of this determinant.

Let us call a region defined as above a simple region.

In order to state a simpler version of the theorem, let us also assume that the curve segments
between consecutive points p

i
 are geodesic lines.

We will call such a curve a geodesic polygon. Then, the local Gauss-Bonnet theorem can be
stated as follows:

Theorem 6: Given a surface X :   E3, assuming that X is injective, F = 0, and that is an open
disk, for every simple region R of X() bounded by a geodesic polygon with n vertices p

1
, . . . ,

p
n
, letting 

1
, . . . , 

n
 be the exterior angles of the geodesic polygon, we have

n

i
i 1R

K dA 2 .


   

Some clarification regarding the meaning of the integral 
R

K dA   is in order.

Firstly, it can be shown that the element of area dA on a surface X is given by

dA = u vX × X dudv = 2EG � F  dudv.

Secondly, if we recall from lemma that

1
u u

v v

N XML E F ,
N XM N GF



      
       

      

it is easily verified that

N
u
 × N

v
 = 

2

2

LN �M

EG � F
X

u
 × X

v
 = K(X

u
 × X

v
).

Thus,

R

KdA   = u v
R

K X × X dudv 

= u v
R

N × N dudv, 

the latter integral representing the area of the spherical image of R under the Gauss map.

This is the interpretation of the integral 
R

KdA   that Gauss himself gave.
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NotesIf the geodesic polygon is a triangle, and if A,B,C are the interior angles, so that A =  � 
1
,

B =  � 2, C =  � 3, the Gauss-Bonnet theorem reduces to what is known as the Gauss formula:

R

KdA A B C .     

The above formula shows that if K > 0 on R, then 
R

KdA   is the excess of the sum of the angles

of the geodesic triangle over .

If K < 0 on R, then 
R

KdA   is the efficiency of the sum of the angles of the geodesic triangle

over .

And finally, if K = 0, then A + B + C = , which we know from the plane!

For the global version of the Gauss-Bonnet theorem, we need the topological notion of the
Euler-Poincare characteristic, but this is beyond the scope of this course.

18.2 Covariant Derivative, Parallel Transport, Geodesics Revisited

Another way to approach geodesics is in terms of covariant derivatives.

The notion of covariant derivative is a key concept of Riemannian geometry, and thus, it is
worth discussing anyway.

Let X :   E3 be a surface. Given any open subset, U, of X, a vector field on U is a function, w, that
assigns to every point, p  U, some tangent vector w(p)  T

p
X to X at p.

A vector field, w, on U is differentiable at p if, when expressed as w = aX
u 

+ bX
v
 in the basis

(X
u
, X

v
) (of T

p
X), the functions a and b are differentiable at p.

A vector field, w, is differentiable on U when it is differentiable at every point p  U.

Definition 3: Let, w, be a differentiable vector field on some open subset, U, of a surface X. For
every y  T

p
X, consider a curve,  : ] � , [  U, on X, with (0) = p and a�(0) = y, and let

w(t) = (w   )(t) be the restriction of the vector field w to the curve . The normal projection of
dw/dt(0) onto the plane T

p
X, denoted

Dw
(0),

dt
     or     D


�0w(p),     or     D

y
w(p),

is called the covariant derivative of w at p relative to y.

The definition of Dw/dt(0) seems to depend on the curve , but in fact, it only depends on y and
the first fundamental form of X.

Indeed, if (t) = X(u(t), v(t)), from

w(t) = a(u(t), v(t))X
u
 + b(u(t), v(t))X

v
,

we get

uu uv vu vv

dw
= a(X u + X v) + b(X u + X v) + aXu + bXv.

dt
   

However, we obtained earlier the following formulae (due to Gauss) for X
uu

, X
uv

, X
vu

, and X
vv

:

X
uu

 = 1 2
11 u 11 vX + G X + LN,
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Notes Xuv = 1 2
12 u 12 vX + G X + MN,

Xvu = 1 2
21 u 21 vX + G X + MN,

Xvv = 1 2
22 u 22 vX + G X + NN.

Now, Dw/dt is the tangential component of dw/dt, thus, by dropping the normal components,
we get

1 1 1 1 2 2 2 2
11 12 21 22 u 11 12 21 22 v

Dw
(a au av bu bv)X (b au av bu G bv)X

dt
                       

Thus, the covariant derivative only depends on y = (u , v),   and the Christoffel symbols, but we

know that those only depends on the first fundamental form of X.

Definition 3: Let  : I  X be a regular curve on a surface X. A vector field along  is a map, w, that
assigns to every t  I a vector w(t)  T

(t)
X in the tangent plane to X at (t). Such a vector field is

differentiable if the components a, b of w = aX
u
 + bX

v
 over the basis (X

u
, X

v
) are differentiable. The

expression Dw/dt(t) defined in the above equation is called the covariant derivative of w at t.

Definition 4: extends immediately to piecewise regular curves on a surface.

Definition 5: Let  : I  X be a regular curve on a surface X. A vector field along  is parallel if
Dw/dt = 0 for all t  I.

Thus, a vector field along a curve on a surface is parallel if its derivative is normal to the surface.

For example, if C is a great circle on the sphere S2 parametrized by arc length, the vector field of
tangent vectors C�(s) along C is a parallel vector field.

We get the following alternate definition of a geodesic.

Definition 6: Let  : I  X be a nonconstant regular curve on a surface X. Then,  is a geodesic if

the field of its tangent vectors, (t),  is parallel along , that is

D
(t) 0

dt





for all t  I.

If we let (t) = X(u(t), v(t)), from the equation

1 1 1 1 2 2 2 2
11 12 21 22 u 11 12 21 22 v

Dw
(a au av bu bv)X (b au av bu bv)X

dt
                        

with a u   and b v,   we get the equations

1 2 1 1 1 2
11 12 21 22u (u) uv uv (v) 0             

2 2 2 2 2 2
11 12 21 22v (u) uv uv (v) 0,             

which are indeed the equations of geodesics found earlier, since 1
12 = 1

21 and 2
12 = 2

21

(except that  is not necessarily parametrized by arc length).

Lemma 7: Let  : I  X be a regular curve on a surface X, and let v and w be two parallel vector

fields along . Then, the inner product v(t),w(t)  is constant along  (where �, �  is the inner
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v  and w  are constant and the angle between v(t) and w(t) is also constant.

The vector field v(t) is parallel if dv/dt is normal to the tangent plane to the surface X at (t),
and so

v'(t),w(t)  = 0

for all t  I. Similarly, since w(t) is parallel, we have

v(t),w'(t)  = 0

for all t  I. Then,

v(t),w(t) ' = v'(t),w(t) v(t),w'(t) 0 

for all t  I. which means that v(t),w(t)  is constant along .

As a consequence of corollary 14.12.5, if  : I  X is a nonconstant geodesic on X, then   = c for

some constant c > 0.

Thus, we may reparametrize  w.r.t. the arc length s = ct, and we note that the parameter t of a
geodesic is proportional to the arc length of .

Lemma 8: Let  : I  X be a regular curve on a surface X, and for any t
0
  I, let w

0
  T

(t0)
X. Then,

there is a unique parallel vector field, w(t), along , so that w(t
0
) = w

0
.

Lemma is an immediate consequence of standard results on ODE�s. This lemma yields the
notion of parallel transport.

Definition 7: Let  : I  X be a regular curve on a surface X, and for any t
0
  I, let w

0
  T

(t0)
X. Let

w be the parallel vector field along , so that w(t
0
) = w

0
, given by Lemma 8. Then, for any t  I,

the vector, w(t), is called the parallel transport of w
0
 along  at t.

It is easily checked that the parallel transport does not depend on the parametrization of . If X
is an open subset of the plane, then the parallel transport of w

0
 at t is indeed a vector w(t) parallel

to w
0
 (in fact, equal to w

0
).

However, on a curved surface, the parallel transport may be somewhat counter-intuitive.

If two surfaces X and Y are tangent along a curve,  : I  X, and if w
0
  T

(t0)
X = T

a(t0)
Y is a tangent

vector to both X and Y at t
0
, then the parallel transport of w

0
 along  is the same, whether it is

relative to X or relative to Y .

This is because Dw/dt is the same for both surfaces, and by uniqueness of the parallel transport,
the assertion follows.

This property can be used to figure out the parallel transport of a vector w
0
 when Y is locally

isometric to the plane.

In order to generalize the notion of covariant derivative, geodesic, and curvature, to manifolds
more general than surfaces, the notion of connection is needed.

If M is a manifold, we can consider the space, X(M), of smooth vector fields, X, on M. They are
smooth maps that assign to every point p  M some vector X(p) in the tangent space T

p
M to M

at p.

We can also consider the set C(M) of smooth functions f : M   on M.
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Notes Then, an affine connection, D, on M is a differentiable map,

D : X(M) × X(M)  X(M),

denoted DXY (or rXY ), satisfying the following properties:

(1) D
fX+gY

 Z = fD
X
Z + gD

Y
 Z;

(2) D
X
(Y + Z) = D

X
Y + D

X
Z;

(3) D
X
(fY ) = fD

X
Y + X(f)Y ,

for all ,   , all X, Y, Z  X(M), and all f, g  C(M), where X(f) denotes the directional
derivative of f in the direction X.

Thus, an affine connection is C(M)-linear in X, -linear in Y, and satisfies a �Leibnitz� type of
law in Y.

For any chart  : U  m, denoting the coordinate functions by x
1
, . . . , x

m
, if X is given locally by

X(p) = 
m

i
i 1 i

a (p) ,
x






then

X(f)(p) = 
1m

i
i 1 i

(f )
a (p) .

x





 






It can be checked that X(f) does not depend on the choice of chart.

The intuition behind a connection is that D
X
Y is the directional derivative of Y in the direction X.

The notion of covariant derivative can be introduced via the following lemma:

Lemma 10: Let M be a smooth manifold and assume that D is an affine connection on M. Then,
there is a unique map, D, associating with every vector field V along a curve a : I  M on M
another vector field, DV/dt, along c, so that:

(1) D DV DW
( V W) .

dt dt dt
      

(2)
D df DV

(fV) V f .
dt dt dt

 

(3) If V is induced by a vector field Y  X(M), in the sense that V (t) = Y ((t)), then

'( t )

DV
D Y.

dt 

Then, in local coordinates, DV/dt can be expressed in terms of the Christoffel symbols, pretty
much as in the case of surfaces.

Parallel vector fields, parallel transport, geodesics, are defined as before.

Affine connections are uniquely induced by Riemmanian metrics, a fundamental result of Levi-
Civita.

In fact, such connections are compatible with the metric, which means that for any smooth curve

 on M and any two parallel vector fields X, Y along �, the inner product X,Y  i is constant.
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D
X
Y � D

Y
X = [X, Y],

where [X, Y ] is the Lie bracket of vector fields.

18.3 Joachimsthal Theorem and Notation

If the curve of intersection of two surfaces is a line of curvature on both, the surfaces cut at a
constant angle. Conversely, if two surfaces cut at a constant angle, and the curve of intersection
is a line of curvature on one of them, it is a line of curvature on the other also

Ferdinand Joachimsthal (1818-1861) was a German mathematician and educator famous for the
high quality of his lectures and the books he wrote. The notations named after him and discussed
below serve one of the examples where the language of mathematics is especially auspicious for
derivation and memorization of properties of mathematical objects. Joachimsthal�s notations
have had extended influence beyond the study of second order equations and conic sections,
compare for example the work of F. Morley.

A general second degree equation

Ax2 + 2Bxy + Cy2 + 2Fx + 2Gy + H = 0 ...(1)

represents a plane conic, or a conic section, i.e., the intersection of a circular two-sided cone with
a plane. The equations for ellipses, parabolas, and hyperbolas all can be written in this form.
These curves are said to be non-degenerate conics. Non-degenerate conics are obtained when
the plane cutting a cone does not pass through its vertex. If the plane does go through the cone�s
vertex, the intersection may be either two crossing straight lines, a single straight line and even
a point. These point sets are said to be degenerate conics. In the following, we shall be only
concerned with a non-degenerate case.

The left-hand side in (1) will be conveniently denoted as s:

s = Ax2 + 2Bxy + Cy2 + 2Fx + 2Gy + H ...(2)

so that the second degree equation (1) acquires a very short form:

s = 0. ...(3)

A point P(x
1
, y

1
) may or may not lie on the conic defined by (1) or (3). If it does, we get an identity

by substituting x = x
1
 and y = y

1
 into (1):

Ax
1

2 + 2Bx
1
y

1
 + Cy

1
2 + 2Fx

1
 + 2Gy

1
 + H = 0, ...(4)

which has a convenient Joachimsthal�s equivalent

s
11

 = 0. ...(5)

For another point P(x
2
, y

2
) we similarly define s

22
 and, in general, for points P(x

i
, y

i
) or P(x

j
, y

j
) we

define s
ii
 and s

jj
, where, for example,

s
ii
 = Ax

i
2 + 2Bx

i
y

i
 + Cy

i
2 + 2Fx

i
 + 2Gy

i
 + H. ...(6)

Thus, s
ii
 = 0 means that P(x

i
, y

i
) lies on the conic (3), s

ii
  0 that it does not.

There is also a mixed notation. For two points P(x
i
, y

i
) and P(x

j
, y

j
), we define

s
ij
 = Ax

i
x

j
 + B(x

i
y

j
 + x

j
y

i
) + Cy

i
y

j
 + F(x

i
 + x

j
) + G(y

i
 + y

j
) + H. ...(7)
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Notes Clearly for P(x
i
, y

i
) = P(x

j
, y

j
), (7) reduces to (6). An important observation is that s

ij
 is symmetrical

in its indices:

s
ij
 = s

ji
. ...(8)

The last of Joachimsthal�s conventions brings the first whiff of an indication as to how useful the
notations may be. In s

ij
 both P(x

i
, y

i
) and P(x

j
, y

j
) are quite generic. The indices are only needed to

distinguish between two points. But if we omit the indices from one of them, the points will be
as distinct as before. One additional convention accommodates this case: for points P(x

i
, y

i
) and

P(x, y) we write (7) with one index only,

s
i
 = Ax

i
x + B(x

i
y + xy

i
) + Cy

i
y + F(x

i
 + x) + G(y

i
 + y) + H. ...(9)

The curious thing about (9) is that, although s
ij
 was probably perceived as a number, s

i
 appears

to dependent on �variable� x and y and thus is mostly perceived as a function of these variables.
As a function of x and y, (9) is linear, i.e. of first degree, so that s

i
 = 0 is an equation of a straight

line. What straight line is it? How does it relate to the conic (1)? The beauty of Joachimsthal�s
notations is that the relation between s = 0 and s

i
 = 0 is quite transparent.

Theorem 11

Let point P(x
i
, y

i
) lie on the conic s = 0. In other words, assume that s

ii
 = 0. Then s

i
 = 0 is an equation

of the line tangent to s = 0 at P(x
i
, y

i
).

Proof

Any point P(x, y) on the line through two distinct points P(x
1
, y

1
) and P(x

2
, y

2
) is a linear

combination of the two points:

P(x, y) = t . P(x
1
, x

1
) + (1 - t) . P(x

2
, x

2
), ...(10)

which is just a parametric equation of the straight line. Substitute (10) into (2). The exercise may
be a little tedious but is quite straightforward. The result is a quadratic expression in t:

s(t) = t2 . (s
11

 + s
22

 - 2s
12

) + 2t . (s
12

 - s
22

) + s
22

. ...(11)

Line (10) and conic (1) will have 0, 1, or 2 common points depending on the number of roots of
the quadratic equation s(t) = 0, which is determined by the value of the discriminant

D= (s
12

 - s
22

)2 - (s
11

 + s
22

 - 2s
12

) . s
22

 = s
12

2 - s
11

 . s
22

. ...(12)

The line is tangent to the conic if the quadratic equation has two equal roots, i.e. when D = 0, or

s
12

2 = s
11

 . s
22

. ...(13)

This is an interesting identity valid for any line tangent to the conic, with P(x
1
, y

1
) and P(x

2
, y

2
)

chosen arbitrarily on the line. We can use this arbitrariness to our advantage. Indeed, what could
be more natural in these circumstances than picking up the point of tangency. Let�s P(x

1
, y

1
) be

such a point. This in particular means that the point lies on the conic so that, according to (5),
s

11
 = 0. But then (12) implies s

12
 = 0. Let�s say this again: If P(x

1
, y

1
) is the point of tangency of a

conic and a line through another arbitrary point P(x
2
, y

2
) then

s
12

 = 0. ...(14)

Now, since this is true for any point P(x
2
, y

2
) on the tangent at P(x

1
, y

1
) we may as well drop the

index. The conclusion just drops into our lap: the tangent to a conic s = 0 at point P(x
1
, y

1
) on the

conic is given by

s
1
 = 0, ...(15)

which proves the theorem.
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If two points P(x
1
, y

1
) and P(x

2
, y

2
) are such that the line joining them is tangent to a conic s = 0,

then as in (13), s
12

2 = s
11

 . s
22

. Now, fixing P(x
1
, y

1
) outside the conic and making P(x

2
, y

2
) an

arbitrary point on the tangent from P(x
1
, y

1
), we can remove the second index:

s
1

2 = s
11

 . s. ...(16)

The latter is a quadratic equation which may be factorized into the product of two linear equations
each representing a tangent to the conic through P(x

1
, y

1
).

Example:

Let s = x2 + 4y2 - 25, so that s = 0 is an ellipse x2 + 4y2 = 25. What are the tangents from P(0, 0) to the
ellipse? Let�s see that there are none. First,

 s
11

 = -25 and s
1
 = -25.

So that (16) becomes

 s = -25, orx2 + 4y2 = 0.

Obviously the equation has no real roots (besides x = y = 0), nor linear factors. We conclude that
there are no tangents from (0, 0) to the ellipse. Naturally. But let�s now take a different point, say
P(5, 5/2). In this case,

 s
11

 = 25 and s
1
 = 5x + 10y - 25.

(16) then becomes

 (5x + 10y - 25)2 = 25·(x2 + 4y2 - 25).

First, let�s simplify this to

 (x + 2y - 5)2 = x2 + 4y2 - 25.

Second, let�s multiply out and simplify by collecting the like terms:

 2xy - 5x - 10y + 25 = 0,

which is factorized into

 (x - 5) . (2y - 5) = 0.

Conclusion: here are two tangents from (5, 5/2) to the ellipse: x = 5 and y = 5/2.

Poles and Polars With Respect To a Conic

Let P(x
1
, y

1
) be a point outside a conic s = 0 and P(x

2
, y

2
) and P(x

3
, y

3
) be the points where the

tangents from P(x
1
, y

1
) meet the conic.

Then the tangents have the equations (15)

s
2
 = 0 and s

3
 = 0 ...(17)

and also meet at P(x
1
, y

1
):

s
21

 = 0 and s
31

 = 0. ...(18)

Because of the symmetry of the notations, we have

s
12

 = 0 and s
13

 = 0, ...(19)
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Notes which says that points P(x
2
, y

2
) and P(x

3
, y

3
) lie on the straight line

s
1
 = 0. ...(20)

The latter is uniquely determined by P(x
1
, y

1
), which, too, can be retrieved from (20). We define

s
1
 = 0 as the polar of P(x

1
, y

1
) with respect to the conic s = 0. P(x

1
, y

1
) is said to be the pole of its

polar. Obviously, for a point on the conic, the polar is exactly the tangent at this point.

Thus we see that the pole/polar definitions generalize naturally from the circle to other non-
degenerate conics. We now prove La Hire�s

Theorem 12

If point P(x
1
, y

1
) lies on the polar of P(x

2
, y

2
) with respect to a conic s = 0, then P(x

2
, y

2
) lies on the

polar of P(x
1
, y

1
) with respect to the same conic.

Proof

Indeed, P(x
1
, y

1
) lies on the polar s

2
 = 0 if and only if s

21
 = 0. Because of the symmetry of the

notations, this is the same as s
12

 = 0, which says that P(x
2
, y

2
) lies on s

1
 = 0.

18.4 Tissot�s Theorem

At any point on a reference globe there are an infinite number of paired orthogonal directions.
When transformed to map they may or may not remain orthogonal

Tissot�s theorem states that regardless of the type of transformation, at each point on a sphere
there is at least one pair of orthogonal directions that will remain orthogonal when transformed
Referred to as principle directions; a and b and it is not important what directions actually are

Tissot�s theory of distortions states that

A circle on the datum surface with a centre P and a radius ds may be assumed to be a plane figure
within its infinitely small area. This area will remain infinitely small and plane on the projection
surface. Generally the circle will be portrayed as a ellipse.

This ellipse is called Tissot�s Indicatrix as it indicates the characteristics of a projection in the direct
environment of a point.

The axes of Tissot�s Indicatrix correspond to the two principal directions and the maximum and
minimum particular scales, a and b, at any point, occur in these directions.

Proof That The Projected Circle Is An Ellipse

Notes In figure, the X axis is directed east-west; Y axis is directed north-south.

Remember that capital letters denote elements on the generating globe, and small letters elements
on the projection.

Figure 18.1: Plane and Sphere
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dY dS . Sin G . d

on the generating globe
dX dS . cos E . d

   


   

dy ds . Sin ' g . d
on the projection

dx ds . cos ' e . d

   


    

1
d dS .cos

E
  

1
d dS .sin

G
  

1
dy g . dS .sin

G
  

1
and : dx e . dS .cos

E
 

22
2 2 2 2dydx

dS . cos ; dS . sin
E/e G/g

   

22
2 2 2dydx

(sin q cos )dS
E/e G/g

   

22
2dydx

dS
E/e G/g

 

If dS = 1 then the elementary circle on the globe has a radius of 1 (remember that capital letters
denote elements on the generating globe, and small letters elements on the projection.)

22 dydx
1

E/e G/g
 

This is an equation of an ellipse.

Analysis of Deformation Characteristics using Tissot�s Indicatrix

If we call the semi-major and semi-minor axes of the ellipse a, and b, then these are the directions
of maximum and minimum distortion i.e. the principal directions. a and b are also thus called
the principal scale factor

22 yx
1

b a
 

For convenience we will consider the plane x and y axes to be in the principal directions.

Length Distortion


x
 = ds cos � on the plane


X
 = dS cos  = 1 on globe

(There is no distortion on the globe)
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Remember from previous section: m = 

ds
,

dS
 so:

ds cos '
a

dS cos
  

  
 

y

ds sin '
b

dS sin

  
  

 

or

a cos  =  cos �

b sin  =  sin �

a2 cos2  = 2 cos2 �

b2 sin2  = 2 sin2 �

a2 cos2  + b2 sin2  = 2(cos2 � + sin2 �)

2 = a2 cos2  + b2 sin2 

This formula expresses the length distortion in any direction as a function of the original direction
, and the principal scale factors, a and b. The angle  indicates the direction of the parallel with
respect to the x axis. The direction of the meridian with respect to the x axis is thus

 + 90º =  + /2 = 

The scale distortions along the parallels and meridians (note: not necessarily equal to the
maximum and minimum distortions along a and b) are thus:

2
  = a2 sin2  + b2 cos2 

2
  = a2 sin2  + b2 cos2  = a2 cos2  + b2 sin2 

2 2m    = a2 + b2

This is known as the First Theorem of Appolonius:

The sum of the squares of the two conjugate diameters of an ellipse is constant.

Angular Distortion 2

Without derivation: 
a b

2 2 arc sin ,
a b


 


 where 2 is the maximum angular distortion. The

maximum angular deformation occurs in each of the four quadrants.

Figure 18.2: Angular Distortion
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NotesIf 2 = 0 then no angular distortion occurs and the projection is called conformal. The property
of a conformal projection is that a = b and Tissot�s Indicatrix is a circle with equal scale distortion
in all directions. This is consistent with the previously derived conditions for conformality,

namely that . and ' .
2 


      The area is not preserved and the projected circle increases in

size as one moves away from the line of zero distortion.

Areal Distortion (s): Second Theorem of Appolonius.

This is found by dividing the projected area by the area of the circle on the globe (radius =1)

2

ab
ab

R


  


When looking at equal area projections earlier. It was found that:

 = 
 


 sin �, thus 




 sin � = ab.

This is called the Second Theorem of Appolonius. When ab = 1 then the projection is equal-area
or equivalent.

Notes Conformality and equivalence are exclusive: ab = 1 and a = b cannot occur at
the same time.

18.5 Summary

 Geodesics play a very important role in surface theory and in dynamics.

One of the main reasons why geodesics are so important is that they generalize to curved
surfaces the notion of �shortest path� between two points in the plane.

More precisely, given a surface X, given any two points p = X(u
0
, v

0
) and q = X(u

1
, v

1
) on X,

let us look at all the regular curves C on X defined on some open interval I such that
p = C(t

0
) and q = C(t

1
) for some t

0
, t

1
  I.

It can be shown that in order for such a curve C to minimize the length l
C
(pq) of the curve

segment from p to q, we must have k
g
(t) = 0 along [t

0
, t

1
], where k

g
(t) is the geodesic

curvature at X(u(t), v(t)).

 Given a surface X :   E3, let  : I  E3 be a regular curve on X parameterized by arc
length. For any two points p = (t

0
) and q = (t

1
) on , assume that the length l


(pq) of the

curve segment from p to q is minimal among all regular curves on X passing through p
and q. Then,  is a geodesic.

At this point, in order to go further into the theory of surfaces, in particular closed surfaces,
it is necessary to introduce differentiable manifolds and more topological tools.

Nevertheless, we can�t resist to state one of the �gems� of the differential geometry of
surfaces, the local Gauss-Bonnet theorem.

The local Gauss-Bonnet theorem deals with regions on a surface homeomorphic to a
closed disk, whose boundary is a closed piecewise regular curve  without self-intersection.

Such a curve has a finite number of points where the tangent has a discontinuity.
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Notes 18.6 Keywords

Exponential map: The exponential map can be used to define special local coordinate systems on
normal neighborhoods, by picking special coordinates systems on the tangent plane.

Polar coordinates can be used to prove the following lemma showing that geodesics locally
minimize arc length.

Gauss-Bonnet theorem: The local Gauss-Bonnet theorem deals with regions on a surface
homeomorphic to a closed disk, whose boundary is a closed piecewise regular curve  without
self-intersection.

18.7 Self Assessment

1. The principal normal n


 must be ................ to the normal N to the surface along the curve
segment from p to q.

2. Given a surface ................ a geodesic line, or geodesic, is a regular curve C : I  E3 on X,
such that k

g
(t) = 0 for all t  I.

3. Given a surface X, for every point p = X(u, v) on X, for every non-null tangent vector

(u,v)v T


(X) at p, there is some ................ and a unique curve  : ] �, [  E3 on the surface

X, such that  is a geodesic, (0) = p, and �(0) = v.


4. In this case, ................  Thus, the closed half-line corresponding to  = 0 is omitted, and so
is its image under exp

p
.

5. The local ................ deals with regions on a surface homeomorphic to a closed disk, whose
boundary is a closed piecewise regular curve  without self-intersection.

6. Let X :   E3 be a surface. Given any open subset, U, of X, a vector field on U is a function,
w, that assigns to every point, p  U, some tangent vector ................

18.8 Review Questions

1. Define Geodesic Lines, Local Gauss-Bonnet Theorem.

2. Discuss Covariant Derivative, Parallel Transport, Geodesics Revisited.

3. Describe Joachimsthal's Notations.

Answers: Self Assessment

1. parallel 2. X :   E3,

3.   > 0 4. 0 <  < 2.

5. Gauss-Bonnet theorem 6. w(p)  T
p
X to X at p.
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Notes18.9 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati, T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H. Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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