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Objectives

After studying this unit, you will be able to:

 Explain the equicontinuity

 Describe the properties of equicontinuous

 Discuss the equicontinuity and uniform convergence

 Define stochastic equicontinuity

Introduction

In last unit, you have studied about the uniform converges and differentiation. This unit provides
you the explanation of Equicontinuity. In mathematical analysis, a family of functions is
equicontinuous if all the functions are continuous and they have equal variation over a given
neighbourhood, in a precise sense described herein. In particular, the concept applies to countable
families, and thus sequences of functions.

1.1 Equicontinuity

The equicontinuity appears in the formulation of Ascoli’s theorem, which states that a subset of
C(X), the space of continuous functions on a compact Hausdorff space X, is compact if and only
if it is closed, pointwise bounded and equicontinuous. A sequence in C(X) is uniformly convergent
if and only if it is equicontinuous and converges pointwise to a function (not necessarily continuous
a-prior). In particular, the limit of an equicontinuous pointwise convergent sequence of continuous
functions fn on either metric space or locally compact space is continuous. If, in addition, fn are
homomorphic, then the limit is also homomorphic.

The uniform boundedness principle states that a pointwise bounded family of continuous linear
operators between Banach spaces is equicontinuous.

Sachin Kaushal, Lovely Professional University
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Notes 1.2 Families of Equicontinuous

Let X and Y be two metric spaces, and F a family of functions from X to Y.

The family F is equicontinuous at a point x0  X if for every  > 0, there exists a  > 0 such that
d(f(x0), f(x)) <  for all f  F and all x such that d(x0, x) < . The family is equicontinuous if it is
equicontinuous at each point of X.

The family F is uniformly equicontinuous if for every  > 0, there exists a  > 0 such that d(f(x1),
f(x2)) <  for all f  F and all x1, x2  X such that d(x1, x2) < .

For comparison, the statement all functions f in F are continuous’ means that for every  > 0,
every ƒ  F, and every x0  X, there exists a  > 0 such that d(f(x0), f(x)) <  for all x  X such that
d(x0, x) < . So, for continuity,  may depend on , x0 and f; for equicontinuity,  must be
independent of f; and for uniform equicontinuity,  must be independent of both f and x0.

More generally, when X is a topological space, a set F of functions from X to Y is said to be
equicontinuous at x if for every  > 0, x has a neighbourhood Ux such that

dY(f(y), f(x)) < 

for all y  Ux and f  F. This definition usually appears in the context of topological vector
spaces.

When X is compact, a set is uniformly equicontinuous if and only if it is equicontinuous at every
point, for essentially the same reason as that uniform continuity and continuity coincide on
compact spaces.

Some basic properties follow immediately from the definition. Every finite set of continuous
functions is equicontinuous. The closure of an equicontinuous set is again equicontinuous.
Every member of a uniformly equicontinuous set of functions is uniformly continuous, and
every finite set of uniformly continuous functions is uniformly equicontinuous.

Example:

 A set of functions with the same Lipschitz constant is (uniformly) equicontinuous. In
particular, this is the case if the set consists of functions with derivatives bounded by the
same constant.

 Uniform boundedness principle gives a sufficient condition for a set of continuous linear
operators to be equicontinuous.

 A family of iterates of an analytic function is equicontinuous on the Fatou set.

Properties of Equicontinuous

 If a subset C(X, Y) is totally bounded under the uniform metric, and then  is
equicontinuous.

 Suppose X is compact. If a sequence of functions {fn} in C(X k) is equibounded and
equicontinuous, then the sequence {fn} has a uniformly convergent subsequence. (Arzelà’s
theorem)

 Let {fn} be a sequence of functions in C(X, Y). If {fn} is equicontinuous and converges
pointwise to a function f : X  Y, then f is continuous and {fn} converges to f in the compact-
open topology.
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Equicontinuous

Notes1.3 Equicontinuity and Uniform Convergence

Let X be a compact Hausdorff space, and equip C(X) with the uniform norm, thus making C(X)
a Banach space, hence a metric space. Then Ascoli’s theorem states that a subset of C(X) is
compact if and only if it is closed, pointwise bounded and equicontinuous. This is analogous to
the Heine-Borel theorem, which states that subsets of n are compact if and only if they are
closed and bounded. Every bounded equicontinuous sequence in C(X) contains a subsequence
that converges uniformly to a continuous function on X.

In view of Ascoli’s theorem, a sequence in C(X) converges uniformly if and only if it is
equicontinuous and converges pointwise. The hypothesis of the statement can be weakened a
bit: a sequence in C(X) converges uniformly if it is equicontinuous and converges pointwise on
a dense subset to some function on X (not assumed continuous). This weaker version is typically
used to prove Ascoli’s theorem for separable compact spaces. Another consequence is that the
limit of an equicontinuous pointwise convergent sequence of continuous functions on a metric
space, or on a locally compact space, is continuous.

In the above, the hypothesis of compactness of X cannot be relaxed. To see that, consider a
compactly supported continuous function g on  with g(0) = 1, and consider the equicontinuous
sequence of functions {fn} on  defined by fn(x) = g(x – n). Then, fn converges pointwise to 0 but
does not converge uniformly to 0.

This criterion for uniform convergence is often useful in real and complex analysis. Suppose we
are given a sequence of continuous functions that converges pointwise on some open subset G
of n. As noted above, it actually converges uniformly on a compact subset of G if it is
equicontinuous on the compact set.

In practice, showing the equicontinuity is often not so difficult. For example, if the sequence
consists of differentiable functions or functions with some regularity (e.g., the functions are
solutions of a differential equation), then the mean value theorem or some other kinds of
estimates can be used to show the sequence is equicontinuous.

It then follows that the limit of the sequence is continuous on every compact subset of G; thus,
continuous on G. A similar argument can be made when the functions are homomorphic. One
can use, for instance, Cauchy’s estimate to show the equicontinuity (on a compact subset) and
conclude that the limit is homomorphism. Note that the equicontinuity is essential here. For
example, fn(x) = arctan nx converges to a multiple of the discontinuous sign function.

1.4 Equicontinuity Families of Linear Operators

Let E, F be Banach spaces, and G  be a family of continuous linear operators from E into F. Then
G  is equicontinuous if and only if

Sup{||T|| : T  G } < 

that is, G is uniformly bounded in operator norm. Also, by linearity, G is uniformly
equicontinuous if and only if it is equicontinuous at 0.

The uniform boundedness principle (also known as the Banach-Steinhaus theorem) states that
G  is equicontinuous if it is pointwise bounded; i.e., sup{||T(x)|| : T  G } <  for each x  E. The
result can be generalized to a case when F is locally convex and E is a barreled space.

Alaoglu’s theorem states that if E is a topological vector space, then every equicontinuous subset
of E* is weak-* relatively compact.

3



LOVELY PROFESSIONAL UNIVERSITY

Notes 1.5 Equicontinuity in Topological Spaces

The most general scenario in which equicontinuity can be defined is for topological spaces
whereas uniform equicontinuity requires the filter of neighbourhoods of one point to be somehow
comparable with the filter of neighbourhood of another point. The latter is most generally done
via a uniform structure, giving a uniform space. Appropriate definitions in these cases are as
follows:

A set A of functions continuous between two topological spaces X and Y is topologically
equicontinuous at the points x  X and y  Y if for any open set O about y, there are neighbourhoods
U of x and V of y such that for every f  A, if the intersection of f[U] and V is non-empty, f(U)  O.
One says A is said to be topologically equicontinuous at x  X if it is topologically equicontinuous
at x and y for each y  Y. Finally, A is equicontinuous if it is equicontinuous at x for all points
x  X.

A set A of continuous functions between two uniform spaces X and Y is uniformly equicontinuous
if for every element W of the uniformity on Y, the set

{(u, v)  X  X : for all f  A. (f(u), f(v))  W }

is a member of the uniformity on X

A weaker concept is that of even continuity:

A set A of continuous functions between two topological spaces X and Y is said to be evenly
continuous at x  X and y  Y if given any open set O containing y there are neighbourhoods U
of x and V of y such that f[U]  O whenever f(x)  V. It is evenly continuous at x if it is evenly
continuous at x and y for every y  Y, and evenly continuous if it is evenly continuous at x for
every x  X.

For metric spaces, there are standard topologies and uniform structures derived from the matrices,
and then these general definitions are equivalent to the metric-space definitions.

1.6 Stochastic Equicontinuity

Stochastic equicontinuity is a version of equicontinuity used in the context of sequences of
functions of random variables, and their convergence.

Let {Hn() : n  1} be a family of random functions defined from, where  where  is any
normed metric space. Here {Hn()} might represent a sequence of estimators applied to datasets
of size n, given that the data arises from a population for which the parameter indexing the
statistical model for the data is . The randomness of the functions arises from the data generating
process under which a set of observed data is considered to be a realisation of a probabilistic or
statistical model. However, in {Hn()},  relates to the model currently being postulated or fitted
rather than to an underlying model which is supposed to represent the mechanism generating
the data. Then {Hn} is stochastically equicontinuous if, for every  > 0, there is a  > 0 such that:

n nn ' B( , )
lim Pr sup sup H ( ') H ( )


    

æ ö
 -  >  < ç ÷è ø

Here B(, ) represents a ball in the parameter space, centered at  and whose radius depends on.

Self Assessment

Fill in the blanks:

1. The ……………………..states that a pointwise bounded family of continuous linear
operators between Banach spaces is equicontinuous.
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Equicontinuous

Notes2. The family F is ……………………x0  X if for every  > 0, there exists a  > 0 such that
d(f(x0), f(x)) <  for all ƒ  F and all x such that d(x0, x) < . The family is equicontinuous if
it is equicontinuous at each point of X.

3. Suppose X is compact. If a sequence of functions {fn} in C(X, k) is equibounded and
equicontinuous, then the sequence {fn} has a …………………………..

4. The uniform boundedness principle is also known as …………………….. states that G is
equicontinuous if it is pointwise bounded; i.e., sup{||T(x)|| : T  G } <  for each x  E.
The result can be generalized to a case when F is locally convex and E is a barreled space.

5. …………….. is a version of equicontinuity used in the context of sequences of functions of
random variables, and their convergence.

1.7 Summary

 In particular, the limit of an equicontinuous pointwise convergent sequence of continuous
functions fn on either metric space or locally compact space is continuous. If, in addition, fn

are holomorphic, then the limit is also holomorphic.

 The uniform boundedness principle states that a pointwise bounded family of continuous
linear operators between Banach spaces is equicontinuous.

 The family F is equicontinuous at a point x0  X if for every  > 0, there exists a  > 0 such
that d(f(x0), f(x)) <  for all f  F and all x such that d(x0, x) < . The family is equicontinuous
if it is equicontinuous at each point of X.

 The family F is uniformly equicontinuous if for every  > 0, there exists a  > 0 such that
d(f(x1), f(x2)) <  for all f  F and all x1, x2  X such that d(x1, x2) < .

 If a subset  C(X, Y) is totally bounded under the uniform metric, and then  is
equicontinuous.

 Suppose X is compact. If a sequence of functions {fn} in C(X, k) is equibounded and
equicontinuous, then the sequence {fn} has a uniformly convergent subsequence. (Arzelà’s
theorem)

 Let fn be a sequence of functions in C(X, Y). If {fn} is equicontinuous and converges pointwise
to a function f : X  Y, then f is continuous and {fn} converges to f in the compact-open
topology.

 The uniform boundedness principle (also known as the Banach-Steinhaus theorem) states
that G is equicontinuous if it is pointwise bounded; i.e., sup{||T(x)|| : T  G } <  for each
x  E. The result can be generalized to a case when F is locally convex and E is a barreled
space.

 Stochastic equicontinuity is a version of equicontinuity used in the context of sequences of
functions of random variables, and their convergence.

1.8 Keywords

Stochastic Equicontinuity: Stochastic equicontinuity is a version of equicontinuity used in the
context of sequences of functions of random variables, and their convergence

Uniformly Equicontinuous: The family F is uniformly equicontinuous if for every  > 0, there
exists a  > 0 such that d(f(x1), f(x2)) <  for all f  F and all x1, x2  X such that d(x1, x2) < .
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Notes Equicontinuous at a Point: The family F is equicontinuous at a point x0 X if for every  > 0,
there exists a  > 0 such that d(f(x0), f(x)) <  for all ƒ  F and all x such that d(x0, x) < . The family
is equicontinuous if it is equicontinuous at each point of X.

Uniform Boundedness: The uniform boundedness principle states that a pointwise bounded
family of continuous linear operators between Banach spaces is equicontinuous.

1.9 Review Questions

1. Explain the Equicontinuity and Families of Equicontinuous.

2. Describe the Properties of equicontinuous.

3. Discuss the Equicontinuity and uniform convergence.

4. Describe Equicontinuity families of linear operators.

5. Explain the Equicontinuity in topological spaces.

6. Define Stochastic equicontinuity.

Answers: Self Assessment

1. uniform boundedness principle 2. equicontinuous at a point

3. uniformly convergent subsequence 4. the Banach-Steinhaus theorem

5. Stochastic equicontinuity

1.10 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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Arzelà’s Theorem and Weierstrass Approximation Theorem

NotesUnit 2: Arzelà’s Theorem and Weierstrass
Approximation Theorem

CONTENTS
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Objectives

After studying this unit, you will be able to:

 Discuss the Arzelà’s Theorem

 Describe the Weierstrass Approximation Theorem

Introduction

In last unit you have studied about the uniform convergence and Equicontinuity. This unit
provides you the explanation of Arzelà’s Theorem and Weierstrass Approximation theorem.
Our setting is a compact metric space X which you can, if you wish, take to be a compact subset
of Rn, or even of the complex plane (with the Euclidean metric, of course). Let C(X) denotes the
space of all continuous functions on X with values in C (equally well, you can take the values to
lie in R). In C(X) we always regard the distance between functions f and g in C(X) to be

dist(f , g) max{ f(x) g(x) : x X}= - Î

2.1 Arzelà–Ascoli Theorem

A sequence {fn}n ÎN of continuous functions on an interval I = [a, b] is uniformly bounded if there
is a number M such that

|fn(x)|  M

for every function fn belonging to the sequence, and every x Î [a, b]. The sequence is equicontinuous
if, for every  > 0, there exists a  > 0 such that

|fn(x) – fn(y)| <  Whenever |x – y| < 

for every fn belonging to the sequence. Succinctly, a sequence is equicontinuous if and only if all
of its elements have the same modulus of continuity. In simplest terms, the theorem can be
stated as follows:

Consider a sequence of real-valued continuous functions (fn)nÎN defined on a closed and bounded
interval [a, b] of the real line. If this sequence is uniformly bounded and equicontinuous, then
there exists a subsequence (fnk) that converges uniformly.

Sachin Kaushal, Lovely Professional University
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Notes Proof: The proof is essentially based on a diagonalization argument. The simplest case is of real-
valued functions on a closed and bounded interval:

Let I = [a, b]  R be a closed and bounded interval. If F is an infinite set of functions ƒ : I  R which
is uniformly bounded and equicontinuous, then there is a sequence fn of elements of F such that
fn converges uniformly on I.

Fix an enumeration {xi}i = 1,2,3,... of rational numbers in I. Since F is uniformly bounded, the set of
points {f(x1)}f ÎF is bounded, and hence by the Bolzano-Weierstrass theorem, there is a sequence
{fn1} of distinct functions in F such that {fn1(x1)} converges. Repeating the same argument for the
sequence of points {fn1(x2)}, there is a subsequence {fn2} of {fn1} such that {fn2(x2)} converges.

By mathematical induction this process can be continued, and so there is a chain of subsequences

{fn1} {fn2} . . .

such that, for each k = 1, 2, 3,…, the subsequence {fnk} converges at x1,...,xk. Now form the diagonal
subsequence {f} whose mth term fm is the mth term in the mth subsequence {fnm}. By construction,
fm converges at every rational point of I.

Therefore, given any  > 0 and rational xk in I, there is an integer N = N(, xk) such that

|fn(xk) – fm(xk)| < /3, n, m  N.

Since the family F is equicontinuous, for this fixed å and for every x in I, there is an open interval
Ux containing x such that

|f(s) – f(t)| < /3

for all f Î F and all s, t in I such that s, t ÎUx.

The collection of intervals Ux, x ÎI, forms an open cover of I. Since I is compact, this covering
admits a finite subcover U1, ..., UJ. There exists an integer K such that each open interval U j,
1  j  J, contains a rational xk with 1  k  K. Finally, for any t Î I, there are j and k so that t and
xk belong to the same interval Uj. For this choice of k,

|fn(t) – fm(t)|  |fn(t) – fn(xk)| + |fn(xk) – fm(xk)| + |fm(xk) – fm(t)| < /3 + /3 + /3

for all n, m > N = max{N(, x1), ..., N(, xK)}. Consequently, the sequence {fn} is uniformly Cauchy,
and therefore converges to a continuous function, as claimed. This completes the proof.

Theorem 1: Weierstrass Approximation Theorem

Let f: [a, b]   be continuous. Then there is a sequence of polynomials n n 1{P }¥= such that pn  f
uniformly.

Notes It is important that [a, b] is a closed interval. If it was open, we could take (0, 1) and
f(x) = 1/x, which is unbounded. But every polynomial is bounded on (0, 1) and therefore
no sequence of polynomials could converge to f uniformly.

It will suffice to prove Weierstrass Approximation Theorem on [0, 1] from which the general
case can be easily obtained. Recall the notion of uniform continuity from Analysis 1.

Let I   and f be a real-valued function on I. We say that f is uniformly continuous on I if

"  > 0  > 0 " x, y Î I : |x – y| <   |f(x) – f(y)| < .

Also remind, that a continuous function on [a, b] is always uniformly continuous.
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Arzelà’s Theorem and Weierstrass Approximation Theorem

NotesDefinition 1: Define

pkn(x) = n
k

æ ö
ç ÷è ø

xk (1 – x)n–k, " n Î  and 0  k  n.

Note that, pkn(x) becomes a probability mass function of binomial distribution with probability
of successful trial equal to x if x Î [0, 1].

Lemma: (a) " n Î : n
k 0=å pkn(x) = 1, (b) " n Î : n

k 0=å kpkn(x) = nx, (c) " n Î : n
k 0=å (k – nx)2

pkn(x) = nx(1 – x).

Proof: (a) If x Î [0, 1] the equality follows from normalisation of probability distribution. In
general

(a + b)n =
n k n k

k 0

n a b ,
k

-

=

æ ö
å ç ÷è ø

therefore

n

k 0=
å pkn(x) =

n

k 0

n
k=

æ ö
å ç ÷è ø

xk(1 – x)n – k = (x + 1 – x)n = 1.

(b) If x Î [0, 1], we can define a random variable Yn,x the number of heads observed on unfair
x-coin tossed n-times. Then

(Yn,x = k) = n
k

æ ö
ç ÷è ø

xk(1 – x)n – k = pkn(x).

Moreover, we find the following relation with (b)

[Yn,x] =
n

k 0=
å kpkn

(x) = nx.

In general

k n
k

æ ö
ç ÷è ø

 = k
n!

k!(n k)!-
= n

(n 1)!
(k 1)!((n 1) (k 1))!

-

- - - -
= n n 1

k 1
-æ ö

ç ÷è ø-
,

so

n

k 0=
å kpkn

(x) =
n

k 0

n
k

k=

æ ö
å ç ÷è ø

xk(1 – x)n – k = 
n

k 0

n 1n
k 1=

æ ö-
å ç ÷-è ø

xk(1 – x)n – k =

=
n

k 1

n 1n
k 1=

æ ö-
å ç ÷-è ø

xk(1 – x)n – k = nx
n

k 1

n 1
k 1=

æ ö-
å ç ÷-è ø

xk – 1(1 – x)n – k =

= nx
n 1

i 0

n 1
i

-

=

-æ ö
å ç ÷è ø

xi(1 – x)n – 1 – i = nx(x + 1 – x)n – 1 = nx.

(c) If x Î [0, 1], we can rewrite the formula as

Var(Yn,x) =
n

k 0=
å (k – nx)2pkn(x) = nx (1 – x).

In general

k(k – 1) n
k

æ ö
ç ÷è ø

 = n(n – 1) (n 2)!
(k 2)!((n 2) (k 2))!

-

- - - -
= n(n – 1) n 2

k 2
æ ö-
ç ÷-è ø

,
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Notes n

k 0=
å k(k – 1)p

kn
(x) =

n

k 0=
å k(k – 1) n

k
æ ö
ç ÷è ø

xk(1 – x)n – k

=
n

k 2=
å n(n – 1) n 2

k 2
æ ö-
ç ÷-è ø

xk(1 – x)n – k

= n(n – 1)x2
n

k 2=
å

n 2
k 2

æ ö-
ç ÷-è ø

xk – 2(1 – x)n – k

= n(n – 1)x2
n 2

i 0

-

=

å
n 2

i
-æ ö

ç ÷è ø
xi(1 – x)n – 2 – i = n(n – 1)x2.

Hence

n

k 0=
å (k – nx)2pkn(x) =

n

k 0=
å (k2 – 2knx + n2x2)pkn(x)

=
n

k 0=
å (k(k – 1) + k – 2knx + n2x2)pkn(x)

= n(n – 1)x2 + nx – 2nxnx – n2x

n2x – nx2 + nx – 2n2x2 + n2x2 = nx(1 – x).

Definition 2: For any f: [0, 1]   define its Bernstein polynomials f
nB (x) such that

f
nB (x)  =

n

k 0

kf
n=

æ ö
å ç ÷è ø

pkn(x).

Theorem 2: Weierstrass Approximation Theorem, special case

Let f be a real-valued function on [0, 1]. If f is continuous then f
nB   f uniformly.

Proof: We want

" > 0 N Î  n"  N x" Î [0, 1] : | f
nB (x) – f(x)| < .

Let  > 0 be given. Since f is uniformly continuous on [0, 1]

 > 0 x,y" Î [0, 1] : |x – y| <  |f(x) – f(y)| < /2.

Using this fact we can estimate

| f
nB (x) – f(x)|=

n n

kn kn
k 0 k 0

kf p (x) f(x) p (x)
n = =

æ ö
-å åç ÷è ø

=
n

kn
k 0

(f(k /n) f(x))p (x)
=

-å  
n

kn
k 0

(f(k /n) f(x) p (x)
=

-å

=
k
n

n

kn
k: x

(f(k /n) f(x) p (x)
- <

-å +
k
n

n

kn
k: x

(f(k /n) f(x) p (x)
- 

-å

k k
n n

n n

kn knsup
k: x k: x

p (x) 2 f 1 p (x).
2 - < - 


< + ×å å

We used estimate

|f(k/n) – f(x)|  |f(k/n)| +|f(x)|  2||f||sup.

Now observe that in the second sum we have the following condition on k

10
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Notes
|k/n – x| 

2k nx
n
-æ ö

ç ÷è ø
 2 

2

2 2

(k nx)
n
-


 1.

By using this remark in the second sum and by increasing number of summants in the first sum
we get

k
n

n n

kn knsup
k 0 k: x

p (x) 2 f 1 p (x)
2 = - 


+ ×å å

k
n

nsup 2
kn2 2

k: x

2 f
1 (k nx) p (x)

2 n - 


 × + -å



nsup 2
kn2 2

k 0

2 f
(k nx) p (x)

2 n =


 + -å


= 

sup sup
2 2 2

1

2 f 2 f
n x(1 x) .

2 n 2 n


 
+ -  +

 

Let N be such that 
sup
2

2 f
N 2


<


. Then n N"   and x" Î[0, 1]

sup supf
n 2 2

2 f 2 f
B (x) f(x) = .

2 n 2 N 2 2
   

- < +  + < + 
 

Proof: In this proof we shrink our function f to [0, 1], where it can be approximated uniformly by
Bernstein polynomials and then scale these polynomials from [0, 1] to [a, b] where they will
approximate the original function. Define g : [0, 1]  , g(t) = f(x(t)). Where x(t) = a + (b – a)t for
t Î [0, 1]. We see that g is continuous since it is a composite of two continuous functions. As g

nB 

g uniformly. Define qn(x) = g
nB (t(x)) = g

n
x aB
b a
-æ ö

ç ÷è ø-
. Then

n supa f- = n
x [a,b]
sup q (x) f(x)
Î

- = g
n

x [a,b]
sup B (t(x)) g(t(x))
Î

-

 = g g
n n supt [0 ,1]

sup B (t) g(t) = B g
Î

- -  0, since g
nB  g uniformly.

Figure 19.1, the original function f(x) = |x – 1/2| on [–2, 2], is shrinked to [0, 1], and approximated
uniformly by Bernstein polynomials. These polynomials are then scaled to [–2, 2], to approximate
uniformly the original function f on [–2, 2].

Figure 2.1
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2.2 Fourier Series

Firstly, let us look at some definitions. We denote the set of all Riemann integrable functions on
[a, b] by [a, b].

Definition 3: For any f, g Î [a, b] define inner product of f and g .,. such that

f, g = b
a f(x)g(x)dx.ò

Recall from Linear Algebra that the inner product space is finite-dimensional vector space V
equipped with mapping ·,·: V  V  (or ), satisfying these three properties:

1. u + v, w = u, w + v, w

2. v, u = v, u

3. u, u Î  and u, u  0 with equality  u = 0

We see that our inner product does not satisfy all three properties since f, f =

0 f(x) = 0 does not hold. It suffices to take f(x) = 
1 for x [0,1)

.
0 for x = 1

Îì
í
î

Definition 4: We define the two-norm ||· ||2 on f Î[a, b] such that

2f  = b 2
af , f = f(x) dx.ò

Definition 5: A collection of Riemman integrable functions n n 1{ }¥=f  on [a, b] is called an orthogonal
system if

m n,f f = b
m na (x) (x)dx = 0, m n.f f " ¹ò

If in addition n" Î : n 2f = 1 we call n n 1{ }¥=f  an orthonormal system.

Example: Consider two continuous functions as on Figure 17.3. We have fg = 0, hence
f,g = 0. Therefore, they are orthogonal.

Figure 2.2: Approximation of f(x) = |—|x—1/3| + 1/2| on [0,1] by
B2(x),BI(x), B (5(x),B10(x) and Bi500(x)

12
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Notes

Example: A collection  = 1 1 1, cos(nx), sin(nx) ,
2

ì ü
í ý

p p pî þ
n Î  , is called the

trigonometrical orthonormal system on [—p, p], since 2f = 1 for all f Î  and f, g = 0 for all

f ¹ g.

Example: For another example of orthonormal system see Figure 19.4.

Orthonormal system of functions fn: [0, 1]  {–1, 1}. Each fn divides interval [0, 1] into 1/2n

subintervals. 1 2
n0 (x) dx = 1ò f  and 1

n m0 (x) (x)dx = 0ò f f  if n ¹ m

Definition 6: Let n n 1{ }¥=f  be an o.n.s. on [a,b] and f Î [a, b]. We define Fourier coefficients of f
w.r.t. n n 1{ }¥=f  as

an = f, fn = b
a f(x) (x)dx, nf Îò  .

n 1
¥

=å anfn is called the Fourier series of f w.r.t. n n 1{ }¥=f .

Notes

1. n 1
¥

=å anfn does not necessarily converge.

2. f(x) is not necessarily equal to its Fourier series.

Figure 2.3: Two Orthogonal Continuous
Functions on [—2,2]

Figure 19.4
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Notes
Example: Let f(x) = x on [0, 1] and n n 1{ }¥=f . We get Fourier coefficients an = x, fn =

2 n
1
0 n n 1

1 2 1x (x)dx = =
2 2 2 +

æ ö
f - -ò ç ÷è ø

. Therefore, we can compute Fourier series for f(x) = x which is

n 1 nn 1

1 (x)
2

¥

= +
- få .

Self Assessment

Fill in the blanks:

1. For any f: [0, 1]   define its .................................. f
nB (x) such that

f
nB (x)  =

n

k 0

kf
n=

æ ö
å ç ÷è ø

pkn(x).

2. Let f be a real-valued function on [0, 1]. If f is continuous then ............................ .

3. Define the two—norm ||· ||2 on f Î[a, b] such that ......................... .

4. A collection of Riemman integrable functions n n 1{ }¥=f  on [a, b] is called an .........................

m n,f f = b
m na (x) (x)dx = 0, m n.ò f f " ¹

2.3 Summary

 Let I   and f be a real-valued function on I. We say that f is uniformly continuous on I if

"  > 0  > 0 " x, y Î I : |x – y| <   |f(x) – f(y)| < .

Also remind, that a continuous function on [a, b] is always uniformly continuous.

 " n Î : n
k 0=å pkn(x) = 1, (b) " n Î : n

k 0=å kpkn(x) = nx, (c) " n Î : n
k 0=å (k – nx)2 pkn(x) =

nx(1 – x).

If x Î [0, 1], we can define a random variable Yn,x the number of heads observed on unfair
x-coin tossed n-times. Then

(Yn,x = k) = n
k

æ ö
ç ÷è ø

xk(1 – x)n – k = pkn(x).

Moreover, we find the following relation with (b)

[Yn,x] = 
n

k 0=
å kpkn

(x) = nx.

 For any f, g Î [a, b] define inner product of f and g .,. such that

f, g = b
a f(x)g(x)dx.ò

 Recall from Linear Algebra that the inner product space is finite-dimensional vector space
V equipped with mapping ·,·: V  V  (or ).

2.4 Keyword

Fourier Series: For any f, g Î [a, b] define inner product of f and g .,. such that

f, g = b
a f(x)g(x)dx.ò

14
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NotesRecall from Linear Algebra that the inner product space is finite-dimensional vector space V
equipped with mapping ·,·: V  V  (or ), satisfying these three properties.

2.5 Review Questions

1. The Arzela-Ascoli Theorem is the key to the following result: A subset F of C(X) is compact
if and only if it is closed, bounded, and equicontinuous. Prove this.

2. You can think of Rn as (real-valued) C(X) where X is a set containing n points, and the
metric on X is the discrete metric (the distance between any two different points is 1). The
metric thus induced on Rn is equivalent to, but (unless n = 1) not the same as, the Euclidean
one, and a subset of Rn is bounded in the usual Euclidean way if and only if it is bounded
in this C(X). Show that every bounded subset of this C(X) is equicontinuous, thus
establishing the Bolzano-Weierstrass theorem as a generalization of the Arzela-Ascoli
Theorem.

3. Let f(x) = x on [0, 1] and let n n 1{ }¥=f  be as in Ex. 2.3. We get Fourier coefficients an = x, fn

= 
2 n

1
0 n n 1

1 2 1x (x)dx = = ,
2 2 2 +ò

æ ö
f - -ç ÷è ø

(computation of the integral is left as exercise). Therefore,

we can compute Fourier series for f(x) = x which is n 1 nn 1

1 (x)
2

¥

= +
- få .

Answer: Self Assessment

1. Bernstein polynomials 2. f
nB   f uniformly

3. 2f  = b 2
af , f = f(x) dx.ò 4. Orthogonal System

2.6 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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3.5 Summary

3.6 Keywords

3.7 Review Questions

3.8 Further Readings

Objectives

After studying this unit, you will be able to:

 Define the Riemann Integral of a function

 Derive the conditions of Integrability and determine the class of functions which are
always integrable

 Discuss the algebra of integrable functions

 Compute the integral as a limit of a sum

Introduction

You are quite familiar with the words ‘differentiation’ and distinguishing ‘integration’. You
know that in ordinary language, differentiation refers to separating things while integration
means putting things together. In Mathematics, particularly in Calculus and Analysis,
differentiation and integration are considered as some kind of operations on functions. You
have used these operations in our study of Calculus.

There are essentially two ways of describing the operation of integration. One way is to view it
as the inverse operation of differentiation. The other way is to treat it as some sort of limit of a
sum.

The first view gives rise to an integral which is the result of reversing the process of
differentiation. This is the view which was generally considered during the eighteenth century.

Accordingly, the method is to obtain, from a given function, another function which has the first
function as its derivative. This second function, if it be obtained, is called the indefinite integral
of the first function. This is also called the 'primitive' or anti-derivative of the first function.
Thus, the integral of a function f(x) is obtained by finding an anti-derivative or primitive function
F(x) show that F’(x) = f (x). The indefinite integral of f(x), is symbolized by the notation f(x) dx.

Richa Nandra, Lovely Professional University
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The Riemann Integration

NotesThe second view is related to the limiting process. It gives rise to an integral which is the limit
of all the values of a function in an interval. This is the integral of a function f(x) over an interval
[a,b,]. It is called the definite integral and is denoted by

b

a
f(x)dx

The definite integral is a number since geometrically it corresponds an area of a region enclosed
by the graph of a function.

Although both the notions of integration are closely related, yet, you will see later, the definite
integral turns out to be a mare fundamental concept. In fact, it is the starting point for some
important generalizations like the double integrals, triple integrals, line integrals etc., which
you may study on Advanced Calculus.

The integral in the anti-derivative sense was given by Neyrtan. This notion was found to be
adequate so long as the functions to be integrated were continuous. But in the early 19th century,
Fourier brought to light the need for making integration meaningful for the functions that are
not continuous. He came across such functions in applied problems. Cauchy formulated rigorous
definition of the integral of a function. He essentially provided a general theory of integration
but only for continuous functions. Cauchy's theory of Integration for continuous functions is
sufficient for piece-wise continuous functions as well as for the functions having isolated
discontinuities. However, it was G.B.F. Riemann [1826-1866] a German mathematician who
extended Cauchy's integral to the discontinuous functions also. Riernann answered the question
"what is the meaning of  f(x) dx?"

The concept of definite integral was given by Riemann in the middle of the nineteenth century.
That is why, it is called Riemann Integral. Towards the end of 19th Century, T.J. Stieltjes [1856-
1894] of Holland, introduced a broader concept of integration replacing certain linear functions
used in Riemann Integral by functions of more general forms. In the beginning of this century,
the notion of the measure of a set of real numbers paved the way to the foundation of modern
theory of Lebesgue Integral by an eminent French Mathematician H. Lebesgue [1875-1941], a
beautiful generalisation of Riemann Integral which you may study in some advanced courses of
Mathematics. In this unit, the Riemann Integral will be defined without bringing in the idea of
differentiation. As you have been go through the usual connection between the Integration and
Differentiation. Just by applying the definition, it is not always easy to test the integrability of
a function. Therefore, condition of integrability will be derived with the help of which it becomes
easier to discuss the integrability of functions. Then just as in the case of continuity and
derivability, we will also consider algebra of integrable functions. Finally, in this unit, second
definition of integral as the limit of a sum will be given to you and you will be shown the
equivalence of the two definitions.

3.1 Riemann Integration

The study of the integral began with the geometrical consideration of calculating areas of plane
figures. You know that the well-known formula for computing the area of a rectangle is equal to
the product of the length and breadth of the rectangle. The question that arises from this formula
is that of finding the correct modification of this formula which we can apply to other plane
figures. To do so, consider a function defined on a closed interval [a,b] of the real line, which
assumes a constant value K  0 throughout the interval. The graph of such a function gives rise
to a rectangular region bounded by the X-axis and the ordinates x = a, x = b as shown in the
Figure 20.1.
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Notes

 

Obviously, the area enclosed is k (b-a). NOW, suppose that ]a, b[ is further divided into smaller
intervals by inserting points of division, say

1 2 3 4a x, x x x x b,= £ £ £ £ =

and the function f is defined so as to take a constant value at each of the resulting sub-intervals
i.e.,

1 0 1

2 1 2

3 2 3

4 1 4

k , if x [x ,x [
k , if x [x ,x [f(x) k , if x [x ,x [
k , if x [x ,x ]

Îì
ï Î

= í Î
ï

Îî

Further, suppose that di = length of the ith interval ]xi, xi-1 [ i.e.,

1 1 0 2 2 1 3 3 2 4 4 3d x x , d x x , d x x ,  and d x x .= - = - = - = -

Then, we get four rectangular regions and the area of each region is A, = k 1d1, A, = k2d2, A, = k3,d3,
and A, = k4,d4, as shown in Figure 20.2.

 

Figure 3.1

Figure 3.2

18



LOVELY PROFESSIONAL UNIVERSITY

The Riemann Integration

NotesThe total area enclosed by the graph of the function, X-axis and the ordinates x=a, x=b is equal to
the sum of these areas i.e.

Area = A1 + A2 + A3 + A4

= k1d1 + k2d2 + k3d3 + k4d4.

Note that in the last equation, we have generalized the notion of area. In other words, we are
able to compute the area of a region which is not of rectangular shape. How did we get it? By
breaking up the region into a series of non-overlapping rectangles which include the totality of
the figure and summing up their respective areas. This is simply a slight obstraction of the same
process which is used in Geometry.

Since the graph of the function in figure 20.2 consists of 4 different steps, such a function, is called
a step function. What we have obtained is the area of a region bounded by

1. a non-negative step function

2. the vertical lines defined by x=a and x=b

3. the X-axis.

This area is just the sum of the areas of a finite number of f non-overlapping rectangles resulting
from the graph of the given function. The area is nothing but a real number.

Now suppose that the graph of a given function is as shown in the Figure 20.3.

Does it make any sense to obtain the area of the region under the graph off? If so, how can we
compute its value? To answer this question, we introduce the notion of the integral of a function
as given by Riemann.

 

To introduce the notion of an integral of a function, we will require such a real number which
results for applying the function and which represents the area of the region bounded by the
graph off, the vertical lines x=a, x=b and the X-axis. This can be achieved by approximating the
given function by suitable step functions. The area of the region will, then, be approximated by
the areas enclosed by these step functions, which in turn are obtained as sum of the areas of non-
overlapping rectangles as we have computed for the Figure 20.2. This is precisely the idea
behind the formal treatment of the integral which we discuss here. First, we introduce some
terminology and basic notions which will be used throughout the discussion.

Figure 3.3
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Notes Let f be a real function defined and bounded on a closed interval [a,b].

Recall that a real function f is said to be bounded if the range of f is a bounded subset of R, that
is, if there exist numbers m and M such that m £ f(x) £ M for each x Î[a,b]. M is an upper bound
and m is a lower bound of f in [a,b]. You also know that when f is bounded, its supremum and
infimum exist. We introduce the concept of a partition of [a,b] and other related definitions:

Definition 1: Partition

Let [a,b] be a given interval. By a partition P of [a,b] we mean a finite set of points {x0, xl, ...., x,},
where

a = x0, < x1 <… < xn-1 <xn = b.

We write xi = xi – xi-1, (i=l, 2, ..., n). So xi is the length of the ith sub-interval given by the
partition P.

Definition 2: Norm of a Partition

Norm of a partition P, denoted by P ,  is defined by P max Ax,.
t i n
=

£ £

 Namely, the norm of P is the

length of largest sub-interval of [a, b] induced by P. Norm of P is also denoted by (P).

There is a one-to-one correspondence between the partitions of [a,b] and finite subsets of ]a, b[.
This induces a partial ordering on the set of partitions of [a,b]. So, we have the following
definition.

Definltion 3: Refinement of a Partition

Let P, and P, be two partitions of [a,b]. We say that P, is finer than P, or P2, refines P, or P2 is a
refinement of P1 if P1  P2, that is, every point of P1 is a point of P,.

You may note that, if P, and P2, are any two partitions of [a,b], then P,  P2 is a common

refinement of P, and P2. For example, if { } { }1 2
1 1 1 1 1 1 1 1P 0, , , ,1  and P 0, , , , , ,1
4 3 2 6 5 4 3 2

= =  are

partitions of [0, 1], then P2 is a refinement of P1 and { }1 2
1 1 1 1 1P P 0, , , , , ,1
6 5 4 3 2

 =  is their common

refinement.

We now introduce the notions of upper sums and lower sums of a bounded function f on an
interval [a, b], as given by Darboux. These are sometimes referred to as Darboux Sums.

Definition 4: Upper and Lower Sums

Let f: [a,b]  R be a bounded function, and let P = (x0, X1 ... x,) be a partition of [a,b]. For i = 1, 2
....., n, let Mi and mi be defined by

Mi = lub (f(x) : xi-1 £x £ xi)

mi = glb (f(x) : xi-1 £ x £ xi)

i.e. Mi and mi be the supremum and infimum of f in the sub-interval [xi-1, xi].

Then, the upper (Riemann) sum of f corresponding to the partition P, denoted by U (P,f), is
defined by

n

i i
i 1

U(P,f) M x
=

å= 
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NotesThe lower (Riemann) sum off corresponding to the partition P, denoted by L(P, f), is defined by

n

i i
i 2

U(P,f) M x .
=

å= 

Before we pass on to the definition of upper and lower integrals, it is good for you to have the
geometrical meaning of the upper and lower sums and to visualize the above definitions
pictorially. You would, then, have a feeling for what is going on, and why such definitions are
made. Refer to Figure 20.4.

 

In figure 20.4(i) the graph off: [a,b]  R is drawn. The partition P = {x0, x,1 , .... xn} divides the
interval [a,b] into sub-intervals [x0, x1], [x1, x2], .... [xn-1, xn]. Consider the area S under the graph
off. In the first sub-interval [x0, x1], m1 is the g.l.b. of the set of values f(x) for x in [x0, x1]. Thus m1

x1 is the area of the small rectangle with sides ml and x1 as shown in the figure 20.4(ii).

Similarly m2 x2 ... mn A xn are areas of such small rectangles and 
n

i 1
m,

=

å  Ax, i.e. lower sum L (P,f)

is the area S2 which is the sum of areas of such small rectangles. The area S 1 is less than the area
S under the graph of f.

In the same way MI  X1 I is the area of the Large rectangle with sides M I and  X1 and 
n

i
i 1

M 1x,
=

å -

i.e., the upper sum U(P, f) is the area S2 which is the sum of areas or such large rectangles as
shown in Figure 20.4(iii). The area S 2 is more than the area S under the graph off. It is intuitively
clear that if the points in the partition P are increased, the areas S1 and S2 approach the area S.

Figure 3.4

(i) (ii)

(iii)
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Notes We claim that the sets of upper and lower sums corresponding to different partitions of [a,b] are
bounded. Indeed, let m and M be the infimum and supremum of f in [a.b].

Then i im m M M£ £ £ and so

1 i i i i im x m x M x M x £  £  £ 

Putting i = 1, 2, ........ n and adding, we get

n n

i 1 i 1
m x, L(P,f) U(P,f) M A x,.

= =

å å £ £ £

n n

i i i 1 n 0
i 1 i 1

x (x x ) x x b a-
= =

å å = - = - = -

Thus m(b a) L(P,f) U(P,f) M(b a)- £ £ £ -

For every partition P, there is a lower sum and there is an upper sum. The above inequalities
show that the set of lower sums and the set of upper sums are bounded, so that their supremum
and infimum exist. In particular, the set of upper sums have an infimum and the set of lower
sums have a supremum. This leads us to concepts of upper and lower in tegrals as given by
Riemann and popularly known as Upper and Lower Riemann Integrals.

Definition 5: Upper and Lower Riemann Integral

Let f: [a,b]  R be a bounded function. The infimum or the greatest lower bound of, the set of all
upper sums is called the upper (Riemann) integral o f f on [a,b] and is denoted by,

h

a
f(x)dx.

i.e.

b

a
f(x)dx. g.l.b. =  {U(P,f): P is a partition of [a,b]}.

The supremum or the least upper bound of the set of all lower sums is called the lower (Riemann)
integral of f on [a,b] and is denoted by

b

a
f(x)dx

i.e.

b

a
f(x)dx l.u.b =  {L(P,f): P is a partition of [a,b]}.

Now we consider some examples where we calculate upper and lower integrals.

Example: Calculate the upper and lower integrals of the function f defined in [a, b] as
follows:

1 when x is rationalf(x) 0 when x is irrational=

Solution: Let P = {x0, x1 … xn} be any partition of [a,b]. Let Mi and m1 be respectively the sup. f and
inf. f in [xi-1, x,]. You know that every interval contains infinitely many rational as well as
irrational numbers. Therefore, m i = 0 and M, = I for i = 1, 2 ... n. Let us find U(P,f) and L(P,f).

22



LOVELY PROFESSIONAL UNIVERSITY

The Riemann Integration

Notesn n

i i i
i 1 i 1

U(P,f) M x x b a
= =

å å=  =  = -

n

i i
i 1

U(P,f) m x 0
=

å=  =

Therefore U(P,f) = b – a and L(P,f) = 0 for every, partition P of [a,b]. Hence

b

a
f(x) dx = g.l.b. {U(P,f): P is a partition of [a,b]]

= g.l.b. {b – a] = b – a.

b

a
f(x)dx = l.u.b. {L(P,f): P is a partition of [a,b]]

= l.u.b. {0] = 0.

Example: Let f be a constant function defined in [a,b]. Let f(x) = k  x Î [a,b]. Find the
upper and lower integrals of f.

Solution: With the same notation as in example 1, M i = k and mi = k  i.

n n

i i i
i 1 i 1

U(P,f) M A x A x k(b a)
= =

å å= = = -

n n

i i
i 1 i 1

and L(P,f) m A x A xi k(b a)
= =

å å= = = -

Therefore U(P,f) = k(b – a) and L(P,f) = k (b – a) for every partition P of [a,b].

Consequently 
b b

a a
f(x)dx k(b a) and f(x)dx k(b a) = - = -

Now try the following exercise.

Exercise

Find the upper and lower Riemann integrals of the function f defined in [a,b] as follows:

1 when x is ratinal
f(x)

1 when x is irrational
ì

= í
-î

You have seen that sometimes the upper and lower integrals are equal (as in Example) and
sometimes they are not equal (as in Example). Whenever they are equal, the function is said to
be integrable. So integrability is defined as follows:

Definition 6: Riemann Integral

Let f: [a,b] – R be a bounded function. The function f is said to be Riemann integrable or simply

integrable or R-integrable over [a,b] if 
b b

a _
f(x) dx f(x) dx =  and iff is Riemann integrable, we

denote the common value by 
b

a
f(x) dx.  This is called the Riemann integral a r simply the integral

off on [a, b].
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Example: Show at the function f considered in example is not Riemann integrable.

Solution: As shown in above example, 
b

a
f(x) dx b a = -  and 

b b b

a a
f(x) dx 0 and so f(x) dx f(x) dx  = ¹

and consequently f is not Riemann integrable.

Example: Show that a constant function is Riemann integrable over [a,b] and find 
h

1
f(x) dx.

Solution: As proved in above example, 
b b

a 1
f(x) dx k(b a) f(x) dx = - =

Therefore, f is Riemann integrable on [a,b] and 
h

1
f(x) dx k(b a). = -

Theorem 1: If the partition P2 is a refinement of the partition P, of [a,b], then L(P1,f) £ L(P2,f) and
U(P2,f) £ U(P1,f).

Proof: Suppose P2 contains one point more than P,. Let this extra point be c. Let P1 = {x0, x,, …, xn}
and xi-1 < c < xi. Let Mi and mi be respectively the sup. f and inf. f in [xi-1, xi]. Suppose sup. f and inf.
f in [xi-1, c] are p, and q1 and those in [c, xi] are p2 and q2, respectively. Then,

2 1L(P ,f) L(P ,f)- 1 i 1 2 i i iq (c x ) q (x c) m x-= - + - - 

1 i i 1 2 i i(q m )(c x ) (q m )(x c)-= - - + - -

( )i i i 1since A x (x c) (c x )-= - + -

Similarly 2 1 1 i i 1 2 i iU(P ,f) U(P ,f) (p M )(c x ) (p M )(x c)-- = - - + - -

Now i 1 1 im q p M£ £ £

i 2 2 im q p M£ £ £

Therefore

2 1 2 1L(P ,f) L(P ,f) 0 and U(P ,f) U(P ,f) 0-  - £

Therefore

1 2 2 1L(P ,f) L(P ,f) 0 and U(P ,f) U(P ,I).-  -

Is P2 contains p points more than P1, then adding these extra points one by one to P1 and using the
above results, the theorem is proved. We can also write the theorem as

1 2 2 1L(P ,f) L(P ,f) U(P ,f) U(P ,f)£ £ £

from which it follows that 2 2 1 1U(P ,f) L(P ,f) U(P ,f) L(P ,f).- £ -  As an illustration of theorem 1,
we consider the following example.

Example: Verify Theorem 1 for the function f(x) = x + 1 defined over [0, 1] and the

partition { } { }1 2
1 1 1 3 1 1 1 1 2 3P 0, , , , ,1  and P 0, , , , , , ,1 .
4 3 2 4 6 4 3 2 3 4

=
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Solution: For partition 1 0 1 2 1 4 4

1 1 1 3P , n 5, x 0, x , x , x , x , x 1
4 3 2 4

= = = = = = =  and so 1
1x ,
4

 =

2 3 4 5
1 1 1 1x , x , x , x .

12 6 4 4
 =  =  =  =

Further Mi = f(xi) & mi = f(xi-1) for i = 1, 2, 3, 4, 5 and therefore 1 2
5 4M , M ,
4 3

= =  3 4
3 7M , M ,
2 4

= =

5 1 2 3 4 5
5 4 3 7M 2, m 1, m , m , m , m .
4 3 2 4

= = = = = =  We have 
5

1 i i
i 1

25L(P , f) m x
18=

å=  =  and

5

1 1
i 1

29U(P ,f) M A x, .
18=

å= =  Similarly, 2
17L(P ,f) ,
12

=  and 2
19U(P ,f) .
12

=  Hence 1 2L(P ,f) L(P ,f)£

and 2 1U(P ,f) U(P ,f).£

Theorem 2: 
b b

a a
f(x) dx f(x) dx. £

Proof: If P1 & P2, are two partitions of [a,b] and P = P1 U P, is their common refinement, then using
Theorem 1, we have 1 1L(P ,f) L(P,f) U(P,f) U(P ,f)£ £ £  and

2 2L(P ,f) L(P,f) U(P,f) U(P ,f).£ £ £

Therefore, 1 2L(P ,f) U(P ,f).£

Keeping P2 fixed and taking l.u.b. over all P1, we get

b

2
a
f(x) dx U(P ,f) £

Now taking g.l.b. over all P2, we obtain

b b

a a
f(x) dx f(x) dx £

This proves the result.

In Theorem 1, we have compared the lower and upper sums for a partition P 1 with those for a
finer partition P2. Next theorem, which we state without proof, gives the estimate of the difference
of these sums.

Theorem 3: If a refinement P, of P1 contains p more points and f(x) k,£  for all x [a,b],Î  then

1 2 1L(P ,f) L(P ,f) L(P ,f) 2pk ,£ £ + d

and 1 2 1U(P ,f) U(P ,f) U(P ,f) 2p k ,  - d  where d is the norm of P1.

This theorem helps us in proving Darboux's theorem which will enable us to derive conditions
of integrability. Firstly, we give Darboux's Theorem.

Theorem 4: Darboux's Theorem

If f: [a,b]  R is a bounded function, then to every Î > 0, there corresponds d > 0 such that

(i)
b

a
U(P,f) f(x) dx< + Î

25



LOVELY PROFESSIONAL UNIVERSITY

Notes
(ii)

b

a
L(P,f) f(x) dx< - Î

for every partition P of [a,b] with P .< d

Proof: We consider (i). As f is bounded, there exists a positive number k such that
b

a
f(x) k x [a,b]. As f(x) dx£  Î  is the infimum of the set of upper sums, therefore to each Î > 0,

there is a partition P1 of [a,b] such that

b

1
a

U(P ,f) f(x) dx ,
2
Î

< + (1)

Let P1 = {x0, x1, ...., xp} and d be a positive number such that 2 k (p – 1) d = Î/2. Let P be a partition
of [a,b] with P .< d  Consider the common refinement P2 = P U P1 of P and P1.

Each partition has the same end points 'a' and 'b'. So P2 is a refinement of P having at the most
(p – 1) more points than P. Consequently, by Theorem 3,

U(P,f) –2(p – 1) k d £ U(P2,f)

£ U(P2,f)

b

a
f(x) dx /2.< + Î (using (1))

Thus

U(P,f)
b

a
f(x) dx 2(p 1) k

2
Î

< + + - d

6

a
f(x) dx ,  with P .= + Î < d

Task  Write down the proof of part (ii) of Darboux's Theorem.

As mentioned earlier, Darboux's Theorem immediately leads us to the conditions of integrability.
We discuss this in the form of the following theorem:

Theorem 5: Condition of Integrability

First Form: The necessary and sufficient condition for a bounded function f to be integrable over
[a,b] is that to every number Î > 0 there corresponds d > 0 such that

U(P,f) L(P,f) , P with P .- < Î  < d

Proof: We firstly prove the necessity of the condition.

Since the bounded function f is integrable on [a, b], we have

b b b

a a a
f(x) dx f(x) dx f(x) dx.  = =

Let Î > 0 be any number. By Darboux Theorem, there is a number d > 0 such that
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a
U(P,f) f(x) dx /2< + Î

b

a
f(x)dx /2 P with P= + Î  < d (2)

Also,

b

a
L(P,f) f(x) dx /2> - Î

b

a
f(x) dx /2= - Î (3)

i.e. 
b

a
L(P,f) f(x) dx /2 P with P

-

- < + Î  < d

Adding (2) and (3), we get

U(P,f) L(P,f) P with P .- < Î < d

Next, we prove that condition is sufficient.

It is given that, for each number Î > 0, there is a number d  > 0 such that

U(P,f) L(P,f) , P with P .- < Î  < d

Let P be a fixed partition with P .< d  Then

b b

a a
L(P,f) f(x)dx f(x)dx U(P,f). £ £ £

Therefore, 
b b

a a
f(x) dx f(x) dx U(P,f) L(P,f) . - £ - <Î

Since Î is arbitrary, therefore the non-negative number

b b

a a
f(x) dx f(x) dx -

is less than every positive number. Hence it must be equal to zero that is 
b b

a a
f(x) dx f(x) dx =  and

consequently f is integrable over [a,b].

Second Form: The necessary and sufficient condition for a bounded function f to be integrable
over [a,b] is that to every number Î > 0, there corresponds a partition P of [a,b] such that

U (P,f) – L(P,f) < Î.

3.2 Riemann Integrable Functions

As we derived the necessary and sufficient conditions for the integrability of a function, we can
now decide whether a function is Riemann integrable without finding the upper and lower
integrals of the function. By using the sufficient part of the conditions, we test the integrability
of the functions. Here we discuss functions which are always integrable. We will show that a
continuous function is always Riemann integrable. The integrability is not affected even when
there are finites number of points of discontinuity or the set of points of discontinuity of the
function has a finite number of limit points. It will also be shown that a monotonic function is
also always Riemann integrable.

We shall denote by R(a,b), the family of all Riemann integrable functions on [a,b]. First we
discuss results pertaining to continuous functions in the form of the following theorems.
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Notes Theorem 6: If f: [a, bJ  R is a continuous function, then f is integrable over [a, b], that is
f Î R(a,b).

Proof: If f is a continuous function on [a,b] then f is bounded and is also uniformly continuous.

To show that f Î R [a,b] you have to show that to each number Î > 0, there is a partition P for
which

U(P,f) – L(P,f) < Î

Let Î> 0 be given. Since f is uniformly continuous on [a,b], there is a number d > 0 such that

Ef(x) f(y)  whenever x y .
b a

- < - < d
-

 Let P be any partition of [a,b] with P .< d

We show that, for such a partition P, U (P, f) – L(P, f) < Î.

Now, U(P,f) – L(P,f)
n n

i i i i
i 1 i 1

M x m x
= =

å å=  - 

n

i 1 i
i 1

(M m ) x ,
=

å= -  (4)

where i i i 1x x x ,- = -  and Mi = sup { }i 1 1 1f(x) x x x f( )- £ £ = x  (say), for same 1 i 1 1[x ,x ].-x Î  Such

a xi exists because a continuous function f attains its bounds on [xi-1 – x1].

Similarly, mi = inf { }i 1 i if(x) x x x f( )- £ £ = h  (say), for some i i 1 i[x ,x ].-h Î  Hence

i i i i i iM m f( ) f( ) f( ) f( ) /b a,- = x - h £ x - h < Î -  for all i,

since i i iA x .x - h £ < d  Substituting in (4) we obtain

U(P,f) – L(P,f)
n

i i i
i 1

(M m ) x
=

å= - 

( )
n

i
i 1

x
b a =

å
Î

< 
-

E (b a) .
b a

- = Î
-

Thus, every continuous function is Riemann integrable,

But as remarked earlier, even when there are discontinuous of the function, it is integrable. This
is given in the next two concepts which we state without proof.

Theorem 7: Let the bounded function f: [a, b]  R have a finite number of discontinuities. Then
f Î R (a,b).

Theorem 8: Let the sec of points of discontinuity of a, bounded function f: [a, b]  R  has a finite
number of limit points, then f Î R (a, b).

We illustrate these theorems with the help of examples.

Example: Show that the function f where f(x) = x2 is integrable in every interval [a,b].

Solution: You know that the function f(x) = x2 is continuous. Therefore it is integrable in every
interval [a,b].
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Example: Show that the function f where f(x) = [x] is integrable in [0,2] where [x] denotes

the greatest integer not greater than x.

Solution: 
0 if 0 x 1

[x] 1 if 1 x 2
2 if x 2

£ <

= £ <

=

The points of discontinuity of f in [0,2] are 1 and 2 which are finite in number and so it is
integrable in [0,2].

Example: Show that the function F defined on the interval [0,1] by

1 12rx, when x ,  where r is a positive integer
F(x) r 1 r

0, elsewhere,

ì
< £ï

= +í
ï
î

is Riemann integrable.

Solution: The function F is discontinuous at the points 1 10, 1, , , .
2 3

¼  The set of points of

discontinuity has 0 as the only limit point. So, the limit points are finite in number and hence the
function F is integrable in [0,1], by Theorem 8.

There is one more class of integrable functions and this class is that monotonic functions. This
we prove in the following theorem.

Theorem 9: Every monotonic function is integrable.

Proof: We shall prove the theorem for the case where I: [a,b]  R is a monotonically increasing
function. The function is bounded. f(a) and f(b) being g.l.b. and l.u.b. Let Î > 0 be given number,
Let n be a positive integer such that

(b a)[f(b) f(a)]n - -
>

Î

Divide the interval [a,b] into n equal sub-intervals, by the partition P = {x0, x1 …, x0} of [a, b]. Then
n

i i i
i 1

U(P,f) L(P,f) (M m )( x )
=

å- = - 

n

i

b a [f(xi) f(xi 1)]
n

å
-

= - -

(b a)[f(b) f(a)] .
n
-

= - <Î

This proves that f is integrable. Discuss the case of monotonically decreasing function as an
exercise. Do it by yourself.

Exercise: Show that a monotonically decreasing function is integrable.

Now we give example to illustrate the theorem.
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Example: Show that the function f defined by the condition 

n

1f(x)
2

=

n 1 n

1 1when x ,n 0,1,2
2 2+

< £ = ¼

is integrable in [0,1]

Solution: Here we have f (0) = 0,

f(x)
11 when x 1
2

= < £

f(x)
21 1 1 when x

2 2 2
æ ö

= < £ç ÷è ø

------------------------------------------------

------------------------------------------------

Clearly f is monotonically increasing in [0, 1]. Hence it is integrable.

3.3 Algebra of Integrable Functions

As we discussed the algebra of the derivable functions. Likewise, we shall now study the algebra
of the integrable functions. In the previous class, you have seen that there are integrable as well
as non-integrable functions. In this section you will see that the set of all integrable functions on
[a,b] is closed under addition and multiplication by real numbers, and that the integral of a sum
equals the sum of the integrals. You will also see that difference, product and quotient of two
integrable functions is also integrable.

All these results are given in the following theorems.

Theorem 10: If f Î R (a , b), and  is any real number, then  f Î R (a,b) and

b b

a a
f(x) dx f(x) dx.  = 

Proof: Let P = {x,, x1,...., xn) be a partition of [a,b]. Let Mi and mi be the respective l.u.b. and g.l.b. of
the function f in [xi-1, xi]. Then  Mi and  mi are the respective l.u.b. and g.l.b. of the function  f
in [xi-1, xi], if A  0, and  mi and  Mi are the respective l.u.b. and g.l.b. of h f in [x i-1, xi], if
h < 0.

n n

i i i
i 1 i 1

When 0,  then U(P, f) A M x M Ax, U(P,f).
= =

å å   =  =  = 


6 b

a
f(x) dx f(x) dx.  = 

Similarly L(P,  f) = A L(P,f).



b b

a a
f(x) dx f(x) dx  = 

If 
n

i i
i 1

0, U(P, f) m x L(P,f).
=

å <  =   = 
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b b

a a
f(x) dx f(x) dx  = 

Similarly L(P, f) =  U L(P,f).


h b

a a
f(x) dx A f(x) dx  =

Since f is integrable in [a,b], therefore

6 b b

a a a
f(x) dx f(x) dx f(x) dx.  = =

Hence 
6 6 b

a
f(x) dx f(x) dx f(x) dx,   =  = 

whether  0 or  < 0.

Hence 
b b

a a
f R [a,b] and f(x) dx f(x) dx.  Î  = 

Now suppose that  = –1. In this case the theorem says that if f Î R [a,b], then ( f) R[a,b]- Î

b b

a a
[ f(x)]dx f(x) dx.

-

 - =

Theorem 11: If f Î R [a,b], g Î R [a,b],. then f + g Î R [a,b] and

b b b

a a
(f g)(x)dx f(x) dx g(x) dx.  + = +

Proof: We first show that f+g Î R [a,b]. Let Î > 0 be a given number. Since f Î R [a,b], g Î R [a,b],
there exist partitions P and Q of [a,b] such that U(P,f) – L(Pf) < Î/2 and U (Q,g) – L (Q,g)
< Î/2

If T is a partition of [a,b] which refines both P and Q, then

U(T,f) – L(T,f) < Î/2 [U(T,f) – L(T,f) £ U(P,f) – L(P,f)].

Similarly,

U(T,g) – L(T,g) < Î/ 2 (5)

Also note that, if Mi = sup {f(x) : xi-1 £ x £ xi}

and

Ni = sup {g(x): xi-1 6 x £ xi}

then,

sup {f(x) + g(x): xi-1 £ x £ xi} £ M1 + Ni.

Using this, it readily follows that

U(T, f+g) £ U(T,f) + U(T,g)

for every partition T of [a,b]. Similarly

L(T,f+g) L(T,f) + L(T,g)

for every partition T of [a,b].

Thus U (T,f+g) – L (T,f+g) £ [U(T,f) + U(T,g) – L [(T,f) + L(T,g)]
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= [U(T,f) – L(T,f)] + [U(T,g) – L(T,g)] 

2 2
Î Î

< + = Îfor T occurring in (5). This shows that f + g Î R(a,b)

It remains to show that 
b b b

a a a
[f(x) g(x)]dx [f(x) dx g(x)  + = +

Now

b b

a
(f g)(x)dx (f g) (x) dx U(P,f g) U(P,f) U(P,g) + = + £ + £ + (6)

for any partition P of [a,b]. Given any Î > 0 we can find a partition P of [a,b] such that

b

a
U(P,f) f(x) (x) dx /2< + Î

b

a
U(P,g) g(x) dx /2< + Î (7)

Substituting (7) in (6), we obtain

b b b

a a a
(f g) (x) dx f(x) dx g(x) dx  + < + + Î (8)

Since (8) holds for arbitrary Î > 0, we obtain

b b b

a a a
(f g) (x) dx f(x) dx g(x) dx  + £ + (9)

Replacing f and g by –f and –g in (9) we obtain

b b b
( f g) (x) dx { f (x)} dx { g(x)} dx  - - £ - + -

or

b b b

a a a
(f g) (x) dx f(x) dx g(x) dx  + £ - -

This is equivalent to

b b b

a a a
(f g) (x) dx f(x) dx g(x) dx  +  +

Combining (9) and (10), we get

b b b

a a a
(f g) (x) dx f(x) dx g(x) dx  + =

Which proves the theorem.

Theorem 12: If f Î R(a,b) and g Î R (a,b), then f – g Î R(a, b) and

b b b

a a a
(f g) (x) dx f(x) dx g(x) dx.  - = -

Proof: Since g E R [a,b], therefore -g Î R [a,b] and

b b
[g(x)]dx g(x) dx - = -
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therefore,

b b b

a a a
[f ( g)](x) dx f(x) dx [ g(x)] dx  + - = + -

that is (f – g) Î R [a,b] and

b b b

a a
(f g) (x) dx f(x) dx g(x) dx.  - = -

For the product and quotient of two functions, we state the theorems without proof.

Theorem 13: If f Î R(a,b) and g ÎR(a,b), then f g ÎR(a,b).

Theorem 14: If f ÎR(a,b), g Î R(a,b) and there exists a number t > 0 such that g(x) t, x [a,b],  Î

then f/g Î R(a,b).

Now we give some examples.

Example: Show that the function f, where f(x) = x + [x] is integrable is [0, 2].

Solution: The function F(x) = x, being continuous is integrable in [0, 2] and the function G(x) = [x]
is integrable as it has only two points namely, 1 and 2 as points of discontinuity. So their sum is,
f(x) is integrable in [0, 2].

Example: Give an example of function f and g such that f + g is integrable but f and g are
not integrable in [a, b].

Solution: Let f and g be defined in [a, b] such that

0, when x is rational
f(x)

1, when x is irrational,
ì

= í
î

1, when x is rational
g(x)

0, when x is irrational
ì

= í
î

f and g are not integrable but (f g) 1 x [a,b],+ =  Î  being a constant function, is integrable.

3.4 Computing an Integral

So far, we have discussed several theorems for testing whether a given function is integrable on

a closed interval [a,b]. For example, we can see that a function 2f(x) x x [0,2]=  Î  is continuous
as well as monotonic on the given interval and hence it is integrable over [0,2]. But this information
does not give us a method for finding the value of the integral of this function. In practice, this
is not so easy as we might think of. The reason is that there are some functions which are
integrable by conditions of integrability but it is difficult to find the values of their integrals.

For example, suppose a function is given by 
2xf(x) e=  This is continuous over every closed

interval and hence it is integrable. But we cannot find its integral by our usual method of anti

derivative since there is no function for which 2xf(x) e=  is the derivative. If possible, try to find

the anti derivative for this function.
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integral to evaluate its integral. Indeed, the definition of integral as a limit of sum helps us in
such situations.

In this section, we demonstrate this method by means of certain examples. We have found the

integral 
b

a
f(x) dx  via the sums U(P,f) and L(P,f). The numbers Mi and mi which appear in these

sums are not necessarily the values of f(x), i f f is not continuous. In fact, we shall now show that
f(x) dx  can be considered as limit of sums in which M i and m, are replaced by values of f. This

approach gives us a lot of latitude in evaluating 
b

a
f(x) dx,  as we shall see in several examples.

Let f: [a,b]  R be a bounded function. Let

la = x0 < X1 < ...... xn = b]

be a partition P of [a,b]. Let us choose points t1, .... tn, such that

xi-1 £ ti £ xi (i = 1, ... n). Consider the sum

n n

i i i i i 1
i 1 i 1

S(P,f) f(t ) x f(t ) (x x ).-
= =

å å=  = -

Notice that, instead of Mi in U(P, f) and mi in L(P,f), we have f(ti) in S(P, f). Since ti ‘s are arbitrary
points in [xi-1, xi], S(P, f) is not quite well-defined. However, this will not cause any trouble in case
of integrable functions.

S(P,f) is called Riemann Sum corresponding to the partition P.

We say that lim S(P,f) = A

or 
P 0

S(P,f) A as P 0 if for every number 0 0 such that 
S(P,f) A for P with P 6.

-

  Î< $ d >

- < Î <

We give a theorem which expresses the integral as the limit of S(P,f).

Theorem 15: If 
P 0
lim


 S(P,f) exists, then f Î R (a,b) and 
b

P 0 a
lim S(P,f) f(x)dx.


=

Proof: Let 
P 0
lim


 S(P,f) = A. Then, given a number Î > 0, there exists a number d > 0 such that

S(P,f) A /4,  for P with P .- < Î < d

i.e., A /4 S(P,f) A /4,  for P with P .- Î < < + Î < d (11)

Let P = {x0, x,, ....., xn). Suppose the points t, ..., tn vary in the intervals [x0, x,], ..., [xn-1, xn],
respectively. Then, the l.u.b. of the numbers S(P,f) are given by

l.u.b. S(P,f) ( )
n n

i i i i
i 1 i 1

l.u.b. f(t ) x M x U(P,f).
= =

å å=  =  =

Similarly, g.1.b. S(P,f) = L(P,f). Then, from (11), we get

A – Î/4 £ L(P,f) £ U(P,f) 5 A + Î/4 (12)
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NotesTherefore,

U(P,f) – L(P,f) £ (A + Î/14) – (A – Î/4)

= Î/2 < Î.

In other words, f Î R(a,b). Thus

b b b

a a a
f(x) dx f(x) dx f(x) dx.  = =

Since 
b h

a
L(P,f) f(x) dx f(x) dx U(P,f), £ £ £  therefore

L(P,f)
b

a
f(x) dx U(P,f).£ £ (13)

From (12) and (13), we get

A – Î/4
b

a
f(x) dx A /4.£ £ + Î

That is,

b

a
f(x) dx A - £ Î/4 < e.

Since Î is arbitrary, therefore 
b

a
f(x) dx A 0, - =  that is, 

b

P 0a
f(x) dx A lim S(P,f).


 = =  This completes

the proof of the theorem.

To illustrate this theorem, we give two examples.

Example: Show that 
b b

a a
dx 1 dx b a. = = -

Solution: Here, the function f: [a,b]  R is the constant function f(x) = 1.

Clearly, for any partition P = (x0, x,, ...., xn) of [a,b], we have

S(P,f) = (x1 – x0)f(t1) + (x2 – xl) f(t2) + ....... + (xn – xn-1)f(tn)

= (x1 – x0)1 + (x2 – x1)1 + ....... + (xn – xn-1)1 = b – a.

Since S(P,f) = b – a, for all partitions, 
b

P 0a
1 dx lim S(P,f) b a.


 = = -

Example: Show that 
2 2b

a

b ax dx .
2
-

=

Solution: The function f:[a,b]  R in this example is the identity function f(x) = x.

Let P = (a = x,, x,, …, xa = b) be any partition of [a,b]. Then

S(P, f) = (x1 – x0) f(tl) + (x2 – x1) f(t2) + .... + (xn – xn) f(tn), where t1 Î [x0, x1,], t2 Î [x1, x2], …

tn Î [xn-1, xn] are arbitrary. Let us choose

0 1 1 2 n 1 n
1 2 n

x x x x x xt , t , , t .
2 2 2

-+ + +
= = ¼ =
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Then, S(P,f) 1 0 2 1 n n 1

1 0 2 1 n n 1
x x x x x x(x x ) (x x ) (x x )

2 2 2
-

-

+ + +
= - + - +¼+ -

( ) ( ) ( )2 0 2 1 2 2
1 2 2 2 n n 1

1 x x x x x x
2 -
é ù= - + - +¼+ -ë û

( ) ( )2 2 2 2
n 0

1 1x x b b .
2 2

= - = -

Here again, ( )2 21S(P,f) b a ,
2

= -  no matter what the partition P we may take, Hence

b b
2 2

P 0
a a

1f(x) dx x dx lim S(P,f) (b a ).
2

= = = - 

The converse of Theorem 15 is also true which we state without proof as the next theorem.

Theorem 16: If a function f is Riemann integrable on a closed interval [a,b], then
b

P 0 P 0
a

lim S(P,f) exists and lim S(P,f) f(x) dx.
 

= 

One of the important application of Theorem 16 is in computing the sum of certain power series.
For, let us consider a partition P of [a,b] having n sub-intervals, each of length h so that nh =
b – a. Then P can be written as P = (a, a + h, a + 2h, ..., a + nh = b).

Let t, = a + ih, i = 1,2 ,...., n. Then

S(P,f)
n

i i
i 1

f(t ) x h[f(a h) f(a 2h) f(a nh)].
=

å  = + + + +¼+ +

When 
P 0
lim S(P,f)


 exists, then

h

n
ah 0

lim h[f(a h) f(a 2h) f(a nh)] f(x) dx.
¥


+ + + +¼+ + = 

In the above formulae, we can change the limits of integration from a, b to 0, a, where a Î N. For,

by changing h to b a ,
an
-  it is easy to deduce from above formula that

bn

n
a

(b a) 1 (b a) rlim f a f(x) dx.
n h¥

=

- -é ù
+ =ê úa aë û

å  (14)

But,
b

a 0

(b a) (b a)f(x) dx f a x dx.
a

- -é ù
= +ê úa aë û

 

Therefore, from (14), we get

n

n r 1 0

1 (b a) r (b a)lim f a f a x dx.
n n

a

¥
=

- -é ù é ù
+ = +ê ú ê úa aë û ë û

å  (15)

In (15), put a = 0, b = a. We get the following result:

If f is integrable in [0,a], then

n

n r 1 0

1 rlim f f(x) dx.
n n

a

¥
=

æ ö
=ç ÷è øå 
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NotesThis gives us the following method for finding the limit of sum of n terms of a series:

1. Write the general rth term of the series.

2. Express it as 1 rf ,
n n

æ ö
ç ÷è ø

 the product of 1
n

 and a function of r .
n

3. Change r
n

 to x and 1
n

 to dx and integrate between the limits 0 and a. The n value of the

resulting integral gives the limit of the sum of n terms of the series.

Since each term of a convergent series tends to 0, the addition or deletion of a finite number of
terms of the series does not affect the value of the limit. Similarly, you can verify that

2n

n r 1

1 rlim
n n¥ =

å
é ùæ ö

f ç ÷ê úè øë û

2

0
(x) dx,= f

3n

n r 1

1 rlim
n n¥ =

å
é ùæ ö

f ç ÷ê úè øë û

3
(x) dx,= f  and so on.

As an illustration of these results, consider the following examples.

Example: Find the limit, when n tends to infinity, of the series

1 1 1 1 .
n 1 n 2 n 3 n n

+ + +¼+
+ + + +

Solution: General (rth) term of the series is 
n n

r 1 r 1

1 1 1 .rn r n 1
n

= =

å å

æ ö
ç ÷

= ç ÷+ +ç ÷è ø

Hence, 
1n

n r 1 0

1 1 1lim dx log 2.rn 1 x1
n

¥ =

å 

æ ö
ç ÷

= = =ç ÷ ++ç ÷è ø

Example: Find the limit, when n tends to infinity, of the series

2 2 2 2 2 2

1 1 1 1 .
n n 1 n 2 n (n 1)

+ + +¼+
- - - -

Solution: Here the rth term 
n

2 2r 1

1
n (r 1)=

å=
- -

Since it contains (r – 1), we consider its (r + l)th term i.e.,

the term 
n n

22 2r 0 r 0

1 1 1
n rn r 1

n
= =

å å=
- æ ö

+ ç ÷è ø
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Therefore, 

1n

2 2n r 1 0
n

1 1lim dx.
1 xr1

n

¥ =

å = -
-æ ö

+ ç ÷è ø

 because 
n

1lim 0.
n¥
=

The value of this integral, on the r.h.s. of last equality, is ,
2
p

Example: Find 
n 23

n 3n r 1

nlim .
(3 r)¥ =

å
+

Solution: We have

n

2

33

n 1 .
(3 r) n r3

n

æ ö
ç ÷1
ç ÷=

+ ç ÷æ ö
+ç ÷ç ÷è øè ø

Since the number of terms in the summation is 3n, the resulting definite integral will have the
limits from 0 to 3.

Therefore, 
( )

n n2 33 3

3 3 3n nr 1 r 1n 0

n 1 1 dxlim lim
n (3 r) (3 x)3 r¥ ¥= =

å å = =
+ ++

This integral you can evaluate easily.

Self Assessment

Fill in the blanks:

1. Let P, and P, be two partitions of [a,b]. We say that P, is finer than P, or P 2, refines P, or P2

is a refinement of P1 if ................., that is, every point of P1 is a point of P,.

2. Let f: [a,b]  R be a bounded function. The infimum or the greatest lower hound of, the set
of ail upper sums is called the upper (Riemann) integral of f on [a, b] and is denoted
by,..........................................

3. If the partition P2 is a refinement of the partition P, of [a,b], then L(P1,f) £ L(P2,f) and
.............................................

4. The integrability is not affected even when there are finites number of points of
................................ or the set of points of discontinuity of the function has a finite number
of limit points.

5. If f : [a, bJ  R is a ......................, then f is integrable over [a, b], that is f Î R(a,b).

3.5 Summary

 In this unit, you have been introduced to the concept of integration without bringing in
the idea of differentiation. As upper and lower sums and integrals of a bounded function
f over closed interval [a,b] have been defined. You have seen that upper and lower Riemann
integrals of a bounded function always exist. Only when the upper and lower Riemann
integrals are equal, the function f is said to be Riemann integrable or simply integrable
over [a,b] and we write it as f Î R [a,b] and the value of the integral of f over [a,b] is
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denoted by 

b

a
f(x) dx.  Also in this section, it has been shown that in passing from a partition

PI to a finer partition P2, the upper sum does not increase and the lower sum does not
decrease. Further, you have seen that the lower integrable of a function is less than or
equal to the upper integral. Further condition of integrability has been derived with the
help of which the integrability of a function can be decided without finding the upper and
lower integrals. Using the condition of integrability, it has been shown that a function f is
integrable on [a,b] if it is continuous or it has a finite number of points of discontinuities
or the set of points of discontinuities have finite number of limit points. Also you have
seen that a monotonic function is integrable. As in the case of continuous and derivable
functions, the sum, difference, product and quotient of integrable functions is integrable.
Riemann sum S(P,f) of a function f for a partition P has been defined and you have been
shown that 

P 0
lim S(P,f)


 exists if and only if f Î R [a,b] and 
b

P 0a
f(x) dx lim S(P,f).


 =  Using this

idea a number of problems can be solved.

3.6 Keywords

Partition: Let [a,b] be a given interval. By a partition P of [a,b] we mean a finite set of points
{x0, xl, ...., x,}, where

a = x0, < x1 <… < xn-1 <xn = b.

We write xi = xi – xi-1, (i=l, 2, ..., n). So xi is the length of the ith sub-interval given by the
partition P.

Norm of a Partition: Norm of a partition P, denoted by P ,  is defined by P max Ax,.
t i n
=

£ £

 Namely,

the norm of P is the length of largest sub-interval of [a, b] induced by P. Norm of P is also
denoted by (P).

Darboux's Theorem: If f: [a,b]  R is a bounded function, then to every Î > 0, there corresponds
d > 0 such that

(i)
b

a
U(P,f) f(x) dx< + Î

(ii)
b

a
L(P,f) f(x) dx< - Î

3.7 Review Questions

1. Find the upper and lower Riemariri integrals of the function f defined in [a, b] as follows

1 when x is ratinal
f(x)

1 when x is irrational
ì

= í
-î

2. Show that the function f where f(x) = x[x] is integrable in [0, 2].

3. Show that the function f defined in LO, 21 such that f(x) = 0, when nx
n 1

=
+

 or

n 1 (n 1,2,3, ),
n
+

= ¼  and f(x) = 1, elsewhere, is integrable.
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Notes 4. Prove that the function f defined in [0, 1] by the condition that if r is a positive integer,

f(x) = (–1)r-1 when 1 1x ,
r 1 r

< £
+

 and f(x) = 0, elsewhere, is integrable.

5. Show that the function f defined in [0, 1], for integer a > 2, by r 1

1f(x) ,
a -

=  when r r 1

1 1x
a a -

< <

r 1

1(r 1,2,3)
a -

= , and f(0) = 0, is integrable.

6. Give example of functions f and g such that f – g, fg, f/g are integrable but f and g may not
be integrable over [a, b].

7. Find the limit, when n tends 10 infinity, of the series

3 3 3 3

n n n n
n (n 4) (n 8) [n 4(n 1)]

+ + +¼+
+ + + -

8. Find the limit, when 11 tends to infinity, of the series

1 1 1 1 .
n n 1 n 2 3n
+ + +¼+

+ +

Answers: Self Assessment

1. P1  P2 2.
h

a
f(x)dx.

3. U(P2,f) £ U(P1,f) 4. discontinuity

5. continuous function

3.8 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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CONTENTS
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Introduction

4.1 Properties of Riemann Integral

4.2 Summary

4.3 Keyword

4.4 Review Questions

4.5 Further Readings

Objectives

After studying this unit, you will be able to:

 Identify the properties of the integral and

 Use them to find the Riemann Stieltjes integral of functions

Introduction

In last unit you have studied about Riemann integral. In this unit, we are going to see the
properties of Riemann Stieltjes integral.

4.1 Properties of Riemann Integral

As you were introduced to some methods which enabled you to associate with each integrable

function f defined on [a,b], a unique real number called the integral 
b

a
f(x) dxò  in the sense of

Riemann. A method of computing this integral as a limit of a sum was explained. All this leads
us to consider some nice properties which are presented as follows:

Property 1: If f and g are integrable on [a, b] and if

f(x) g(x) x [a,b],£ " Î

then

b b
f(x) dx g(x) dxò ò£

Proof: Define a function h: [a,b]  R as

h = g – f .

Since f and g are integrable on [a, b], therefore, the difference h is also integrable on [a, b].

Since

f(x) £ g(x)  g(x) – f(x)  0,

therefore h(x)  0 for all x E [a,b].

Richa Nandra, Lovely Professional University
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Notes Consequently, if P = {x0, x1, … xn} be any partition of [a,b]

and m, be the inf. of h in [x, 1, x,], then

im 0 i 1, 2, n " = ¼

n

i i
i 1

m x 0
=

åÞ D 

L(P,h) 0Þ 

Thus for every partition P, the lower sum L(P,h)  0.

In other words, Sup. (1 (P,h): P is a partition of [a,b])  0

or

h

a
f(x) dxò

Since h is integrable in [a,b], therefore

b b b

a a a
h(x) dx h(x) dx h(x) dx.ò ò ò= =

Thus

b

a
h(x) dx 0ò 

or

b

a
(g f) (x) dx 0ò - 

Þ
b b

a a
g(x) dx f(x) dxò ò

which proves the property

Property 2: If f, is integrable on [a, b] then f  is also integrable on

b b

a a
[a,b] and f(x) dx f(x) dxò ò£

Proof: The inequality follows at once from Property 1 provided it is known that f  is integrable

on [a,b]. Indeed, you know that f f f .- £ £

Therefore,

b b b

a a
f(x) dx f(x) dx f(x) dx

-

ò ò ò£ £

which proves the required result. Thus, it remains to show that f  is integrable.

Let Î > 0 be any number. There exists a partition P of [a, b]
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Notessuch that

U(P,f) – L(P,f) £Î

Let P = {x0, x1, x2, …, xn}.

Let i iM  and m¢ ¢  denote the supremum and infimum of f  and Mi and mi denote the supremum
and infimum of f in [xi-1, xi].

You can easily check that

' '
i i i iM m M m .-  -

This implies that 
n n

i i i 1 1 i
i 1 i 1

(M m ) A x (M m ) x ,¢ ¢

= =

å å-  - D

i.e., ( ) ( )U P, f L P, f U(P,f) L(P,f) ,- £ - <Î

This shows that f  is integrable on [a,b].

Note that the inequality established in Property 2 may be thought of as a Integrability and
differentiability generalization of the well-known triangle inequality

a b a b+ £ +

In other words, the absolute value of the limit of a sum never exceeds the limit of the sum of the
absolute values.

You know that in the integral 
b

a
f(x) dx,ò  the lower limit a is less than the upper limit b. It is not

always necessary. In fact the next property deals with the integral in which the lower limit a may
be less than or equal to or greater than the upper limit b.

For that, we have the following definition:

Definition 1: Let f be integrable on [a,b], that is, 
b

a
f(x) dxò  exists when b > a. Then

b

a
f(x) dxò = 0, if a = b

a

b
f(x) dx,  if a b.ò= - >

Now have the following property.

Property 3: If a function f is integrable in [a,b] and f(x) k x [a,b],£ " Î  then 
b

a
f(x) dx k b a .ò £ -

Proof: There are only three possibilities namely either a < b or a > b or a = b. We discuss the cases
as follows:

Case (i): a < b

Since f(x) k£ x [a,b]," Î  therefore

– k £ f(x) £ k x [a,b]" Î
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Þ

h b b

a a
kdx f(x) dx k dx (why?)ò ò ò- £ £

Þ
b

a
k(b a) f(x) dx k(b a)ò- - £ £ -


b

a
f(x)dx k(b a) k b aò £ - = -

which completes the proof of the theorem.

Case (ii): a > b

In this case, interchanging a and b in the Case (i), you will get

a

b
f(x) dx k(a b)ò £ -

i.e.
b
f(x) dx k(a b)ò- £ -

i.e.
b
f(x) dx k(a b) k b a .ò £ - = -

Case (iii): a = b

In this case also, the result holds,

since 
b

a
f(x) dx 0 for a b and k b a 0 for a b.ò = = - = =

Let [a,b] be a fixed interval. Let R [a,b] denote the set of all Riemann integrable functions on this
interval. We have shown that if f,g C R [a,b], then f + g f.g and f for A Î R belong to R [a,b].
Combining these with Property, we can say that the set R [a,b] of Riemann integrable functions
is closed under addition, multiplication, scalar multiplication and the formatian of the absolute
value.

If we consider the integral as a function Int: R[a,b]  R defined by

Int (f) = 
b

a
f(x) dxò

with domain R [a,b] and range contained in R, then this function has the following properties:

lnt (f+g) = Int (f) + Int (g), lnt (f) = Int (f)

In other words, the function lnt preserves 'Vector sums' and the scalar products. In the language
of Linear Algebra, the function lnt acts as a linear transformation. This function also has an
additional interesting property such as

lnt (f) £ lnt(g)

whenever

f £ g .

We state yet another interesting property (without proof) which shows that the Riemann Integral
is additive on an interval.
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NotesProperty 4: If f is integrable on [a,b] and c Î [a,b], then f is integrable on [a,c] and [c,b] and
conversely. Further in either case

b c b

a a c
f(x) dx f(x) dx f(x) dx.ò ò ò= +

According to this property, if we split the interval over which we are integrating into two parts,
the value of the integral over the whole will be the sum of the two integrals over the subintervals.
This amounts to dividing the region whose area must be found into two separate parts while the
total area is the sum of the areas of the separate portions.

We now state a few more properties of the definite integral 
b

a
f(x) dxò , these are:

(i)
n a
f(x) dx f(a x) dx.ò ò= -

(ii)
2a a a

0 0 0
f(x) dx f(x) dx f(2a x)dx.ò ò ò= + -

(iii)
a

a
0

a

2 f(x) dx if f is an even function
f(x) dx

0 iff is an old function.-

ò
ò

ì
ï

= í
ïî

(iv)
na a

0 0
f(x) dx n f(x) dxò ò=  if f is periodic with period 'a' and n is a positive integer provided the

integrals exist.

Self Assessment

Fill in the blanks:

1. If f, is ...................... on [a, b] then f  is also integrable on 
b b

a a
[a,b] and f(x) dx f(x) dx.ò ò£

2. The inequality follows at once from Property 1 provided it is known that f  is .........................

on [a, b]. Indeed, you know that f f f .- £ £

3. If a function f is integrable in [a, b] and ..................................,  then 
b

a
f(x) dx k b a .ò £ -

4. If f is integrable on [a, b] and ................., then f is integrable on [a, c] and [c, b] and conversely.

4.2 Summary

 Sum of two Riemann Stieltjes integrable functions is also Riemann Stieltjes integrable.

 Scalar product of a Riemann Stieltjes integrable function is also Riemann Stieltjes integrable.

 Modulus of a Riemann Stieltjes integrable function is also Riemann Stieltjes integrable.

 Square of a Riemann Stieltjes integrable function is also Riemann Stieltjes integrable.

 If a function is Riemann Stieltjes integrable on an interval, then it is also Riemann Stieltjes
integrable on any of its subinterval.
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Notes 4.3 Keyword

Riemann Stieltjes Integrable: Sum of two Riemann Stieltjes integrable functions is also Riemann
Stieltjes integrable.

4.4 Review Questions

1. Calculate if a < b, a
b fdò a

2. Suppose f is a bounded valued function on [a, b] and f2 Î R on [a, b]. Does it follow that
f ÎR on [a, b]?

3. Show that 0ò1 x2dx = 3/5 where a(n) = x3

4. Show that 0ò2 [x]dx = 3/5 where a(x) = x2 = 3.

Answers: Self Assessment

1. integrable 2. integrable

3. f(x) k x E[a, b]£ " 4. c Î [a, b]

4.5 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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NotesUnit 5: Introduction to Riemann-Stieltjes
Integration, using Riemann Sums

CONTENTS

Objectives

Introduction

5.1 Riemann-Stieltjes Sums

5.2 More Notation: The Mesh (Size) of a Partition

5.3 The Riemann-Stieltjes – sum Definition of the Riemann-Stieltjes Integral

5.4 A Difficulty with the Definition; The Cauchy Criterion for Riemann-Stieltjes
Integrability

5.5 Functions of Bounded Variation: Definition and Properties

5.6 Some Properties of Functions of Bounded Variation

5.7 Summary

5.8 Keywords

5.9 Review Questions

5.10 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss Riemann–Stieltjes sums

 Know the Cauchy Criterion for Riemann–Stieltjes Integrability

Introduction

We will approach Riemann-Stieltjes integrals using Riemann-Stieltjes sums instead of the upper
and lower sums. The main reasons are to study Riemann-Stieltjes integrals with “integrators”
(x) that are not monotone, but are “of bounded variation,” and (most important) here you are
able to define Riemann-Stieltjes integrals when the values of my functions belong to an infinite
dimensional vector space, where upper and lower sums don’t make sense. This makes little
difference in the case of real-valued functions, since functions of bounded variation can always
be expressed as the difference of two monotone functions. At first, we don’t need “bounded
variation,” so that concept’s development will wait until it is needed.

Throughout this note, our functions f(x) will be “finite-valued.” They may be real, complex, or
vector-valued. Their values will thus lie in a vector space. They can thus be added pointwise, and
multiplied by scalars, and their values always have finite “distance from zero,” denoted |f(x)|,
which can denote absolute value or norm, such as the length of a vector, or the “Lp norm” and the
“Lq norm”. In case f(x) is actually a function of t for each x... We always assume that the ”absolute
value” is complete; Cauchy sequences converge.

Richa Nandra, Lovely Professional University
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Notes 5.1 Riemann-Stieltjes Sums

A Riemann-Stieltjes sum for a function f(x) defined on an interval [a, b] is formed with the help
of

1. A partition  of [a, b], namely an ordered, finite set of points xi, with a = x0 < x1 < < xn = b
(where n is a positive integer that can be any positive integer, and one that we will often
write as n = n


),

2. A selection vector  = (1, ..., n) that has n

 components that must satisfy xi – 1  i  xi, for

i = 1, 2, ..., n.

and

3. An integrator (x), which is a function defined on [a, b] that plays the role of the x in dx ...

A Riemann-Stieltjes sum for f over [a, b] with respect to the partition , using the selection
vector , and integrator , may be denoted (in greatest detail!) as follows, and it is given
by the value of the sum following it:

4. RS (f, , [a, b], , ):=
n

i i i 1
i 1

f( )( (x ) (x ))


-
=

  - å .

5.2 More Notation: The Mesh (Size) of a Partition

In this definition, as in the Riemann-sums definition, we can write xi:= xi—xi – 1 or i:= (xi) –
(xi – 1). These are convenient because they are short and suggest the dx or d in an integral. But
they can cause confusion because they leave out the dependence they have on xi – 1. The xi is used
in the Riemann-Stieltjes context.

A partition  can be thought of as “dividing” the interval [a, b] into subintervals. We may write
|[a, b] and read this as “ divides [a, b],” or “partitions [a, b].” We will denote the intervals of
 by Ii:= [xi – 1, xi]. When we wish to work with 2 partitions at the same time we will have to
distinguish between them somehow, for example we can use y j to denote the other’s points and
Jj to denote its intervals, etc.

We measure the fineness of a partition using the length of the longest interval in the partition.
This number is written

mesh():=
1 i n
max

 
(xi – xi – 1) = 

1 i n
max

 
xi.

This definition of mesh size is used and not 
1 i n
max

 
((xi) –(xi – 1)) even in the Riemann-Stieltjes

context.

5.3 The Riemann-Stieltjes – sum Definition of the
Riemann-Stieltjes Integral

Definition: A real-valued function f(x) defined on the bounded and closed interval [a, b] is
Riemann-Stieltjes integrable on [a, b] with respect to  if there exists a number RSI such that for
all  > 0 there exists  > 0 such that for every partition  of [a, b],

mesh() <   |RS(f, ) – RSI| < .

We write

b
a f dò = b

a f(x) d (x)ò := RSI
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Notesand we call this the Riemann-Stieltjes integral of f over [a, b] with respect to .

If f and  are real-valued and we imagine the set of all numbers RS(f, , ) that can be formed
(using all possible appropriate selection vectors and all possible partitions whose mesh sizes
are less than ), the definition demands that they all lie in the open interval (RSI – , RSI + ).
When we had (x) = x this led to a Theorem.

Theorem: If f is Riemann integrable on [a, b] then f is bounded on [a, b].

This Theorem has to be modified in the Riemann-Stieltjes context! A simple example: suppose
that [a, b] is [0, 1] and that (x) = 0 if 0  x  c, where 0 < c < 1, and (x) = 1 if c < x  1. Then every
function f(x) that is continuous at c is Riemann-Stieltjes integrable on [0, 1] with respect to this .
In particular the function that is 1/x except at zero, where we define it to be zero, is Riemann-
Stieltjes integrable on [0, 1] with respect to this , but f is not bounded. The difference is that
when (x) was just x, we had xi > 0 for every i. In our example, i = 0 unless Ii contains c and
some d with c < d. What we need is that on the set where the function  “really” varies, f must be
bounded. To make a definition, we will extend the definitions of f and  beyond the interval [a,
b] by setting them equal to their values at the endpoints. Thus we think of f(x) = f(a) if x < a and
f(x) = f(b) if x > b, with the same idea used to extend . We now define the oscillation of f on an
interval U by

(f, U) :=
x, y U
sup

Î

|f(x) – f(y)|.

We allow the interval to be open or half-open now!

As before, we will let i = i(f) = (f, Ii) when Ii is an interval (closed!) of a partition . But now we
need to use oscillations of  as well.

Definition: If (x) is defined for x Î [a, b], we denote by  = (, [a, b]) the set of all c Î [a, b] such
that every open interval U that contains c contains x1 < c < x2 with |(x1) –(x2)| > 0.

Notes Here c can be a or b because of our extension beyond [a, b]! For instance, if for all
 > 0 there exists x2 such that a < x2 < a +  and |(a) –(x2)| > 0, then a Î (, [a, b]) because
for every x1 < a we have |(x1) –(x2)| = |(a) –(x2)| > 0.

Task  Prove that (, [a, b]) is closed.

Theorem: If f is Riemann-Stieltjes integrable on [a, b] with respect to  then f is bounded on
(, [a, b]).

Proof: There exists a sequence {xn} in := (, [a, b]) such that |f(xn)| > n. Since f(x) is finite at
every point x in , there are infinitely many distinct xn, and so some subsequence (that we will
still denote {xn}) converges to a point x* in . We now choose  = 1 in the definition of Riemann-
Stieltjes integrability, and obtain a corresponding  > 0. We can then construct a partition o with
mesh size less than  in such a way that x* is contained in the interior of some interval I io

 of o

(unless x* is an endpoint of [a, b]; in that case, we can, by the Note, still use the following
argument, with Iio

 = I1 or Iio
 = In

). We know that every neighbourhood of x* contains infinitely
many of the xn. Now we will refine o. We know that Int(Iio

) contains points 1x̂ < x* < 2x̂  with
|( 1x̂ )—( 2x̂ )| > 0. We add these points to o, giving us a new partition , and mesh() < . We
will now call [ 1x̂ , 2x̂ ], which is an interval of , Î . Next we pick the components i of a selection
vector  in an arbitrary way when Ii  Î , and we let ̂  be some xN Î Î . Then |RS(f, , ) – RSI| <
1. We next modify  by changing only ̂ = xN to ̂¢ := xM, where x

M
Î Î , and we call the new
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Notes selection vector ¢. Then |RS(f, ,¢) – RSI|< 1, RS(f,,¢) – RS(f,,) = (f(xM) – f(xN))((xi) – (x2))
and

RS(f, p, ¢) – RSI = RS(f, , ) – RSI + (f(xM) – f(xN))(( 1x̂ ) – ( 2x̂ )).

By choosing M very large compared to N we can arrange that |f(x
M
) – f(xN)||( 1x̂ ) – ( 2x̂ )| > 2.

Then

1 > |RS(f, , ’) – RSI|  |RS(f, , ’) – RS(f, ,)| – |RS(f, , ) – RSI| > 2 – 1 = 1.

The definition of Riemann-Stieltjes integrability is contradicted. Hence f is bounded on (, [a, b])
if f is Riemann-Stieltjes integrable with respect to .

Notes From now on, we will usually say “f is Riemann-Stieltjes integrable” instead of
“f is Riemann-Stieltjes integrable with respect to .”

5.4 A difficulty with the Definition; The Cauchy criterion for
Riemann-Stieltjes integrability

In order to tell whether f is Riemann-Stieltjes integrable we have to know b
a f(x) d (x).ò  The idea

of a Cauchy sequence leads to the following Theorem, which gives an equivalent definition.

Theorem: Cauchy criterion for Riemann-Stieltjes Integrability

A function defined on [a, b] is Riemann-Stieltjes integrable over [a, b] with respect to , defined
on [a, b], if and only if for all  > 0 there exists  > 0 such that for all partitions  and ¢ of [a, b],
and for all selection vectors  and ¢ associated with  and ¢, respectively,

mesh() <  and mesh(¢) <   |RS(f, , , ) – RS(f, , ¢, ¢)| < .

Proof: First we suppose that f is Riemann-Stieltjes integrable over [a, b] with respect to . Then,
using /2 in the definition of Riemann-Stieltjes integrability, we obtain  > 0 and RSI such that
for all partitions  of [a, b],

mesh() <   |RS() – RSI| < /2

Now we suppose that  and ¢ are partitions of [a, b] and that

mesh() <  and mesh(¢) < .

Then for all selection vectors  and ¢ associated with  and ¢, respectively,

|RS(f, , , ) – RS(f, , ¢, ¢)|  |RS(, ) – RSI| + |RSI – RS(¢, ¢)| < /2 + /2 = .

This completes half the proof.

Next we suppose that the Cauchy condition, given in the Theorem, is satisfied. We have to find
a candidate for b

a f(x) d (x).ò  We first construct a sequence of partitions of [a, b]. We let n denote

the partition that divides [a, b] into n equal parts n ni
b ahas points x : a i .

n
-æ ö

 = +ç ÷è ø
 Finally we

define selection vectors n by

ni := a + i b a
n
- , i = 1, ..., n and define n:= 

n

ni ni n ,i 1
i 1

f( )( (x ) (x )),-
=

  - å

a Riemann-Stieltjes sum (n = RS(f, , n, n)). Now, given  > 0, we use /2 in the Cauchy
criterion, and obtain  > 0 such that

mesh() <  and mesh(¢) <  |RS(f, , , ) – RS(f, , ¢, ¢)| < /2.
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NotesThen, if n and n¢ are so large that (b – a)/n <  and (b – a)/n¢ < , we have

mesh(n) <  and mesh(n¢) <   |n – n¢| < /2.

This means (since  was arbitrary) that {n} is a Cauchy sequence in our space. Thus we define

RSI := 
n
lim
®¥

n

and it remains to show that if |[a, b] then

mesh() <   |RS() – RSI| <.

This is essentially done. We choose the first n such that mesh(n) < , and we suppose that
mesh() < . Then

|RS() – RI|  |RS() – n| + | n – RSI| < /2 + /2 = ,

since RS()—n = RS() – RS(f, , n, n). The proof is complete.

Notes Nothing is said at first about the functions f and , beside the demand that the
integrability definition hold.

If f and  have a discontinuity at the same point, then the Riemann-Stieltjes integral does not
exist.

They also show that if the Riemann-Stieltjes integral exists, then this integration-by-parts formula
holds:

b

a
f dò =

b

a
df f(b) (b) f(a) (a)-  +  - ò

(in the applications have far, far back in my mind, the integral on the right would have to be
b
a df ,ò  in order to keep the order of “multiplication” the same). The proof amounts to rearranging

the Riemann-Stieltjes sums, adding and subtracting terms in such a way that the i become
partition points and the xi become selection-vector components when 1 < i < n


. There are some

leftovers, and these turn out to be the “boundary” term f(x)(x)|b
a.

Wheeden and Zygmund state several properties, routine to prove, about Riemann-Stieltjes
integrals:

b

a
f dò is linear in both f and 

as long as all the integrals involved exist, and if 
b

a
f dò  exists and a < c <b, then both of 

c

a
f dò

and 
b

c
f dò  exist, and 

c

a
f dò  + 

b

c
f dò  = 

b

a
f dò .

What has been covered applies to all Riemann-Stieltjes integrals. That continuity plays a role
has already been mentioned.

5.5 Functions of Bounded Variation: Definition and Properties

In what we do from now on, at least one of f and  will be a function of bounded variation, unless
otherwise stated. We will begin by discussing real-valued functions of bounded variation. This
material can also be found in Measure and Integral, by Wheeden and Zygmund.

Definition: A function f: [a, b] ®  is a function of bounded variation on [a, b] if

V(f, [a, b]) :=
|[a,b]
sup


n

1



å|f(xi) – f(xi – 1)| < ¥ and we say that f Î BV[a, b].
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Notes To go farther it will be useful to have some more notation. If  is a partition of [a, b] we will
write

V

 = V


(f, [a, b]) :=

n

1



å|f(xi) – f(xi – 1)|,

so that V = 
|[a,b]
sup


 V

 (here, f and [a, b] are “assumed”).

We can call V

 the “-variation” of f over [a, b]. Since f has a finite value for each |[a, b], V


 is

always finite. However, V can be infinite. This is so, for example, if f is the Dirichlet function.

Each V

 pays attention only to the absolute value of the difference between the values at the

opposite ends of an interval of the partition . We will need to take the signs of those differences
into account, and they will lead to two new “variations.”

For a real number x we define its positive part to be x+ := max{0, x} and we define its negative part
to be x– := max{0, –x}. Both “parts” are non-negative, and we have x + + x– = |x| and x+ – x– = x.

Example: Prove that for all real numbers x and y, (x + y)+  x+ + y+ and (x + y)–  x– + y–.
These are “triangle inequalities!” What can be said about (xy)+ and (xy)–?

We now define the “positive” and “negative” “ -variations” of f over [a, b]:

P

 = P


(f, [a, b]) := 

n

1



å (f(xi) – f(xi – 1))+ and N

= N


(f, [a, b]) := 

n

1



å (f(xi) – f(xi – 1))–.

Definition: The positive variation, P = P(f, [a, b]) and the negative variation N = N(f, [a, b]) of f
over [a, b] are given by P = 

|[a,b]
sup


P

 and N = 

|[a,b]
sup


N

 respectively.

For example, if f increases on [a, b], P

 = V


 = f(b) – f(a) and N


 = 0. If we look at f(x) := |x| on

[–1, 1] we will always have 0  P

  1 and 0  N


  1, and 0  V


  2.

Because of how x+ and x– were defined, we always have (for any function)

P

 + N


 = V


 and P


 – N


 = f(b) – f(a)

If  is a refinement of , we always have O

  O


, where O stands for any of the letters N, P or V.

This follows from several applications of the triangle inequality.

5.6 Some Properties of Functions of Bounded Variation

If f Î BV[a, b] then f is bounded on [a, b].

Proof: Suppose a  x  b. Then, if we let := {a, x, b},

|f(x)| = |f(x) – f(a) + f(a)|  |f(a)| + |f(x) – f(a)| +|f(b) – f(x)| = |f(a)| + V

  |f(a)| + V.

The space BV[a, b] is a vector space. For all c Î  and all f Î BV[a, b], V(cf, [a, b]) = |c|V(f, [a, b]).
For all f Î BV[a, b] and g Î BV[a, b], V(f, [a, b])  V(f, [a, b]) + V(g, [a, b]); V(f, [a, b]) = 0 if and only
if f is constant.

Proof: The second assertion follows from these facts: for all | [a, b], V

(cf, [a, b]) = |c|V


(f,

[a, b]); sup{|c|x: x Î E} = |c| sup{x: x Î E} = |c| sup E. The first assertion and the first part of the
third one follow from the second one and the triangle inequality. Finally, suppose that V(f, [a,
b]) = 0 and that a  x  b. Then, with := {a, x, b}, |f(x) – f(a)| |f(x) – f(a)| + |f(b) – f(x)| = V


 = 0.

Therefore f(x)  f(a).

If f Î BV[a, b] and a < c <b then f Î BV[a, c] and f Î BV[c, b], and conversely. Moreover, V =
V(f, [a, b]) = V(f, [a, c]) + V(f, [c, b]).
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NotesProof: If f Î BV[a, b] and a < c < b, let partitions | [a, c] and | [c, b] be given. Then :=  U  is
a partition of [a, b] so V


 + V


 = V


  V, hence V


  V and V


  V. Thus f Î BV[a, c] and f Î BV[c, b].

Conversely, suppose that a < c < b and that f Î BV[a, c] and f Î BV[c, b]. Let |[a, b]. Then
c: = U {c} is a refinement of . Therefore V


  V

c
 = V


 + V


, where := c[a, c] and  is defined

similarly. By hypothesis, V

  V

c
 = V


 + V


  V(f, [a, c]) + V(f, [c, b]). Thus V(f, [a, b])  V(f, [a, c])

+ V(f, [c, b]) < ¥. This proves part of the asserted equality. To show the other inequality, now
that we know V < ¥ let partitions | [a, c] and | [c, b] be given. We recall that earlier we had
V


 + V


 = V

c
  V, so V


 + V


  V whenever | [a, c] and | [c, b] were arbitrary partitions of [a, c]

and [c, b], respectively.

Thus 
|[a,c]
sup


(V

 + V


) = V(f, [a, c]) +V


  V, and so 

|[c,b]
sup


(V(f, [a, c]) + V

) = V(f, [a, c]) + V(f, [c, b])  V.

Note  The first inequality holds for an arbitrary |[c, b], making the second one valid.

Example: Prove that the equality in (25) holds for every function f: [a, b] ® , whether f
is a function of bounded variation or not.

Motivated by (25), when f: [a, b] ®  and a  x  b we can define the three functions

V(x) := V(f, [a, x]), P(x) := P(f, [a, x]) and N(x) := N(f, [a, x]).

Each of these is an increasing function of x. Jordan’s Theorem asserts that if f Î BV[a, b] we can
represent f in terms of P(x) and N(x).

Theorem: Jordan

A function f Î BV[a, b] if and only if there exist functions g and h, both increasing on [a, b], such
that f(x) = g(x) – h(x) for a  x  b. If this is the case, then P(x)  g(x) – g(a), N(x)  h(x) – h(a) and
f(x) = f(a) + P(x) – N(x) for a  x  b.

Proof: Suppose first that f(t) = g(t) – h(t), t Î [a, b], where the functions g and h are both increasing
on [a, b]. Let |[a, b] (later, we will apply this when x Î [a, b] and |[a, x]). Then

fi = f (xi) – f(xi – 1) = gi – hi { i

i

g
h

 

 -
.

Thus –hi  fi  gi, so |fi|  max{gi, hi}  gi +hi for 1  i  n

. Hence V


(f)  V


(g) + V


(h) =

g(b) – g(a) + h(b) – h(a) < ¥, so f Î BV[a, b].

Next, we show that f(x) = f(a) + P(x) – N(x) for a  x  b. But we will do this just by showing it for
x = b. Then we can use (25) and let each x Î [a, b] play the role of b. This will show the existence
of the functions g(x)(= f(a) + P(x)) and h(x)(= N(x)). After that is done, we’ll prove the P–g and
N–h inequalities.

By the definitions of P, N and V we know there exist sequences {k}, {k} and {k} such that P
k 
® P,

N
k

 ® N and V
k

 ® V. Let us define k := k  k  k. As P
k

  P
k

  P. By the Squeeze Principle
P
k

 ® P. Similarly, N
k

 ® N and V
k 
® V. By Limit Theorems

P + N = V and P – N = f(b) – f(a) and the second is the same as f(x) = f(a) + P(x) – N(x)

when x = b. By above we can use any x Î [a, b] in place of b by restricting our attention to f on
[a, x].

Now suppose that f(x) is defined as the difference of two increasing functions on [a, b]: f(t) =
g(t) – h(t). We have the following observation: t1 ® t+ is increasing and t1 ® t– is decreasing.
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Notes Therefore, with the help of (28), applied to partitions of [a, x], (fi)+  (gi)+ = gi and hi =
(–hi)–  (fi)–.

Hence P

(f, [a, x])  P


(g, [a, x]) = g(x) – g(a). Similarly, h(x) – h(a) = N


(–h, [a, x])  N


(f, [a, x]).

When, in each case, we take the supremum over all |[a, x], we get P(x)  g(x) – g(a) and N(x)   h(x)
– h(a). These ”say” that there is no “wasted cancellation” in the formula f(x) = f(a) + P(x) – N(x).

Task  Prove that if f(x) Î BV[a, b] and f(x) is continuous at xo Î [a, b] then so are P(x), N(x)
and V(x).

Self Assessment

Fill in the blanks:

1. A ..................................... f(x) defined on the bounded and closed interval [a, b] is Riemann-
Stieltjes integrable on [a, b] with respect to  if there exists a number RSI such that for all
 > 0 there exists  > 0 such that for every partition  of [a, b],

mesh() <   |RS(f, ) – RSI| < .

2. If f is Riemann integrable on [a, b] then f is .................................

3. If (x) is defined for x Î [a, b], we denote by  = (, [a, b]) the set of all c Î [a, b] such that
every open interval U that contains c contains x1 < c < x2 with .....................................

4. If f is ...........................................  on [a, b] with respect to  then f is bounded on (, [a, b]).

5. If f and  have a ................................... at the same point, then the Riemann-Stieltjes integral
does not exist.

5.7 Summary

 A Riemann-Stieltjes sum for a function f(x) defined on an interval [a, b] is formed with the
help of

(a) A partition  of [a, b], namely an ordered, finite set of points xi, with a = x0 < x1 < <
xn = b (where n is a positive integer that can be any positive integer, and one that we
will often write as n = n


),

(b) A selection vector  = (1, ..., n) that has n

 components that must satisfy xi – 1  i  xi,

for i = 1, 2, ..., n. and

(c) An integrator (x), which is a function defined on [a, b] that plays the role of the x in
dx ...

A Riemann-Stieltjes sum for f over [a, b] with respect to the partition , using the
selection vector , and integrator , may be denoted (in greatest detail!) as follows,
and it is given by the value of the sum following it:

(d) RS (f, , [a, b], , ):=
n

i i i 1
i 1

f( )( (x ) (x ))


-
=

  - å .

We try to allow context to let us drop some of the items inside the RS(...).

 In this definition, as in the Riemann-sums definition, we can write xi:= xi—xi – 1 or i:=
(xi) –(xi – 1). These are convenient because they are short and suggest the dx or d in an
integral. But they can cause confusion because they leave out the dependence they have on
xi – 1. The xi is used in the Riemann-Stieltjes context.
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Notes A partition  can be thought of as “dividing” the interval [a, b] into subintervals. We may
write |[a, b] and read this as “ divides [a, b],” or “partitions [a, b].” We will denote the
intervals of  by Ii: = [xi – 1, xi]. When we wish to work with 2 partitions at the same time we
will have to distinguish between them somehow, for example we can use y j to denote the
other’s points and Jj to denote its intervals, etc.

 A real-valued function f(x) defined on the bounded and closed interval [a, b] is Riemann-
Stieltjes integrable on [a, b] with respect to  if there exists a number RSI such that for all
 > 0 there exists  > 0 such that for every partition  of [a, b],

mesh() <   |RS(f, ) – RSI| < .

5.8 Keywords

Cauchy Criterion for Riemann-Stieltjes Integrability: A function defined on [a, b] is Riemann-
Stieltjes integrable over [a, b] with respect to , defined on [a, b], if and only if for all  > 0 there
exists  > 0 such that for all partitions  and ¢ of [a, b], and for all selection vectors  and ¢
associated with  and ¢, respectively,

mesh() <  and mesh(¢) <   |RS(f, , , ) – RS(f, , ¢, ¢)| < .

Jordan: A function f Î BV[a, b] if and only if there exist functions g and h, both increasing on [a,
b], such that f(x) = g(x) – h(x) for a  x  b. If this is the case, then P(x)  g(x) – g(a), N(x)  h(x) – h(a)
and f(x) = f(a) + P(x) – N(x) for a  x  b.

5.9 Review Questions

1. Identify the properties of the integral.

2. Use them to find the Riemann stieltjes integral of functions.

Answers: Self Assessment

1. real-valued function 2. bounded on [a, b]

3. |(x1) –(x2)| > 0 4. Riemann-Stieltjes integrable

5. discontinuity

5.10 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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6.1 Differentiation of Integrals

6.2 Theorems on the Differentiation of Integrals

6.3 Summary

6.4 Keywords

6.5 Review Questions

6.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Define Differentiation of Integrals

 Discuss the Theorems on the Differentiation of Integrals

Introduction

In this unit, we are going to study about differentiation of integrals. Suppose  is a function of
two variables which can be integrated with respect to one variable and which can be differentiated
with respect to another variable. We are going to see under what conditions the result will be
the same if these two limit process are carried out in the opposite order.

6.1 Differentiation of Integrals

In mathematics, the problem of differentiation of integrals is that of determining under what
circumstances the mean value integral of a suitable function on a small neighbourhood of a
point approximates the value of the function at that point. More formally, given a space X with
a measure  and a metric d, one asks for what functions f : X  R does

rB (x)r u
r

1lim f(y)d (y) f(x)
(B (x))

 =
 ò

for all (or at least -almost all) x  X? (Here, as in the rest of the article, Br(x) denotes the open ball
in X with d-radius r and centre x.) This is a natural question to ask, especially in view of the
heuristic construction of the Riemann integral, in which it is almost implicit that f(x) is a “good
representative” for the values of f near x.

6.2 Theorems on the Differentiation of Integrals

Lebesgue Measure

One result on the differentiation of integrals is the Lebesgue differentiation theorem, as proved
by Henri Lebesgue in 1910. Consider n-dimensional Lebesgue measure n on n-dimensional
Euclidean space Rn. Then, for any locally integrable function f : Rn  R, one has

Sachin Kaushal, Lovely Professional University

56



LOVELY PROFESSIONAL UNIVERSITY

Differentiation of Integrals

Notes

r

n
n B (x)r 0

r

1lim f(y)d (y) f(x)
(B (x))

 =
 ò

for n-almost all points x  Rn. It is important to note, however, that the measure zero set of
“bad” points depends on the function f.

Borel Measures on Rn

The result for Lebesgue measure turns out to be a special case of the following result, which is
based on the Besicovitch covering theorem: if  is any locally finite Borel measure on Rn and
f : Rn  R is locally integrable with respect to , then

rB (x)r 0
r

1lim f(y)d (y) f(x)
(B (x))

 =
 ò

for -almost all points x Rn.

Gaussian Measures

The problem of the differentiation of integrals is much harder in an infinite-dimensional setting.
Consider a separable Hilbert space (H, ,) equipped with a Gaussian measure . As stated in the
article on the Vitali covering theorem, the Vitali covering theorem fails for Gaussian measures
on infinite-dimensional Hilbert spaces. Two results of David Preiss (1981 and 1983) show the
kind of difficulties that one can expect to encounter in this setting:

 There is a Gaussian measure  on a separable Hilbert space H and a Borel set M  H so that,
for -almost all x  H,

r

r 0
r

(M B (x))lim 1
(B (x))

 Ç
=



 There is a Gaussian measure  on a separable Hilbert space H and a function f  L1(H, ; R)
such that

Ds(x)r 0
s

1lim inf f(y)d (y) x II, 0 s r
(B (x))

ò
ì ü

  < < - +¥í ý
ï ïî þ

However, there is some hope if one has good control over the covariance of . Let the covariance
operator of  be S : H  H given by

H
Sx, y x, z y, z d (z)  =     ò

or, for some countable orthonormal basis (ei)iN of H,

2
1 i i

i N
Sx x, e e .



å= s  

In 1981, Preiss and Jaroslav Tišer showed that if there exists a constant 0 < q < 1 such that

2 2
i 1 iq ,+s £ s

then, for all f  L1 (H, ; R),

r
r 0B (x)

r

1 f(y)d (y) f(x)
(B (x))




 ¾¾¾

 ò
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Notes where the convergence is convergence in measure with respect to . In 1988, Tišer showed that if

2
2 i
i 1 i+ a

s
s £

for some a > 5/2, then

r
r 0B (x)

r

1 f(y)d (y) f(x)
(B (x)) 

 ¾¾¾
 ò

for -almost all x and all f  Lp (H, ; R), p > 1.

As of 2007, it is still an open question whether there exists an infinite-dimensional Gaussian
measure  on a separable Hilbert space H so that, for all f  L1 (H, ; R),

rB (x)r 0
r

1lim f(y)d (y) f(x)
(B (x))

 =
 ò

for -almost all x  H. However, it is conjectured that no such measure exists, since the si would
have to decay very rapidly.

Example: If 10, ( ) arctanæ ö
a ¹ f a = ç ÷è øa

The function 2 2x
a

+ a
 is not continuous at the point (x, a) = (0, 0) and the function f(a) has a

discontinuity a = 0, because f(a) approaches as 0
2

+p
+ a  and approaches as 0

2
-p

- a .

If we now differentiate f(a) = 
1

2 20
dx

x
a

+ aò  with respect to a under the integral sign, we get

12 21

2 2 2 2 20
0

d x x 1( ) dx
d x x a 1

- a
f a = = - = -

a + a + + aò  which is, of course, true for all values of a except

a= 0.

Example: The principle of differentiating under the integral sign may sometimes be
used to evaluate a definite integral.

Consider integrating 2

0
( ) ln(1 2 cos(x) )dx (for 1)

p

f a = - a + a a >ò

Now,

20

2 cos(x) 2d ( ) dx
d 2 cos(x)

p - + a
f a =

a - a + aò

2

20

1 (1 )1 dx
1 2 cos(x)

p æ ö- a
= -ç ÷a - a + aè ø

ò

0

2 1 xarctan tan
1 2

p

ì üp + aæ öæ ö
= - ×í ýç ÷ç ÷è øè øa a - aî þ
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As x varies from 0 to p, 1 xtan

1 2
+ aæ öæ ö

× ç ÷ç ÷è øè ø- a
 varies through positive values from 0 to ¥ when –1 < a

< 1 and 1 xtan
1 2
+ aæ öæ ö

× ç ÷ç ÷è øè ø- a
 and varies through negative values from 0 to –¥ when a< –1 or a > 1.

Hence,

0

1 xarctan tan when 1 1
1 2 2

p

+ a pæ öæ ö
× = - - < a <ç ÷ç ÷è øè ø- a

and

0

1 xarctan tan when 1 or 1.
1 2 2

p

+ a pæ öæ ö
× = - a < - a >ç ÷ç ÷è øè ø- a

Therefore,

d ( ) 0 when 1 1
d

f a = - < a <
a

 d 2( ) when 1 or 1
d

p
f a = a < - a >

a a
.

Upon integrating both sides with respect to a, we get f(a) = C1 when –1 < a < 1 and f(a) = 2p In
|a| + C2 when a< –1 or a> 1.

C1 may be determined by setting a= 0 in

2

0
( ) ln(1 2 cos(x) a )dx

p

f a = - a +ò

0
(0) ln(1)dx

p

f = ò

0
0 dx

p

= ò

 = 0

Thus, C1 = 0. Hence, f(a) = 0 when –1 < a< 1.

To determine C2 in the same manner, we should need to substitute in ( )f a =

2

0
ln(1 2 cos(x) )dx

p

- a + aò  a value of a greater numerically than 1. This is somewhat

inconvenient. Instead, we substitute, 1 , where 1 1. Thena = - < b <
b

,

( )2

0
( ) ln 1 2 cos(x) ) 2 ln| | dx

p

f a = - b + b - bò

 = 0 – 2p ln |b|

 = 2p ln |a|

Therefore, C2 = 0 and f(a) = 2p ln |a| when a<  –1 or a> 1.)

The definition of f(a) is now complete:

( ) 0 when 1 1 andf a = - < a <

( ) 2 ln| |when 1 or 1f a = p a a < - a >
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Notes The foregoing discussion, of course, does not apply when a = ±1 since the conditions for
differentiability are not met.

Example: Here, we consider the integration of

( )
2

2 20

1I dx
a cos x bsin x

p

=
+

ò

where both a, b > 0, by differentiating under the integral sign.

Let us first find 2

2 20

1J dx
a cos x bsin x

p

=
+ò

Dividing both the numerator and the denominator by cos2 x yields

2
2

20

sec xJ dx
a btan x

p

=
+ò

  

2

20
2

1 1 d(tan x)
b a tan x

b

p

=
æ ö

+ç ÷è ø

ò

 

2

1

0

1 btan tan x
aa, b 2 a, b

p

-
æ öæ ö p

= = ×ç ÷ç ÷
è øè ø

The limits of integration being independent of a, 2
0 2 2

1J dx
a cos x bsin x

p

ò=
+

 gives us

( )
2

2

22 20

J cos xdx
a acos x bsin x

p¶
= -

¶ +
ò

Whereas J
2 ab
p

=  gives us

3

J
a 4 a b
¶ p

= - ×
¶

Equating these two relations then yields

( )
2

2

2 32 20

cos x dx
4 a ba cos x bsin x

p p
=

+
ò

In a similar fashion, J
b
¶

¶
 pursuing yields

( )
2

2

2 32 20

sin x dx
4 a ba cos x bsin x

p p
=

+
ò

Adding the two results then produces

( )
2

22 20

1 1 1I dx
a b4 a ba cos x bsin x

p p æ ö
= = +ç ÷è ø+
ò

Which is the value of the integral I.
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NotesNote that if we define

( )
2

n n2 20

1I dx
acos x bsin x

p

=
+

ò

it can easily be shown that

n 1 n 1
n

I I (n 1) I 0.
a b
- -¶ ¶
+ + - × =

¶ ¶

Given I1 this partial-derivative-based recursive relation (i.e., integral reduction formula) can then
be utilized to compute all of the values of In for n > 1 (I1, I2, I3, I4, etc.).

Example: Here, we consider the integral

2

0

ln(1 cos cosx)I( ) dx
cos x

p + a
a = ò .

for 0 < a < p.

Differentiating under the integral with respect to awe have

d I( )
d

a
a

 = 
2

0

ln(1 cos cosx) dx
cos x

p æ ö+ a¶
ç ÷¶a è ø

ò

= – 2

0

sin dx
1 cos cosx

p a

+ aò

= – 2

0 2 2 2 2

sin dxx x xcos sin cos cos sin
2 2 2 2

p a

pæ ö æ ö
+ + a -ç ÷ ç ÷è ø è ø

ò

= – 2

0 2 2

sin 1 sin dxx1 cos 1 cos xcos tan2 1 cos 2

pa a

- a é ùæ ö+ a
+ê úç ÷- aè øê úë û

ò

= – 2

2

20
22

2
2

1 xsec2 sin 2 2 dx
1 cos 2 cos xtan

2sin 2

p

a

a

a

- a é ùæ ö
+ê úç ÷è øê úë û

ò

= – 2

20
22

2

2 2sin cos 1 x2 2 d tan
2cos x2sin tan2 sin 2

p

a

a

a aæ ö
ç ÷è ø æ ö

ç ÷a è øé ùæ ö
ê ú+ç ÷è øê úë û

ò

= – 2

0 2 2

1 x2 cot d tanx2 2cot tan
2 2

pa æ ö
ç ÷è øaé ù

+ê úë û

ò

= –
2

0

x2 tan 1 tan tan
2 2

p

aæ öæ ö
- ç ÷ç ÷è øè ø

= –a
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Now, when 

2
p

a = , we have, from

 I(a) = 2

0

ln(1 cos cosx) dx, I 0
cosx 2

p + a pæ ö
=ç ÷è øò

Hence,

 I(a) = 
2

d
p

a

-a aò

= 
2

21
2 p

a

- a

= 
2 2

8 2
p a

- ,

which is the value of the integral I(a).

Example: Here, we consider the integral 
2 cos

0
e cos(sin )d

p
q

q qò .

We introduce a new variable f, and rewrite the integral as

2 cos

0
f( ) e cos( sin )d

p
qff = f q qò

Note that for 
2 cos

0
1, f( ) f(1) e cos(sin )d

p
q

f = f = = q qò

Thus, we proceed

 ( )
2 cos

0

df e cos( sin ) d
d

p
qf¶

= f q q
f ¶fò

= 
2 cos

0
e (cos cos( sin ) sin sin( sin ))d

p
qf q f q - q f q qò

= ( )
2 cos

0

1 e sin( sin ) d
p

qf¶
f q q

f ¶qò

= ( )
2 cos

0

1 d e sin( sin )
p

qf f q
f ò

= ( )
2

cos

0

1 e sin( sin )
p

qf f q
f

= 0.

From the equation for f(f) we can see f(0) = 2p. So, integrating both sides of df 0
d

=
f

 with respect

to f between the limits 0 and 1, yields

 
f(1) 1

f(0) 0
df d 0= f =ò ò

 f(1) – f(0) = 0
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Notes f(1) – 2p = 0

 f(1) = 2p.

which is the value of the integral 
2 cos

0
e cos(sin )d

p
q q qò .

Example: Find 
cos x 2

sin x

d cosh t dt
dx ò

.

In this example, we shall simply apply the above given formula, to get

cos x 2 2 2

sin x

d d dcosh t dt cosh(cos x) (cosx) cosh(sin x) (sin x)
dt dx dx

= - +ò

cos x 2 2 2

sin x
cosh t dt cosh(cos x)sin x cosh(sin x)cosx

x
¶

= - -
¶ò

Where the derivative with respect to x of hyperbolic cosine t squared is 0. This is a simple
example on how to use this formula for variable limits.

Self Assessment

Fill in the blanks:

1. The differentiation of integrals is the Lebesgue differentiation theorem, as proved by
Henri Lebesgue in ................................. .

2. The result for ................................. turns out to be a special case of the following result,
which is based on the Besicovitch covering theorem.

3. The problem of ........................................ is that of determining under what circumstances
the mean value integral of a suitable function on a small neighbourhood of a point
approximates the value of the function at that point.

4. The problem of the differentiation of integrals is much harder in an infinite-dimensional
setting. Consider a separable Hilbert space (H, ) equipped with a ............................... .

6.3 Summary

 In mathematics, the problem of differentiation of integrals is that of determining under
what circumstances the mean value integral of a suitable function on a small neighbourhood
of a point approximates the value of the function at that point.

 One result on the differentiation of integrals is the Lebesgue differentiation theorem, as
proved by Henri Lebesgue in 1910. Consider n-dimensional Lebesgue measure n on
n-dimensional Euclidean space Rn.

 The result for Lebesgue measure turns out to be a special case of the following result,
which is based on the Besicovitch covering theorem: if  is any locally finite Borel measure
on Rn and f : Rn  R is locally integrable with respect to , then

rB (x)r 0
r

1lim f(y)d (y) f(x)
(B (x))

ò  =


 for -almost all points x  Rn.

 The problem of the differentiation of integrals is much harder in an infinite-dimensional
setting. Consider a separable Hilbert space (H, ) equipped with a Gaussian measure .
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Notes 6.4 Keywords

Differentiation of Integrals: In mathematics, the problem of differentiation of integrals is that of
determining under what circumstances the mean value integral of a suitable function on a small
neighbourhood of a point approximates the value of the function at that point.

Borel measures on Rn: The result for Lebesgue measure turns out to be a special case of the
following result, which is based on the Besicovitch covering theorem: if  is any locally finite
Borel measure on Rn and f : Rn  R is locally integrable with respect to , then

rB (x)r 0
r

1lim f(y)d (y) f(x)
(B (x))

 =
 ò

for -almost all points x  Rn.

6.5 Review Questions

1. Explain Differentiation of Integrals with the help of example.

2. Discuss the Theorems on the differentiation of integrals.

Answers: Self Assessment

1. 1910 2. Lebesgue measure

3. differentiation of integrals 4. Gaussian measure 

6.6 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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7.3 Summary

7.4 Keywords

7.5 Review Questions

7.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss the fundamental  theorem  of calculus

 Explain the primitive of a function

Introduction

In this unit we will discuss about, what is the relationship between the two notions of
differentiation and integration? Now we shall try to find an answer to this question. In fact, we
shall show that differentiation and Integration are intimately related in the sense that they are
inverse operations of each other.

Let us begin by asking the following question: "when is a function f : [a, b]  R, the derivative
of some function F : [a, b]  R?"

For example consider the function f : [–1, 1]  R defined by

0 if 1 x 0
f(x)

i if 0 x 1
- £ <ì

= í
£ <î

This function is not the derivative of any function F : [–1, 1]  R. Indeed if f is the derivative of
a function F : [–1, 1]  R then f must have the intermediate value property. But clearly, the
function f given above does not have the intermediate value property.

Hence f cannot be the derivative of any function F : [–1, 1]  R.

However if f : [–1, 1]  R is continuous, then f is the derivative of a function F : [–1, 1]  R. This
leads us to the following general theorem.

7.1 Fundamental Theorem of Calculus

Theorem 1: Let f be integrable on [a, b]. Define a function P on [a, b] as

x

a

F(x) f(t) dt, x [a,b].= " Îò

Then F is continuous on [a, b]. Furthermore, if f is continuous at a point x, of [a, b], then F is
differentiable at x0 and F’1(x0) = f(x0).

Sachin Kaushal, Lovely Professional University
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Notes Proof: Since f is integrable on [a,b], it is bounded. In other words, there exists a positive number

M such that f(x) M, x [a,b].£ " Î

Let  > 0 be any number. Choose x,y Î [a,b], x < y, such that ex y .
M

- <  Then

F(y) F(x)-

y x

a a

f(t) dt f(t) dt= -ò ò

yx x

a x a

f(t) dt f(t) dt f(t) dt= + -ò ò ò

y

x

f(t) dt= ò

y

x

f(t) dt£ ò

y

x

Mdt M(y x)£ = - < Îò

Similarly you can discuss the case when y < x. This shows that F is continuous on [a,b]. In fact this
proves the uniform continuity of F.

Now, suppose f is continuous at a point x0 of [a, b]

We can choose some suitable h  0 such that x0 + h Î [a, b].

Then,

F(x0 + h) – F(x0)
0 0x h x

a a

f(t) dt f(t) dt
+

= -ò ò

0 0 0 0

0 0

x x h x x h

a x a x

f(t) dt f(t) d(t) f(t) dt f(t) dt
+ +

= + - =ò ò ò ò

Thus,

F(x0 + h) – F(x0)
0x h

xn

f(t) dt
+

= ò …(1)

Now

0 0
0

F(x h) F(x ) f(x )
h

+ -
-

0x hx0 h

0
x0 0

1 1f(t) dt f(x ) dt
h h

++

= - ´ò ò

0

0

x h

0
x

1 [f(t) f(x )]dt .
h

+

= -ò

Since f is continuous at x0, given a number Î >0, 3 a number  > 0 such that 0f(x) f(x ) /2,- < 

whenever 0x x- <   and x Î [a,b]. So, if h ,<   then 0f(t) f(x ) /2,- < Î for [ ]0 0t x ,x h ,Î +  and
consequently
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Notes
0

0

x h

0
x

[f(t) f(x )]dt h .
+

- £ -ò  Therefore

0 0
0

F(x h) F(x ) f(x ) , if h .
h 2

+ - 
- £ <  < 

Therefore, 0
0 0 0h 0

F(x h) F(x)lim f(x ), i.e., F'(x ) f(x )
h

+ -
=

which shows that F is differentiable at x0 and F'(x0) = f(x0). From Theorem 1, you can easily
deduce the following theorem:

Theorem 2: Let f: [a, b]  R be a continuous function. Let F : [a, b]  R be a function defined by

x

a
F(x) f(t) dt, x E[a,b].ò=

Then F'(x) = f(x), a £ x £ b.

This is the first result which links the concepts of integral and derivative. It says that, if f is
continuous on [a,b] then there is a function F on [a, b] such that F'(x) f(x), x [a,b].= " Î

You have seen that if f: [a, b]  R is continuous, then there is a function F: [a, b]  R such that F'
(x) = f(x) on [a, b]. Is such a function F unique? Clearly the answer is 'no'. For, if you add a

constant to the function F, the derivative is not altered. In other words, if 
x

1
G(x) c f(t) dtò= +  for

a £ x £ b then also G' (x) = f(x) on [a, b].

Such a function F or G is called primitive off. We have the formal definition as follows:

7.2 Primitive of a Function

If f and F are functions defined on [a,b] such that F’(x) = f(x) for x Î [a,b] then F is called a
'primitive' or an 'antiderivative' of f on [a,b].

Thus from Theorem 1, you can see that every continuous function on [a,b] has a primitive. Also
there are infinitely many primitives, in the sense that adding a constant to a primitive gives
another primitive.

"Is it true that any two primitives differ by a constant?"

The answer to this question is yes. Indeed if F and G are two primitives of f in [a,b], then
F'(x) G'(x) f(x) x [a,b]= = " Î  and therefore [F(x) – G(x)’ = 0. Thus F(x) – G(x) = k (constant), for x
Î [a,b].

Let us consider an example.

Example: What is the primitive of f(x) = log x in [1, 2]

Solution: Since d (xlog x x) log x x [1,2],
dx

- = " Î  therefore F (x) = x log x – x is a primitive of f in

[1,  2].

Also G(x) = x lag x – x + k, k being a constant, is a primitive of f.
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Notes According to this theorem, differentiation and integration are inverse operations.

We now discuss a theorem which establishes the required relationship between differentiation
and integration. This is called the Fundamental Theorem of Calculus.

It states that the integral of the derivative of a function is given by the function itself.

The Fundamental Theorem of Calculus was given by an English mathematician Isaac Barrow
[1630-1677], the teacher of great Isaac Newton.

Theorem 3: Fundamental Theorem of Calculus

If f is integrable on [a,b] and F is a primitive of f on [a,b], then 
tb

a

f(x) dx F(b) F(a).= -ò

Proof: Since f Î R [a,b], therefore 
b

P 0
a

lim S(P,f) f(x) dx
-

= ò

where P = {x0, x1, x2,...., xn] is a partition of [a,b]. The Riemann sum S(P,f) is given by

n n

i i i i i 1 i i i
i 1 i 1

S(P,f) f(t ) x f(t )(x x ); x 1 t t .-
= =

å å= D = - - £ £

Since F is the primitive of f on [a, b], therefore F' (x) £ f(x), x Î [a, b].

Hence 
n

i i i 1
i 1

S(P,f) F'(t )(x x ).-
=

å= -  We choose the points t, as follows:

By Lagrange's Mean Value theorem of Differentiability, there is a point t, in ]x i-1, xi[ such that

F(xi) – F(xi-1) = F' (ti) (x, – xi-1)

Therefore, 
n

i i 1 n 0
i 1

S(P,f) [F(x ) F(x )] F(x ) F(x ) F(b) F(a).-
=

å= - = - = -

Take the limit as P 0.  Then 
b

a

f(x) dx F(b) F(a).= -ò  This completes the proof.

Alternatively, the Fundamental Theorem of Calculus is also interpreted by stating that the
derivative of the integral of a continuous function is the function itself.

If the derivative f of a function f is integrable on [a, b], then 
b

a

f '(x) dx f(b) f(a).= -ò

Applying this theorem, we can find the integral of various functions very easily.

Consider the following example:

Example: Show that 
t

0

sin x dx 1 cost.= -ò

Solution: Since g(x) = – cos x is the primitive of f(x) = sin x in the interval [0, t], therefore
t

0

Sin x dx g(t) g(o) 1 cos t.= - = -ò

We have, thus, reduced the problem of evaluating 
b

a

f(x) dxò  to that of finding primitive of f on

[a, b]. Once the primitive is known, the value of 
b

a

f(x) dxò  is easily given by the Fundamental

Theorem of Calculus.
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NotesYou may note that any suitable primitive will serve the purpose because when the primitive is
known, then the process described by the Fundamental Theorem is much simpler than other
methods. However, it is just possible that the primitive may not exist while you may keep on
trying to find it. It is, therefore, essential to formulate some conditions which can ensure the
existence of a primitive. Thus now the next step is to find the conditions on the integral,  (function
to be integrated) which will ensure the existence of a primitive. One such condition is provided
by the theorem.

According to theorem 2 if f is continuous in [a, b], then the function F given by

x

a

F(x) f(t) dt x [a,b]= Îò  is differentiable in [a, b] and F'(x) f(x) x [a,b]= " Î

i.e. F is the primitive of f in [a, b]

The following observations are obvious from the theorems 1 and 2:

(i) If f is integrable on [a, b], then there is a function F which is associated with f through the
process of integration and the domain of F is the same as the interval [a, b] over which f is
integrated.

(ii) F is continuous. In other words, the process of integration generates continuous function.

(iii) If the function f is continuous on [a, b], then F is differentiable on [a, b]. Thus, the process
of integration generates differentiable functions.

(iv) At any point of continuity of f, we will have f(c) = f(c) for c  [a, b]. This means that if f is
continuous on the whole of [a, b], then F will be a member of the family of primitives of
f on [a, b].

In the case of continuous functions, this leads us to the notion

f(x) dxò

for the family of primitives of f. Such an integral, as you know, is called an Indefinite integral of
f. It does not simply denote one function, but it denotes a family of functions. Thus, a member of
the indefinite integral of f will always be an antiderivative for f.

Theorem 3 gives US a condition on the function to be integrated which ensures the existence of
a primitive. But how to obtain the primitives, once this condition is satisfied. In the next section,
we look for the two most important techniques for finding the primitives. Before we do so, we
need to study two important mean-values theorems of integrability.

Self Assessment

Fill in the blanks:

1. This function is not the derivative of any function F : [–1, 1]  R. Indeed if f is the derivative
of a function F : [–1, 1]  R then f must have the ................................... .

2. Let f : [a, b]  R be a continuous function. Let F : [a, b]  R be a function defined by
..................................... .

3. If f and F are functions defined on [a, b] such that F’(x) = f(x) for x Î [a, b] then F is called a
'primitive' or an '...............................' off on [a, b].
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Notes 7.3 Summary

 The main thrust of this unit has been to establish the relationship between differentiation
and integration with the help of the Fundamental Theorem of Calculus.

 We have discussed some important properties of the Riemann Integral. We have shown
that the inequality between any two functions is preserved by their corresponding Riemann
integrals; the modulus of the limit of a sum never exceeds the limit of the sum of their
module and if we split the interval over which we are integrating a function into two
parts, then the value of the integral over the whole will be the sum of the two integrals
over the subintervals.

 Let f: [a, b]  R be a continuous function. Let F : [a, b]  R be a function defined by

x

a

F(x) f(t) dt, x E[a,b].= ò

Then F'(x) = f(x), a £ x £ b.

This is the first result which links the concepts of integral and derivative. It says that, if f is
continuous on [a, b] then there is a function F on [a, b] such that F'(x) f(x), x [a,b].= " Î

You have seen that if f: [a, b]  R is continuous, then there is a function F: [a, b]  R such
that F' (x) = f(x) on [a, b]. Is such a function F unique? Clearly the answer is 'no'. For, if you
add a constant to the function F, the derivative is not altered. In other words, if

x

1
G(x) c f(t) dtò= +  for a £ x £ b then also G' (x) = f(x) on [a, b].

 It states that the integral of the derivative of a function is given by the function itself.

 The Fundamental Theorem of Calculus was given by an English mathematician Isaac
Barrow [1630-1677], the teacher of great Isaac Newton.

 The following observations are obvious from the theorems 1 and 2.

(i) If f is integrable on [a, b], then there is a function F which is associated with f through
the process of integration and the domain of F is the same as the interval [a, b] over
which f is integrated.

(ii) F is continuous. In other words, the process of integration generates continuous
function.

(iii) If the function f is continuous on [a, b], then F is differentiable on [a, b]. Thus, the
process of integration generates differentiable functions.

(iv) At any point of continuity of f, we will have f(c) = f(c) for c e [a, b]. This means that
if f is continuous on the whole of [a, b], then F will be a member of the family of
primitives of f on [a, b].

7.4 Keywords

Primitive of a Function: If f and F are functions defined on [a, b] such that F’(x) = f(x) for x Î [a, b]
then F is called a 'primitive' or an 'antiderivative' off on [a, b].

Fundamental Theorem of Calculus: If f is integrable on [a, b] and F is a primitive of f on [a, b],

then 
tb

a

f(x) dx F(b) F(a).= -ò
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Notes7.5 Review Questions

1. Find the primitive of the function f defined in [0, 2] by

x if x [0,1]
f(x)

I if x [1,2]
Îì

= í
Îî

2. Find 
2

0

f(x) dxò  where f is the function given in f(x) = 
x if x [0, 1]
1 if x [1, 2]

¬ì
í

¬î

3. Evaluate 
b

n

1

x dxò  where n is a positive integer.

Answers: Self Assessment

1. intermediate value property 2.
x

a

F(x) f(t) dt, x E[a,b].= ò

3. antiderivative

7.6 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.

71



LOVELY PROFESSIONAL UNIVERSITY
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CONTENTS

Objectives

Introduction

8.1 First Mean Value Theorem

8.2 The Generalised First Mean Value Theorem

8.3 Second Mean Value Theorem

8.4 Summary

8.5 Keywords

8.6 Review Questions

8.7 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss the first mean value theorem

 Explain the generalized first mean value theorem

 Describe the second mean value theorem

Introduction

In last unit, we discussed some mean-value theorems concerning the differentiability of a function.
Quite analogous, we have two mean value theorems of integrability which we intend to discuss
here. You are quite familiar with the two well-known techniques of integration namely the
integration by parts and integration by substitution which you must have studied in your
earlier classes.

8.1 First Mean Value Theorem

Let f : [a, b]  R be a continuous function. Then there exists c  [a, b] such that

b

f(x) dx (b a)f(c).= -ò

Proof: We know that

h

a

m(b a) f(x) dx M(b a), thus- £ £ -ò

b

a
f(x) dx

m M, where
(b a)

ò

£ £
-

m = glb {f(x) : x [a,b]}, and

M = lub {f(x) : x  [a,b]}.

Sachin Kaushal, Lovely Professional University
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NotesSince f is continuous in [a, b], it attains its bounds and it also attains every value between the
bounds. Consequently, there is a point c Œ [a, b] such that

b

a

f(x)dx f(c) (b a),= -Ú

which, equivalently, can be written as

b

a

1
f(c) f(x) dx.

b a
=

-

Ú

This theorem is usually referred to as the Mean Value theorem for integrals. The geometrical
interpretation of the theorem is that for a non-negative continuous function f, the area between
f, the lines x = a, x = b and the x-axis can be taken as the area of a rectangle having one side of
length (b – a) and the other f(c) for some c Œ [a, b] as shown in the Figure 25.1.

We now discuss the generalized form of the first mean value theorem.

   .2 The Generalised First Mean Value Theorem

Let f and g be any two functions integrable in [a, b]. Suppose g(x) keeps the same sign for all
x Œ [a, b]. Then there exists a number m lying between the bounds of f such that

b b

a a

f(x) g(x) dx g(x) dx.= mÚ Ú

Proof: Let us assume that g(x) is positive over [a,b]. Since f and g are both integrable in [a, b],
therefore both are bounded. Suppose that m and M are the g.l.b. and l.u.b. of f in [a, b]. Then

m f(x) M, x [a,b].£ £ " Œ

Consequently,

mg(x) f(x)g(x) Mg(x), x [a,b].£ £ " Œ

Figure 8.1

8
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Notes Therefore,

b b b

a a a

m g(x) dx f(x) g(x) dx M g(x) dx.£ £ò ò ò

It then follows that there is a number  [m, M] such that

b b

a a

f(x) g(x) dx g(x) dx.= ò ò

Corollary: Let f, g be continuous functions on [a,b] and let g(x)  0 on [a,b]. Then, there exists
a c  [a,b] such that

b b

a a

f(x) g(x) dx f(c) g(x) dx.=ò ò

Proof: Since f is continuous on [a,b], so, there exists a point c  [a,b] such that

b b

a a

f(x) g(x) dx f(c) g(x) dx,=ò ò  where  = f(c) is as in Theorem.

We use the first Fundamental Theorem of Calculus for integration by parts. We discuss it in the
form of the following theorem.

Theorem 1: If f and g are differentiable functions Qn [a,b] such that the derivatives f'and g' are
both integrable on [a,b], then

b b

a a

f(x) g ' dx [f(b) g(b) f(a) g(b)] f '(x) g(x) dx.= - -ò ò

Proof: Since f and g are given to be differentiable on [a,b], therefore both f and g are continuous
on [a,b]. Consequently both f and g are Riemann integrable on [a,b]. Hence both fg' as well as
f' g are integrable.

fg' + f'g = (fg)'.

Therefore (fg)' is also integrable and consequently, we have

b b b

a a a

(fg) fg f g.¢ = ¢ + ¢ò ò ò

By Fundamental Theorem of Calculus, we can write

b
b

a
a

(fg) fg f(b) g(b) f(a) g(a)¢ = = -ò

Hence, we have

b b

a a

fg f(b) g(b) f(a) g(a) f g.¢ = - - ¢ò ò

i.e.

b b
b
a

a a

f(x) g (x) dx [f(x) g(x)] f (x) g(x) dx.¢ = - ¢ò ò

This theorem is a formula for writing the integral of the product of two functions.
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NotesWhat we need to know is that the primitive of one of the two functions should be expressible
in a simple form and that the derivative of the other should also be simple so that the product
of these two is easily integrable. You may note here that the source of the theorem is the
well-known product rule for differentiation.

The Fundamental Theorem of Calculus gives yet another useful technique of integration. This is
known as method by Substitution also named as the change of variable method. In fact this is the
reverse of the well-known chain Rule for differentiation. In other words, we compose the given
function f with another function g so that the composite f o g admits an easy integral. We deduce
this method in the form of the following theorem:

Theorem 2: Let f be a function defined and continuous on the range of a function g. If g' is

continuously differentiable on c,d ,  then

b d

a c

f(x) dx (f o g) (x) g '(x) dx,=ò ò

where a = g(c) and b = g(d).

Proof: Let 
b

a

F(x) f(x) dt= ò  be a primitive of the function 1:

Note that the function F is defined on the range of g.

Since f is continuous, therefore, by Theorem 2, it follows that F is differentiable and F ¢(t) = f(t),
for any t. Denote G(x) = (F o g) (x).

Then, clearly G is defined on [c,d] and it is differentiable there because both F and g are so. By the
Chain Rule of differentiation, it follows that

G¢(x) = (F o g)¢ (x) g¢(x) = (f o g) (x) g¢(x).

Also f og is continuous since both f and g are continuous. Therefore, f o g is integrable.

Since g¢ is integrable, therefore (f o g) g¢ is also integrable. Hence

d

(f o g)(x) g (x) dx¢ò
d

c

G (x) dx= ¢ò

= G(d) – G(c) (Why?)

= F(g (d)) – F(g (c))

= F(b) – F(a)

b

a

f(x) dx.= ò

you have seen that the proof of the theorem is based on the Chain Rule for differentiation. In
fact, this theorem is sometimes treated as a Chain Rule for Integration except that it is used
exactly the opposite way from the Chain Rule for differentiation. The Chain Rule for
differentiation tells us how to differentiate a composite function while the Chain Rule for
Integration or the change of variable method tells us how to simplify an integral by rewriting
it as a composite function.

Thus, we are using the equalities in the opposite directions.

We conclude this section by a theorem (without Proof) known as the Second Mean Value Theorem
for Integrals. Only the outlines of the proof are given.
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Notes 8.3 Second Mean Value Theorem

Let f and g be any two functions integrable in a,b  and g be monotonic in a,b ,  then there exists

c a,b  such that

b

a

f(x) g(x) dxò
c b

a c

g(a) f(x) dx g(b) f(x) dx= +ò ò

Proof: The proof is based on the following result known as Bonnet's Mean Value Theorem, given
by a French mathematician O. Bonnet [1819–1892].

Let f and g be integrable functions in [a,b]. If  is any monotonically decreasing function and
positive in [a,b], then there exists a point c  [a,b] such that

b

a

f(x) (x) dxò
c

a

(a) g(x) dx.=  ò

Let g be monotonically decreasing so that  where (x) = g(x) – g(b), is non-negative and
monotonically decreasing in [a,b]. Then there exists a number c  [a,b] such that

b

a

f(x) [g(x) g(b)] dx-ò
c

a

[g(a) g(b)] f(x) dx= - ò

i.e.

b

a

f(x) g(x) dxò
c b

a c

g(a) f(x) dx g(b) f(x) dx.= +ò ò

Now let g be monotonically increasing so that –g is monotonically decreasing. Then there exists
a number c  [a,b] such that

b

a

f(x)[ g(x)] dx-ò
c b

g(a) f(x) dx g(b) f(x) dx= - -ò ò

i.e.

b

a

f(x) g(x) dxò
c h

a c

g(a) f(x) dx g(b) f(x) dx.= +ò ò

This completes the proof of the theorem.

There are several applications of the Second Mean Value Theorem. It is sometimes used to
develop the trigonometric functions and their inverses which you may find in higher
Mathematics. Here, we consider a few examples concerning the verification and application of
the two Mean Value Theorems.

Example: Verify the two Mean Value Theorems for the functions f(x) = x, g(x) = ex in the
interval [–1, 1].

Solution: Verification of First Mean Value Theorem

Since f and g are continuous in [–1, 1], so they are integrable in [–1,1]. Also g(x) is positive in
[–1, 1]. By first Mean Value Theorem, there is a number  between the bounds of f such that

1

1

f(x) g(x) dx
-

ò
1 1 1

x x

1 1 1

g(x) dx i.e., x e dx e dx.
- - -

=  = ò ò ò
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Notes1
x

1

x e dx
-

ò
1 1

1x x x
1

1 1

2 1x e e dx  and e dx e .
e e-

- -

= - = = -ò ò


2
e 2 2

1 2 2 2e  i.e., 
e e 1 (2.7) 1 6.29

æ ö
=  -  = = =ç ÷è ø - -

g.l.b. {f(x) 1 x 1} 1- £ £ = -  and l.u.b. {f(x) 1 x 1} 1- £ £ =  and, so, [ 1,1].  -  First Mean Value
Theorem is verified.

Verification of Second Mean Value Theorem

As shown above, f and g are integrable in [–1, 1]. Also g is monotonically increasing in [-1, 1].
By second mean value theorem there is a points c [–1, 1] such that

1

1

f(x) g(x) dx
-

ò
c 1

1

g( 1) f(x) dx g(1) f(x) dx
-

= - +ò ò



1
x

1

x e dx
-

ò
1

c

'I ' x dx e x dx= + ò



2 22 1 c 1 1 ce .
e e 2 2 2 2

æ ö æ ö
- - + -ç ÷ ç ÷è ø è ø

Therefore
2

2
2

2 29e 5 2.29c i.e. c [ 1,1]
e 1 6.29 6 29

-
= = = ±  -

-

Thus second mean value theorem is verified.

Now we show the use of mean value theorems to prove some inequalities.

Example: By applying the first mean value theorem of Integral calculus, prove that

1/2

22 2 2 1
0 4

1 1/6 dx
6 (1 k )(1 x) (1 k x )
p

p £ × £
-é ù- -ë û

ò

Solution: In the first mean value theorem, take 
2 2 2

1 1 1f(x) , g(x) , x 0, .
2(1 k x ) 1 x

é ù
= = ê úë û- -

 Being

continuous functions, f and g are integrable in 10, .
2

é ù
ê úë û

By the first mean value theorem, there is a number [m,M]   such that

1 1
2 2

22 2 2
0 0

1 dxdx / ,
1 x(1 x )(1 k x )

= =  p d
-é ù- -ë û

ò ò

where in = g.l.b. { }1f(x) 0 x
2

£ £  and 1M l.u.b. f(x) 0 x .
2

ì ü
= £ £í ý

î þ
 Now m = 1 and 

2

1M .
k1
4

=

-
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2

1 11  i.e. ,
4 6 6 6 k1

4

p p p
£  £ £ £ -

-

1
2

22 2 2
0

1 1and; so,  dx .
6 6 k(1 x )(1 k x ) 1

4

p p
£ £

é ù- -ë û -

ò

Example: Prove that 
q

p

sin x 2dx ,
x p

£ò  if q > p > 0.

Solution: Let 1f(x) sin x, (x) ,x [p,q].
x

=  =   Being continuous, these functions are integrable in

[p, q]. By Bonnet form of second mean value theorem, there is a point [p, q] such that

q

p a

f(x) (x) dx (p) f(x) dx


 = ò ò

i.e., 
q

p p

sin x 1 1dx sin x dx (cosp cos ).
x p P



= = - ò ò

Hence 
q

p

sin x 1 2dx cosp cos
x P P

é ù£ +  £ë ûò

Self Assessment

Fill in the blanks:

1. Let f : [a, b]  R be a continuous function. Then there exists c  [a, b] such that .......................

2. Since f is continuous in [a, b], it attains its bounds and it also attains every value between
the ...........................

3. The geometrical interpretation of the theorem is that for a ....................................... function
f, the area between f, the lines x = a, x = b and the x-axis can be taken as the area of a
rectangle having one side of length (b-a) and the other f(c) for some c  [a, b].

4. If f and g are differentiable functions Qn [a,b] such that the derivatives f' and g' are both
................................ on [a, b], then

b b

a a

f(x) g ' dx [f(b) g(b) f(a) g(b)] f '(x) g(x) dx.= - -ò ò

5. Let f and g be any two functions integrable in a,b  and g be .............................. then there

exists c a,b  such that

b

a

f(x) g(x) dxò
c b

a c

g(a) f(x) dx g(b) f(x) dx= +ò ò
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Notes8.4 Summary

 It has been proved that a continuous function has a primitive. Using the idea of a primitive,
Fundamental Theorem or Calculus has been proved which shows that differentiation and
integration are inverse process.

 Indefinite integral also called the integral function of an integrable function is defined and
you have seen that this function is continuous. This function is differentiable whenever
the integrable function is continuous. Finally in this section the First and Second Mean
Value theorem have been discussed.

 The First Mean Value theorem states that if f is a continuous function in [a,b], then the

value of the integral 
b

a

f(x) dxò  is (b – a) times f(c) where c  [a, b]. According to Generalised

First Mean Value Theorem, if f and g are integrable in [a, b] and g(x) keeps the same sign,

then the value 
h

a

f(x) g(x).dxò  is 
b b

a a

f(x) g(x) dx g(x) dx= ò ò  where  lies between the bounds

of f. But in the second mean value theorem, if out of the integrable functions f and g, g is

monotonic in [a, b], then the value 
h c b

a a c

f(x) g(x) dx is g(a) f(x) dx g(b) f(x) dx+ò ò ò  where c is

point of [a, b].

8.6 Keywords

First Mean Value Theorem: Let f : [a, b]  R be a continuous function. Then there exists c  [a, b]
such that

b

f(x) dx (b a)f(c).= -ò

The Generalised First Mean Value Theorem: Let f and g be any two functions integrable in [a, b].
Suppose g(x) keeps the same sign for all x  [a, b]. Then there exists a number  lying between
the bounds off such that

b b

a a

f(x) g(x) dx g(x) dx.= ò ò

Second Mean Value Theorem: Let f and g be any two functions integrable in a,b  and g be

monotonic in a,b ,  then there exists c a,b  such that

b

a

f(x) g(x) dxò
c b

a c

g(a) f(x) dx g(b) f(x) dx= +ò ò

8.6 Review Questions

1. Show that the second mean value theorem does not hold good in the interval [–1, 1] for
f(x) = g(x) = x2.

2. What do you say about the validity of the first mean value theorem.

{1, 2] for f(x) = g(x) = x3.

3. Show that 
b

2

a

1sin x dx , if b a 0.
a

£ > >ò
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Notes Answers: Self Assessment

1.
b

f(x) dx (b a)f(c)= -ò 2. bounds

3. non-negative continuous 4. integrable

5. monotonic in a , b

8.7 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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NotesUnit 9: Lebesgue Measure
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9.1 Lindelof’s Theorem

9.2 Lebesgue Outer Measure

9.3 Non-measurability

9.4 Measurable Sets and Lebesgue Measure

9.5 Step Functions and Simple Functions

9.6 Measurable Functions

9.7 Summary

9.8 Keywords

9.9 Review Questions

9.10 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss the definition of outer measure of sets

 Define outer measure of an interval

 Explain some important properties of outer measure

 Define measurable sets

 Describe measure of countable union of measurable sets

 Measure countable intersection of measurable sets

Introduction

In last unit you have studied about mean value theorems of Riemann Stieltjes integral. In this
unit we are going to study about Lebesgue outer measure of a set, measurable sets and Lebesgue
measure, their important properties.

We know that the length of an interval is defined to be the difference between two end points.
In this unit, we would like to extend the idea of “length” to arbitrary (or at least, as many as
possible) subsets of . To begin with, let’s recall two important results in topology.

9.1 Lindelof’s Theorem

Proposition: Every open subset V of  is a countable union of disjoint open intervals.

Proof: For each x  V, there is an open interval Ix with rational endpoints such that x  Ix  V. Then
the collection {Ix}xV is evidently countable and

x
x V

V I .


= 

Sachin Kaushal, Lovely Professional University
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Notes Next, we prove it is always possible to have a disjoint collection. Since {Ix}xV is a countable
collection, we can enumerate the open intervals as I1 = (a1, b 1), I2 = (a2,b2),.... For each n  ,
define

n = inf{ x   : x  an and (x, bn)  V}

and

n = sup{ x   : x  bn and (an, x)  V}.

Then { (n, ) }n is a disjoint collection of open intervals with union V.

Theorem 1 (Lindelof’s Theorem): Let C be a collection of open subsets of . Then there is a
countable sub-collection {Oi}i of C such that

O C
O



  = i
i 1

O
¥

=



Proof: Let U = o C O.  For any x  U there is O  C with x  O. Take an open interval Ix with
rational endpoints such that x  Ix  O. Then U = x U xI  is a countable union of open intervals.
Replace Ix by the set O  C which contains it, the result follows.

9.2 Lebesgue Outer Measure

As in the Archimedean idea of finding area of a circle (approximated polygons), we define the
Lebesgue outer measure m*: ()  [0, ¥] by

m*(A) = { }k k k
k 1 k 1

inf (I ) : A I and each I being open interval in .
¥ ¥

= =

å   

Notes By Lindelof’s Theorem, the countability of the covering is not important here.

Here are some basic properties of Lebesgue outer measure, all of them can be proved easily by
the definition of m*.

(i) m*(A) = 0 if A is at most countable.

(ii) m* is monotonic, i.e. m*(A)  m*(B) whenever A  B.

(iii) m*(A) = inf {m*(O): A  O and O is open}. (Hint: it suffices to prove m*(A)  R.H.S., which
is equivalent to m*(A) +> R.H.S. for any  > 0.)

(iv) m*(A + x) = m*(A) for all x  . (Translation-invariant)

(v) m* k k 1k K( A ) m* (A ).¥

 = å   (Countable subadditivity)

(vi) If m*(A) = 0, then m*(A  B) = m*(B) and m*(B\A) = m*(B) for all B  R.

(vii) If m*(A B) = 0, then m*(A) = m*(B).

Notes In (v), even if Ak’s are disjoint, the equality may not hold.

Theorem 2: For any interval I  R, m*(I) = (I).

Proof: We first assume I = [a, b] is a closed and bounded interval. Consider the countable open
interval cover {(a – , b + )} of I, we have m*(I)  b – a + 2. Since  > 0 is arbitrary, m*(I)  b – a.
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NotesTo get the opposite result, we need to show for any  > 0, m*(I) +   b – a. Note that there is a
countable open interval cover {Ik}k of I satisfying

m *(I) +> k(I ) .å

By Heine-Borel Theorem, there is a finite subcover {Ink
} of {Ik}. Then

kn(I ) b a> -å (why?)

and it follows that

m*(I) +> 
kk n(I ) (I ) b a. > -å å 

Letting   0, m*(I)  b – a. Hence, m*(I) = b – a.

Next, we consider the case where I = (a, b), [a, b), or (a, b] which is bounded but not closed.
Clearly, m*(I)  m* ( I ) = b – a. On the other hand, if  > 0 is sufficiently small then there is a closed
and bounded interval I = [a + , b – ]  I. By monotonicity, m*(I)  m*(I) = b – a – 2. Letting
  0 gives m*(I)  b – a. Hence, m*(I) = b – a.

Finally, if I is unbounded then the result is trivial since in that case I contains interval of
arbitrarily large length.

9.3 Non-measurability

Theorem 3: Let M  () be a translation-invariant -algebra containing all er that intervals, and
m : M  [0, ¥] be a translation-invariant, countably additive measure such

m(I) = (I) for all interval I.

Then there exists a set S  M.

Proof: Define an equivalent relation x ~ y if and only if x – y is rational. Then  is partitioned into
disjoint cosets [x] = {y  : x ~ y}.

By Axiom of Choice and Archimedean property of , there exists S  [0,1] such that the intersection
of S with each coset contains exactly one point.

Enumerate   [–1, 1] into r1, r2,.... Then the sets S + ri are disjoint and

[0, 1]  i
i

(S r )


+


 [–1, 2].

If S S  M, then by monotonicity and countable additivity of m we have

i
i

1 m(S r ) 3 ,


 + å


which is impossible since m(S + ri) = m(S) for all i  .

9.4 Measurable Sets and Lebesgue Measure

As it is mentioned before, the outer measure does not have countable additivity. One may try to
restrict the outer measure m* to a -algebra M  () such that the new measure has all the
properties we wanted.

Definition (Measurability): A set E   is said to be measurable if, for all A  , one has

(1) m*(A)= m*(A  E) + m*(A  Ec).

Since m* is known to be subadditive, (1) is equivalent to

83



LOVELY PROFESSIONAL UNIVERSITY

Notes m*(A) > m*(A  E) + m*(A  Ec).

The family of all measurable sets is denoted by M. We will see later M is a -algebra and
translation-invariant containing all intervals. The set function m: M  [0, ¥] defined by

m(E) = m*(E) for all E  M

is called Lebesgue measure.

Observe that

 E  M  Ec  M.

   M and   M because m*(A) = m*(A  ) + m*(A  ) for all A  .

 m*(E) = 0  E M because m*(A  E) + m*(A  Ec) = m*(A  Ec)  m*(A) for all A  .

Proposition: If E1, E2  M then E1  E2  M. (Therefore, M is an algebra.)

Proof: For all A  R one has

m*(A) = m*(A  E1) +m*(A  E1
c) ( E 1  M)

= m*(A  E1) + m*(A  Ec
1  E2) +m*(A  Ec

1  E2
c) ( E2  M)

= m*(A  (E1  E2)) + m*(A  (E1  E2)c)

because m* is subadditive and

A  (E1  E2) = (A  E1)  (A  E1
c  E2).

Notes Above proposition can be easily extended to a finite union of measurable sets, in
fact it can be extended to a countable union. In order to do so, we need the following result.

Lemma 1: Let E1,E2,...,En be disjoint measurable sets. Then for all A  R, we have

n

i
i 1

m* A E
=

æ öé ùç ÷ê úè øë û
  =

n

i
i 1

m* (A E ).
=

å

Proof: Since En  M, we have

n

i
i 1

m* A E
=

æ öé ùç ÷ê úè øë û
  =

n n c
i n i n

i 1 i 1
m* A E E m* A E E

= =

æ ö æ öé ù é ù  +  ç ÷ ç ÷ê ú ê úè ø è øë û ë û
 

=
n

n i
i 1

m* (A E ) m* A E
=

æ öé ù + ç ÷ê úè øë û


Repeat the process again and again, until we get

n

i
i 1

m* A E
=

æ öé ùç ÷ê úè øë û
  =

n

i
i 1

m* (A E ).
=

å

Notes If {Ei}i is a sequence of disjoint measurable sets, then

i
i 1

m* A E
¥

=

æ öé ùç ÷ê úè øë û
  = i

i 1
m* (A E ).

¥

=

å

This is because for all n   one has
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Notes
i

i 1
m* A E

¥

=

æ öé ùç ÷ê úè øë û
  

n

i
i 1

m* A E
=

æ öé ùç ÷ê úè øë û


 =
n

i
i 1

m* (A E ).
=

å

Letting n  ¥ lead to

i
i 1

m* A E
¥

=

æ öé ùç ÷ê úè øë û
   i

i 1
m* (A E ).

¥

=

å

The opposite inequality follows from countable subadditivity.

Theorem 4: Let { }i nE
 be a sequence of measurable sets, then E = i 1 iE¥

= is also measurable.
Moreover, if E1,E2,... are disjoint then m(E) = i 1 im(E ).¥

=å

This is called the countable additivity which can be proved by putting A = 

Proof: We first assume E1,E2,...are disjoint. Then for all A  R, n   we have

m*(A) =
n

i
i 1

m* A E
=

æ öé ùç ÷ê úè øë û
 ( )

cn

i
i 1

m* A E
=

æ ö
+ ç ÷è ø



 
n c

i
i 1

m* (A E ) m* (A E ).
=

 + å

Letting n  ¥,

m*(A)  c
i

i 1
m* (A E ) m* (A E )

¥

=

 + å

= m*(A  E) +m*(A  Ec).

This proved E is measurable.

Now, if E1,E2,... are not disjoint, we let

F1 = E1, F2 = E2\F1, F3 = E3\(F1  F2),

and in general Fk = Ek\
k 1
i 1 iF-

= for k > 2. Then F1, F2,... are disjoint and i 1 iF¥

= = i 1 iE .¥

= Since M is

an algebra, F1, F2,... are all measurable. So E = i 1 i 1i iE F¥ ¥

= ==  is measurable.

Notes M is proved to be a -algebra. The next result shows that all Borel sets are
measurable. Recall that the family of Borel sets in  is, by definition, the smallest
-algebra containing all open subsets of .

Theorem 5: M contains all Borel subsets of .

Proof: It suffices to show that (a, ¥)  M for all a   (why?). Let A  . We need to show that

m*(A)  m*(A  (–¥, a]) + m*(A  (a, ¥)).

Without loss of generality, we may assume m*(A) < ¥. For convenience, let A1 = A  (–¥, a] and
A2 = A  (a, ¥). Then we need to show

m*(A) +   m*(A1) + m*(A2) for all  > 0.
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Notes By the definition of m*(A), there is a countable open interval cover { }n nI
  of A with

m*(A) + > n
n 1

(I ) .
¥

=

å 

Let nI  = In  [–¥, a] and nI² = In  (a, ¥), then { } { }n nI , I ² are, respectively, interval covers of A1 and

A2 (note that they may not be open interval covers). Then

n
n 1

(I )
¥

=

å   = n n
n 1 n 1

(I ) (I )
¥ ¥

 ²

= =

+å å 

 = n n
n 1 n 1

m* (I ) m* (I )
¥ ¥

 ²

= =

+å å ( m* =  for intervals)

  ( ) ( )n n
n 1 n 1

m* I m* I
¥ ¥

 ²

= =

+  ( countable subadditivity)

  m*(A1) + m*(A2) ( monotonicity)

So, m*(A) +  > n 1 n(I )¥

=å   m*(A1) + m*(A2) for all  > 0. Letting   0, m*(A)  m*(A1) + m*(A2).
This proved that (a, ¥)  M.

Notes Since M is a -algebra, (–¥, a]  M and (–¥, a) = n 1
¥

= (–¥,a – 1/n]  M. It follows
that (a, b)  M since (a, b) = (–¥, b)  (a, ¥). As M is a -algebra containing all open
intervals, it must contain all open sets (recall that every open set is countable union of
open intervals by Proposition). Therefore, M contains all Borel sets.

Proposition: M is translation invariant: for all x  , E  M implies E +x  M.

Proof: For all A  R, we have

m*(A) = m*(A – x)

= m* ((A – x)  E) + m* ((A – x)  Ec)

= m* (((A – x)  E) + x) + m* (((A – x)  Ec) + x)

= m*(A  (E + x)) + m*(A  (E + x)c)

Notes Let E   be given. Then the following statements are equivalent.

1. E is measurable.

2. For any  > 0, there is an open set O  E such that m*(O\E) <.

3. For any  > 0, there is a closed set F  E such that m*(E \F)<.

4. There is a G  G

 such that E  G and m*(G\E) = 0.

5. There is a F  F

 such that E  F and m*(E\F) = 0.

Assume m*(E) < ¥, the above statements are equivalent to

6. For any  > 0, there is a finite union U of open intervals such that m*(U  E) < .
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NotesTheorem 6: Littlewood’s 1st Principle

Every measurable set of finite measure is nearly a finite union of disjoint open intervals, in the
sense

 If E is measurable and m(E) < ¥, then for any  > 0 there is a finite union U of open intervals
such that m*(U  E) < . (Clearly, the intervals can be chosen to be disjoint.)

 If for any > 0 there is a finite union U of open intervals such that m*(U  E) < , then E is
measurable. (The finiteness assumption m*(E) < ¥ is not essential.)

Proof: If we can prove (1), (2), and (4) are equivalent, then it is easy to see that (2) and (3) are
equivalent, because one implies another by replacing E with Ec. Similarly, (4) and (5) are
equivalent.

To show (1)  (2)

We first consider a simple case m(E) < ¥. For any  > 0, there is a countable open interval cover

{ }nI  of E such that n 1 n(I )¥

=å  < m(E) + . Take O = n 1
¥

= In, we see that O is open and O  E. Also,
we have

m(O\E) = m(O) – m(E)  
n 1

¥

=

å m(In) – m(E) < .

Here we use the assumption m(E) < ¥ and the countable subadditivity of m.

For the case m(E) = ¥, we write E = n 1
¥

= En, where En = E  [–n, n]. This is a countable union of
measurable sets of finite measure. By the above result there is an open set On such that On  En and

m*(On\En) < 
n2
 . Take O = n 1

¥

= On, then O is open and O  E. It remains to show m(O\E) <.

Note that O\E  n 1
¥

= On\En, by countable subadditivity of m we have

m(O\E) 
n 1

¥

=

å m(On\En) <
n 1

¥

=

å
n2
 = .

Hence, we have proved that (1)  (2).

To show (2)  (4)

For any n  , let On be an open set such that On  E and m*(On\E) < 1/n. Take G = n 1
¥

=  On  G

,

then

m*(G\E)  m*(On\E) < 1 .
n

Letting n  ¥, the result follows.

To show (4)  (1)

The existence of G guarantees E = G\(G\E) is measurable since both G and G\E are measurable
(G is Borel set and G\E is of measure zero).

Hence, (1), (2), (3), (4), (5) are equivalent.

To show (2)  (6) (with finiteness assumption m*(E) < ¥)

Let  > 0 be given. Let O be an open set such that O  E and m(O\E) < /2. Write O = n 1
¥

= In to be
a countable union of disjoint open intervals. By the countable additivity of m, m(O) = n 1 n(I )¥

=å  .
Let k be a positive integer such that k

n 1 n(I )=å  > m(O) – /2. (The finiteness assumption has been
used here to guarantee that m(O) < ¥.)
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Notes Take U = k
n 1= In. Note that m(O \ U) = m(O) – m(U) < /2, so

m(U  E) = m(U\E) + m(E\U)

 m(O\E) +m(O\U)

<
2 2
 
+  = .

The finiteness assumption is essential here. The above result is false if we allow E to have

infinite measure. A counter example is E = n 1
¥

= (2n, 2n + 1).

To show (6)  (2) (without finiteness assumption m*(E) < ¥)

Let  > 0 be given and U be a finite union of open intervals. Then m*(E\U) <, we take an open
set O  E\U such that m*(O) <  (how to do this?). Then O = U  O is an open set containing
E with m*(O\E)  m*(U\E) + m*(O) < 2 .

Task  Let A  , prove that there is a measurable set B  A with m*(A) = m*(B).

9.5 Step Functions and Simple Functions

Definition: A function : [a, b]   is called step function if

(x) = ci (xi–1 < x < xi)

for some partition {x0, x1,...,xn} of [a, b] and some constants c1, c2,..., cn.

Lemma: Let 1, 2 be step functions on [a, b]. Then 1 ± 2, 1+2, 1 2, 1  2, and 1  2 are
all step functions, where ,   . Also, if 2  0 on [a,b], then 1/2 is also step function.

Note (f  g)(x) = min{f(x), g(x)} and (f  g)(x) = max{f(x), g(x)}.

Lemma: Let  be a step function on [a,b] and let  > 0. Then there is a continuous function g on
[a, b] such that  = g on [a, b] except on a set of measure less than , i.e.

m({ x  [a, b] :(x)  g(x)}) < .

Figure 9.1: An Example of Step Function
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NotesProof: Easy! One can find a piecewise linear function g with the stated property.

Definition: Let E  M. A function f: E   is called a simple function if there exists a1, a2,..., an 
 and E1, E2,..., En M such that

(2) f =
k

i 1=
å aiEi

Note Step function is simple,  is simple but not step function.

Proposition: Let f: [a, b]   be a simple function. For any  > 0, there is a step function : [a,
b]   such that f =  except on a set of measure less than .

Proof: Let f be given by (2), we may assume E1,E2,...,En  E. By Littlewood’s 1st Principle, there is
a finite union of disjoint open intervals Ui such that m(Ui  Ei) < /n. Then

f =
k

i 1=
å aiUi

except on A = 
n

i 1=
 (Ui  Ei),

where m(A) < n
i 1=å /n = .

Notes One can find a continuous function with the same property. Moreover, if f satisfies
m  f  M on [a, b] then  can be chosen such that m    M (reason: replace  by (m  )
 M if necessary).

9.6 Measurable Functions

Definition: A function f: E  [-¥, ¥] is said to be measurable (or measurable on E) if E  M and

f–1((a, ¥])  M

for all a  .

In fact, there is a more general definition for measurability which we will not use here. The
definition goes as follows.

Definition: Let X be a measurable space and Y be a topological space. A function f: X  Y is called
measurable if f–1(V) is a measurable set in X for every open set V inY.

Notes Simple functions, step functions, continuous functions and monotonic functions
are measurable.

Proposition: Let E  M and f : E  [–¥, ¥]. Then the following four statements are equivalent:

 f–1 ((a, ¥])  M for all a  .

 f–1 ([a, ¥])  M for all a  .

 f–1([–¥, a))  M for all a  .

 f–1([–¥, a])  M for all a  .
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Notes

Notes The above statements imply f–1(a)  M for all a  [–¥, ¥]. The converse is not true.

Proof: The first one is clearly equivalent to the fourth one since f–1([a, ¥]) = E \ f–1([–¥, a]).
Similarly, the second and the third statements are equivalent. It remains to show the first two
statements are equivalent, but this follows immediately from

f–1([a, ¥]) = 1

n 1

1f (a , ]
n

¥
-

=

æ ö
- ¥ç ÷è ø

 and f–1([a, ¥]) = 1

n 1

1f [a , ] .
n


¥

-

=

æ ö
+ ¥ç ÷è ø

Proposition: Let E  M, f: E  [–¥, ¥] and g: E  [–¥, ¥]. If f = g almost everywhere on E then
the measurability of f and g are the same.

Proof: Simply note that

m*({x E : f(x) > a }  {x  E : g(x) > a})  m*({x  E : f(x)  g(x)}) = 0.

This implies the measurability of the sets {x  E: f(x) > a} and {x  E : g(x) > a} are the same.

Proposition: Let f, g be measurable extend real-valued functions on E  M. Then the following
functions are all measurable on E:

f + c, cf, f ± g, fg

where c  .

Notes One may worry that cf, f ± g, fg may not be defined at some points (for example, if
f = ¥and g = –¥ then f + g is meaningless). There are two ways to deal with this problem.

1. Adopt the convention 0· ¥ = 0.

2. Assume f, g are finite almost everywhere or cf, f ± g, fg are meaningful almost everywhere.

Proof: We only prove f + g and fg are measurable, since the others are easy or similar.

To prove f + g is measurable, one should consider the set

Ea = {x  E : f(x) + g(x) > a}

= {x  E : f(x)> a – g(x)}

=
r

{x E : f(x) > r > a – g(x)}





=
r

{x E : f(x) > r}  {x E : r > a – g(x)}


  


If f(x) = ¥ or g(x) = ¥ then x  Ea by convention. Now Ea  M because Ea is countable union of
measurable sets.

Next, we prove f2 is measurable. For a  0,

{x  E: f2 (x) > a} = {x  E : f(x) > a }  {x  E : f(x)< – a }

is measurable. For a < 0, {x  E : f2(x) > a } = E is also measurable. Therefore, f2 is measurable and
it is valid even if f takes values ± ¥.
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NotesSo, if f and g are assumed to be finite, then

fg = 1
2

[(f + g)2 – f2 – g2]

is measurable on E.

Task  Find two measurable functions f, g from  to  such that f o g is not measurable.

Proposition: Let { }n nf
  be measurable extended real-valued functions on a measurable set E.

Then

f1  f2 …  fn, n
n
sup f ,


n
n

flim
¥

are all measurable on E. Similar results hold if , sup and lim  are replaced by , inf, and lim.

Proof: Simply note that

(f1  f2   fn)–1((a, ¥)) = 1
k

k 1
f ((a, ))

¥
-

=

¥

1

n
n
sup f ((a, ))

-



æ ö
¥ç ÷è ø

 = 1
k

k 1
f ((a, ))

¥
-

=

¥

n
n

flim
¥

 = k
N k N

sup finf
 

æ ö
ç ÷è ø

Theorem 7: Let E  M with m(E) < ¥, f: E  [–¥,¥] be measurable and finite almost everywhere.
For any  > 0, there is a simple function  such that

|f –|< on E except on a set of measure less than .

Notes If E = [a, b] is closed and bounded interval, we can find a step function g and a
continuous function h play the role of . This is because simple function can be approximated
by step function and step function can be approximated by continuous function.

If f satisfies an additional condition m  f  M, then , g, and h can be chosen to be bounded below
by m and above by M.

The condition m(E) < ¥ in Littlewood’s 2nd Principle is essential. You can see if this condition is
dropped then taking f(x) = x will give a counter example.

To prove Littlewood’s 2nd Principle, we introduce a lemma.

Lemma: Let { }n nF
  be a sequence of measurable subsets of  (or any measure space3) such that

F1  F2  .

Denote F
¥
 = n nF .  If m(F1) < ¥ then

m(F
¥
) = n

n
m(F ).lim

¥

Proof: Write F1 = F
¥
  (F1\F2)  (F2\F3)   as disjoint union and use the countable additivity of m.
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Notes

Notes Above Lemma 4 is false if the condition m(F1) < ¥ is missing.

Now, we are ready to prove Littlewood’s 2nd Principle.

Proof: Let  > 0 be given. Our proof is divided into two steps.

Step I: Assume m  f  M for some m, M  .

We divide [m, M] into n subintervals such that the length of each subinterval is less than .
Symbolically, we take the partition points as follows:

m = y0 < y1 <  < yn = M with yi – yi–1 <for 1  i  n.

Let E1 = {x  E : m  f(x)  y1}, E2 = {x  E : y1 < f(x)  y2 },..., En = {x  E : yn–1 < f(x)  M }. Now, take
 = y1E1 + y2E2 

+  + ynEn
. Since E1, E2,..., En are all measurable (why?),  is simple and satisfies

the inequality |f – | <  with no exceptions.

Step II: General case.

We let

Fn = {x  E : |f(x)|  n}.

Then F1  F2  . Note that m(F1)  m(E) < ¥ and m(F
¥
) = 0 by assumption, apply Lemma 4 there

exists N   such that

m(FN) < .

Now, let f* = (–N  f)  N, then f = f* on E except on a set of measure less than . From the result
of Step I, there is a simple function  such that |f* – | <  on E. Hence

|f – | <  on E except on a set of measure less than .

Corollary: There is a sequence of simple functions n such that n  f pointwisely almost
everywhere on E. If E = [a, b], there are also sequence of step functions and sequence of continuous
functions converging to f pointwisely almost everywhere on [a,b].

Proof: Applying Littlewood’s 2nd Principle to  = 1/2n, there are simple functions n and sets An

with m(An) < 1/2n such that

|f – n|< n

1
2

on E\An.

Let A = lim An := k 1 n k n( A ),¥ ¥

= =  then m(A) = 0 (why?). The proof is completed by noting that n  f
pointwisely on E\A.

Notes In fact, the sequence n can be chosen so that n  f pointwisely everywhere on E.
For example, we can first divide the interval [–n, n] into 2n 2 subintervals such that each
subinterval has length 1/n, i.e. choose

–n = y0 < y1 <  < y2n2 = n

such that yi – yi–1 = 1/n for all i. Then let

n(x) =
i i i 1y if y f(x) y for some i

n if f(x) n
n if f(x) n

+ <ì
ï

í
ï- < -î

92



LOVELY PROFESSIONAL UNIVERSITY

Lebesgue Measure

NotesTheorem 8: Littlewood’s 3rd Principle/Egoroff’s Theorem

Let E  M with m(E) < ¥, f: E  (–¥, ¥) be measurable and { }n nf
  be a sequence of measurable

functions on E such that

fn  f a.e. on E.

Then for any  > 0 there is a (measurable) subset S of E with m(S) <  such that

fn  f uniformly on E\S.

Notes Again, the condition m(E) < ¥ cannot be dropped. Otherwise fn = [n, ¥) and f = 0
would be a counter example.

Proof: We claim that for any  > 0 and  > 0, there exists A  E with m(A) <  and N   such that

|fn(x) – f(x)| <  whenever n  N and x  E \A.

Be careful the above statement is not saying that fn  f uniformly on E \A since A depends on
 and .

To prove our claim, we let

Gn = {x  E : |fn(x) – f(x)|  }

and

G = lim Gn := n
n

E ,





where En = k
k n

G .




Note that if x  G then x  En for all n  , it follows that fn(x)  f(x). Since the set of all x such
that fn(x)  f(x) is of measure zero, we have m(G) = 0. Note also that m(E 1) < ¥ and En “decreases”
to G, so limm(En) = m(G) = 0 by Lemma 4. There is N   such that m(EN) < . This N, together
with A : = EN, proved our claim.

Now, let  > 0 be given. Apply the above result to = 1/k and  = /2k, we obtain Ak with m(Ak)
< /2k and Nk   such that

|fn(x) – f(x) | < 1
k

whenever n  Nk and x  E \Ak.

Let S = k kA ,   then m(S)  k 1
¥

=å m(Ak) <  and |fn(x) – f(x)| < 1/k whenever n  Nk and x  E\S.
Hence, fn  f uniformly onE\S.

Self Assessment

Fill in the blanks:

1. Every open subset V of  is a ........................... of disjoint open intervals.

2. The family of all measurable sets is denoted by M. We will see later M is a -algebra and
translation-invariant containing all intervals. The set function m: M  [0, ¥] defined by

m(E) = m*(E) for all E  M

is called .....................................

3. Let X be a .............................. and Y be a topological space. A function f: X  Y is called
measurable if f–1(V) is a measurable set in X for every open set V inY.

4. Let E  M, f: E  [–¥, ¥] and g: E  [–¥, ¥]. If f = g almost everywhere on E then the
................................ of f and g are the same.
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Notes 9.7 Summary

 The definition of outer measure of sets.

 Outer measure of an interval is its length.

 Some important properties of Outer measure.

 The definition of Measurable sets.

 Countable union of measurable sets is also measurable.

 Countable intersection of measurable sets is also measurable.

 Every Borel set is measurable.

 Littlewood’s First Principle.

9.8 Keywords

Lindelof’s Theorem: Let C be a collection of open subsets of . Then there is a countable
sub-collection {Oi}i of C such that

O C
O



  = i
i 1

O
¥

=



Lebesgue Measure: The family of all measurable sets is denoted by M. We will see later M is a
-algebra and translation-invariant containing all intervals. The set function m: M  [0, ¥]
defined by

m(E) = m*(E) for all E  M

is called Lebesgue measure.

O C
O



  = i
i 1

O
¥

=



Littlewood’s 1st Principle: Every measurable set of finite measure is nearly a finite union of
disjoint open intervals, in the sense.

Measurable Functions: A function f: E  [-¥, ¥] is said to be measurable (or measurable on E) if
E  M and

f–1((a, ¥])  M

for all a  .

9.9 Review Questions

1. Prove that the family M of measurable sets is an algebra.

2. If E1, E2, ….En are measurable, prove that E1 U E2 …  En is measurable.

3. If E1 and E2 are measurable sets, then prove that E1  E2 is also measurable.

4. Prove that properties (i) to (v) are equivalent to (vi), if m*E is finite.

5. Show that if E is measurable, then each translate E + y is also measurable.

6. Show that if E1 and E2 are measurable, then m(E1  E2) + m(E1|E2) = mE1 + mE2.

7. Let {Ei} be a sequence of disjoint measurable sets and A be any set.

Show that m* ( )i i
i 1 i 1

A E m * (A E )
¥¥

= =

å= 
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NotesAnswers: Self Assessment

1. countable union 2. Lebesgue measure

3. measurable space 4. measurability

9.10 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,
Ch.14, Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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Notes Unit 10: Measurable Functions and Littlewood’s
Second Principle

CONTENTS

Objectives

Introduction

10.1 Measurable Functions

10.2 Measurability and Continuity

10.3 Littlewood’s Second Principle

10.4 Borel Measurability on Topological Spaces

10.5 The Concept of Almost Everywhere

10.6 Summary

10.7 Keywords

10.8 Review Questions

10.9 Further Readings

Objectives

After studying this unit, you will be able to:

 Define measurable functions

 Discuss the Sum, difference; scalar product and product of measurable functions are
measurable

 Explain Littlewood's Theorems

Introduction

In this unit we study the concept of measurability. We shall see that measurable functions are
basically very robust (or strong or durable) continuous-like functions. We make “continuous-like”
precise in Luzin’s Theorem, which is where Littlewood got his second principle. We also study
the concept of almost everywhere.

10.1 Measurable Functions

A measurable space is a pair (X, S ) where X is a set and, S  is a -algebra of subsets of X. The
elements of, S  are called measurable sets. Recall that a measure space is a triple (X,  S , ) where
 is a measure on S ; if we leave out the measure we have a measurable space.

In the discussion at the beginning of this unit we saw that in order to define the integral of a
function f : X   , we needed to require that

f–1(I)  S  for each I  S  and f–1(a, ]  S  for each a  .

If these properties hold, we say that f is measurable. It turns out that we can omit the first
condition because it follows from the second. Indeed, since

f–1(a, b] = f–1(a, ]\f–1(b, ],

Richa Nandra, Lovely Professional University

96



LOVELY PROFESSIONAL UNIVERSITY

Measurable Functions and Littlewood’s Second Principle

Notes

Notes  As a reminder, for any A   , f–1 (A):= {x  X; f(x)  A}, so for instance f–1 (a, ] = {x  X;
f(x)  (a, ) } = {x  X; f(x) > a}, or f–1 (a, ) = {f > a} if you wish to be a probabilist.

and S  is a -algebra, if both right-hand sets are in S , then so is the left-hand set. Hence, in order
to define the integral of f we just need f–1 [a, ]  S  for each a  . We are thus led to the
following definition:

A function f: X    is measurable if f–1 [a, ]  S  for each a .

We emphasize that the definition of measurability is not “artificial” but is required by Lebesgue’s
definition of the integral. If X is the sample space of some experiment, a measurable function is
called a random variable; thus,

In probability, random variable = measurable function.

We note that intervals of the sort (a, ] are not special, and sometimes it is convenient to use
other types of intervals.

Proposition: For a function f: X   , the following are equivalent:

1. f is measurable.

2. f–1[–, a]  S  for each a  .

3. f–1[a, ]  S  for each a  .

4. f–1[–, a] S  for each a  .

Proof: Since preimages preserve complements, we have

(f–1[a, ])c = f–1 ([a, ]c) = f–1[–, a].

Since -algebras are closed under complements, we have (1)  (2). Similarly, the sets in (3) and
(4) are complements, so we have (3)  (4). Thus, we just to prove (1)  (3). Assuming (1) and
writing

[a, ] =
n 1

1a ,
n




=

é ù
- ê úë û

  f–1[a, ] = 1

n 1

1f a ,
n




-

=

é ù
- ê úë û

,

shows that f–1[a, ]  S  since each f–1 1a ,
n

é ù
- ê úë û

  S  and S  is closed under countable intersections.
Thus, (1)  (3). Similarly,

[a, ] =
n 1

1a ,
n



=

é ù
+ ê úë û

   f–1(a, ] = 1

n 1

1f a ,
n


-

=

é ù
+ ê úë û

 ,

shows that (3)  (1).

As a consequence of this proposition, we can prove that measurable functions are closed under
scalar multiplication. Indeed, let f : X    be measurable and let   ; we’ll show that f is
also measurable. Assume that   0 (the  = 0 case is easy) and observe that for any a  ,

( f)–1 [a, ] = {x;  f(x) > a} =
{ }
{ }

ax; f(x) if 0,

ax; f(x) if 0

ì
>  >ï ï

í
ï <  <
ï î

=

1

1

af , if 0,

af , if 0.

-

-

ì é ù
  >ï ê úï ë û

í
é ùï - <  <ê úï ë ûî
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Notes By Proposition, each set on the right is measurable, thus so is (f)–1 [a, ]. We’ll analyze more
algebraic properties of measurable functions in the next section.

We now give some examples of measurable functions.

Example: Let X = n with Lebesgue measure. Then any continuous function f : n   is
measurable because for any a  , by continuity (the inverse of any open set is open),

f–1[a, ] = f–1(a, )

(where we used that f does not take the value ) is an open subset of n. Since open sets are
measurable, it follows that f is measurable.

Thus, for Lebesgue measure, continuity implies measurability. However, the converse is far
from true because there are many more functions that are measurable than continuous. For
instance, Dirichlet’s function D :   ,

D(x) =
1 if x ,
0 if x ,

ì
í

Ïî




is Lebesgue measurable. Note that D is nowhere continuous. That D is measurable follows from
example below and the fact that D is just the characteristic function of   , and  is measurable.

Example: For a general measure space X and a set A  X, we claim that the characteristic
function A : X   is measurable if and only if the set A is measurable. Indeed, looking at
Figure 27.1, we see that

1
A
- [a, ] = {x  X; 

A
(x) > a} = 

X if a 0
A if 0 a 1,

if a 1.

<ì
ï

£ <í
ïÆ ³î

It follows that 1
A
- [a, ]  S  for all a   if and only if A  S , which proves the claim. In

particular, there exists a non-Lebesgue measurable function on n. In fact, given any non-
measurable set A  n, the characteristic function A: n   is not measurable.

Of course, since A is non-constructive, so is A. You will probably never find a non-measurable
function in practice. The following example shows the importance of studying extended
real-valued functions, instead of just real-valued functions.

Figure 10.1: Graph of A
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Notes
Example: Let X = S, where S = {0,1}, be the sample space for a Monkey-Shakespeare

experiment (or any other experiment involving a sequence of Bernoulli trials). Let f : X  [0, ]
be the number of times the Monkey types sonnet 18:

f(x1, x2, x3,...) = the number of i’s such that xi = 1.

Notice that f =  when the Monkey types sonnet 18 an infinite number of times (in fact, as we see
that f =  on a set of measure). To show that f is measurable, write f as

f = n
n

f ,lim


where fi is the number of i’s in 1, 2,..., n such that x i = 1. Notice that f1 £ f2 £ f3 £  are non-
decreasing, so it follows that for any a  ,

f(x) £ a  fn(x) £ a for all n  x  n
n 1

{f a}.


=

£ {fn < a}.

Thus,

f–1[–, a] = 1
n

n 1
f [ , a].


-

=

-

The set {fn £ a} is of the form An  S  S  S   where An  Sn is the subset of Sn consisting of those
points with no more than a total of a entries with 1’s. In particular, {f n £ a}  R (C ) and hence, it
belongs to S  (C ). Therefore, {f £ a} also belongs to S  (C ), so f is measurable.

We shall return to this example when we study limits of measurable functions.

As we defined simple functions. For a quick review in the current context of our -algebra, S ,
recall that a simple function (or S -simple function to emphasize the -algebra, S ) is any function
of the form

s =
n

N

n A
n 1

a ,
=

å

where a1,..., aN   and A1,..., AN S  are pairwise disjoint. We know that we don’t have to take
the An’s to be pairwise disjoint, but for proofs it’s often advantageous to do so.

Theorem 1: Any Simple Function is Measurable

Proof: Let s = 
n

N
n 1 n Aa= å be a simple function where a1,..., aN   and A1,..., AN  S  are pairwise

disjoint. If we put AN+1 = X \ {A1    AN) and aN+1 = 0, then

X = A1  A2    AN  AN+1,

a union of pairwise disjoint sets, and s = an on An, for each n = 1, 2,..., N + 1. It follows that

s–1[a, ] = {x  X; s(x) > a} =
N 1

n
n 1

{x A ; s(x) a}
+

=

 >

=
N 1

n n
n 1

{x A ; a a}.
+

=

 >

Since

{x  An ; an > a} = n nA if a a
otherwise.

>ì
í
Æî

it follows that s–1[a, ] is just a union of elements of S . Thus, s is measurable.
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Notes 10.2 Measurability and Continuity

We saw earlier that continuity implies measurability, essentially by definition of continuity in
terms of open sets. It turns out that we can directly express measurability in terms of open sets.

Theorem 2: Measurability Criterion

For a function f: X   , the following are equivalent:

1. f is measurable.

2. f–1({})  S  and f–1( )  S  for all open subsets   .

3. f–1({})  S  and f–1(B)  S  for all Borel sets B  .

Proof: To prove that (1)  (2), observe that

{} =
n 1

[n, ]


=

   f–1({}) = 1

n 1
f [n, ].


-

=



Assuming f is measurable, we have f–1[n, ]  S  for each n and since S  is a -algebra, it follows
that f–1({})  S . Also, if    is open, then by the Dyadic Cube Theorem we can write  = n 1



= In

where In  S 1 for each n. Hence,

f–1( ) = 1
n

n 1
f (I )


-

=



By measurability, f–1(In)  S  for each n, so f–1( )  S .

To prove that (2)  (3), we don’t have to worry about the preimage of , so we just have to prove
that f–1(B)  S  for all Borel sets B  .

S f = {A  ; f–1(A)  S }

is a -algebra. Assuming (2) we know that all open sets belong to S f . Since S f is a -algebra of
subsets of  and B is the smallest -algebra containing the open sets, it follows that B   S f .

Finally we prove that (3)  (1). Let a   and note that

[a, ] =  (a, )  {}  f–1[a, ] = f–1(a, )  f–1({}).

Assuming (3), we have f–1({})  S  and since (a, )   is open, and hence is Borel, we also have
f–1(a, )  S . Thus, f–1(a, ]  S , so f is measurable.

We remark that the choice of using + over – in the “f–1({})  S ” parts of (2) and (3) were
arbitrary and we could have used – instead of .

Consider the second statement in the theorem, but only for real-valued functions:

Measurability: A function f : X   is measurable if and only if f–1( )  S  for each open set   .

One cannot avoid noticing the striking resemblance to the definition of continuity. Recall that
for a topological space (T, T ), where T  is the topology on a set T.

Continuity: A function f : T   is continuous if and only if f–1( )  T  for each open set   .

Because of this similarity, one can think about measurability as a type of generalization of
continuity. However, speaking philosophically, there are two very big differences between
measurable functions and continuous functions as we can see by considering X = n with Lebesgue
measure and its usual topology:

(i) There are a lot more measurable functions than continuous functions.

(ii) Measurable functions are closed under a lot more operations than continuous functions
are.
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NotesTo understand Point (i), recall from that all continuous functions on n are measurable; in
contrast, there are measurable functions that are highly discontinuous (like Dirichlet’s function).
There are more measurable functions than continuous functions because there are a lot more
measurable sets than there are open sets. For example, not only are open sets measurable but so
are points, Cantor-type sets, G


 sets, F


 sets, etc. We shall see that, just like continuous functions,

measurable functions are closed under all the usual arithmetic operations such as addition,
multiplication, etc. What exemplifies Point (ii) is that measurable functions are closed under all
limiting operations. For example, a limit of measurable functions is always measurable. This
stands in stark contrast to continuous functions. Indeed, that the characteristic function of a
Cantor set can be expressed as a limit of continuous functions. The reason that measurable
functions are closed under more operations is that measurable sets are closed under operations
(e.g. countable intersections and complements) that open sets are not.

Measurable functions are similar to continuous functions, but there are more of them and they
are more robust. Littlewood’s second principle shows exactly how “similar” measurable
functions are to continuous functions.

10.3 Littlewood’s Second Principle

We now continue our discussion of Littlewood’s Principles where we stated the first principle;

There are three principles, roughly expressible in the following terms: Every [finite Lebesgue]
measurable set is nearly a finite union of intervals; every measurable function is nearly continuous;
every convergent sequence of measurable functions is nearly uniformly convergent.

—Nikolai Luzin

The third principle is contained in Egorov’s theorem, which we’ll get to in the next topic.
The second principle comes from Luzin’s Theorem, named after Nikolai Nikolaevich Luzin
(1883-1950) who proved it in 1912 [70], and this theorem makes precise Littlewood’s comment
that any Lebesgue measurable function is “nearly continuous”.

Theorem 3: Luzin’s Theorem

Let X  n be Lebesgue measurable and let f : X   be a Lebesgue measurable function. Then
given any  > 0, there exists a closed set C n such that C  X, m(X\C) < , and f is continuous
on C.

Proof: Here we follow Feldman’s [38] proof that only uses Littlewood’s First Principle. Luzin’s
theorem is commonly proved using Egorov’s theorem and the fact that every measurable function
is the limit of simple functions.

Step 1: We first prove the theorem only requiring that C be measurable; this proof is yet another

example of the “ k2


–trick.” Let {k} be a countable basis of open sets in ; this means that every

open set in  is a union of countably many k’s. (For example, take the k’s as open intervals with
rational end points.) Let  > 0. Then, since f–1(k) is measurable, by Littlewood’s First Principle
there is an open set k such that

f–1(k)k and m(k\f–1(k)) < k2
 .

Now put

A : = 1
k k

k 1
( \f ( )).


-

=

  

Then A is measurable and

m(A) £ 1
k k k

k 1 k 1
( \ f ( )) = .

2
 

-

= =


< å å m
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Notes If we can prove that

g := X\Af : X \A  

is continuous, then we have proven our theorem with C = X \ A (modulo the closedness condition).
Since {k} is a basis for the topology of  to prove that g is continuous all we have to do is prove
that for each k, g–1(k) is open in X \A. To prove this, we shall prove that

(3.1) g–1(k) = (X\A)  k;

then, since k is an open subset of n, it follows that g–1(k) is open in X\A and we’re done. Now
to prove the desired equality note that, by definition of g, we have

g–1(k) = (X\A)   f–1(k)  (X \A)  k,

since f–1(k)  k. On the other hand, observe that

x  (X\A)  k  x ÏA, x  k

 x Ï (k\f–1(k)), x  k

 x  f–1(k).

In the second implication we used that A = j 1


= (j\f–1(j)) so x ÏA implies, in particular, that
x Ï (k\f–1(k)). Therefore,

(X\A)  k  (X\A)  f–1(k),

which completes the proof of (3.1).

Step 2: We now require that C be closed. Given  > 0 by Step 1 we can choose a measurable set
B  X such that m(X\B) < /2 and f is continuous on B. By Littlewood’s First Principle we can
choose a closed set C  n such that C  B and m(B\C) < /2. Since

X\C = (X \B)  (B \C),

we have

m(X \C) £ m(X \B) + m(B \C) < .

Also, since C  B and f is continuous on B, the function f is automatically continuous on the
smaller set C. This completes the proof of our theorem.

We shall see that Luzin’s theorem holds not just for n but for topological spaces as well.

10.4 Borel Measurability on Topological Spaces

Recall that the collection of Borel subsets of a topological space is the -algebra generated by the
open sets. For a measurable space (T, S ) where T is a topological space with S  its Borel subsets,
we call a measurable function f: T    Borel measurable to emphasize that the -algebra S  is
the one generated by the topology and it is not just any -algebra on T. For example, a Borel
measurable function on n is a function f : n    such that f–1(a, ]  B n for all a  .

Proposition: Any continuous real-valued function on a topological space is Borel measurable.

The proof of this proposition follows word-for-word the n case in Example, so we omit its
proof. A nice thing about Borel measurability is that it behaves well under composition.

Proposition: If f :     is Borel measurable and g : X   is measurable, where X is an
arbitrary measurable space, then the composition,

f o g : X  

is measurable.
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NotesProof: Given a  , we need to show that

(f o g)–1(a, ] = g–1(f–1(a, ])  S .

The function f : R    is, by assumption, Borel measurable, so f–1(a, ]  B 1. The function
g : X   is measurable, so by Part (3) of Theorem 3.5, g–1(f–1 (a, ])  S . Thus, f  g is measurable.

Example: If g : X   is measurable, and f :    is the characteristic function of the
rationals, which is Borel measurable, then Proposition 3.8 shows that the rather complicated
function

(f o g)(x) =
1 if g(x) ,
0 if g(x) ,

ì
í

Ïî




is measurable. Other, more normal looking, functions of g that are measurable include e g(x),
cos g(x), and g(x)2 + g(x) + 1.

10.5 The Concept of Almost Everywhere

Let (X, S ,) be a measure space. We say that a property holds almost everywhere (written a.e.)
if the set of points where the property fails to hold is a measurable set with measure zero. For
example, we say that a sequence of functions {fn} on X converges a.e. to a function f on X, written
fn  f a.e., if f(x) = 

n
lim


fn(x) for each x  X except on a measurable set with measure zero.
Explicitly,

fn  f a.e.  A := {x; f(x)  
n
lim


fn(x)}  S  and (A) = 0.

For another example, given two functions f and g on X, we say that f = g a.e. if the set of points
where f  g is measurable with measure zero:

f = g a.e.  A := {x; f(x)  g(x)}  S  and (A) = 0.

If g is measurable and f = g a.e., then one might think that f must also be measurable. However,
as you’ll see in the following proof, to always make this conclusion we need to assume
completeness.

Proposition: Assume that  is a complete measure and let f, g : X   . If g is measurable and
f = g a.e., then f is also measurable.

Proof: Assume that g is measurable and f = g a.e., so that the set A = {x; f(x)  g(x)} is measurable
with measure zero. Observe that for any a  ,

f–1(a, ] = {x  X; f(x) > a}

= {x  A; f(x) > a}  {x  Ac; f(x) > a}

= {x  A; f(x) > a}  {x  Ac; g(x) > a}

= {x A; f(x) > a}  (Ac  g–1(a, ]).

The first set is a subset of A, which is measurable and has measure zero, hence the first set is
measurable. g is measurable, so the second set is measurable too, hence f is measurable.

For instance, this proposition holds for Lebesgue measure since Lebesgue measure is complete.
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Notes Self Assessment

Fill in the blanks:

1. A measurable space is a pair (X, S ) where X is a set and, S  is a -algebra of subsets of X. The
elements of, S  are called .......................

2. For Lebesgue measure, continuity implies .......................

3. A function f : T   is continuous if and only if f–1( )  T  for each open set .......................

4. Measurable functions are similar to ......................., but there are more of them and they are
more robust.

5. ....................... principle shows exactly how “similar” measurable functions are to continuous
functions.

6. Any continuous real-valued function on a topological space is .......................

7. If f :     is Borel measurable and g : X   is measurable, where X is an arbitrary
measurable space, then the composition, ....................... is measurable.

10.6 Summary

 A measurable space is a pair (X, S ) where X is a set and, S  is a -algebra of subsets of X. The
elements of, S  are called measurable sets. Recall that a measure space is a triple (X,  S , )
where  is a measure on S ; if we leave out the measure we have a measurable space.

In the discussion at the beginning of this chapter we saw that in order to define the integral
of a function f : X   , we needed to require that

f–1(I)  S  for each I  S 1 and f–1[a, ]  S  for each a  .

 If these properties hold, we say that f is measurable. It turns out that we can omit the first
condition because it follows from the second. Indeed, since

f–1[a, b] = f–1[a, ]\f–1[b, ].

 There are three principles, roughly expressible in the following terms: Every [finite
Lebesgue] measurable set is nearly a finite union of intervals; every measurable function
is nearly continuous; every convergent sequence of measurable functions is nearly
uniformly convergent.

 The third principle is contained in Egorov’s theorem, which we’ll get to in the next section.
The second principle comes from Luzin’s Theorem, named after Nikolai Nikolaevich
Luzin (1883-1950) who proved it in 1912 [70], and this theorem makes precise Littlewood’s
comment that any Lebesgue measurable function is “nearly continuous”.

 Any continuous real-valued function on a topological space is Borel measurable.

 The proof of this proposition follows word-for-word the n case in Example, so we omit
its proof. A nice thing about Borel measurability is that it behaves well under composition.

 If f :     is Borel measurable and g : X   is measurable, where X is an arbitrary
measurable space, then the composition,

f o g : X  

is measurable.
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10.7 Keywords

Measurable Sets: A measurable space is a pair (X, S ) where X is a set and, S  is a -algebra of
subsets of X. The elements of, S  are called measurable sets.

Measurability Criterion: For a function f: X   , the following are equivalent:

1. f is measurable.

2. f–1({})  S  and f–1( )  S  for all open subsets   .

3. f–1({})  S  and f–1(B)  S  for all Borel sets B  .

Measurable: A function f : X   is measurable if and only if f–1( )  S  for each open set   .

One cannot avoid noticing the striking resemblance to the definition of continuity. Recall that
for a topological space (T, T ), where T  is the topology on a set T.

Luzin’s Theorem: Let X  n be Lebesgue measurable and let f : X   be a Lebesgue measurable
function. Then given any  > 0, there exists a closed set C n such that C  X, m(X\C) < , and
f is continuous on C.

Borel Measurable: Any continuous real-valued function on a topological space is Borel measurable.

10.8 Review Questions

1. (a) Prove that a non-negative function f is measurable if and only if for all k   and
n   with 0 £ k £ 22n – 1, the sets f–1(k/2n, (k + 1)/2n] and f–1(2n, ], are measurable.

(b) Prove that an extended real-valued function f is measurable if and only if f–1({}) and
all sets of the form f–1(k/2n, (k + 1)/2n], where k   and n  , are measurable.

(c) If {an} is any countable dense subset of , prove that f is measurable if and only if
f–1({}) and all sets of the form f–1(am, an], where m, n  , are measurable.

2. Here are some problems dealing with non-measurable functions.

(a) Find a non-Lebesgue measurable function f :    such that |f| is measurable.

(b) Find a non-Lebesgue measurable function f :    such that f2 is measurable.

(c) Find two non-Lebesgue measurable functions f, g :    such that both f + g and
f  g are measurable.

3. Here are some problems dealing with measurable functions.

(a) Prove that any monotone function f :    is Lebesgue measurable.

(b) A function f :    is said to be lower-semicontinuous at a point c   if for any
 > 0 there is a  > 0 such that

|x – c|<   f(c) –  < f(x).

Intuitively, f is lower-semicontinuous at c if for x near c, f(x) is either near f(c) or
greater than f(c). The function f is lower-semicontinuous if it’s lower-semicontinuous
at all points of . (To get a feeling for lower-semicontinuity, show that the functions
(0, ), (–, 0), and (–, 0)  (0,) are lower-semicontinuous at 0.) Prove that any lower-
semicontinuous function is Lebesgue measurable.

(c) A function f :    is said to be upper-semicontinuous at a point c   if for any
 > 0 there is a  > 0 such that

|x – c|<   f(x) < f(c) + .
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Notes Intuitively, f is upper-semicontinuous at c if for x near c, f(x) is either near f(c) or less
than f(c). The function f is upper-semicontinuous if it’s upper-semicontinuous at all
points of . Prove that any upper-semicontinuous function is Lebesgue measurable.

4. We can improve Luzin’s Theorem as follows. First prove the

(i) Tietze Extension Theorem for ; named after Heinrich Tietze (1880-1964) who proved
a general result for metric spaces in 1915 [98]. Let A   be a non-empty closed set
and let f0 : A   be a continuous function. Prove that there is a continuous function
f1 :    such that f1|A = f0, and if f0 is bounded in absolute value by a constant M,
then we may take f1 to the have the same bound. Suggestion: Show that \A is a
countable union of pairwise disjoint open intervals. Extend f0 linearly over each of
the open intervals to define f1.

(ii) Using Luzin’s Theorem for n = 1, given a measurable function f : X   where X  
is measurable, prove that there is a closed set C   such that C X, m(X\C) < ,
and a continuous function g :    such that f = g on C. Moreover, if f is bounded
in absolute value by a constant M, then we may take g to have the same bound as f.

5. Here are some generalizations of Luzin’s Theorem.

(i) Let  be a -finite regular Borel measure on a topological space X, let f : X   be
measurable, and let  > 0. On “Littlewood’s First Principle(s) for regular Borel
measures,” prove that there exists a closed set C X such that m(X\C) <  and f is
continuous on C.

6. Here we present Leonida Tonelli’s (1885-1946) integral published in 1924 [100]. Let f : [a, b]
  be a bounded function, say |f| £ M for some constant M. f is said to be quasi-
continuous (q.c.) if there is a sequence of closed sets C1, C2, C3,...  [a, b] with 

n
lim


m(Cn) =
b – a and a sequence of continuous functions f1, f2, f3,... where for each n, fn : [a, b]  , f =
fn on Cn, and |fn| £ M.

(i) Let f : [a, b]   be bounded. Prove that f is q.c. if and only if f is measurable. To
prove the “if” statement, use Problem 6.

(ii) Let f : [a, b]   be q.c. and let {fn} be a sequence of continuous functions in the
definition of q.c. for f. Let R(fn) denote the Riemann integral of fn and prove that the

limit 
n
lim


R(fn) exists and its value is independent of the choice of sequence {fn} in the
definition of q.c. for f. Tonelli defines the integral of f as

b
a fò :=

n
lim


R(fn).

It turns out that Tonelli’s integral is exactly the same as Lebesgue’s integral.

7. We show that the composition of two Lebesgue measurable function is not necessarily
Lebesgue measurable. Let  and M be the homeomorphism and Lebesgue measurable set,
respectively. Let g = 

M
. Show that g  –1 is not Lebesgue measurable. Note that both –1

and g are Lebesgue measurable.

8. Prove the Banach-Sierpinski Theorem, proved in 1920 by Stefan Banach (1892-1945) and
Waclaw Sierpinski (1882-1969), which states that if f :    is additive and Lebesgue
measurable, then f(x) = f(1)x for all x  . Suggestion: Observe that

 =
n=1

{x ;|f(x)| n}.


 £

Prove that for some n  , the set {x  ; |f(x)| £ n} has positive measure.
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1. measurable sets 2. measurability

3.    4. continuous functions

5. Littlewood’s second 6. Borel measurable

7. f o g : X  

10.9 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,
Ch.14, Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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Objectives

After studying this unit, you will be able to:

 Discuss the limsups and liminfs of sequences

 Describe operations on measurable functions

 Explain Littlewood's third principle

Introduction

In this unit we continue our study of measurability. We show that measurable functions are very
robust in the sense that they are closed under just about any kind of arithmetic or limiting
operation that you can imagine: addition, multiplication, division,…, and most importantly,
they are closed under just about any conceivable limiting process. We also discuss Littlewood’s
third principle on limits of measurable functions.

11.1 Limsups and Liminfs of Sequences

Before discussing limits of sequences of functions we need to start by talking about limits of
sequences of extended real numbers.

For a sequence {an} of extended real numbers, we know, in general, that lim an does not exist; for
example, it can oscillate such as the sequence. However, for the sequence, assuming that the
sequence continues the way it looks like it does, it is clear that although limit lim an does not
exist, the sequence does have an “upper” limiting value, given by the limit of the odd-indexed
an’s and a “lower” limiting value, given by the limit of the even-indexed an’s. Now, how do we
find the “upper” (also called “supremum”) and “lower” (also called “infimum”) limits of {an}? It
turns out there is a very simple way to do so, as we now explain.

Richa Nandra, Lovely Professional University
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Given an arbitrary sequence {an} of extended real numbers, put

s1 =
k 1

sup
³

ak = sup{a1, a2, a3,...},

s2 =
k 2

sup
³

ak = sup{a2, a3, a4,...},

s3 =
k 3

sup
³

ak = sup{a3, a4, a5,...},

and in general,

sn =
k n

sup
³

ak = sup{an, an+1, an+2,...}.

Note that

s1 ³ s2 ³ s3 ³ ··· ³ sn ³ sn+1 ³···

is an non-increasing sequence since each successive sn is obtained by taking the supremum of a
smaller set of elements. Since {sn} is an non-increasing sequence of extended real numbers, the
limit lim sn exists in  ; in fact,

lim sn = n
inf sn = inf{s1, s2, s3,...},

as can be easily be checked. We define the lim sup of the sequence {an} as

lim sup an := n
inf sn = lim sn= 

n
lim
®¥

(sup{an, an+1, an+2,...})

Note that the term “lim sup” of {an} fits well because lim sup an is exactly the limit of a sequence
of supremums.

Example: For the sequence an shown in Figure 28.1, we have

s1 = a1, s2 = a3, s3 = a3, s4 = a5, s5 = a5,...,

so lim sup an is exactly the limit of the odd-indexed an’s.

We now define the “lower” or “infimum” limit of an arbitrary sequence {a n}. Put

1=
k 1

sup
³

ak = inf{a1, a2, a3,...},

2=
k 2

sup
³

ak = inf{a2, a3, a4,...},

3=
k 3

sup
³

ak = inf{a3, a4, a5,...},

Figure 11.1: A Sequence Bouncing Up and Down
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Notes and in general,

n =
k n

sup
³

ak = inf{an, an+1, an+2,...}.

Note that

1  2  3 ···  n  n+1 ···

is an non-decreasing sequence since each successive n is obtained by taking the infimum of a
smaller set of elements. Since {n} is an non-decreasing sequence, the limit lim n exists, and
equals supn n. We define the lim inf of the sequence {an} as

lim inf an :=
n

sup n = lim n = 
n
lim
®¥

(inf{an, an+1, an+2,...}).

Note that the term “lim inf” of {an} fits well because lim inf an is the limit of a sequence of
infimums.

Example: For the sequence an shown in Figure 28.1, we have

1 = a2, 2 = a2, 3 = a4, 4 = a4, 5 = a6,...,

so lim inf an is exactly the limit of the even-indexed an’s.

The following lemma contains some useful properties of limsup’s and liminf’s. Since its proof
really belongs in a lower-level analysis.

Lemma: Let A    be non-empty and let {an} be a sequence of extended real numbers.

1. sup A = –inf(–A) and inf A = –sup(–A), where –A = {–a; a  A}.

2. lim sup an = –lim inf(–an) and lim inf an = –lim sup(–an).

3. lim an exists as an extended real number if and only if lim sup an = lim inf an, in which case,

lim an = lim sup an = lim inf an.

4. If {bn} is another sequence of extended real numbers and an  bn for all n sufficiently large,
then

lim inf an  lim inf bn and lim sup an  lim sup bn.

11.2 Operations on Measurable Functions

Let {fn} be a sequence of extended-real valued functions on a measure space (X, S , ). We define
the functions sup fn, inf fn, lim sup fn, and lim inf fn, by applying these limit operations pointwise
to the sequence of extended real numbers {fn(x)} at each point x  X. For example,

lim sup fn : X ® 

is the function defined by

(lim sup fn)(x) := lim sup(fn(x)) at each x  X.

We define the limit function lim fn by

(lim fn)(x) :=
n
lim
®¥

(fn(x))

at those points x  X where the right-hand limit exists.

We now show that limiting operations don’t change measurability.
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If {fn} is a sequence of measurable functions, then the functions

sup fn, inf fn, lim sup fn, and lim inf fn

are all measurable. If the limit 
n
lim
®¥

fn(x) exists at each x  X, then the limit function lim fn is
measurable. For instance, if the sequence {fn} is monotone, that is, either non-decreasing or
non-increasing, then lim fn is everywhere defined and it is measurable.

Proof: To prove that sup fn is measurable, we just have to show that (sup fn)–1 [–¥, a]  S  for each a
 . However, this is easy because by definition of supremum, for any a  ,

sup{f1(x), f2(x), f3(x),...}  a  fn(x)  a for all n,

therefore

(sup fn)–1[–¥, a] = {x; sup fn(x)  a} = n
n 1

{x; f (x) a}
¥

=



= 1
n

n 1
f [ ,a].

¥
-

=

-¥

Since each fn is measurable, we have 1
nf [ ,a]- -¥  S , so (sup fn)–1 [–¥, a]  S  as well. Using an

analogous argument one can show that inf fn is measurable.

To prove that lim sup fn is measurable, note that by definition of lim sup,

lim sup fn : = n
inf sn,

where sn = supk³n fk. Since the sup and inf of a sequence of measurable functions are measurable,
we know that sn is measurable for each n and hence lim sup fn = infn sn is measurable. An analogous
argument can be used to show that lim inf fn is measurable (just note that lim inf fn = sup n where
n = infk³n fk).

If the limit function lim fn is well-defined, then by Part (3) of above Lemma we know that lim fn =
lim sup fn (= lim inf fn). Thus, lim fn is measurable.

In particular, if f is a function on X and if f = lim sn, where the sn’s are simple function (which are
measurable by Theorem 3.4), then f is measurable.

Example: Let X = S¥, where S = {0,1}, a sample space for the Monkey-Shakespeare
experiment (or any other sequence of Bernoulli trials), and let f : X ® [0, ¥] be the random
variable given by the number of times the Monkey types sonnet 18. Then

f(x) = n
n 1

x
¥

=

å

That is,

f = nA
n 1

¥

=

cå = k

n

A
n k 1

,lim
®¥ =

cå

where An = S  S    S  {1}  S  S   where {1} is in the n-th slot. Since each An is measurable,
it follows that each cAn

 is measurable and hence so is f.

Given f: X ®  , we define its non-negative part f+: X ® [0, ¥] and its non-positive part f–: X ®
[0, ¥] by

f+ := max{f, 0} = sup{f, 0} and f– := – min{f, 0} = – inf{f, 0}.
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Notes See Figure 11.2 for graphs of f±. One can check that

f = f+ – f– and |f| = f+ + f–.

Assuming f is measurable, f+ and – f– are also measurable. Also, since measurability is preserves
under scalar multiplication f– = –(–f–) is measurable. In particular, the equality f = f+ – f– shows
that any measurable function can be expressed as the difference of non-negative measurable
functions.

Theorem 2: Characterization of measurability

A function is measurable if and only if it is the limit of simple functions. Moreover, if the
function is nonnegative, the simple functions can be taken to be a non-decreasing sequence of
non-negative simple functions.

Proof: Consider first the non-negative case. Let f: X ® [0, ¥] be measurable. For each n  ,
consider the simple function that we constructed at the very beginning of this chapter:

sn(x) =

n

n n n

n n n

2 n 2 n 2 n

n n n

1
2

1 1 2
2 2 2

32 2
2 2 2

2 1 2 1 n2
2 2 2
n n

0 if 0 f(x)
if f(x)
if f(x)

if f(x) = 2
2 if f(x) 2 .

- -

 ì
ï

< ï
ï < ï
í
ï
ï < 
ï

>ïî

 

See Figure 28.3 for an example of a function f and pictures of the corresponding s 1, s2, and s3. Note
that sn is a simple function because we can write

sn=
2 n

nk n

2 1 n
A Bn

k 0

k 2 ,
2

-

=

c + cå

where

Ank =
1

n n

k k 1f ,
2 2

- +æ ù
ç úè û

and Bn = f–1(2n, ¥].

At least if we look at Figure 28.3, it is not hard to believe that in general, the sequence {s n} is
always non-decreasing:

0  s1  s2  s3  s4  

and 
n
lim
®¥

sn(x) = f(x) at every point x  X. Because this is so believable looking at Figure, we leave
you the pleasure of verifying these facts.

Now let f: X ®   be any measurable function; we need to show that f is the limit of simple
functions. To prove this, write f = f+ – f– as the difference of its non-negative and non-positive
parts. Since f± are non-negative measurable functions, we know that f+ and f– can be written as
limits of simple functions, say ns+  and ns- , respectively. It follows that

f = f+ – f– = lim( ns+ – ns- )

is also a limit of simple functions.

Figure 11.2: Graphs of a Function f, f+, and f–
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Here, f looks like a “V” and is bounded above by 1. The top figures show partitions of the range
of f into halves, quarters, then eights and the bottom figures show the corresponding simple
functions. It is clear that s1  s2  s3.

Using Theorem 2 on limits of simple functions, it is easy to prove that measurable functions are
closed under all the usual arithmetic operations. Of course, the proofs aren’t particularly difficult
to prove directly.

Theorem 3: If f and g are measurable, then f + g, f  g, 1/f, and |f|p where p > 0, are also measurable,
whenever each expression is defined.

Proof: We need to add the last statement for f + g and 1/f. For 1/f we need f to never vanish and
for f + g we don’t want f(x) + g(x) to give a non-sense statement such as ¥ – ¥ or –¥ + ¥ at any
point x  X.

The proofs that f + g, f g, 1/f, and |f|p are measurable are all the same: we just show that each
combination can be written as a limit of simple functions. By Theorem 2 we can write f = lim sn

and g = lim tn for simple functions sn, tn, n = 1, 2, 3, ... . Therefore,

f + g = lim(sn + tn)

and

f g = lim(sntn ).

Since the sum and product of simple functions are simple, it follows that f + g and f g are limits
of simple functions, so are measurable.

To see that 1/f and |f|p are measurable, write the simple function sn as a finite sum

sn = nknk A
k

a ,cå

where An1, An2,...  S  are finite in number and pairwise disjoint, and an1, an2,...  , which we may
assume are all non-zero. If we define

un = nk

1
nk A

k
a- cå and vn = 

nk

p
nk A

k
a ,cå

which are simple functions, then a short exercise shows that

f–1 = lim un and |f|p = lim vn,

where in the first equality we assume that f is nonvanishing. This shows that f –1 and |f|p are
measurable.

Figure 11.3
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Notes In particular, since products and reciprocals of measurable functions are measurable, whenever
the reciprocal is well-defined, it follows that quotients of measurable functions are measurable,
whenever the denominator is nonvanishing.

11.3 Littlewood’s Third Principle

We finally come to the third of Littlewood’s principles, which is

Every convergent sequence of [real-valued] measurable functions is nearly uniformly
convergent, or, more precisely, in the words of Lebesgue who in 1903 stated this principle as.

Every convergent series of measurable functions is uniformly convergent when certain sets of
measure  are neglected, where  can be as small as desired.

Lebesgue here is introducing the idea which is nowadays called “convergence almost uniformly.”
A sequence {fn} of measurable functions is said to converge almost uniformly (or “a.u.” for short)
to a measurable function f, denoted by

fn ® f a.u.,

if for each  > 0, there exists a measurable set A such that (A) <  and fn ® f uniformly on Ac = X\A.
As a quick review, recall that fn ® f uniformly on Ac means that given any  > 0,

|fn(x) – f(x)| < , for all x  Ac and n sufficiently large.

Note that fn(x) and f(x) are necessarily real-valued (cannot take on ±¥) on Ac. Therefore, Lebesgue
is saying that

Every convergent sequence of real-valued measurable functions is almost uniformly convergent.

The following theorem, although stated by Lebesgue in 1903, is named after Dimitri Fedorovich
Egorov (1869-1931) who proved it in 1911[34].

Theorem 4: Egorov’s Theorem

On a finite measure space, a.e. convergence implies a.u. convergence for real-valued measurable
functions. That is, any sequence of real-valued measurable functions that converges a.e. to a real-
valued measurable function converges a.u. to that function.

Proof: Let f, f1, f2, f3,... be real-valued measurable functions on a measure space X with (X) < ¥,
and assume that f = lim fn a.e, which means there is a measurable set A  X with (X \A) = 0 and
f(x) = 

n
lim
®¥

fn(x) for all x  A. We need to show that fn ® f a.u.

Step 1: Given ,  > 0 we shall prove that there is a measurable set B  X and an N   such that

(3.3) (B) <  and for x  Bc, |f(x) – fn(x)| <  for all n > N.

Indeed, for each m  , put

Bm := n
n m

{x X; f(x) f (x) }
³

 - ³ 

Notice that each Bm is measurable and B1  B2  B3  . Also, since for all x  A, we have fn(x) ®
f(x) as n ® ¥, it follows that if x  A, then |f(x) – fn(x)| <  for all n sufficiently large. Thus, there
is an m such that x  Bm, and so, x  A  x  Bm for some m. Taking contrapositives we see that
x  Bm for all m  x  A, which is to say,

m
m 1

B X \A.
¥

=



Thus,  m 1 m( B )¥

=  (X\A) = 0 and therefore, since X is a finite measure space, by continuity of
measures (from above), we have
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(Bm) = 0.

Choose N such that (BN) <  and let B = BN. Then by definition of BN, one can check that holds.
This concludes Step 1.

Step 2: We now finish the proof. Let  > 0. Then by Step 1, for each k   we can find a measurable
set Ak  X and a corresponding natural number Nk   such that

(Ak) < k2
 and for c

kx A , |f(x) – fn(x)| < 1
k

 for all n > Nk.

Now put A = k 1 kA¥

= . Then (A) <  and we claim that fn ® f uniformly on Ac. Indeed, let  > 0 and
choose k   such that 1/k < . Then

x  Ac = c
j

j 1
A

¥

=

  c
kx A

 |f(x) – fn(x)| < 1
k

 for all n > Nk

 |f(x) – fn(x)| <  for all n > Nk.

Thus, fn ® f a.u.

We remark that one cannot drop the finiteness assumption.

Self Assessment

Fill in the blanks:

1. Let {fn} be a sequence of ........................................... on a measure space (X, S , ). We define
the functions sup fn, inf fn, lim sup fn, and lim inf fn, by applying these limit operations
pointwise to the sequence of extended real numbers {fn(x)} at each point x  X.

2. If the sequence {fn} is ................................, that is, either non-decreasing or non-increasing,
then lim fn is everywhere defined and it is measurable.

3. If f and g are measurable, then .............................., and |f |p where p > 0, are also measurable,
whenever each expression is defined.

4. Every convergent series of measurable functions is ................................... when certain sets
of measure  are neglected, where  can be as small as desired.

11.4 Summary

 For a sequence {an} of extended real numbers, we know, in general, that lim a n does not
exist; for example, it can oscillate. Assuming that the sequence continues the way it looks
like it does, it is clear that although limit lim an does not exist, the sequence does have an
“upper” limiting value, given by the limit of the odd-indexed an’s and a “lower” limiting
value, given by the limit of the even-indexed an’s. Now how do we find the “upper” (also
called “supremum”) and “lower” (also called “infimum”) limits of {a n}? It turns out there
is a very simple way to do so, as we now explain.

 Let {fn} be a sequence of extended-real valued functions on a measure space (X, S , ). We
define the functions sup fn, inf fn, lim sup fn, and lim inf fn, by applying these limit operations
pointwise to the sequence of extended real numbers {fn(x)} at each point x  X. For example,
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is the function defined by

(lim sup fn) (x) : = lim sup(fn(x)) at each x  X.

 If {fn} is a sequence of measurable functions, then the functions

sup fn, inf fn, lim sup fn, and lim inf fn

are all measurable. If the limit 
n
lim
®¥

fn(x) exists at each x  X, then the limit function lim fn

is measurable. For instance, if the sequence {fn} is monotone, that is, either non-decreasing
or non-increasing, then lim fn is everywhere defined and it is measurable.

 A function is measurable if and only if it is the limit of simple functions. Moreover, if the
function is non-negative, the simple functions can be taken to be a non-decreasing sequence
of non-negative simple functions.

11.5 Keywords

Limits Preserve Measurability: If {fn} is a sequence of measurable functions, then the functions

sup fn, inf fn, lim sup fn, and lim inf fn

are all measurable.

Characterization of Measurability: A function is measurable if and only if it is the limit of
simple functions. Moreover, if the function is nonnegative, the simple functions can be taken to
be a non-decreasing sequence of nonnegative simple functions.

Uniformly Convergent: Every convergent sequence of real-valued measurable functions is almost
uniformly convergent.

Egorov’s Theorem: On a finite measure space, a.e. convergence implies a.u. convergence for real-
valued measurable functions.

11.6 Review Questions

1. Let A1, A2,... be measurable sets and put

lim sup An := k
n 1 k n

A
¥ ¥

= =

  and lim inf An := k
n 1 k n

A .
¥ ¥

= =

 

Let f  and f  be the characteristic functions of limsup An and liminf An, respectively, and for
each n, let fn be the characteristic function of An. Prove that

f  = lim sup fn and f  = lim inf fn.

(i) First prove the theorem for simple functions. Suggestion: Let f be a simple function
and write f = 

k

N
k=1 k Aa cå  where X = N

k 1 kA ,=  the ak’s are real numbers, and the Ak’s are
pairwise disjoint measurable sets. Given  > 0, there is a closed set Ck  n with
m(Ak\Ck) < /N (why?). Let C = N

k 1 kC .=

(ii) We now prove Luzin’s theorem for non-negative f. For nonnegative f we know that
f = lim fk where each fk, k  , is a simple function. By (i), given  > 0 there is a closed
set Ck such that m(X\Ck) < /2k and fk is continuous on Ck.

Let K1 = k 1 kC .¥

=  Show that m(X\K1) < . Use Egorov’s theorem to show that there
exists a set K2  K1 with m(K1\K2) <  and fk ® f uniformly on K2. Conclude that f is
continuous on K2.
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(iii) Now find a closed set C  K2 such that m(K2\C) < . Show that m(X\C) < 3 and the
restriction of f to C is a continuous function.

(iv) Finally, prove Luzin’s theorem dropping the assumption that f is non-negative.

2. A sequence {fn} of real-valued measurable functions is said to be convergent in measure  if
there is a measurable function f such that for each  > 0,

n
n

({x; f (x) f(x) }) = 0.lim
®¥

 - ³ 

(Does this remind you of the weak law of large numbers?) Prove that if {fn} converges in
measure to a measurable function f, then f is a.e. real-valued, which means {x; f(x) = ±¥} is
measurable with measure zero. If {fn} converges to two functions f and g in measure, prove
that f = g a.e. Suggestion: To see that f = g a.e., prove and then use the “set-theoretic triangle
inequality”: For any real-valued measurable functions f, g, h, we have

{x; |f(x) – g(x)| ³}  { }x ; f(x) – h(x)
2


³   { }x ; h(x) – g(x) .
2


³

3. Here are some relationships between convergence a.e., a.u., and in measure.

(a) (a.u.  in measure) Prove that if fn ® f a.u., then fn ® f in measure.

(b) (a.e.  in measure) From Egorov’s theorem prove that if X has finite measure, then
any sequence {fn} of real-valued measurable functions that converges a.e. to a real-
valued measurable function f also converges to f in measure.

(c) (In measure  a.u. nor a.e.) Let X = [0,1] with Lebesgue measure. Given n  , write
n = 2k + i where k = 0, 1, 2,... and 0  i < 2k, and let fn be the characteristic function of

the interval k k

i i 1, .
2 2

+é ù
ê úë û

 Draw pictures of f1, f2, f3,...,f7. Show that fn ® 0 in measure,

but 
n
lim
®¥

fn(x) does not exist for any x  [0, 1]. Conclude that {fn} does not converge to
f a.u. nor a.e.

4. A sequence {fn} of real-valued, measurable functions is said to be Cauchy in measure if for
any  > 0,

( )n m{x ; f (x) – f (x)  } 0 , ³  ® as n, m ® ¥.

Prove that if fn ® f in measure, then {fn} is Cauchy in measure.

5. In this problem we prove that if a sequence {fn} of real-valued measurable functions is
Cauchy in measure, then there is a subsequence {fnk

 } and a real-valued measurable function
f such that fnk

 ® f a.u. Proceed as follows.

(a) Show that there is an increasing sequence n1 < n2 <  such that

( )n m k

1{x; f (x) – f (x) }) < ,
2

 ³  for all n, m ³ nk.

(b) Let

Am= { }k k +1n n k
k m

1x; f (x) – f (x) .
2

¥

=

³

Show that {fnk
} is a Cauchy sequence of bounded functions on the set c

mA . Deduce that
there is a real-valued measurable function f on A := c

m 1 mA¥

= such that {fnk
 } converges

uniformly to f on each c
mA .

(c) Define f to be zero on Ac. Show that fn ® f a.u.
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Notes Answers: Self Assessment

1. extended-real valued functions 2. monotone

3. f + g, f  g, 1/f 4. uniformly convergent

11.7 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol : Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik : Mathematical Analysis.

H.L. Royden : Real Analysis, Ch. 3, 4.
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CONTENTS

Objectives

Introduction

12.1 Simple Functions Vanishing Outside a Set of Finite Measure

12.2 Properties of the Lebesgue Integral

12.3 Bounded Measurable Functions Vanishing Outside a Set of Finite Measure

12.4 Summary

12.5 Keyword

12.6 Review Questions

12.7 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss the Lebesgue integral of bounded functions over a set of finite measure

 Explain properties of the Lebesgue integral of bounded functions over a set of finite
measure

 Describe bounded convergence theorem

Introduction

After getting basic knowledge of the Lebesgue measure theory, we now proceed to establish the
Lebesgue integration theory.

In this unit, unless otherwise stated, all sets considered will be assumed to be measurable.

We begin with simple functions.

12.1 Simple Functions Vanishing Outside a Set of Finite Measure

Recall that the characteristic function A for any set A is defined by

A(x) = {1 if x A
0 otherwise

Î

A function  : E  is said to be simple if there exists a1, a2,...., an Î  and E1, E2,...., En  E such

that  = 
i

n
i 1 i Ea=å  . Note that here the Ei’s are implicitly assumed to be measurable, so a simple

function shall always be measurable. We have another characterization of simple functions:

Proposition: A function  : E  is simple if and only if it takes only finitely many distinct
values a1, a2, .... an and –1{ai} is a measurable set for all i = 1, 2,....., n.

Sachin Kaushal, Lovely Professional University
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Notes Proof: With the above proposition we see that every simple function  can be written uniquely in
the form

i

n

i E
i 1

a
=

å = 

where the a i’s are all non-zero and distinct, and the E i’s are disjoint. (Simply take Ei’s –1{ai} for
i = 1, 2,...., n where a1, a2,...., an are all the distinct values of .) We say this is the canonical
representation of .

We adopt the following notation:

Notation: A function f : E   is said to vanish outside a set of finite measure if there exists a set
A with m(A) <  such that f vanishes outside A, i.e.

f = 0 on E\A

or equivalently f(x) = 0 for all x Î E\A. We denote the set of all simple functions defined on E
which vanish outside a set of finite measure by S0(E). Note that it forms a vector space.

We are now ready for the definition of the Lebesgue integral of such functions.

Definition: For any Î S0(E) and any A  E, we define the Lebesgue integral of  over A by

n

i iA
i 1

a m(E A)
=

åò  = Ç

where  = 
i

n

i E
i 1

a
=

å  is the canonical representation of . (From now on we shall adopt the

convention that 0   = 0. We need this convention here because it may happen that one a i is 0
while the corresponding EiC\A has infinite measure. Also note that here A is implicitly assumed
to be measurable so m(Ei n A) makes sense. We shall never integrate over non-measurable sets.)

It follows readily from the above definition that

AA Aò ò = 

for any Î S0(E) and for any A  E.

We now establish some major properties of this integral (with monotonicity and linearity being
probably the most important ones). We begin with the following lemma.

Lemma: Suppose  = n
i 1 i Eia=å  Î S0(E) where the Ei’s are disjoint. Then for any A  E,

Aò   = n
i 1 i ia m(E A)=å Ç

holds even if the ai’s are not necessarily distinct.

Proof: If  = n
j 1 i Bjb=å   is the canonical representation of , we have

1. Bj = 
i j

m

i
{i :a b }

E
=



for j = 1, 2,..., m and

2. {1, 2,..., n} = 
m

i j
j 1

{i : a b }
=

= ,

where both unions are disjoint unions. Hence for any A  E, we have
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Aò   =

m

j j
j 1

b m(B A)
=

å Ç (by definition of the integral)

=
i j

m

j i
{i :a b }j 1

b m E A
==

å
æ ö

Çç ÷è ø
 (by (1))

=
i j

m

j i
j 1 {i :a b }

b m(E A)
= =

å å Ç (by finite additivity of m)

 =
i j

m

j i i
j 1 {i :a b }

b a m(E A)
= =

å å Ç

=
n

i i
i 1

a m(E A)
=

å Ç (by (2))

This complete our proof.

12.2 Properties of the Lebesgue Integral

Proposition: (Properties of the Lebesgue integral)

Suppose  +  Î S0(E).  Then for any A E,

(a) A A A( )ò ò ò +  =  +   (Note that  +  ÎS0(E) too be the vector space structure

(b) A Aò òa = a   for all a Î . (Note aÎS0(E) again.)

(c) If a  a.e. on A then A Aò ò   .

(d) If  =   a.e. on A then A Aò ò =  .

(e) If  0 a.e. on A and A 0ò  = , then  = 0 a.e. on A.

(f) A A| |. (Note| | So (E) too.Why?)ò ò    Î

Remark: (a) and (b) are known as the linearity property of the integral, while (c) is known as the
monotonicity property. Furthermore, Lemma is now seen to hold by the linearity of the integral
even without the disjointness assumption on the Ei’s.

Proof:

(a) Let  = n
i 1 i Aia=å   and   = m

j 1 j Bjb=å   be canonical representations of  and   respectively.

Then noting that i i j

m
j 1A A B= Çå =  for all i and j i j

n
i 1B A B= Çå = 

i i j

n n m

i A i A B
i 1 i 1 j 1

a a Ç
= = =

å å å =  = 

j i j

m n m

j B j A B
j 1 i 1 j 1

b b Ç
= = =

å å å =  = 

Consequently

i j

n m

i j A B
i 1 j 1

(a b ) .Ç
= =

å å +  = + 

121



LOVELY PROFESSIONAL UNIVERSITY

Notes But the Ai Ç Bj’s are disjoint. So by Lemma we have

n m

i i jA
i 1 j 1

a m(A B A)
= =

å åò  = Ç Ç

n m

i i jA
i 1 j 1

b m(A B A)
= =

å åò  = Ç Ç

and
n m

i j i jA
i 1 j 1

( ) (a b )m(A B A).
= =

å åò  +  = + Ç Ç

Hence A A( )ò ò +  =  + 

(b) If a = 0 the result is trivial; if not, then let  = i

n
i 1 i Aa=å  be the canonical representation of

. We see that a = 
i

n
i 1 i Aa=å a  is the canonical representation of a and hence the result

follows.

(c) Since A A A( )ò ò ò -  =  -   by linearity, it suffices to show A 0ò f   whenever 0 a.e. on

A. This is easy, since if a1, a2, . . ., an are the distinct values of f, then

i i i

1 1
i i i i iA

{i :a 0} {i :a 0} {i :a 0}
a m( {a } A) a m( {a } A) a 0 0- -

<  <

å å åò f f Ç + f Ç   =

where the inequality follows from the fact that m(f–1 {ai Ç A}) = 0 for all ai < 0.

(d) This is immediate from (c).

(e) Since it is given that   0 a.e. on A, it suffices to show m({x : (x) > 0} Ç A) = 0.

Suppose not, then there exists a > 0 such that m({x : (x) = a} Ç A) > 0 so A a mò    ({x : (x)

= a}Ç A) > 0. This leads to a contradiction.

(f) This follows directly from monotonicity since –||    ||.

12.3 Bounded Measurable Functions Vanishing Outside a
Set of Finite Measure

Resembling the construction of the Riemann integral, we define the upper and lower Lebesgue
integrals.

Definition: Let f : E   be a bounded function which vanish outside a set of finite measure. For
any A  C, we define the upper integral and the lower integral of f on A by

{ }
___

A
A

f inf : f on A, So(E)=     Îò ò

A____ A
f sup : f on A, So(E)

ì ü
í ý=    Î
î þ

ò ò

If the two values agree we denote the common value by A fò . (Again the set A is implicitly

assumed to be measurable so that Aò   and Aò   make sense.)

Note that both the infimum and the supremum in the definitions of the upper and lower integrals
exist because f is bounded and vanishes outside a set of finite measure. It is evident that for the
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section. In other words, if Î S0(E) then 
__

A A A__ò ò ò =  =  , where the last integral is as defined in

the last section. It is also clear that 
__

A A__ f fò ò- < = <   whenever they are defined; we investigate
when 

__

A A__ f fò ò= .

Proposition: Let f be as in the above definition. Then 
__

A A__ f fò ò=  for all A  E if and only if f is
measurable.

Proof: () Let f be a bounded measurable function defined on E which vanishes outside F with F

 E and m(F) < . Then for each positive integer n there are simple functions n, n Î S0(E)

vanishing outside F such that n  f  n  and 0  n  – n  1/n E on E (Why?). Hence for any A
 E, we have

0
A A

f fò ò -  (subtraction makes sense since both integrals are finite)

__

n nA A__ò ò  -   (definition of A A
f and fò ò )

= n nA( )ò  - 

= n nA F( )
Çò  -   (n = n = 0 outside F)

n nF( )ò  -   ( n  – n  0 on F and A Ç F  F)

m(F)/n  (1, n  – n 1/n on F)

for all n. Letting n  we have AA
f fò ò= . (m(F) < )

() Suppose A A
f fò ò=   for any A E. Then E E

f fò ò= . Denote the common value by L. Then for

all positive integers n there exists n n,   S0(E) such that n  f  n  on E and L – 1/n 

n nE E L 1/nò ò    + . Let  = supn n and   = infn n . We shall show  =   a.e. on E. (Then the

desired conclusion follows since then  < f <   on E implies that  = f =   a.e. on E and hence

f is measurable.) To show that  =  a.e. on E, let  = {x Î E : (x)   (x)} and i = {x Î E :  (x)

– (x) > 1/i}. Then  = i 1 i

=  . We wish to show m() = 0, which will be true if we can show m(i)

= 0 for all i. Now for any i and n, since n  – n    –  > 1/i on i, we have

i
1 m( )
i

  =
i

1
iò  (by definition of the integral)


i n n( )

ò  - 

 n nE( )ò  -   ( n  – n  0 on E and i  E)

 n nE Eò ò - 

 2/n

Letting n  we have m(i) = 0 for all i, completing our proof.
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Notes Notation: We shall denote the set of all (real-valued) bounded measurable functions defined on
E which vanishes outside a set of finite measure by B0(E).

So from now on for f Î B0(E), we have

{ } { }A A Af inf : f So (E) sup : f So (E)ò ò ò=    Î =   Î

for any A  E.

Note also that B0(E) is a vector lattice, by which we mean it is a vector space partially ordered by
 (such that f  g if and only if f(x)  g(x) for all x Î E) and every two elements of it (say f, g Î B0(E))
have a least upper bound in it (namely f V g Î B0(E)). (Why is it a least upper bound?)

We have the following nice proposition concerning the relationship between the Riemann and
the Lebsegue integrals.

Proposition: If f : [a, b]  is Riemann integrable on the closed and bounded interval [a, b], then
f Î B0([a, b]) and

(3) () b
a [a, b]f ( ) f,ò ò= 

where the () and () represents Riemann integral and Lebesgue integral respectively.

Proof: Since step functions defined on closed and bounded interval [a, b] are simple and have the
same Lebesgue and Riemann integral over [a, b] (why?), we see from the definitions

() = { }
b

b
aa

f sup : f step on [a, b]ò ò=  

() = { }[a , b][a , b]
f sup : f simple on [a, b]ò ò=   

() = { }[a , b][a , b]f inf : f simple on [a, b]ò ò=   

() = { }
b b

aa f inf : f step on [a, b]ò ò=   

that

(4) () =
bb

[a, b] aa [a, b]
f ( ) f ( ) f ( ) fò ò ò ò    

whenever the four quantities exist. Now if f is Riemann integrable over [a, b], then f is bounded
on [a,b].  Since [a,b] is of finite measure, we see that all four quantities in (4) exist. In that case

bb
aa

( ) f ( ) fò ò=   as well so all four quantities in (4) are equal, which implies that f is measurable

(so f Î B0([a, b])) and (3) holds.

Proposition: Properties of the Lebesgue integral

Suppose f, g Î B0(E). Then f + g, af, |f|Î B0(E), and for any A  E, we have

(a) A A A(f g) f gò ò ò+ = +

(b) A Af f for allò òa = a aÎ .

(c) AA Ef fò ò= 

(d) If B  A then B A\Bf fò ò+ .

(e) If B  A and B Af fò ò
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Notes(f) If f  g a.e. on A then A Af gò ò .

(g) If f = g a.e. on A then A Af gò ò= .

(h) If f  0 a.e. on A and A f 0ò = , then f = 0 a.e. on A.

(i) A Af fò ò .

Proof: We prove only (h); the others are easy and left as an exercise.

(h) For each positive integer n let An = {x Î A : f(x)  1/n }. Then

0 = A Anf fò ò (by (e))

  An
1
nò (by (f))

= n
1 m(A )
n

 (by (by definition of the integral)

  0

so m(An) = 0. Since this holds for all n, we see from f–1 (0, ) Ç A = n 1 nA
= that 0  m(f–1 (0, ) Ç

A)  n 1 nm(A )
=å = 0.  So m(f–1 (0, ) ÇA) = 0. Together with f a.e. on A.

Theorem: Bounded Convergence Theorem

Suppose m(E) < , and {fn} is a sequence of measurable functions defined and uniformly bounded
on E by some constant M > 0, i.e.

|fn|  M for all n on E.

If {fn} converges to a function f (pointwisely) a.e. on E, then f is also bounded measurable on E,

n
lim
 nE fò  exists (in ) and is given by

(5) nE En
lim f f


ò ò=

Proof: Under the given assumptions it is clear that f, being the pointwise limit of {fn} a.e. on E, is
bounded (by M) and measurable on E. We wish to show nEn

lim f


ò exists and (5) holds. The result

is trivial if m(E) = 0. So assume m(E) > 0 and let  > 0 be given. Then for each natural number i let

Ei = {x Î, E : |fj(x) – f(x)| /2m(E) for some j  i}.

Then {Ei} is a decreasing sequence of sets with m(E1)  m(E) < . So

m(Ei) m i
i 1

E


=

æ ö
ç ÷è ø
  = 0,

the last equality follows from the fact that

m i
i 1

E


=

æ ö
ç ÷è ø
   m ({x Î E : fn(x) /  f(x)}) = 0

Choose N large enough such that m(EN) < /4M and let A = EN. Then |fn – f| < /2m(E) everywhere
on E\A for all n  N, and hence whenever n  N we have

nE E E nf f fò ò ò ò-  -  (by linearity and (i))
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Notes = n nE\A Af f |f f|ò ò- + -  (by (e))

 E\A E\A 2M
2m(E)ò ò


+  (by our choice of N and that n  N)

=
m(E \A) 2Mm(A)
2m(E)


+

 2M
2 4M
 
+

= .

Hence nEn
lim f


ò  exists (in ) and (5) holds.

(Alternatively when  > 0 is given, by Littlewood’s 3rd Principle we can choose a subset A of E
with m(A) < /4M such that {fn} converges uniformly to f on E\A. Then choose N large enough
such that |fn – f| < /2m(E) everywhere on E\A for all n  N, we see that whenever n  N, we
have (as in the above)

nE Ef fò ò-  < .

Hence nEn
lim f


ò exists (in ) and (5) holds.)

Notes  The first argument is just an adaptation of the proof of Littlewood’s 3rd Principal to
the present situation.

Self Assessment

Fill in the blanks:

1. A function  : E  is simple if and only if it takes only finitely many distinct values a 1,
a2,.... an and –1{ai} is a ......................... for all i = 1, 2,....., n.

2. A function f : E   is said to vanish outside a set of ......................... if there exists a set A
with m(A) <  such that f vanishes outside A, i.e.

f = 0 on E\A

3. Let f be as in the above definition. Then 
__

A A__ f fò ò=  for all A  E if and only if f is .......................

4. If f : [a, b]  is ......................................... on the closed and bounded interval [a, b], then

f Î B0([a, b]) and () b
a [a, b]f ( ) f,ò ò=   where the () and () represents Riemann integral and

Lebesgue integral respectively.

5. Suppose m(E) < , and {fn} is a sequence of measurable functions defined and uniformly
bounded on E by some constant M > 0, i.e. ..................... for all n on E.

12.4 Summary

 Recall that the characteristic function A for any set A is defined by

A(x) = {1 if x A
0 otherwise

Î
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Notes A function  : E  is said to be simple if there exists a1, a2,...., an Î  and E1, E2,...., En  E

such that  = 
i

n
i 1 i Ea=å  . Note that here the Ei’s are implicitly assumed to be measurable, so

a simple function shall always be measurable. We have another characterization of simple
functions:

 A function  : E  is simple if and only if it takes only finitely many distinct values a 1,
a2, .... an and –1{ai} is a measurable set for all i = 1, 2,....., n.

(a) A A A( )ò ò ò +  =  +   (Note that  +  ÎS0(E) too by the vector space structure

(b) A Aò òa = a   for all a Î . (Note aÎS0(E) again.)

(c) If a  a.e. on A then A Aò ò   .

(d) If  =   a.e. on A then A Aò ò =  .

(e) If  0 a.e. on A and A 0ò  = , then  = 0 a.e. on A.

(f) A A| |. (Note| | So (E) too.Why?)ò ò    Î

 Bounded Convergence Theorem Suppose m(E) < , and {fn} is a sequence of measurable
functions defined and uniformly bounded on E by some constant M > 0, i.e.

|fn|  M for all n on E.

12.5 Keyword

Bounded Convergence Theorem: Suppose m(E) < , and {fn} is a sequence of measurable functions
defined and uniformly bounded on E by some constant M > 0, i.e.

|fn|  M for all n on E.

12.6 Review Questions

1. Show that if A, B  E, A Ç B = 0/  and  Î S0(E), then A B A BÈò ò ò =  +  .

2. Show that if Î S0(E) vanishes outside F, then A A FÇò ò =   for any A E.

3. Show that if A  B  E and 0 Î S0(E), then A Bò ò   .

4. Find an example to show that the assumption m(E) <  cannot be dropped in the Bounded
Convergence Theorem.

5. Prove or disprove the following: Let E be of finite or infinite measure. If {fn} is a sequence
of uniformly bounded measurable functions on E which vanishes outside a set of finite
measure and converges pointwisely to f Î B0(E) a.e. on E, then nE En

lim f f


ò ò= . (Compare

with the statement of the Bounded Convergence Theorem.)

Answers: Self Assessment

1. measurable set 2. finite measurable

3. measurable 4. Riemann integrable

5. |fn|  M
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Notes 12.7 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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NotesUnit 13: Riemann's and Lebesgue

CONTENTS

Objectives
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13.1 Riemann vs. Lebesgue
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13.3 About Functions Behaving Nicely Outside a Small Set

13.4 -algebras and Measurable Spaces

13.5 Summary

13.6 Keywords

13.7 Review Questions

13.8 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss Riemann's and Lebesgue

 Explain the small subsets of R

 Discuss the functions outside small set

Introduction

In last unit you have studied about the Lebesgue integral of bounded functions. In this unit we
are going to study about the definition and the difference of Riemann's and Lebesgue.

13.1 Riemann vs. Lebesgue

Measure theory helps us to assign numbers to certain sets and functions to a measurable set we
may assign its measure, and to an integrable function we may assign the value of its integral.
Lebesgue integration theory is a generalization and completion of Riemann integration theory.
In Lebesgue’s theory, we can assign numbers to more sets and more functions than what is
possible in Riemann’s theory. If we are asked to distinguish between Riemann integration
theory and Lebesgue integration theory by pointing out an essential feature, the answer is
perhaps the following.

Riemann integration theory  finiteness.

Lebesgue integration theory  countable infiniteness.

Riemann integration theory is developed through approximations of a finite nature (e.g.: one
tries to approximate the area of a bounded subset of 2 by the sum of the areas of finitely many
rectangles), and this theory works well with respect to finite operations – if we can assign numbers
to finitely many sets A1,…, An and finitely many functions f1,…,fn, then we can assign numbers
to A1An, f1 ++ fn, max{f1,…, fn}, etc. The disadvantage of Riemann integration theory is
that it does not behave well with respect to operations of a countably infinite nature - there may

Sachin Kaushal, Lovely Professional University
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Notes not be any consistent way to assign numbers to n 1 nA ,¥

=  n 1 nf ,¥

=å limn ¥
 fn, sup{fn : n  }, etc.

even if we can assign numbers to the sets A1, A2,…, and functions f1, f2…. Lebesgue integration
theory rectifies this disadvantage to a large extent.

In Riemann integration theory, we proceed by considering a partition of the domain of a function,
where as in Lebesgue integration theory, we proceed by considering a partition of the range of
the function – this is observed as another difference. Moreover, while Riemann’s theory is
restricted to the Euclidean space, the ideas involved in Lebesgue’s theory are applicable to more
general spaces, yielding an abstract measure theory. This abstract measure theory intersects
with many branches of mathematics and is very useful. There is even a philosophy that measures
are easier to deal with than sets.

13.2 Small Subsets of d

It is possible to think about many mathematical notions expressing in some sense the idea that
a subset Y  d is a small set (or a big set) with respect to d. We will discuss this a little as a
warm-up. We will also use this opportunity to introduce Lebesgue outer measure.

Suppose you have a certain notion of smallness or bigness for a subset of d. Then there are some
natural questions. Two sample questions are:

1. If Y  d is big, is d\Y small?

2. If Y1, Y2,…  d are small, is n 1 nY¥

=  small?

For instance, consider the following two elementary notions. Saying that Y  d is unbounded
is one way of saying Y is big, and saying that Y  d is a finite set is one way of saying Y is small.
Note that the complement of an unbounded set can also be unbounded and a countable union of
finite sets need not be finite. So here we have negative answers to the above two questions.

Task Find an uncountable collection {Y

:   I} of subsets of  such that Y


’s are pairwise

disjoint, and each Y

 is bounded neither above nor below.

To discuss some other notions of smallness, we introduce a few definitions.

Definitions:

(i) We say Y  d is a discrete subset of d if for each y  Y, there is an open set U  d such
that U  Y = {y}. For example, {1/n: n  } is a discrete subset of .

(ii) A subset Y  d is nowhere dense in d if int[ Y ] = Ø, or equivalently if for any non-empty
open set U  d, there is a nonempty open set V  U such that V  Y = 0. For example, if
f:    is a continuous map, then its graph G(f) := {(x, f(x)):x  } is nowhere dense in 2

( G(f) is closed and does not contain any open disc).

(iii) A subset Y  d is of first category in d if Y can be written as a countable union of
nowhere dense subsets of d; otherwise, Y is said to be of second category in d. For
example, Y =    is of first category in 2 since Y can be written as the countable union
Y = r rY ,   where Yr := {r}   is nowhere dense in 2.

(iv) (The following definition can be extended by considering ordinal numbers, but we consider
only non-negative integers). For Y  d and integer n  0, define the nth derived set of Y
inductively as Y(0) = Y, Y(n+1) = {limit points of Y(n) in d}. We say Y  d has derived length
n if Y(n)  Ø and Y(n+1)  Ø; and we say Y has infinite derived length if Y (n)  Ø for every
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Notesinteger n  0. For example,  has infinite derived length (since   = ), and {(1/m,1/n):
m,n  } has derived length 2.

(v) We say A  d is a d-box if A = d
j 1 jI ,=p  where Ij’s are bounded intervals. The d-dimensional

volume of a d-box A is Vold(A) = d
j 1 jI .=p  For example, Vol3([1, 4)  [0,1/2]  (–1,3]) = 6.

(vi) The d-dimensional Jordan outer content *
j ,dm [Y] of a bounded subset Y  d is defined as

*
j ,dm [Y] = k

n 1{ =å infVold(An) : k  , and An’s are d-boxes with Y  k
n 1 nA }.=

(vii) The d-dimensional Lebesgue outer measure *
L,dm [Y] of an arbitrary set Y  d is defined as

*
L,dm [Y] = inf n 1{ ¥

=å  Vold(An) : An’s are d-boxes with Y  n 1 nA }.¥

=

We have that *
L,dm [Y]  *

J ,dm [Y] for any bounded set Y  d, and *
L,dm [A] = *

J ,dm [A] = Vold(A) for
any d-box A  d.

Proof: Any finite union k
n 1 nA= of d-boxes can be extended to an infinite union n 1 nA¥

= of d-boxes
without changing the total volume by taking An’s to be singletons for n > k. This observation
yields that *

L,dm [Y]  *
J ,dm [Y]. It is easy to see *

J ,dm [A] = Vold(A) if A is a d-box. It remains to
show *

L,dm [A]  Vold(A) when A is a d-box. First suppose A is closed. Then A is compact by
Heine-Borel. Let  > 0 and let A1,A2,…  d be d-boxes such that A  n 1 nA¥

= and n 1
¥

=å  Vold(An)
< *

L,dm [A] + . For each n  , let Bn be an open d-box with An  Bn and Vold(Bn) < Vold(An) + /2n.
Then {Bn: n  } is an open cover for the compact set A. Extracting a finite subcover, we have
Vold(A)  k

n 1=å Vold(Bn)  n 1
¥

=å (Vold(An) + /2n) < *
L,dm [A] + 2. Thus *

L,dm [A] = Vold(A) for closed
d-boxes. Now if B is an arbitrary d-box and  > 0, then there is a closed d-box A  B with Vold(B)
–  < Vold(A) = *

L,dm [A]  *
L,dm [B].

Other basic properties of Lebesgue outer measure and Jordan outer content are given below.

(i) *
L,dm [Ø] = 0.

(ii) [Monotonicity] *
L,dm [X]  *

L,dm [Y] if X  Y  d.

(iii) [Translation-invariance] *
L,dm [Y + x] = *

L,dm [Y] for every Y  d and every x  d.

(iv) [Countable subadditivity] If Y1,Y2,… d and Y = n 1
¥

= Yn, then *
L,dm [Y]  n 1

¥

=å
*
L,dm [Yn].

(v) *
L,dm [Y] = 0 for every countable set Y  d.

(vi) Forany Y  d, we have *
L,dm [Y]

= n 1{ ¥

=å infVold(An) : An’s are closed d-boxes with Y  n 1
¥

= An}

= n 1{ ¥

=å infVold(An) : An’s are open d-boxes with Y  n 1
¥

= An}.

(vii) For any Y  d, we have *
L,dm [Y] = *

L,dm inf{[U] : Y  U and U is open in d}.

(viii) *
L,dm [d] = ¥.

(ix) If X,Y  d are such that dist(X,Y) := inf{||x – y|| : x  X, y  Y} > 0, then *
L,dm [X  Y] =

*
L,dm [X] + *

L,dm [Y].

Proof: (i), (ii) and (iii) are clear. To prove (iv), without loss of generality we may assume
n 1
¥

=å
*
L,dm [Yn] < ¥. Given  > 0, there exist d-boxes A(n,k) such that Yn  k 1

¥

=  A(n,k) and
k 1
¥

=å Vold(A(n,k)) < *
L,dm [Yn] +/2n. Then Y  n 1

¥

= k 1
¥

=  A(n,k) and we have the estimate
n 1
¥

=å k 1
¥

=å Vold(A(n,k))  n 1
¥

=å ( *
L,dm [Yn] + /2n) = ( k 1

¥

=å
*
L,dm [Yn]) + .

Now (v) follows from (iv) since singletons have Lebesgue outer measure zero (or we can see it
directly by noting that singletons are d-boxes with zero volume). The first part of (vi) is clear
since any d-box and its closure have equal volume. To get the second part, note that if A1,A2,…
are d-boxes and  > 0, there exist open d-boxes B1,B2,… such that An  Bn and Vold(Bn) < Vold(An)
+ /2n. We may deduce (vii) using part (vi).
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Notes Now we prove (ix). From countable subadditivity, we have *
L,dm [X  Y]  *

L,dm [X] + *
L,dm [Y]. To

prove the other inequality, we may assume *
L,dm [X  Y] < ¥. Let  = dist(X,Y). Given  > 0, find

d-boxes A1,A2,… such that X  Y  n 1
¥

= An and n 1
¥

=å Vold(An) < *
L,dm [X  Y] + . By partitioning

the d-boxes into smaller d-boxes and throwing away the unnecessary ones, we may assume that
diam[An] <  and (X  Y)  An  Ø for every n  . Let = {n  : X  An  Ø} and  = {n  :
Y  An  Ø}. Then  =    is a disjoint union, X  n An, and Y  n An. Hence *

L,dm [X] +
*
L,dm [Y]  nå Vold(An) + nå Vold(An) = n 1

¥

=å Vold(An) < *
L,dm [X  Y] + .

(i) *
J ,dm [Ø] = 0.

(ii) [Monotonicity] *
J ,dm [X]  *

L,dm [Y] if X  Y are bounded subsets of d.

(iii) [Translation-invariance] *
L,dm [ Y + x] = *

L,dm [Y] for every bounded set Y  d and every
x  d.

(iv) [Finite subadditivity] If X,Y  d are bounded subsets, then *
J ,dm [X  Y]  *

J ,dm [X] + *
J ,dm [Y].

(v) *
J ,dm [Y] = 0 for every finite set Y  d.

(vi) For any bounded set Y  d, we have *
J ,dm [Y]

= inf k
n 1{ =å Vold(An) : k  , and An’s are closed d-boxes with Y  k

n 1= An}

= inf k
n 1{ =å Vold(An) : k  N, and An’s are open d-boxes with Y  k

n 1= An}

= inf k
n 1{ =å Vold(An) : k  N, and An’s are pairwise disjoint d-boxes with Y  k

n 1= An}.

(vii) If X,Y  d are bounded sets with dist(X,Y) := inf{||x – y||: x  X, y  Y} > 0, then *
J ,dm [X  Y]

= *
J ,dm [X] + *

J ,dm [Y].

(viii) For any bounded set Y  d, we have *
J ,dm [ Y ] = *

J ,dm [Y].

Proof: To prove (viii), use the first expression for *
J ,dm [Y] in (vi) and note that a finite union of

closed sets is closed.

Example: Let Y = d  [0, 1]d. Note that *
L,dm [Y] = 0  1 = *

L,dm [ Y ]. But we have *
J ,dm [Y] =

*
J ,dm [ Y ] = 1. So the Jordan outer content of a bounded countable set need, not be zero. This

example also shows that *
L,dm [Y] < *

J ,dm [Y] is possible for a bounded set, and that the Jordan outer
content does not satisfy countable subadditivity for bounded sets (since the Jordan outer content
of a singleton is zero). If X = [0, 1]d\Y, then *

J ,dm [X] = 1 since X  = [0, 1]d and hence *
J ,dm [X] + *

J ,dm [Y]
= 2  1 = *

J ,dm [X  Y].

Some ways of saying that Y  d is a small set:

(i) Y is a countable set.

(ii) Y is a discrete subset of d.

(iii) Y is contained in a vector subspace of d of dimension  d – 1.

(iv) Y is nowhere dense in d.

(v) Y is of first category in d.

(vi) Y has finite derived length.

(vii) Y is a bounded set with *
J ,dm [Y] = 0.

(viii) *
L,dm [Y] = 0.

It is good to investigate various possible implications between pairs of notions given above.
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Task If Y is a discrete subset of d, then Y is countable. [Hint: Let  = {B(x, 1/n): x  d,
n  }. Then,  is countable and for each y  Y, there is B   such that B  Y = {y}.]

Let K  [0,1] be the middle-third Cantor set. Then, K is an uncountable, nowhere dense compact
set with µJ,1[K] = *

L,1m [K] = 0. Moreover, K has no isolated points.

Proof: We recall the construction of K. Let K0 = [0,1], K1 = [0,1/3]  [2/3,1], K2 = [0,1/9]  [2/9,1/3]
 [2/3, 7/9]  [8/9,1], and so on. That is, Kn is the disjoint union of 2n closed subintervals of [0,1],
each having length 1/3n, and Kn+1 is obtained from Kn by removing the middle-third open
intervals from each of these 2n closed intervals. The middle-third Cantor set K is defined as
K = n 0

¥

= Kn. Being the intersection of compact sets, K is compact. Since the maximal length of an
interval contained in Kn is (1/3)n, K does not contain any open interval, and hence K is nowhere
dense. Also, since K  Kn, the above description yields *

J ,1m [K]  (2/3)n. So *
J ,1m [K] = 0 and hence

*
L,1m [K] = 0 also.

It may be verified that K = n 1{ ¥

=å xn/3n : xn  {0, 2}}. That is, K is precisely the set of those x  [0,1]
whose ternary expansion (i.e., base 3 expansion) x = 0.x 1x2 … contains only 0’s and 2’s. Hence K
is bijective with {0, 2} which is uncountable.

We show K has no isolated point. Let x  K and let U be a neighborhood of x. Choose n large
enough so that one of the 2n closed intervals constituting Kn, say Jn, satisfies x  Jn  U. Let y  Jn\{x}
be an end point of Jn. This end point is never removed in the later construction, so y  Km for
every m  n. Thus y  K  (U\{x}).

Notes It may be noted that for x  K, the base 3 expansion x = 0.x1x2 … is eventually
constant iff x is an end point of a removed open interval. This helps to see that K contains
points other than the end points of the (countably many) removed open intervals.

The following theorem is relevant while considering big and small sets in a topological sense.

Task If Y is contained in a vector subspace W of d with dim(W)  d – 1, then Y is a
nowhere dense subset of d. [Hint: W is closed in d ( fix a basis for W and argue with the
coefficients of each basis vector separately) and W does not contain any open ball of d.]

Baire Category Theorem: Let (X, ) be a complete metric space and let Un  X be open and dense
in X for n  . Then, n 1

¥

= Un is also dense in X. In particular, n 1
¥

= Un  Ø.

Proof: Let V  X be a nonempty open set. It suffices to show V  ( n 1
¥

= Un)  Ø. Since U1 is open
and dense, U1  V is a nonempty open set. Let B1 be an open ball in X such that 1B   U1  V and
diam[ B1] < 1. Since U2 is open and dense, B1  U2 = Ø. Let B2  X be an open ball with 2B  B1  U2

and diam[B2] < 1/2. In general, let Bn+1  X be an open ball with n 1B +  Bn  Un+1 and diam[Bn+1]
< 1/(n +1). If xn is the center of the ball Bn, then we note that for every n, m  k we have xn,xm  Bk

and hence  (xn,xm)  diam[Bk] < 1/k. So (xn) is a Cauchy sequence. Since (X, ) is complete, there
is x  X such that (xn)  x. Now, for any n, we have xm  nB  for m  n and hence x  nB . Thus
x  n 1

¥

= nB  V  ( n 1
¥

= Un).
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Notes (i) By considering the complements of Un’s in the above, we get the following
conclusion: if (X,) is a complete metric space, then X cannot be written as a countable
union of nowhere dense (closed) subsets of X. That is, X is of second category in itself.
(ii) Since d is a complete metric space with respect to the Euclidean metric, d cannot be
written as a countable union of nowhere dense (closed) subsets of d. (iii) From a topological
point of view, a first category subset is considered as a small set and a dense G


 subset is

considered as a big set because of Baire Category Theorem. However, a set that is
topologically big (small) need not be measure theoretically big (small). (iv) The
uncountability of the middle-third Cantor set can be proved with the help of Baire Category
Theorem also.

We observe in the following the distinction between topological bigness (smallness) and measure
theoretical bigness (smallness).

Task For any Y  d, the set Y\Y(1) is discrete and hence countable. In particular, every
uncountable subset of d has a limit point in d. [Hint: Let y  Y\Y(1). If B(y, 1/n)  Y
contains a point other than y for every n  , then y  Y(1), a contradiction.]

(i) For every  > 0, there is a dense open set U  d such that *
L,dm [U] < .

(ii) There is a dense G

 subset Y  d with *

L,dm [Y] = 0.

(iii) There is an F

 set X  d of first category with *

L,dm [X] = ¥ and *
L,dm [d\X] = 0.

(iv) For every closed d-box A and every  > 0, there is anywhere dense compact set K  d such
that K  A and *

L,dm [K] > Vold(A) – .

Proof: (i) Write d = {x1,x2,…}. For each n  , let An be an open d-box with xn  An and Vold(An)
< /2n. Put U = n 1

¥

= An.

(ii) Let Un  d be a dense open subset with *
L,dm [Un] < 1/n and put Y = n 1

¥

= Un.

(iii) Let Y be as in (ii) and take X = d\Y.

(iv) LetUbeasin(i)andletK = A\U.

The next result shows that the Lebesgue outer measure does not satisfy finite additivity (and
hence it does not satisfy countable additivity), even though it satisfies countable subadditivity.

Let X = d  [0, 1]d. Then, there is a subset Y  [0, 1]d satisfying the following:

(i) The translations Y + x are pairwise disjoint for x  X.

(ii) There exist finitely many distinct elements x1,…,xn  X such that *
L,dm [ n

i 1= (Y + xi)] 
n
i 1=å

*
L,dm [Y + xi].

Proof: Define an equivalence relation on [0, 1]d by the condition that a ~ b iff a – b  d. By the
axiom of choice, we can form a set Y  [0, 1]d whose intersection with each equivalence class is
a singleton.

(i) We verify that (Y + r)  (Y + s) = Ø for any two distinct r, s  X. If (Y + r)  (Y + s) = Ø for
r, s  X, then there are a, b  Y such that a + r = b + s. Now we have a – b = s – r  d, and
hence a ~ b. So we must have a = b by the definition of Y, and then necessarily r = s.
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Notes(ii) If z  d, there is r  d such that z – r  [0, 1]d. Then there is y  Y such that y ~ z  – r and
so there is r  d such that y + r = z – r or z = y + r + r. This shows that d = dr  (Y + r).
By [102](iii) and [102](viii), we conclude that *

L,dm [Y] > 0. Let  = *
L,dm [Y] and n   be such

that n > 2d. Choose distinct elements x1,…,xn  X. Then n
i 1=å

*
L,dm [Y + xi] = n > 2d again by

translation invariance. On the other hand, Y + X  [0,2]d and therefore *
L,dm [ n

i 1= (Y+xi)] < 2d.

Note The construction above is due to Vitali, and hence the set Y is called a Vitali set.

13.3 About Functions Behaving Nicely Outside a Small Set

There are a few classical results in Analysis with conclusion of the following form: “… the
function has nice behavior outside a small set”. We will consider some such results here.

We know that a function that is the pointwise limit of a sequence of continuous functions may
not be continuous. For instance, f : [0, 1]   given by f(1) = 1 and f(x) = 0 for x < 1 is the pointwise
limit of (fn), where fn : [0, 1]   is fn(x) = xn.

Definition: Let X, Y be metric spaces and let f: X  Y be a function. Then the oscillation (f, x) of
f at a point x  X is defined as (f, x) = lim

0+ diam[f(B(x, ))]. Clearly, f is continuous at x iff 
(f, x) = 0.

Task Let X,Y be metric spaces and let f: X  Y be a function. Then the set {x  X: f is
continuous at x} is a G


 subset of X. [Hint: The given set is equal to n 1

¥

= Un, where Un = {x  X:
(f, x) < 1/n}, and Un is open.]

Let (X, 1) be a complete metric space, (Y, 2) be an arbitrary metric space, and let (fn) be a
sequence of continuous functions from X to Y, converging pointwise to a function f: X  Y. Then
the set {x  X : f is continuous at x} is a dense G


 subset of X.

Proof: Let  > 0 and D

 = {x  X : (f, x) > }. We know that D

 is a closed set. We claim that D

 is

nowhere dense in X. Let U  X be a nonempty open set. We have to find a nonempty open set V
 U such that D


  V = Ø.

For n  , let Kn = {x  X: 2(fn(x), fj(x))  /8 for every j  n}. Then Kn is a closed set and X = n 1
¥

= Kn.
The continuity of the distance function 2 implies that 2(fn(x), f(x))  /8 for every x  Kn. Let
U1  X be a nonempty open set with 1U  U. Since ( 1U , 1) is a complete metric space, there is
n  N such that U2 := int[Kn  1U ]  Ø. Let b  U2 and V  U2 be an open set with diam[fn(V)]
 /8. For any x, y  V, we have 2(f (x), f(y))  2(f(x), fn (x)) + 2(fn(x), fn(b)) + 2(fn(b), fn(y)) +
2(fn(y), f(y))  /8 + /8 + /8 + /8 = /2. Hence diam[f(V)]  /2 and therefore (f, x)  /2 for
every x  V. This shows D


 V = Ø, proving our claim.

The claim implies that D : = n 1
¥

= D1/n is an F

 set of first category in X. This completes the proof

since {x  X : f is continuous at x} = X\D, and X is a complete metric space.

We know that the derivative of a differentiable real function need not be continuous. However,
we can say the following.

Let f :    be differentiable. Then there exists a sequence (gn) of continuous functions from
 to  converging to f’ pointwise. Consequently, {x  : f is continuous at x} is a dense G


 subset

of .
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Notes Proof: Since f is differentiable, f is continuous. Define gn(x) = [f(x + 1/n) – f(x)]/(1/n) and use [108].

Now we will show that a monotone real function (increasing or decreasing) is continuous and
differentiable at most of the points.

Let –¥  a < b  ¥ and let f: (a, b)   be a monotone function. Then, Y = {x  (a, b) : f is
discontinuous at x} is a countable set (possibly empty).

Proof: Suppose f is increasing. If x  Y, then necessarily f(x–) < f(x+), and we may choose a rational
number between f(x–) and f(x+). This gives a one-one map from Y to Q.

Definition: A collection  of non-degenerate intervals is a Vitali cover for a set X   if for each
 > 0, the subcollection {I  : 0 < |I| < } is also a cover for X.

[Vitali’s covering lemma] Let X   be such that *
L,1m [X] < ¥ and let  be a collection of intervals

forming a Vitali cover for X. Then,

(i) There are countably many pairwise disjoint intervals I1, I2,…   such that *
L,1m [X\UnIn] = 0.

(ii) For every  > 0, there exist finitely many pairwise disjoint intervals I1,…,Ik   with the
property that *

L,1m [X\ k
n 1= In] < .

Proof: Write µ* = *
L,1m for simplicity.

(i) With out loss of generality assume that every I   is a (non-degenerate) closed interval.
Choose an open set U   such that X  U and µ*[U] < ¥. Every x  X has a neighbourhood
contained in U. Hence  = {I  : I  U} is also a vitali cover for X. We will choose the
intervals In inductively. Let 0 = sup{|J|: J  } (note that 0 < µ*[U] < ¥) and let I1   be
any interval with |I1| > 0/2. Suppose that we have chosen pairwise disjoint intervals
I1,…,In  . If X  n

i 1= Ii, then we are done. Else, any x  X\ n
i 1= Ii is at a positive distance

from the closed set n
i 1= Ii. Let n = sup{| J|: J   and Ii  J = Ø for 1  i  n}. Then 0 < n 

µ*[U] < ¥. Let In + 1   be an interval with |In+1| > n/2. We will show that the sequence (In)
does the job.

Observation: For every J  , there is n   such that In  J  Ø (|In|  µ*[U] < ¥ so that
(|In|)  0, and hence there is n   such that |In| < | J|/2).

Let Y = X\ n 1
¥

= In and  > 0. We claim that µ*[Y] < . Let cn be the midpoint of In and let Yn   be
the closed interval with midpoint cn and |Yn| = 6|In| (this Yn may not be in ). Let k   be so
that n k 1

¥

= +å |In| < /6. If x  Y, then in particular x does not belong to the closed set k
n 1= In.

Choose J   with x  J and In  J = Ø for 1  n  k. By our observation above, Im  J  Ø for some
m  k + 1. Let m be the smallest such number. Then |J|  m–1 < 2|Im| and hence |x – cm|  |J| +
|Im|  3|Im|. Therefore, x  Ym. We have shown that Y  n k 1

¥

= + Yn. Since n k 1
¥

= +å |Yn|  6 n k 1
¥

= +å

|In| < , we have proved that µ*[Y] < .

Now, note that the argument given above actually shows that for every  > 0, there is k   such
that µ* [X\ k

n 1= In] < . Hence we have established (ii) also.

When a mathematical problem is difficult, it is a good idea to divide the problem into many
subcases and to treat each case separately. If f : (a, b)   is a function, then the four Dini
derivatives of f at a point x  (a, b) are defined as follows.

D+f(x) =
h 0

lim sup f(x h) f(x)
h +

+ - [upper right derivative]

D+f(x) =
h 0

lim inf
f(x h) f(x)

h +

+ - [lower right derivative]
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Notes
D–f(x) =

h 0

f(x h) f(x)limsup
h -

+ - [upper left derivative]

D–f(x) =
h 0

f(x h) f(x)
lim inf

h -

+ - [lower left derivative].

Note Here, 
h 0

f(x h) f(x)limsup
h +

+ - := 
y 0 0 h y

f(x h) f(x)suplim
h + < <

é ù+ -
ê ú
ë û

, and similarly the others.

Example: Let f: (–1,1)   be f(0) = 0 and f(x) = x sin(1/x) for x = 0. Then, D+f(0) = 1 = D–f(0)
and D+f(0) = –1 = D–f(0) so that f is not differentiable at 0.

Notes That f is differentiable at x iff all the four Dini derivatives are equal and real
(i.e., different from ±¥). Since D+f(x)  D+f(x) and D-f(x) < D-f(x) by definition, we also see
that f is differentiable at x iff the four Dini derivatives are real numbers satisfying D +f(x) 
D-f(x) and D-f(x) ¥ D+f(x).

[Lebesgue’s differentiation theorem] Let –¥  a < b  ¥, let f : (a, b)   be a monotone function
and let Y = {x  (a, b) : f is not differentiable at x}. Then *

L,1m [Y] = 0.

Proof: Since (a, b) can be written as a countable union of bounded open intervals, we may as well
assume (a, b) itself is bounded. Assume f is increasing and write µ*= *

L,1m . By the remark above,
Y = Y1  Y2, where Y1 = {x  (a, b) : D– + f(x) < D+f(x)} and Y2 = {x  (a, b) : D+f(x) < D–f(x)}. We will
only show that µ*[Y1] = 0; the case of Y2 is similar.

Let  = {(r, s)  2 : r < s}, let X(r, s) = {x  (a,b): D–f(x) < r < s < D+f(x)} and note that Y1 = U(rs)X(r, s).
Hence it suffices to show there µ*[X(r, s)] = 0 for every (r, s)  . Fix (r, s)  , write X = X(r, s) and
let  > 0 be arbitrary. Choose an open set U  (a, b) such that X  U and µ*[U] < µ*[X] + .

Since D–f < r on X, for each x  X and  > 0 we can find a non-degenerate closed interval I(x, ) =
[x –, x]  U such that 0 <  <  and f(x) – f(x – ) < r. Then  = {I(x, ) : x  X,  > 0} is a Vitali cover
for X. By Vitali’s lemma, we can find finitely many pairwise disjoint intervals I 1,…,Ik   such
that µ*[X\ k

n 1= |In|] < .

Let V = k
n 1= int[In]. Then, V is open, V  U, and µ*[X] –  < µ*[V]  µ*[U] < µ*[X] + . Let X = V  X.

Since D+f > s on X, and hence on X, for each y  X and  > 0 we can find a non-degenerate closed
interval J(y,) = [y, y + ]  V (hence J(y,)  In for some n  {1,…,k}) such that 0 <  < , and
f(y + ) – f(y) > s. Then  = {J(y, ) : y  X,  > 0} is a Vitali cover for X. Again by Vitali’s lemma,
we can find finitely many pairwise disjoint intervals J 1,…, Jm   such that µ*[X\ m

j 1= |Jj|] <.
Then m

j 1= |Jj|  µ*[X] –   µ*[X] – 2.

Write In = [xn –n, xn] and Jj = [yj, yj +j]. For each n  {1,…,k}, let Dn = {j  {1,..,m} : Jj  In}. Then
{1,…, m} is the disjoint union of Dn’s.

Note that 
nj Då (f(yj + j) – f(yj))  f(xn) – f(xn – n) for each n  {1,…,k} since f is increasing.

Summing over n, we get m
j 1=å (f(yj + j) – f(yj))  k

n 1=å (f(xn) – f(xn – n)), and hence m
j 1=å sj <

k
n 1=å rn, or s( m

j 1=å |Jj|) < r ( k
n 1=å |In|). From the earlier estimates we conclude that s(µ*[X] – 2)

< r(µ*[X] + ). Since  > 0 was arbitrary and r < s, we must have µ*[X] = 0.

The conclusion is, it can be extended to more general class of real functions.
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Notes Definition: If f: [a, b]   is a function and P = {a0 = a  a1  … an – 1  an = b} is a partition of
[a, b], let b

aV (f, P) = n
i 1=å |f(ai) – f(ai – 1)|. Define the total variation of f as b

aV (f) = sup{ b
aV (f, P) : P

is a partition of [a, b]}. We say f is of bounded variation if b
aV (f) < ¥. It is easy to see that if f is of

bounded variation, then f is bounded ( if x  [a, b], take P = {a  x  b} to see that |f(x) – f(a)| 
b
aV (f)).

Examples:

(i) If f : [a, b]   is a monotone function, then b
aV (f, P) = |f(b) – f(a)| for any partition P of

[a,b] and hence b
aV (f) = |f(b) – f(a)| < ¥. So f is of bounded variation.

(ii) Suppose f : [a,b]   is Lipschitz continuous (this happens if f is C1) with Lipschitz constant
 > 0. Then, it may be seen that b

aV (f)  (b – a) < ¥ and hence f is of bounded variation.

Example: A (uniformly) continuous function f : [a, b]   need not be of bounded
variation. Let f: [0, 1]   be the (uniformly) continuous function defined as f(0) = 0 and f(x) = x
sin (1/x) if x (0,1). Let ak = 2/kp  [0,1] for k  . Observe that |f(a2k) – f(a2k – 1)| = |0 – a2k – 1|
= a2k–1. Let m   and P = {0  a2m  a2m–1  …  a1  1}. Then 1

0V (f, P)  m
k 1=å |f(a2k) – f(a2k–1)| =

m
k 1=å a2k–1 = (2/p) m

k 1=å (2K – 1)–1  ¥ as m  ¥. Hence 1
0V (f) = ¥, and thus f is not of bounded

variation. This example also shows that bounded  bounded variation.

Notes If f, g: [a, b]   are of bounded variation, r, s  , and h : [a, b]   is defined as
h =  r f(x) + sg(x), then b

aV (h)  |r| b
aV (f) + |s| b

aV (g) < ¥. Hence {f : [a,b]   : f is of
bounded variation } is a real vector space (in fact, it is a normed space with the norm ||f||
= |f(a)| + b

aV (f)).

A function f : [a, b]   is of bounded variation iff there exist monotone functions g, h : [a, b]  
such that f(x) = g(x) – h(x) for every x  [a,b]. Consequently, for any function f : [a, b]   of
bounded variation, we have *

L,1m [{x  [a, b] : f is not differentiable at x}] = 0.

Proof: Suppose f = g – h, where g, h are monotone. Since g, h are of bounded variation, f is also of
bounded variation since the collection of functions of bounded variation on [a, b] is a vector
space. Conversely assume that f is of bounded variation and define g : [a, b]   as g(x) = x

aV (f).
Then g is monotone increasing. Let h = g – f, and consider points x < y in [a, b]. We have g(y) – g(x)
= y

xV (f)  |f(y) – f(x)|  f(y) – f(x), and therefore h(y)  h(x). Thus h is also monotone increasing.
Clearly, f = g – h.

Let [a, b] be a compact interval. Then for a function f : [a, b]  , we have the following
implications: f is Lipschitz continuous  f is absolutely continuous  f is of bounded variation.
Consequently, if f is either Lipschitz continuous or absolutely continuous, then *

L,1m [Y] = 0,
where Y = {x  [a, b] : f is not differentiable at x}.

Note However, there is a limit to these type of results; there are continuous functions f :
[a, b]   which are not differentiable at any point.

Now we mention a characterization of Riemann integrable functions in terms of small sets. For
simplicity, we restrict ourselves to dimension one, even though the corresponding result is true in
higher dimensions as well. If f : [a, b]   is a bounded function and if P = {a0 = a < a1    an–1
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Notes an = b} is a partition of [a, b], let Mi = sup{f(x) : ai-1  x  ai} and mi = inf{f(x) : ai-1  x  ai}. The upper
and lower Riemann sums with respect to the partition P are defined as U(f,P) = n

i 1=å Mi(ai – ai-1)
and L(f, P) = n

i 1=å mi(ai – ai-1). A bounded function f: [a, b]   is said to be Riemann integrable if
for every  > 0 there is a partition P of [a, b] such that U(f,P) – L(f,P) < . The following
characterization says that a Riemann integrable function is not very different from a continuous
function.

Let f : [a, b]   be a bounded function and let Y = {x  [a, b] : f is not continuous at x}. Then, f is
Riemann integrable iff *

L,1m [Y] = 0.

Proof: Let (f,x) be the oscillation of f at x defined earlier.

 : Since Y = k 1
¥

= Yk, where Yk = {x  [a, b] : (f, x)  1/k}, it suffices to show *
L,1m [Yk] = 0 for every

k  . Fix k   and let  > 0. Let P = {a0 = a  a1    an-1  an = b} be a partition of [a, b] with U(f,P)
– L(f,P) < /2k. Let Ai = (ai–1, ai) and  = {1  i  n : Yk  Ai  Ø}. Note that Mi – mi  1/k for i  .
Write Yk = kY    kY² , where kY   = Yk  ( i Ai) and kY² = Yk  { a1,…, an}. We have /2k > U(f, P)
– L(f, P)  iå (Mi – mi)|Ai|  1/k iå |Ai| and hence iå | A i | < /2. And since kY² is a finite
set, there are finitely many intervals B1,…,Bm such that kY²  m

j 1= |Bj and m
j 1=å |Bj| < /2. Thus

Yk  [ i Ai]  [ m
j 1= Bj] and iå |Ai| + m

j 1=å |Bj| < . Since  > 0 was arbitrary, *
L,1m [Yk] = 0.

 : Let  > 0 be given. We have to find a partition P of [a, b] such that U(f, P) – L(f, P) < . Let
 = sup{|f(x)| : x  [a, b]} and let  = /[2 + 2(b – a)]. For each x  [a, b]\Y, choose an open
interval A(x)   containing x such that |f(x) – f(z)| <  for every z  [a, b]  A(x)  by continuity.
Also choose countably many open intervals Bm such that Y  m 1

¥

=  Bm and m 1
¥

= |Bm| < . Then
{A(x) : x  [a,b]\Y}  {Bm : m  } is an open cover for the compact set [a, b]. Extract a finite
subcover {A(xj) : 1  j  p}  {Bm : 1  m  q}. The end points inside [a, b] of these finitely many
intervals determine a partition P = {a0 = a  a1    an-1  an = b} of [a, b]. Observe that for each
i  {1,…,n}, we have [ai–1, ai]  jA(x )  for some j  {1,…,p}, or [ ai–1, ai]  mB  for some m  {1,...,q}.
Let  = {1  i  n : [ ai–1, ai]  jA(x )  for some j} and  = {1,…,n}\. Note that Mi – mi < 2 if i  .
Hence U(f, P) – L(f,P)  iå (Mi – mi)(ai – ai–1) + iå (Mi – mi)(ai – ai–1)  2 iå (ai – ai–1) + 2 iå

(ai – ai–1)  2 n
i 1=å (ai – ai–1) + 2 q

m 1=å |Bm| < 2 (b – a) + 2 = .

A corollary is that any bounded function f : [a, b]   with at most countably many points of
discontinuity (in particular, any continuous function) is Riemann integrable. The higher
dimensional generalization can be stated as follows.

Let A  d be a d-box, let f : A   be a bounded function and let Y be the set {x  A : f is not
continuous at x}. Then, f is Riemann integrable iff *

L,dm [Y] = 0.

Example: Let f : [0,1]   be f(0) = 0 and f(x) = sin (1/x) for x = 0. Even though the graph
of f has infinitely many ups and downs (in fact, f is not of bounded variation), f is Riemann
integrable since f is bounded and is discontinuous only at one point, namely 0.

Definition: Let X be a set and A  X. The characteristic function A : X   of the subset A is

defined as A(x) = 
1, if x A,
0, if x X \A.

ì
í

î

Example: We discuss an example that illustrates the main drawback of Riemann
integration theory. Write [0,1]   = {r1, r2,…}, let fn : [0, 1]   be the characteristic function of
{r1,…, rn}, and let f : [0,1]   be the characteristic function of [0,1]  . We have 0  f1  f2   
f  1 and the sequence (fn) converges to f pointwise. Each fn is Riemann integrable since fn is
discontinuous only at finitely many points. But f is discontinuous at every point of [0,1], and the
Lebesgue outer measure of [0,1] is positive. Hence f is not Riemann integrable by [115]. Thus
even the pointwise limit of a uniformly bounded, monotone sequence of Riemann integrable
functions need not be Riemann integrable.
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Notes (i) Let f: [0, 1]   be the characteristic function of [0, 1]  . Since f is not continuous at any
point, it is not possible to realize f as the pointwise limit of a sequence of continuous
functions from [0, 1] to , in view of [108].

(ii) Let (fn) be a sequence of continuous functions from [a, b] to  converging pointwise to a
function f : [a, b]  , and let Y = {x  [a, b] : f is not continuous at x}. From [108] we know
that Y is an F


 set of first category in [a, b]. But Y can have positive outer Lebesgue measure

by [106]. Hence f may not be Riemann integrable. Thus even the pointwise limit of a
sequence of continuous functions may not be Riemann integrable (of course, we did not
give an example).

(iii) Lebesgue integration theory is developed not just for the sake of making the characteristic
function of [0,1]   integrable. The limit theorems in Lebesgue’s theory allow us to
integrate the pointwise limit of a sequence of integrable functions, and to interchange
limit and integration, under very mild hypothesis. Moreover, the powerful tools in
Lebesgue’s theory make many proofs simpler (e.g.: the proof of the change of variable
theorem in d-dimension), and provide us with new ways of dealing with functions (e.g.: L p

spaces). Also, as we will see later, in Lebesgue’s theory we have a more satisfactory
version of the Fundamental Theorem of Calculus (describing differentiation and integration
as inverse operations of each other).

13.4 -algebras and Measurable Spaces

A d-box in d has a well-defined d-dimensional volume. We may ask whether it is possible to
define the notion of a d-dimensional value for all subsets of d. Of course, we would like to have
consistency conditions such as monotonicity and countable additivity.

Question: Can we have a function µ : P(d)  [0, ¥] such that

(i) µ[A] = Vold(A) if A  d is ad-box,

(ii) [Monotonicity] µ[A]  µ[B] for subsets A, B of d with A  B,

(iii) [Countable additivity] µ[ n 1
¥

= An] = n 1
¥

=å µ[An] if An’s are pairwise disjoint subsets of d?

Notes We know that the Lebesgue outer measure *
L,dm  does not satisfy countable additivity.

The key observation of Lebesgue’s theory is that *
L,dm  will satisfy all the three conditions

stated above if we restrict *
L,dm  to a slightly smaller collection   (d) by discarding

some pathological subsets of d. In order to describe the structure of this smaller collection
, it is convenient to proceed in an abstract manner, which we do below.

Definition: Let X be a nonempty set. A collection   (X) of subsets of X is said to be a -algebra
on X if the following hold:

(i) Ø, X  .

(ii) A    X\A  .

(iii) A1, A2,…    n 1
¥

=  An  .

If  is a -algebra on X, then (X, ) is called a measurable space.
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Example: {Ø, X} and (X) are trivial examples of -algebras on any nonempty set X. The

following are some -algebras on d (verify):

1 = {A  d: A or d \ A is countable},

2 = {A  d: A or d \ A is of first category in d},

3 = {A  d: *
L,dm [A] = 0 or *

L,dm [d\ A] = 0}.

 4 = {A  d: [0, 1]d  A or [0, 1]d  d \ A}.

Definition: Let X be a nonempty set and   (X) be a collection of subsets of X. A -algebra  on
X is said to be generated by  if  is the smallest -algebra on X containing . Here,  exists and
is unique since  is precisely the intersection of all -algebras on X containing  (note that there
is at least one -algebra on X containing , namely (X)).

Definition: Let X be a metric space. Then the -algebra on X generated by the collection of all
open subsets of X is called the Borel -algebra on X, and is denoted as (X) (or just , if X is clear
from the context). The subsets of X belonging to (X) are called Borel subsets of X. For example,
open subsets, closed subsets, G


 subsets and F


 subsets of X are Borel subsets of X.

[Characterizations of the Borel -algebra on d] Consider the following collections of subsets of
d:

1 = {A  d: A is closed},

2 = {A  d: A is compact},

3 = {A  d: A is closed d-box},

4 = {A  d: A is an opend-box},

5 = {A  d: A is ad-box},

6 = {A  d: A is an open ball},

7 = {f–1(W) : f : d   is continuous and W   is open}.

If i is the -algebra on d generated by i for 1  i   7, then i = (d) for 1  i  7.

Proof: Clearly  3  2   1 = (d). Since (a, b) = 
0n n

¥

= [a + 1/n, b – 1/n] (where n0 is chosen so
that a + 1/n0  b – 1/n0), it follows that any open d-box°is a countable union of closed d-boxes,
and therefore  4  3. Since [a,b] = n 1

¥

=  (a – 1/n, b + 1/n), [a, b) = n 1
¥

=  (a – 1/n, b), and (a, b] =
n 1
¥

=  (a, b + 1/n), we deduce that any d-box is a countable intersection of open d-boxes, and hence
4 = 5. Since any open set in d can be written as a countable union of open d-boxes as well as
a countable union of open balls, we have 4 = 6 = (d). Thus i = (d) for 1  i  6.

By the definition of continuity, we have 7  (d). If U  d is an open set different from d, let
A = d \ U and define f : d   as f(x) = dist(x, A) := inf{||x – a||: a  A}. Then f is continuous, and
A = f–1(0) because A is closed. Now, U = f–1(\{0}) and \ {0} is open in . Hence (d)  7,
completing the proof.

Topological Remarks:

(i) If X is a separable metric space, then any base or subbase for the topology of X will
generate the Borel -algebra (X).

(ii) In the above characterization we used implicitly the fact that d is second countable and
locally compact. If a metric space X fails to be second countable or locally compact, then
the -algebra generated by all compact subsets of X will only be a proper sub-collection of
(X). For example, try to figure out what happens for the spaces (, discrete metric) (which
is not second countable), and (, Euclidean metric) (which is not locally compact).
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Notes Next our aim is to determine the cardinality of (d). We need some set-theoretic preparation.

Definition: An order  on a set X is a partial order if (i) x  x for every x  X, (ii) x  y and y  x
 x = y for every x, y  X, (iii) x  y and y  z  x  z for every x, y, z  X. We say (X, ) is a totally
ordered set if  is a partial order and any two elements of X are comparable. We say (X, ) is a
well-ordered set if (X, ) is totally ordered and any nonempty subset Y  X has a least element
in Y.

Examples:

(i) Let X be the collection of all nonempty subsets of . Define an order  on X as A  B iff the
minimum of A is less than or equal to the minimum of B. Then this is not a partial order
since the second condition fails.

(ii) If X is any nonempty set, then (X) with inclusion as order is partially ordered, but in
general not totally ordered.

(iii)  with the usual order is totally ordered, but not well-ordered since the subset (0,1) does
not contain a least element.

(iv)  with the usual order is well-ordered.

Well-ordering principle (equivalent to the axiom of choice): Any nonempty set admits a well-
ordering.

Now we describe the construction of some ordinal numbers. Start with an uncountable set X
such that card(X) = card(), and let  be a well-ordering on X. Let  denote the least element of
X. By adding one extra element to X if necessary, we may also assume that (X, ) has a largest
element, say . For each   X, let L


 = {  X :  < } be the left section of  in X. Let Y = {  X

: L

 is uncountable}. Then Y  Ø since   Y. So Y has a least element, say . Then L


 is

uncountable, but L

 is countable for every < . Here,  is called the first uncountable ordinal,

and each   L

 is called a countable ordinal number since each   L


 represents the type of a

countable well-ordered set through L

.

Fact: If A  L

 is a nonempty countable set, then A has a least upper bound in L


. [Proof: If B = A

L

, then B is countable and hence L


\B  Ø. The least element of L


\B is the least upper bound of

A]

If   L

, then the least element of the nonempty set {  L


:  < } will be denoted as  +1. Note

that there are no elements between  and  + 1 in L

. On the other hand, given   L


, there may

or may not exist   L

 such that  + 1 = . For example, if   L


 is the least upper bound of the

countable set {,  +1, + 2,…} (where recall that  is the least element of L

), then there is no

  X with  + 1 = . We say   L

 is a limit ordinal if there is no   L


 with  + 1 = .

card((d)) = card().

Proof: We will use transfinite induction (i.e., induction with respect to ordinal numbers) by using
L

 described above. Recall that we denoted the least element of L


 by the symbol . To start the

induction process, let 

 = {U  d : U is open}. Let   L


 and assume that we have defined 


 for

every   L

. If  is a limit ordinal, define 


 = < A


. If  =  + 1 for some   L


, let 


= {A  d : d \ A  


}, and 


 = {A  d : A is a countable union of members from 


  

 }.
This defines 


 for every   L


. Finally, put  = < 


. From our construction, it is clear that

  (d).

We verify that  is a -algebra on d. It suffices to check only the third property. So consider
A1,A2,…. Then there are 1,2,…  L


 such that An  

n
 for every n  . By the Fact

mentioned above, the countable set {n : n  } has a least upper bound, say  in L

. Then An  
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Notesfor every n   and hence n 1
¥

= An  
 +1  . Thus    is a -algebra on d containing all open

subsets of d. Hence  = (d).

Now, it suffices to show that card() = card(). Since there is an open ball of radius 1 centered at
each point of d, we have card()  card(


)  card(). So it suffices to establish that card() 

card(). Since card(L

) = card() and  = <  


, it is enough to show that card(


)  card() for

each   L

.

Let  be the collection of all open balls in d with rational radius and center in d. Then  is
countable, and any open set U  d can be written as a countable union of members of . Hence
card(


)  card() = card(). Let   L


 and suppose we have proved that card(


)  card() for

every  < . If  is a limit ordinal, then 

 = <  


 is a countable union and hence card(


) 

card(). If there is  with  + 1 = , then any A  

 can be written as A = n 1

¥

= An with An  A


 

 . This gives a one-one map from 

 into (A


  

 ). Hence card(

)  card((A


  

 )) 
card(). This completes the proof.

Corollary: For any uncountable set Y  d, there is A  Y such that A is not a Borel subset ofd.

Proof: We have card((d)) = card() = card(Y) < card((Y)).

Definition: Let (d) = {A  d: *
L,dm [A] = 0}. The members of (d) are called Lebesgue null sets.

The -algebra (d) on d generated by (d)  (d) is called the Lebesgue -algebra on d,
and members of (d) are called Lebesgue measurable subsets of d.

card((d)) = card((d)) = card((d)) > card(). Hence, (d)  (d)  (d).

Proof: Let K be the middle-third Cantor set. Then, for any subset A  K, we have *
L,1m [A] 

*
L,1m [K] = 0. So *

L,dm [A] = 0 also. This shows that (K)  (d)  (d). And card((K)) = card(())
since K is an uncountable subset of .

[Translation invariance] (i) A + x  (d) for every A  (d) and x  d.

(ii) A + x  (d) for every A  (d) and x  d.

(iii) A + x  (d) for every A  (d) and x  d.

Proof: First let us mention a general principle that will be used at many places. To establish that
the members of a certain -algebra  on a set X satisfies a certain property P, it suffices to do
the following: show that the collection {A  X: A satisfies property P} is a -algebra, and then
find a suitable collection   (X) generating  and show that every member of  satisfies the
property P.

Let  = {A  d: A + x  (d) for every x  d}. It is easy to check that  is a -algebra containing
all d-boxes. And recall that the collection of all d-boxes generates (d). This proves (i). Next,
statement (ii) is a consequence of the translation invariance property of the Lebesgue outer
measure, and (iii) follows from (i) and (ii) by applying the principle mentioned above.

We will give other characterizations of the Lebesgue measurable sets shortly, and we will also
show that (d)  (d).

Self Assessment

Fill in the blanks:

1. ............................................... is developed through approximations of a finite nature (e.g.:
one tries to approximate the area of a bounded subset of 2 by the sum of the areas of
finitely many rectangles).

2. While Riemann’s theory is restricted to the Euclidean space, the ideas involved in
............................ are applicable to more general spaces, yielding an abstract measure theory.
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Notes 3. The ......................................................... *
j ,dm [Y] of a bounded subset Y  d is defined as

*
j ,dm [Y] = inf k

n 1{ =å Vold(An) : k  , and An’s are d-boxes with Y  k
n 1 nA }.=

4. The construction above is due to Vitali, and hence the set Y is called a ............................

5. Let X, Y be metric spaces and let f: X  Y be a function. Then the oscillation (f, x) of f at
a point x  X is defined as (f, x) = lim

0+ diam [f(B(x, ))]. Clearly, f is ................................
at x iff (f, x) = 0.

6. Let –¥  a < b  ¥ and let f: (a, b)   be a ........................................... Then, Y = {x  (a, b) : f
is discontinuous at x} is a countable set (possibly empty).

7. Let X be a metric space. Then the -algebra on X generated by the collection of all open
subsets of X is called the ............................... on X, and is denoted as (X) (or just , if X is
clear from the context).

8. If A  L

 is a ............................................. set, then A has a least upper bound in L


. [Proof: If B

= A  L

, then B is countable and hence L


\B  Ø. The least element of L


\B is the least

upper bound of A].

13.5 Summary

 Measure theory helps us to assign numbers to certain sets and functions – to a measurable
set we may assign its measure, and to an integrable function we may assign the value of its
integral. Lebesgue integration theory is a generalization and completion of Riemann
integration theory. In Lebesgue’s theory, we can assign numbers to more sets and more
functions than what is possible in Riemann’s theory. If we are asked to distinguish between
Riemann integration theory and Lebesgue integration theory by pointing out an essential
feature, the answer is perhaps the following.

(i) We say Y  d is a discrete subset of d if for each y  Y, there is an open set U  d

such that U  Y = {y}. For example, {1/n: n  } is a discrete subset of .

(ii) A subset Y  d is nowhere dense in d if int[ Y ] = Ø, or equivalently if for any
nonempty open set U  d, there is a nonempty open set V  U such that V  Y =
0. For example, if f:    is a continuous map, then its graph G(f) := {(x, f(x)):x  }
is nowhere dense in 2 ( G(f) is closed and does not contain any open disc).

(iii) A subset Y  d is of first category in d if Y can be written as a countable union of
nowhere dense subsets of d; otherwise, Y is said to be of second category in d. For
example, Y =    is of first category in 2 since Y can be written as the countable
union Y = r rY ,   where Yr := {r}   is nowhere dense in 2.

(iv) (The following definition can be extended by considering ordinal numbers, but we
consider only non-negative integers). For Y  d and integer n  0, define the nth
derived set of Y inductively as Y(0) = Y, Y(n+1) = {limit points of Y(n) in d}. We say Y 
d has derived length n if Y(n)  Ø and Y(n+1)  Ø; and we say Y has infinite derived
length if Y(n)  Ø for every integer n  0. For example,  has infinite derived length
(since   = ), and {(1/m,1/n): m,n  } has derived length 2.

(v) We say A  d is a d-box if A = d
j 1 jI ,=Õ  where Ij’s are bounded intervals. The d-

dimensional volume of a d-box A is Vold(A) = d
j 1 jI .=Õ  For example, Vol3([1, 4) 

[0,1/2]  (–1,3]) = 6.

(vi) The d-dimensional Jordan outer content *
j ,dm [Y] of a bounded subset Y  d is defined

as *
j ,dm [Y] = inf k

n 1{ =å Vold(An) : k  , and An’s are d-boxes with Y  k
n 1 nA }.=
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Notes(vii) The d-dimensional Lebesgue outer measure *
L,dm [Y] of an arbitrary set Y  d is

defined as *
L,dm [Y] = inf n 1{ ¥

=å  Vold(An) : An’s are d-boxes with Y  n 1 nA }.¥

=

 If f : [a, b]   is a function and P = {a0 = a  a1  … an – 1  an = b} is a partition of [a, b],
let b

aV (f, P) = n
i 1=å |f(ai) – f(ai – 1)|. Define the total variation of f as b

aV (f) = sup{ b
aV (f, P) : P

is a partition of [a, b]}. We say f is of bounded variation if b
aV (f) < ¥. It is easy to see that

if f is of bounded variation, then f is bounded ( if x  [a, b], take P = {a  x  b} to see that
|f(x) – f(a)|  b

aV (f)).

13.6 Keywords

Riemann Integration Theory: Riemann integration theory  finiteness.

Lebesgue Integration Theory: Lebesgue integration theory  countable infiniteness.

Baire Category Theorem: Let (X, ) be a complete metric space and let Un  X be open and dense
in X for n  . Then, n 1

¥

= Un is also dense in X. In particular, n 1
¥

= Un  Ø.

Lebesgue’s Differentiation Theorem: Let –¥  a < b  ¥, let f : (a, b)   be a monotone function
and let Y = {x  (a, b) : f is not differentiable at x}. Then *

L,1m [Y] = 0.

Borel -algebra: If X is a separable metric space, then any base or subbase for the topology of X
will generate the Borel -algebra (X).

Well-ordering Principle: Well-ordering principle (equivalent to the axiom of choice): Any
non-empty set admits a well-ordering.

13.7 Review Questions

1. If f, g : [a, b]   are of bounded variation, then fg is of bounded variation. [Hint: Let M > 0
be such that |f|,|g|  M. Now, subtracting and adding the term f(a i)g(ai – 1), note that
|(fg)(ai) – (fg)(ai – 1)|  |f(ai)||g(ai) – g(ai – 1)| + |f(ai) – f(ai – 1)||g(ai – 1)| and hence b

aV (fg)
 M( b

aV (f) + b
aV (g)).]

2. If f : [a, b ]   is a function and c  [a, b ], then b
aV (f) = c

aV (f) + b
cV (f). [Hint: If P1 is a partition

of [a, c] and P2 is a partition of [c, b], then c
aV (f, P1) + b

cV (f, P2) = b
aV (f, P1  P2)  b

aV (f).
Conversely, if P is a partition of [a, b], first refine it by inserting c and then divide into
partitions P1 of [a, c] and P2 of [c, b]. Check that b

aV (f, P)  c
aV (f, P1) + b

cV (f, P2)  c
aV (f) + b

cV (f).]

3. Let f: [a, b]   be a bounded function. If f is either monotone or of bounded variation,
then f is Riemann integrable.

4. If f, g; [a,b]   are Riemann integrable, then h : = max{f, g} is also Riemann integrable.
[Hint: The set of discontinuities of h is contained in {x : f is not continuous at x}  {x : g is not
continuous at x}.]

5. If  is a -algebra on a set X show that

(i) A\B, A B   if A, B  ,

(ii) n 1
¥

= An   if A1,A2,… .

6. Let  = {A  d : A is a countable (possibly finite or empty) union of d-boxes}. Is  a
-algebra on d? [Hint: Let d = 1. Consider  and \, or the middle-third Cantor set and
its complement.]

7. Are the following -algebras on d: 1 = {A  d : A or d \A is open in d} and 2 = {A  d:
A or d \ A is dense in d}?
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Notes 8. If A

’s are -algebras on a set X, then  


 := {A  X : A  


 for every } is also a -algebra

on X.

9. Show that () is generated by each of the following collections: {(a, ¥) : a  }, {[a, ¥) : a
 }, {(–¥, b) : b  }, {(–¥, b] : b  }, {(a, b) : a < b and a, b  }.

10. (i) If card(X)  card(), then card(X)  card(). (ii) If card(J)  card() and card(X

) 

card() for each   J, then, card( J X

)  card(). [Hint: (i) Assume X = (0,1). Define a one-

one map f : (0, 1)  (0,1) as follows. If x = (xn)  (0, 1) and if xn = 0.xn,1xn,2 , then f(x) =
0.x1,1x1,2x2,1x1,3x2,2x3,1. (ii) Let g:   J and h


 :   X


 be surjections. Then f: 2  J  X



defined as f(x, y) = hg(y)(x) is a surjection, and card(2) = card().]

Answers: Self Assessment

1. Riemann integration theory 2. Lebesgue’s theory

3. d-dimensional Jordan outer content 4. Vitali set

5. continuous 6. monotone function

7. Borel -algebra 8. non-empty countable

13.8 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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NotesUnit 14: The Integral of a Non-negative Function
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Objectives

After studying this unit, you will be able to:

 Discuss the integral of a non-negative function

 Explain Properties of the integral of non-negative functions

 Describe Monotone convergence theorem and

 Definition of Integrable function over a measurable set

Introduction

In this unit we are going to study about the definition and the properties of the integral of non-
negative functions and some important theorems.

14.1 Integration of Non-negative Measurable Functions

We integrate non-negative measurable functions through approximation by bounded measurable
functions vanishing outside a set of finite measure, which we studied earlier.

Definition: For a non-negative measurable function f : E  [0, ] (where E is a set which may be
of finite or infinite measure), we define

A fò  = sup { }0A : f on A, B (E)ò j j £ jÎ

for any A E.

Note that for non-negative bounded measurable functions vanishing outside a set of finite
measure, this definition agrees with the old one. Also note that we allow the functions to take
infinite value here.

We verify the monotonicity and linearity of such integrals.

Proposition: Suppose f, g : E  [0, ] are non-negative measurable and A  E.

(a) If f £ g a.e. on A then A Af gò ò£ .

(b) For  > 0, f + g and f are non-negative measurable functions too and

Sachin Kaushal, Lovely Professional University
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A(f g)ò +  = A Af gò ò+

A fò   = A fò

Proof:

(a) This is clearly true, for if j Î B0(E) and j £ f on A, then j £ g on A so A A gò òj £  by definition

of A gò . Taking supremum over all such j’s, we get A Af gò ò£ .

(b) The assertion on A fò   can be proved using supremum arguments similar to that in (a) by

noting that for  > 0 and jÎ B0(E), j/ £ f on A whenever j £ f on A, and j£ f on A
whenever j £ f on A.

To verify A(f g)ò +  = A Af gò ò+ , note that if j, j  Î B0(E) and j £ f, j £ g on A, then j + j Î B0(E)

and j + j  £ f + g on A so

A(f g)ò +   A( )ò j + j (by definition of A(f g)ò + )

= A Aò òj + j

take supremum over all such j’s and j ’s we have A A A(f g) f gò ò ò+  + . For the opposite inequality,

note that if Î B0(E) with £ f + g on A, then write j = min {, f} and j  =  – j we see that j, j

Î B0(E) (note (i) – M £ j £  £ M if || £ M so j is bounded on E; (ii) j  =  – j is bounded on E

because both  and j are; (iii) measurability of j, j  is clear; and (iv) from j = min {, f} and j

= max {0,  – f} we see that j, j  = 0 whenever  = 0 so j, j vanishes outside a set of finite

measure). Further, we have j £ f, j  £ g on A. Hence

Aò   = A Aò òj + j

£ A Af gò ò+

Taking supremum over all such ’s we get A A(f g) f gò ò+ £ +

Theorem 1: Fatou’s Lemma

Suppose {fn} is a sequence of non-negative measurable functions defined on E and {fn} converges
(pointwisely) to a non-negative function f a.e. on E. Then

nE En
f lim inf f


ò ò£

Proof: Let h Î B0(E) and h £ f on E. Then there exists A  E with m(A) <  such that h = 0 outside
A. Let hn = min {fn, h} on A, we have hn is uniformly bounded and measurable on A : in fact if
|h| £ M on E, then hn = min {fn, h} > min {0, h}  –M and hn = min {fn, h} £ h £ M so |hn| £ M on
A Further, with the observation that min {a, b} = (a + b – |a – b|)/2 for all real a, b we have

hn =
n nf h |f h| f h |f h|

2 2
+ - - + - -

  = min {f, h} = h

on A. Since m(A) < , we can conclude by Bounded Convergence Theorem that nA An
h lim h


ò ò= .

So assuming hn = 0 on E\A, we have

n nE A A E Enn n n
h h lim h lim h liminf f

  
ò ò ò ò ò= = £
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Noteswhere the first equality follows from h = 0 on E/A and the last line hn £ fn on E for all n. Taking
supremum over all such h’s, we get the desired inequality.

Theorem 2: Monotone Convergence Theorem

If {fn} is an increasing sequence of non-negative measurable functions defined on E (increasing in
the sense that fn £ fn+1 for all n on E) and fn  f a.e. on E, then

nE Ef fò ò

by which it means {jE fn} is an increasing sequence with limit E fò .

In symbol,

0 £ fn  f a.e. on E  nE Ef fò ò

Proof:

n nE E E En n
f liminf f limsup f f

 
ò ò ò ò£ £ £ ,

the first inequality follows from Fatou’s Lemma, the last inequality follows from fn £ f on E for

all n. Hence nE Ef fò ò . (That nE fò increases as n increases is immediate from monotonicity of such
integrals.)

Corollary: Extension of Fatou’s lemma

If {fn} is a sequence of non-negative measurable functions on E, then n n nE Enlim inf f lim inf f ò ò£ .

Proposition: Suppose f is a non-negative measurable function defined on E such that E fò <  .

Then for all  > 0, there is a  > 0 such that

E fò < 

whenever A  E with m(A) < .

Proof: The result clearly holds if f is bounded on E. Suppose now f is not necessarily bounded, we

see that (f n) fÙ   so by Monotone Convergence Theorem

A An
f lim (f n)


ò ò= Ù

for all A  E. Note that by assumption E fò <   so both sides of the equality above are finite.

Hence if  > 0 is given, then there is a N such that A Af (f N)ò ò- Ù <  .

Take  = /2N, we see that

A A A Af f f(f N) (f N) /2 Nm(A) /2 Nò ò ò ò£ - Ù + Ù £  + £  +  < 

whenever A  E with m(A) < . So we are done.

14.2 Extended Real-valued Integrable Functions

Here we integrated non-negative measurable functions, and we wish to drop the non-negative
requirement. Recall that it is a natural requirement that our integral be linear, and now we can
integrate a general non-negative measurable function, so it is tempting to define the integral of
a general (not necessarily non-negative) measurable function f to be f f+ -

ò ò- where f+ = f V0
and f– = (–f) V0, since f+, f– are non-negative measurable and they sum up to f. But it turns out that
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Notes we cannot always do that, because it may well happen that f+ò and f-ò are both infinite, in
which case their difference would be meaningless. (Remember that  –  is undefined.) So we
need to restrict ourselves to a smaller class of functions than the collection of all measurable
functions when we drop the non-negative requirement and come to the following definition.

Definition: For f : E  [–, ], denote f+ = f V0 and f– = (–f) V0. Then f is said to be integrable if

and only if both E Ef and f+ -
ò ò are finite, in which case we define the integral of f by

A A Af f f+ -
ò ò ò= -

for any A E

Notation: We shall denote the class of all (extended real-valued) integrable functions defined on
E by C(E).

Note that in the above definition, f+ and f– are both non-negative measurable, so for any set

A  E, A f+ò  and A f-ò  are both defined. Furthermore, A Ef f+ +
ò ò£ <   and similarly A f-ò <   so

their difference makes sense now. Also note that for non-negative integrable functions this
definition agrees with our old one.

We provide an alternative characterization of integrable functions.

Proposition: A measurable function f defined on E is integrable if and only if E|f|ò <   so.

Proof: Just note that |f| = f+ + f–.

We proceed to investigate the structure of (E). We want to say it is a vector lattice. But we have
to be careful here: Given f, g Î (E) it may well happen that f(x) = +  and g(x) = – for some x
Î E and then f + g cannot be defined by f(x) + g(x) at that x. Luckily there cannot be too many such
x’s, in the sense that the set of all such x’s is of measure zero. In fact every integrable function is
finite. We know that the values of a function on a set of measure zero are not important as far as
integration is concerned. (This was observed as in the case of bounded measurable functions
vanishing outside a set of finite measure; the reader should verify this for the case of general
integrable functions as well.) So that eliminates our previous worries: more precisely, let us
agree from now on two functions f,g: E  [–, ] are said to be equal (write f = g) if and only if
they take the same values a.e.on E, and f + g shall mean a function whose value at x is equal to f(x)
+ g(x) for a.e.x Î E. Also say f £ g if and only if f(x) £ g(x) for a.e. x Î E. Then we have the following
proposition.

Proposition: (E) forms a vector lattice (partially ordered by £).

Proof: If f,g Î (E), then E E E|f g| |f| |g|ò ò ò+ £ + < (we are using linearity and monotonicity and

hence f + g Î (E) (the measurability of f + g is previously known). The rest of the proposition
is trivial.

With the vector lattice structure of (E) it is natural to ask whether the integral is linear and
monotone or not. We expect it to be true; we verify it below.

Proposition: For any f,g Î (E) and A  E, we have A A A(f g) f gò ò ò+ = +  and A Af fò ò =  .

Furthermore, if f £ g a.e. on A then A Af gò ò£ .

Proof: The parts for monotonicity and A Af fò ò =   are easy and left as an exercise.

So now let f,g Î (E) and A  E be given, and we prove A A A(f g) f gò ò ò+ = + . By definition of the

integral, the LHS is just A A(f g) (f g)+ -
ò ò+ - + and the RHS is A A A Af f g g ,+ - + -

ò ò ò ò- + all terms being
finite. So it suffices to show
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Notes(6) A A A A A A(f g) f g (f g) f g+ - - - + +
ò ò ò ò ò ò+ + + = + + + ,

which will be true if we can show

(7) (f + g)+ + f– + g– = (f + g)– + f+ + g+

a.e. on A because we can then use linearity of Section 3 to conclude that (6) is true. But (7) is
clearly true a.e., because (f + g)+ – (f + g)– = f + g = f+ – f– + g+ – g– a.e., all terms being finite a.e. This
completes our proof.

Finally we prove the important Generalized Lebesgue Dominated Convergence Theorem.

Theorem 3: If {fn}, {gn} are sequences of measurable functions defined on E, |fn| £ gn, f = nn
lim f , g


= nn
lim inf g


 and nE En

lim g g


ò ò= <  , then nEn
lim f


ò  exists and is equal to E fò .

Proof: Since |fn| £ gn implies gn ± fn are non-negative measurable, we see that

n n n n nE E E E E En n n
g f lim inf (g f ) lim inf (g f ) g lim inf f

  
ò ò ò ò ò ò+ = + £ + = +

and similarly

n n n n nE E E E E En n n
g f lim inf (g f ) lim inf (g f ) g lim inf f

  
ò ò ò ò ò ò- = - £ - = +

So nE E En n
f lim inf f lim sup f




ò ò ò£ £  (note here we used the assumption that Egò < ) and the desired

conclusion follows.

Corollary: Lebsegue Dominated Convergence Theorem

Suppose a sequence of measurable functions {fn} defined on E converges pointwisely a.e. on E to
f. If|fn| £ g on E for some integrable function g, then nE fò  converges to E fò .

A final word of remark: The idea of this section extends readily to complex-valued functions,
and the readers who are familar with general measure theory should find that the results in the
whole unit is valid on a general measure space without needing the slightest modification.

Self Assessment

Fill in the blanks:

1. For a non-negative measurable function f : E  [0, ] (where E is a set which may be of
finite or infinite measure), we define .................................... .

2. For non-negative ................................ vanishing outside a set of finite measure, this definition
agrees with the old one. Also note that we allow the functions to take infinite value here.

3. Suppose {fn} is a sequence of non-negative measurable functions defined on E and {fn}
converges (pointwisely) to a .................................. f a.e. on E. Then  nE En

f lim inf f


ò ò£ .

4. If {fn} is an ..................................... of non-negative measurable functions defined on E
(increasing in the sense that fn £ fn+1 for all n on E) and fn  f a.e. on E, then nE Ef fò ò  by
which it means {jE fn} is an increasing sequence with limit E fò .

5. A ................................. f defined on E is integrable if and only if E|f|ò <   so.

6. For any f,g Î (E) and A  E, we have A A A(f g) f gò ò ò+ = +  and A Af fò ò =  . Furthermore,
if f £ g a.e. on A then ................................... .
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Notes 7. If {fn}, {gn} are sequences of measurable functions defined on E, |fn| £ gn, f = nn
lim f , g


 =

nn
lim inf g


 and .................................... , then nEn

lim f


ò  exists and is equal to E fò .

8. Suppose a sequence of measurable functions {fn} defined on E converges pointwisely a.e.
on E to f. If|fn| £ g on E for some integrable function g, then nE fò  .............................. E fò .

14.3 Summary

 For a non-negative measurable function f : E  [0, ] (where E is a set which may be of
finite or infinite measure), we define

A fò  = sup { }0A : f on A, B (E)ò j j £ jÎ

for any A E.

Note that for non-negative bounded measurable functions vanishing outside a set of finite
measure, this definition agrees with the old one. Also note that we allow the functions to
take infinite value here.

 Suppose {fn} is a sequence of non-negative measurable functions defined on E and {fn}
converges (pointwisely) to a non-negative function f a.e. on E. Then

nE En
f lim inf f


ò ò£

 If {fn} is an increasing sequence of non-negative measurable functions defined on E
(increasing in the sense that fn £ fn+1 for all n on E) and fn  f a.e. on E, then

nE Ef fò ò

by which it means {jE fn} is an increasing sequence with limit E fò .

 If {fn} is a sequence of non-negative measurable functions on E, then

n n nE Enlim inf f lim inf f ò ò£ . The proof is easy and left as an exercise.

The following proposition is concerned with the absolute continuity of the integral.

 Suppose f is a non-negative measurable function defined on E such that E fò <  .  Then for

all  > 0, there is a  > 0 such that

E fò < 

whenever A  E with m(A) < .

 Suppose a sequence of measurable functions {fn} defined on E converges pointwisely a.e.
on E to f. If|fn| £ g on E for some integrable function g, then nE fò  converges to E fò .

14.4 Keywords

Fatou’s Lemma: Suppose {fn} is a sequence of non-negative measurable functions defined on E
and {fn} converges (pointwisely) to a non-negative function f a.e. on E. Then nE En

f lim inf f


ò ò£ .

Monotone Convergence Theorem: If {fn} is an increasing sequence of non-negative measurable
functions defined on E (increasing in the sense that fn £ fn+1 for all n on E) and fn  f a.e. on E, then

nE Ef fò ò  by which it means {jE fn} is an increasing sequence with limit E fò .
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NotesLebsegue Dominated Convergence Theorem: Suppose a sequence of measurable functions {fn}
defined on E converges pointwisely a.e. on E to f. If|fn| £ g on E for some integrable function g,
then nE fò  converges to E fò .

14.5 Review Questions

1. For a non-negative measurable function f defined on E, show that AA Ef fò ò= c for any A Í E.
Also show that A Bf fò ò£  if A  B  E.

2. Show that if A, B C E are disjoint and f is a non-negative measurable function defined on
E, then A B A Bf f f

Èò ò ò= + .

3. Show that if f is a non-negative measurable function defined on E and E f 0ò = , then f = 0
a.e. on E.

4. Show that if f is a non-negative measurable function defined on E and  E fò <  , then f is
finite a.e.

5. Show that w may have strict inequality in Fatou’s Lemma.

(Hint: Consider the sequence {fn} defined by fn(x) = 1 if n x < n + 1,with fn(x) = 0 otherwise.)

6. Show that the monotone convergence theorem need not hold for decreasing sequence of
functions.

(Hint: Let fn(x) = 0, if x < n, fn(x) = 1 for xn.)

7. Show that if f and g are measurable and y |f| £ |g| a.e., and if g is integrable, then prove
that f is intergrable.

Answers: Self Assessment

1. A fò  = sup { }0A : f on A, B (E)ò j j £ jÎ 2. bounded measurable functions

3. non-negative function 4. increasing sequence

5. measurable function 6. A Af gò ò£

7. nE En
lim g g


ò ò= <  8. converges to

14.6 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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Objectives

After studying this unit, you will be able to:

 Explain the General Lebesgue integral of a measurable function

 Discuss the Properties of Lebesgue integral

 Discuss Lebesgue convergence theorem

 Explain Generalization of Lebesgue convergence theorem

 Describe convergence in measure of a sequence of measurable functions

Introduction

In this unit, you are going to study about the general Lebesgue integral, some of its properties,
convergence in measure and theorems related to them.

15.1 The General Lebesgue Integral

Definition: The positive part of a function f is f+ = f  0 i.e f+ (x) = max {f(x), 0}

The negative part of a function is f– = f  0. i.e f–(x) = min {f(x), 0}

Hence f = f+ – f–.

And |f| = f+ + f–

Definition: A measurable function f is said to be integrable over E if f+ and f– are both integrable
over E.

Then the integral of f is defined as

E E Ef f f-+
ò ò ò= -

Sachin Kaushal, Lovely Professional University
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NotesTheorem 1: Let f and g are integrable over E. Then

(i) The function cf is integrable over E, and E Ecf c f.ò ò=

(ii) The function f + g is integrable over E, and E E Ef g f gò ò ò+ = + .

(iii) If f g a.e., then E Ef gò ò

(iv) If A and B are disjoint measurable sets contained in E, then A B A Bf f f
Èò ò ò= +

Proof:

(i) Since f is integrable over E, both f+ and f– are integrable over E and the integral of f is given
by

E E Ef f f+ -
ò ò ò= -

Hence,

both cf+ and cf– are integrable over E, and hence, cf = cf+ – cf– are integrable over E and

E E E

E E

E E

E

cf cf cf
c f c f
c[ f f ]
c f.

+ -

+ -

+ -

ò ò ò

ò ò

ò ò

ò

= -

= -

= -

=

Hence (i) is proved.

(ii) Suppose if f1 and f2 are nonnegative integrable functions with f = f1 – f2,

Then f+ – f– = f1 – f2.

Hence,

 f+ + f2 = f– + f1.

As you know

f+ + f2 = f– – f1.

Therefore,

f = f+ – f–

= f1 – f2.

Since f and g are measurable,

f+, f–, g+, g– are measurable.

Hence,

f+ + g+, f– + g– are also measurable.

And f + g =  (f+ + g+) – (f– + g–).

Hence by(1),

(f + g ) = (f+ + g+) – (f– + g–)
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Notes = f+ + g+ – f– – g–

= (f+ – f–) + (g+ – g–)

= f + g.

Hence (ii) is proved.

(iii) Since f g a.e., f+ - f– g+ – g– a.e.,

Hence, f+ + g – g+ + f– a.e,

(f+ + g–) (g+ + f–).

Hence

f+ + g – g+ + f–.

Hence,

f+ – f – g+ – g–

Hence,

f g.

Hence (iii) is proved.

(iv) Consider

A B A B

A B

A B

A B

f f

f ( )

f f

f f

È È
ò ò

ò

ò ò

ò ò

= ×c

= × c + c

= ×c + ×c

= +

15.2 Lebesgue Convergence Theorem

Theorem 2: Let g be integrable over E and let {fn} be a sequence of measurable functions such that
|fn|g on E and for almost all x in E we have f(x) = lim fn(x). Then

nE Ef lim fò ò=

Proof: Since |fn|g on E, g – fn is nonnegative and hence by Fatou’s Lemma,

nE E(g f)lim (g f )ò ò- - ...(1)

Since f(x) = lim fn(x) a.e. on E and

|fn|g on E,

|f|g on E.

Hence since g is integrable,

f is also integrable.

E E E(g f) g fò ò ò- = - ...(2)

Also,

n nE E Elim (g f ) g lim fò ò ò- = - ...(3)
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NotesSubstituting (2) and (3) in (1), we get

nE E E Eg f g lim fò ò ò ò- -

Hence

nE Ef lim fò ò ...(4)

Similarly by considering g + fn, we get

nE Ef lim fò ò ...(5)

From (4) and (5), we get

n nE E Elim f f lim fò ò ò ...(6)

But it is always true that

n nE Elim f lim fò ò ...(7)

From (6) and (7)

nE Ef lim fò ò= .

Hence the theorem.

Notes  If we replace g by gn’s, we get the following generalization of the Lebesgue
Convergence theorem.

Theorem 3: Let {gn} be a sequence of integrable functions which converges a.e to an integrable
function g. Let {fn} be a sequence of measurable functions such that |fn| gn and {fn} converges to
f a.e.

If ng lim gò ò= ,

then nf lim fò ò= .

15.3 Convergence in Measure

Definition: A sequence {fn} of measurable functions is said to converge to f in measure if, given
 > 0, there is an N such that for all n N we have

m{x/|f(x) – fn(x)|} < .

Remark: From this definition and littlewood’s third principle, it is clear that,

If {fn} is a sequence of measurable functions defined on a measurable set E of finite measure and
fn> f a.e, then {fn} converges to f in measure.

Example: Construct the sequence {fn} as follows:

Let n = k + 2, 0 k < 2, and

Set fn(x) = 1 if x [k2–, (k + 1) 2–]
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Notes And fn(x) = 0 otherwise.

Then m{x/|fn(x)| > } = 2– 2/n [since 2 n < 2 + 1]

Hence fn > 0 in measure.

Notes  That the sequence {fn(x)} has the value 1 for arbitrarily large values of n.

Hence {fn(x)} does not converge for any x in [0, 1].

Theorem 4: Let {fn} be a sequence of measurable functions that converges in measure to f.

Then there is a subsequence {fnk} that converges to f almost everywhere.

Proof: Since {fn} is a sequence of measurable functions that converges in measure to f,

Given , there is an integer n

 such that for all n n,

nm{x/ f(x) f (x) 2 } 2- -- < ...(1)

Let E

 = {x/|fnv(x) – f(x)|   2–}

Therefore,

if
k

x E
¥

u
u=

Ï 

then |fn(x) – f(x)| < 2– for k.

Therefore,

Fn(x) > f(x).

Hence fn(x) > f(x) for any x 
k 1 k

A E
¥ ¥

u
= u=

Ï  

But
k

mA m E
¥

u
u=

é ù
ê úë û


k
mE

¥

u
u=

å

= 2–k+1.

Hence mA = 0

Theorem 5: Let {fn} be a sequence of measurable functions defined on a measurable set E of finite
measure.

Then {fn} converges to f in measure if and only if every subsequence of {fn} has in turn a subsequence
that converges almost everywhere to f.

Theorem 6: Fatou’s lemma and the monotone and Lebesgue Convergence theorem remain valid
if ‘convergence a.e.’ is replaced by ‘convergence in measure’.
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NotesSelf Assessment

Fill in the blanks:

1. A ............................. f is said to be integrable over E if f + and f– are both integrable over E.

2. Let g be integrable over E and let {fn} be a sequence of measurable functions such that |fn|
g on E and for almost all x in E we have …………………….

3. Let {gn} be a sequence of ……………….. which converges a.e to an integrable function g.

4. A sequence {fn} of measurable functions is said to ……………….....….. in measure if, given
 > 0, there is an N such that for all nN we have m{x/|f(x) – fn(x)|} < .

5. Let {fn} be a sequence of measurable functions that converges in measure to f. Then there is
a subsequence {nk f} that ................................ to f almost everywhere.

15.4 Summary

 Definition of General Lebesgue integral of a measurable function

 Properties of Lebesgue integral

 Lebesgue convergence theorem

 Generalization of Lebesgue convergence theorem

 Definition of convergence in measure of a sequence of measurable functions and

 Every sequence of measurable sequence that converges in measure contains a subsequence
that converges almost everywhere.

15.5 Keywords

Convergence in Measure: A sequence {fn} of measurable functions is said to converge to f in
measure if, given  > 0, there is an N such that for all n N we have m{x/|f(x) – fn(x)|} < .

Lebesgue Convergence Theorem: Let g be integrable over E and let {fn} be a sequence of measurable
functions such that |fn| g on E and for almost all x in E we have f(x) = lim fn(x). Then

E E nf lim f .ò ò=

15.6 Review Questions

1. Show that if f is integrable over E, then so is |f| and E Ef fò ò£  . Does the integrability of

|f| imply that of f?.

2. Let {fn} be a sequence of integrable functions such that fn > f a.e with f integrable.

Then nf f 0ò - ®   if and only if nf f .ò ò®

3. Show that if f is integrable over E, then |f| is also integrable over E. further E Ef fò ò£  is

the converse true?

Answers: Self Assessment

1. measurable function 2. f(x) = lim fn(x).

3. integrable functions 4. converge to f

5. converges
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Notes 15.7 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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