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SYLLABUS

Complex Analysis 

Objectives:

 To emphasize the role of the theory of functions of a complex variable, their geometric properties and indicating some applications.

Introduction covers complex numbers; complex functions; sequences and continuity; and differentiation of complex functions.

Representation formulas cover integration of complex functions; Cauchy's theorem and Cauchy's integral formula; Taylor series; and

Laurent series. Calculus of residues covers residue calculus; winding number and the location of zeros of complex functions; analytic

continuation.

 To understand classical concepts in the local theory of curves and surfaces including normal, principal, mean, and Gaussian

curvature, parallel transports and geodesics, Gauss's theorem Egregium and Gauss-Bonnet theorem and Joachimsthal's theorem,

Tissot's theorem.

Set Theory Finite, Countable and Uncountable Sets, Metric spaces; Definition and examples

Compactness of k-cells and Compact Subsets ofEuclidean, Space kR ,
Perfect sets and Cantor’s set,Connected sets in a metric space, Connected subset of Real

Sequences in Metric Spaces, Convergent sequences and Subsequences,
Cauchy sequence, complete metric space, Cantor’s intersection theorem and
Baire’s Theorem, Branch contraction Principle.

Limit of functions, continuous functions, Continuity and compactness, 
continuity and connectedness, Discontinuities and Monotonic functions

Sequences and series: Uniform convergence, Uniform convergence and
continuity, Uniform convergence and integration, Uniform convergence and 
differentiation
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Unit 1: Complex Numbers

NotesUnit 1: Complex Numbers

CONTENTS

Objectives

Introduction

1.1 Geometry

1.2 Polar coordinates

1.3 Summary

1.4 Keywords

1.5 Self Assessment

1.6 Review Questions

1.7 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss the meaning of geometry

 Explain the polar coordinates

Introduction

Let us hark back to the first grade when the only numbers you knew were the ordinary everyday
integers. You had no trouble solving problems in which you were, for instance, asked to find a
number x such that 3x = 6. You were quick to answer �2�. Then, in the second grade, Miss Holt
asked you to find a number x such that 3x = 8. You were stumped�there was no such �number�!
You perhaps explained to Miss Holt that 3 (2) = 6 and 3 (3) = 9, and since 8 is between 6 and 9, you
would somehow need a number between 2 and 3, but there isn�t any such number. Thus, you
were introduced to �fractions.�

These fractions, or rational numbers, were defined by Miss Holt to be ordered pairs of integers�
thus, for instance, (8, 3) is a rational number. Two rational numbers (n, m) and (p, q) were defined
to be equal whenever nq = pm. (More precisely, in other words, a rational number is an equivalence
class of ordered pairs, etc.) Recall that the arithmetic of these pairs was then introduced: the sum
of (n, m) and (p, q) was defined by

(n, m) + (p, q) = (nq + pm, mq),

and the product by

(n, m) (p, q) = (np, mq).

Subtraction and division were defined, as usual, simply as the inverses of the two operations.

In the second grade, you probably felt at first like you had thrown away the familiar integers and
were starting over. But no. You noticed that (n, 1) + (p, 1) = (n + p, 1) and also (n, 1)(p, 1) =  (np, 1).
Thus, the set of all rational numbers whose second coordinate is one behave just like the integers.

Richa Nandra, Lovely Professional University
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Notes If we simply abbreviate the rational number (n, 1) by n, there is absolutely no danger of confusion:
2 + 3 = 5 stands for (2, 1) + (3, 1) = (5, 1). The equation 3x = 8 that started this all may then be
interpreted as shorthand for the equation (3, 1) (u, v) = (8,1), and one easily verifies that x = (u, v)
= (8, 3) is a solution. Now, if someone runs at you in the night and hands you a note with 5
written on it, you do not know whether this is simply the integer 5 or whether it is shorthand for
the rational number (5, 1). What we see is that it really doesn�t matter. What we have �really�
done is expanded the collection of integers to the collection of rational numbers. In other words,
we can think of the set of all rational numbers as including the integers�they are simply the
rationals with second coordinate 1.

One last observation about rational numbers. It is, as everyone must know, traditional to write

the ordered pair (n, m) as 
n

.
m

 Thus, n stands simply for the rational number 
n

,
1

 etc.

Now why have we spent this time on something everyone learned in the second grade? Because
this is almost a paradigm for what we do in constructing or defining the so-called complex
numbers. Watch.

Euclid showed us there is no rational solution to the equation x2 = 2. We were thus led to
defining even more new numbers, the so-called real numbers, which, of course, include the
rationals. This is hard, and you likely did not see it done in elementary school, but we shall
assume you know all about it and move along to the equation x2 = �1. Now we define complex
numbers. These are simply ordered pairs (x, y) of real numbers, just as the rationals are ordered
pairs of integers. Two complex numbers are equal only when there are actually the same�that is
(x, y) = (u, v) precisely when x = u and y = v. We define the sum and product of two complex
numbers:

(x, y) + (u, v) = (x + u, y + v)

and

(x, y) (u, v) = (xu � yv, xv + yu)

As always, subtraction and division are the inverses of these operations.

Now let�s consider the arithmetic of the complex numbers with second coordinate 0:

(x, 0) + (u, 0) = (x + u, 0),

and

(x, 0) (u, 0) = (xu, 0).

Note that what happens is completely analogous to what happens with rationals with second
coordinate 1. We simply use x as an abbreviation for (x, 0) and there is no danger of confusion:
x + u is short-hand for (x, 0) + (u, 0) = (x + u, 0) and xu is short-hand for (x, 0) (u, 0). We see that our
new complex numbers include a copy of the real numbers, just as the rational numbers include
a copy of the integers.

Next, notice that x(u, v) = (u, v)x = (x, 0) (u, v) = (xu, xv). Now any complex number
z = (x, y) may be written

z = (x, y) = (x, 0) + (0, y)

          = x + y(0, 1)

When we let  = (0,1), then we have

z = (x, y) = x + y



LOVELY PROFESSIONAL UNIVERSITY 3
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NotesNow, suppose z = (x, y) = x + y and w = (u, v) = u + v. Then we have

zw = (x + y) (u + v)

       = xu + (xv + yu) ± 2yv

We need only see what 2 is: 2 = (0, 1) (0, 1) = (�1, 0), and we have agreed that we can safely
abbreviate (�1, 0) as �1. Thus, 2 = �1, and so

zw = (xu � yv) + (xv + yu)

and we have reduced the fairly complicated definition of complex arithmetic simply to ordinary
real arithmetic together with the fact that 2 = �1.

Let�s take a look at division�the inverse of multiplication. Thus, 
z
w

 stands for that complex

number you must multiply w by in order to get z . An example:

2 2

2 2 2 2

x y x yz u v
.

w u v u v u v
(xu yv) (yu xv)

u v
xu yv yu xv

u v u v

     
 

     

   




 
  

 

Notes This is just fine except when u2 + v2 = 0; that is, when u = v = 0. We may, thus,
divide by any complex number except 0 = (0, 0).

One final note in all this. Almost everyone in the world except an electrical engineer uses the
letter i to denote the complex number we have called . We shall accordingly use i rather than
 to stand for the number (0, 1).

1.1 Geometry

We now have this collection of all ordered pairs of real numbers, and so there is an uncontrollable
urge to plot them on the usual coordinate axes. We see at once that there is a one-to-one
correspondence between the complex numbers and the points in the plane. In the usual way, we
can think of the sum of two complex numbers, the point in the plane corresponding to z + w is
the diagonal of the parallelogram having z and w as sides:

Figure 1.1
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Notes We shall postpone until the next section the geometric interpretation of the product of two
complex numbers.

The modulus of a complex number z = x + iy is defined to be the non-negative real number

2 2x y ,  which is, of course, the length of the vector interpretation of z. This modulus is

traditionally denoted |z|, and is sometimes called the length of z.

Notes |(x,0)| = 2x  = |x|, and so |  | is an excellent choice of notation for the
modulus.

The conjugate z  of a complex number z = x + iy is defined by z  = x � iy. Thus, |z|2 = zz .
Geometrically, the conjugate of z is simply the reflection of z in the horizontal axis:

Figure 1.2

Observe that if z = x + iy and w = u + iv, then

(z w)  = (x + u) � i(y + v)

= (x � iy) + (u � iv)

= z w

In other words, the conjugate of the sum is the sum of the conjugates. It is also true that zw z w.

If z = x + iy, then x is called the real part of z, and y is called the imaginary part of z. These are

usually denoted Re z and Im z, respectively. Observe then that z + z  = 2 Rez and z � z  = 2 Imz.

Now, for any two complex numbers z and w consider

|z + w|2 = (z w)(z w) (z w)(z w)    

= zz (wz wz) ww  

= 2 2|z| 2Re(wz) |w| 

 |z|2 + 2|z||w| + |w|2 = (|z| + |w|)2

In other words,

|z + w|  |z| + |w|
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Notesthe so-called triangle inequality. (This inequality is an obvious geometric fact�can you guess
why it is called the triangle inequality?)

1.2 Polar coordinates

Now let�s look at polar coordinates (r, ) of complex numbers. Then we may write z = r(cos  +
i sin ). In complex analysis, we do not allow r to be negative; thus, r is simply the modulus of
z. The number  is called an argument of z, and there are, of course, many different possibilities
for . Thus, a complex numbers has an infinite number of arguments, any two of which differ by
an integral multiple of 2. We usually write  = arg z. The principal argument of z is the unique
argument that lies on the interval (�, ].

Example: For 1 � i, we have

1 � i =
7 7

2(cos i sin )
4 4
    

   
   

= 2(cos i sin )
4 4
    

     
   

=
399 399

2(cos i sin )
4 4
    

   
   

Each of the numbers 
7

, ,
4 4
 

 and 
399

4


 is an argument of 1 � i, but the principal argument is � .
4


Suppose z = r(cos  + i sin ) and w = s(cos  + i sin ). Then

zw = r(cos  + i sin ) s(cos  + i sin )

      = rs[(cos  cos x � sin  sin x) + i(sin  cos  + sin  cos )]

      = rs(cos( + ) + i sin ( + )

We have the nice result that the product of two complex numbers is the complex number whose
modulus is the product of the moduli of the two factors and an argument is the sum of arguments
of the factors. A picture:

Figure 1.3

We now define exp(i), or ei by

ei= cos  + i sin 
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Notes We shall see later as the drama of the term unfolds that this very suggestive notation is an
excellent choice. Now, we have in polar form

z = rei,

where r = |z| and  is any argument of z. Observe we have just shown that

ei ei = ei(+).

It follows from this that ei e�i = 1. Thus,

i
i

1
e

e
 




It is easy to see that

i

i

z re r
(cos( ) i sin( ))

w se s




        

1.3 Summary

 The modulus of a complex number z = x + iy is defined to be the nonnegative real number
2 2x y ,  which is, of course, the length of the vector interpretation of z.

 The conjugate z  of a complex number z = x + iy is defined by z  = x � iy.

 In other words, the conjugate of the sum is the sum of the conjugates. It is also true that

zw z w.  If z = x + iy, then x is called the real part of z, and y is called the imaginary part

of z. These are usually denoted Re z and Im z, respectively. Observe then that z + z  = 2 Rez

and z � z  = 2 Imz.

Now, for any two complex numbers z and w consider

|z + w|2 = (z w)(z w) (z w)(z w)    

= zz (wz wz) ww  

= 2 2|z| 2Re(wz) |w| 

 |z|2 + 2|z||w| + |w|2 = (|z| + |w|)2

In other words,

|z + w|  |z| + |w|

the so-called triangle inequality. (This inequality is an obvious geometric fact�can you
guess why it is called the triangle inequality?)

 We shall see later as the drama of the term unfolds that this very suggestive notation is an
excellent choice. Now, we have in polar form

z = rei,

where r = |z| and  is any argument of z. Observe we have just shown that

ei ei = ei(+).

It follows from this that ei e�i = 1. Thus

i
i

1
e

e
 



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NotesIt is easy to see that

i

i

z re r
(cos( ) i sin( ))

w se s




        

1.4 Keywords

Modulus: The modulus of a complex number z = x + iy is defined to be the non-negative real

number 2 2x y ,  which is, of course, the length of the vector interpretation of z.

Argument: Polar coordinates (r, ) of complex numbers. Then we may write z = r(cos  + i sin ).
In complex analysis, we do not allow r to be negative; thus, r is simply the modulus of z. The
number  is called an argument of z, and there are, of course, many different possibilities
for .

1.5 Self Assessment

1. The .................. of a complex number z = x + iy is defined to be the nonnegative real number

2 2x y ,  which is, of course, the length of the vector interpretation of z.

2. The conjugate z  of a complex number z = x + iy is defined by ...................

3. It is also true that zw z w.  If z = x + iy, then x is called the real part of z, and y is called the

................... of z.

4. a ................... has an infinite number of arguments, any two of which differ by an integral
multiple of 2.

1.6 Review Questions

1. Find the following complex numbers in the form x + iy:

(a) (4 � 7i) (�2 + 3i) (b) (1 � i)3

(c)
(5 2i)
(1 i)



(d)

1
i

2. Find all complex z = (x, y) such that

z2 + z + 1 = 0

3. Prove that if wz = 0, then w = 0 or z = 0.

4. (a) Prove that for any two complex numbers, zw z w.

(b) Prove that 
z z

.
w w

 
 

 

(c) Prove that ||z| � |w||  |z � w|.

5. Prove that |zw| = |z||w| and that 
zz

.
w w


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Notes 6. Sketch the set of points satisfying

(a) |z � 2 + 3i| = 2 (b) |z + 2i|  1

(c) Re(z i) 4  (d) |z � 1 + 2i| = |z + 3 + i|

(e) |z + 1| + |z � 1| = 4 (f) |z + 1| � |z � 1| = 4

7. Write in polar form rei:

(a) i (b) 1 + i

(c) �2 (d) �3i

(e) 3 3i

8. Write in rectangular form�no decimal approximations, no trig functions:

(a) 2ei3 (b) ei100

(c) 10ei/6 (d) 2 ei5/4

9. (a) Find a polar form of (1 + i) (1 i 3 ).

(b) Use the result of a) to find cos
7
12
 

 
 

 and sin
7
12
 

 
 

.

10. Find the rectangular form of (1  + i)100.

11. Find all z such that z3 = 1. (Again, rectangular form, no trig functions.)

12. Find all z such that z4 = 16i. (Rectangular form, etc.)

Answers: Self Assessment

1. modulus 2. z  = x � iy

3. imaginary part 4. complex numbers

1.7 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati, T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H.Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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NotesUnit 2: Complex Functions

CONTENTS

Objectives

Introduction

2.1 Functions of a Real Variable

2.2 Functions of a Complex Variable

2.3 Derivatives

2.4 Summary

2.5 Keywords

2.6 Self Assessment

2.7 Review Questions

2.8 Further Readings

Objectives

After studying this unit, you will be able to:

 Explain the function of a complex variable

 Describe the functions of a complex variable

 Define derivatives

Introduction

There are equations such as x2 + 3 = 0, x2 � 10x + 40 = 0 which do not have a root in the real number
system R . There does not exist any real number whose square is a negative real number. If the
roots of such equations are to be determined then we need to introduce another number system
called complex number system. Complex numbers can be defined as ordered pairs (x, y) of real
numbers and represented as points in the complex plane, with rectangular coordinates x and y.
In this unit, we shall review the function of the complex variable.

2.1 Functions of a Real Variable

A function  : I  C from a set I of reals into the complex numbers C is actually a familiar concept
from elementary calculus. It is simply a function from a subset of the reals into the plane, what
we sometimes call a vector-valued function. Assuming the function  is nice, it provides a vector,
or parametric, description of a curve. Thus, the set of all {(t) : (t) = eit = cos t + i sin t = (cos t, sin t),
0  t  2} is the circle of radius one, centered at the origin.

We also already know about the derivatives of such functions. If (t) = x(t) + iy(t), then the
derivative of  is simply �(t) = x�(t) + iy�(t), interpreted as a vector in the plane, it is tangent to the
curve described by  at the point (t).

Richa Nandra, Lovely Professional University
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Notes

Example 1: Let (t) = t + it2, �1  t  1. One easily sees that this function describes that part
of the curve y = x2 between x = �1 and x = 1:

Another example. Suppose there is a body of mass M  �fixed� at the origin�perhaps the sun�and
there is a body of mass m which is free to move�perhaps a planet. Let the location of this second
body at time t be given by the complex-valued function z(t). We assume the only force on this
mass is the gravitational force of the fixed body. This force f is thus,

f = 2

GMm z(t)
z(t)z(t)

 
  
 

where G is the universal gravitational constant. Sir Isaac Newton tells us that

2

GMm z(t)
mz"(t) f

z(t)z(t)

 
    

 

Hence,

z� = 3

GM
z

z


Next, let�s write this in polar form, z = rei:

2
i i

2 2

d k
(re ) e

dt r
 
 

where we have written GM = k. Now, let�s see what we have.

i i id d d
(re ) r (e ) e

dt dt dt
  
 

Now,

id
(re )

dt
  =  

d
cos i sin

dt
  

=
d

( sin i cos )
dt


   

=
d

i(cos i sin )
dt


  

= id
i e .

dt


(Additional evidence that our notation ei = cos  + i sin  is reasonable.)
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NotesThus,

id
(re )

dt
  = i id d

r (e ) e
dt dt

 


= i id dr
r i e e

dt dt
  
 

 

= idr d
ir e .

dt dt
 

 
 

Now,

2
i

2

d
(re )

dt
  = 

2 2
i i

2 2

d r dr d d dr d d
i ir e ir i e

dt dt dt dt dt dt dt
      

      
  

= 
22 2

i
2 2

d r d d dr d
r i r 2 e

dt dt dt dt dt


       
              

Now, the equation 
2

i i
2 2

d k
(re ) e

dt r
 
   becomes

22 2

2 2 2

d r d d dr d k
r i r 2 .

dt dt dt dt dt r

      
             

This gives us the two equations

22

2 2

d r d k
r ,

dt dt r

 
   

 

and,

2

2

d dr d
r 2 0.

dt dt dt

 
 

Multiply by r and this second equation becomes

2d d
r 0

dt dt
 

 
 

This tells us that

2 d
r

dt


 

is a constant. (This constant  is called the angular momentum.) This result allows us to get rid

of 
d
dt


 in the first of the two differential equations above:

22

2 2

d r k
r

dt r r
 

   
 

or



12 LOVELY PROFESSIONAL UNIVERSITY

Complex Analysis and Differential Geometry

Notes 22

2 3 2

d r k
.

dt r r


  

Although this now involves only the one unknown function r, as it stands it is tough to solve.
Let�s change variables and think of r as a function of . Let�s also write things in terms of the

function 
1

s .
r

  Then,

2

d d d d
.

dt dt d r d
 

 
 

Hence,

2

dr a dr ds
,

dt r d d
  

 

and our differential equation looks like

2 2 2
2 2 2 3 2

2 3 2

d r d s
s s ks ,

dt r d


      



or,

2

2 2

d s k
s .

d
 

 

This one is easy. From high school differential equations class, we remember that

2

1 k
s A cos( ) ,

r
     



where A and  are constants which depend on the initial conditions. At long last,

2 /k
r ,

1 cos( )



    

where we have set  = A2/k. The graph of this equation is, of course, a conic section of
eccentricity .

2.2 Functions of a Complex Variable

The real excitement begins when we consider function f : D  C in which the domain D is a
subset of the complex numbers. In some sense, these too are familiar to us from elementary
calculus�they are simply functions from a subset of the plane into the plane:

f(z) = f(x, y) = u(x, y) + iv(x, y) = (u(x, y), v(x, y))

Thus, f(z) = z2 looks like f(z) = z2 = (x + iy)2 = x2 � y2 + 2xyi. In other words, u(x, y) = x2 � y2 and
v(x, y) = 2xy. The complex perspective, as we shall see, generally provides richer and more
profitable insights into these functions.

The definition of the limit of a function f at a point z = z
0
 is essentially the same as that which we

learned in elementary calculus:

0z z
lim f(z) L



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0
| < . As you could

guess, we say that f is continuous at z
0
 if it is true that 

0
0

z z
lim f(z) f(z ).


  If f is continuous at each

point of its domain, we say simply that f is continuous.

Suppose both 
0 0z z z z

lim f(z) lim g(z)
 

 exist. Then the following properties are easy to establish:

0 0 0z z z z z z
lim[f(z) g(z)] lim f(z) lim g(z)
  

  

0 0 0z z z z z z
lim[f(z)g(z)] lim f(z) lim g(z)
  



and

0

0

0

z z

z z
z z

lim f(z)f(z)
lim

g(z) lim g(z)








provided, of course, that 
0z z

lim g(z)


  0.

It now follows at once from these properties that the sum, difference, product, and quotient of
two functions continuous at z

0
 are also continuous at z

0
. (We must, as usual, except the dreaded

0 in the denominator.)

It should not be too difficult to convince yourself that if z = (x, y), z
0
 = (x

0
, y

0
), and f(z) =

u(x, y) + iv(x, y), then

0 0 0 0 0z z (x ,y) (x ,y ) (x ,y) (x y
lim f(z) lim u(x,y) i lim v(x,y)
  

 

Thus, f is continuous at z
0
 = (x

0
, y

0
) precisely when u and v are.

Our next step is the definition of the derivative of a complex function f. It is the obvious thing.
Suppose f is a function and z

0
 is an interior point of the domain of f . The derivative f�(z

0
) of f is

0

0
0

z z
0

f(z) f(z )
f '(z ) lim

z z






Example 2:

Suppose f(z) = z2. Then, letting z = z � z
0
, we have

0

0

z z
0

f(z) f(z )
lim

z z




 = 0 0

z 0

f(z z) f(z )
lim

z 

  



=
2 2

0 0

z 0

f(z z) z
lim

z 

  



=
2

0

z 0

2z z ( z)
lim

z 

  



= 0z 0
lim(2z z)
 

 

= 2z
0

No surprise here�the function f(z) = z2 has a derivative at every z, and it�s simply 2z.
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Let f(z) = zz.  Then,

0 0

z 0

f(z z) f(z )
lim

z 

  


 =

00 0 0

z 0

(z z)(z z) z z
lim

z 

    



=
00

z 0

z z) z z z z
lim

z 

     



= 0 0
z 0

z
lim z z z

z 

 
   

 

Suppose this limit exists, and choose z = (x, 0). Then,

0 0
z 0

z
lim z z z

z 

 
   

 
 = 0 0

x 0

x
lim z x z

z 

 
   

 

= 0 0z z

Now, choose z = (0, y). Then,

0 0
z 0

z
lim z z z

z 

 
   

 
 = 0 0

x 0

i y
lim z i x z

i y 

 
   

 

= 0 0z � z

Thus, we must have 0 00 0z z z z ,    or z
0
 = 0. In other words, there is no chance of this limit�s

existing, except possibly at z
0
 = 0. So, this function does not have a derivative at most places.

Now, take another look at the first of these two examples. It looks exactly like what you did in
Mrs. Turner�s 3rd grade calculus class for plain old real-valued functions. Meditate on this and
you will be convinced that all the �usual� results for real-valued functions also hold for these
new complex functions: the derivative of a constant is zero, the derivative of the sum of two
functions is the sum of the derivatives, the �product� and �quotient� rules for derivatives are
valid, the chain rule for the composition of functions holds, etc., For proofs, you need only go
back to your elementary calculus book and change x�s to z�s.

A bit of jargon is in order. If f has a derivative at z
0
, we say that f is differentiable at z

0
. If f is

differentiable at every point of a neighborhood of z
0
, we say that f is analytic at z

0
. (A set S is a

neighborhood of z
0
 if there is a disk D = {z : |z � z

0
| < r, r > 0} so that D  S. If f is analytic at every

point of some set S, we say that f is analytic on S. A function that is analytic on the set of all
complex numbers is said to be an entire function.

2.3 Derivatives

Suppose the function f given by f(z) = u(x, y) + iv(x, y) has a derivative at z = z
0
 = (x

0
, y

0
). We know

this means there is a number f�(z
0
) so that

0 0
0

z 0

f(z z) f(z )
f '(z ) lim

z 

  



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f�z(
0
) = 0 0

z 0

f(z z) f(z )
lim

z 

  



= 0 0 0 0 0 0 0 0

z 0

u(x x, y ) iv(x x, y ) u(x ,y ) iv(x , y )
lim

x 

      



= 0 0 0 0 0 0 0 0

z 0

u(x x,y )� u(x y ) v(x , x,y ) v(x ,y )
lim i

x x 

     
   

= 0 0 0 0

u v
(x ,y ) i (x ,y )

x x
 


 

Next, choose z = (0, y) = iy. Then,

f�(z
0
) = 0 0

z 0

f(z z) f(z )
lim

z 

  



= 0 0 0 0 0 0 0 0

y 0

u(x ,y y) iv(x ,y y) u(x ,y ) iv(x ,y )
lim

i y 

      



= 0 0 0 0 0 0 0 0

y 0

v(x ,y y) v(x ,y ) u(x ,y y) u(x ,y )
lim i

i y y 

      
 

  

= 0 0 0 0

v u
(x ,y ) i (x ,y )

y dy
 




We have two different expressions for the derivative f�(z
0
), and so

0 0 0 0

v u
(x ,y ) i (x ,y )

x dy
 




 = 0 0 0 0

v u
(x ,y ) i (x ,y )

y y
 


 

or,

0 0

u
(x ,y )

x



 = 0 0

v
(x ,y ),

y




0 0

u
(x ,y )

x



 = 0 0

v
i (x , y )

x





These equations are called the Cauchy-Riemann Equations.

We have shown that if f has a derivative at a point z
0
, then its real and imaginary parts satisfy

these equations. Even more exciting is the fact that if the real and imaginary parts of f satisfy
these equations and if in addition, they have continuous first partial derivatives, then the function
f has a derivative. Specifically, suppose u(x, y) and v(x, y) have partial derivatives in a
neighborhood of z

0
 = (x

0
, y

0
), suppose these derivatives are continuous at z

0
, and suppose

0 0

u
(x ,y )

x



 = 0 0

v
(x ,y ),

y




0 0

u
(x ,y )

y



 = 0 0

u
(x ,y )

x



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.

= 0 0f(z z) f(z )
z

  



= 0 0 0 0 0 0 0 0[u(x x,y y) u(x ,y )] i[v(x x,y y) v(x ,y )]
x i y

          

  

Observe that

u(x
0
 + x, y

0
 + y) � u(x

0
, y

0
) = [u(x

0
 + x, y

0
 + y) � u(x

0
, y

0
 + y)] + [u(x

0
, y

0
 + y) � u(x

0
,y

0
].

Thus,

u(x
0
 + x, y

0
 + y) � u(x

0
, y

0
 + y) = 0

u
x ( ,y y),

x


   


and,

0

u
( ,y y)

x


  


 = 0 0 1

u
(x , y ) ,

x


 


where

1z 0
lim 0.
 

 

Thus,

u(x
0
 + x, y

0
 + y) � u(x

0
, y

0
 + y) = x 0 0 1

u
(x ,y ) .

x
 

   

Proceeding similarly, we get

= 0 0f(z z) f(z )
z

  



= 0 0 0 0 0 0 0 0[u(x x,y y) u(x ,y )] i[v(x x,y y) v(x ,y )]
x i y

          

  

=
0 0 1 0 0 2 0 0 3 0 0 4

du dv du dv
x (x , y ) i (x ,y ) i y (x ,y ) i (x ,y ) i

dx dx dy dy
,.

x i y

  
                 

  

where 
i
  0 as z  0. Now, unleash the Cauchy-Riemann equations on this quotient and

obtain,

= 0 0f(z z) f(z )
z

  



=

u v u v
x i i y i

stuffx x x x
x i y x i y

      
             


     
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=

u v stuff
i .

x x x i y
  

       

Here,

stuff = x(
1
 + i

2
) + y(

3
 + i

4
).

It�s easy to show that

z 0

stuff
lim 0,

z 




and

0 0

z 0

f(z z) f(z ) u v
lim i .

z x x 

    
 

  

In particular we have, as promised, shown that f is differentiable at z
0
.

Example 3:

Let�s find all points at which the function f given by f(z) = x3 � i(1 � y)3 is differentiable. Here we
have u = x3 and v = � (1 � y)3. The Cauchy-Riemann equations, thus, look like

3x2 = 3(1 � y)2, and

0 = 0.

The partial derivatives of u and v are nice and continuous everywhere, so f will be differentiable
everywhere the C-R equations are satisfied. That is, everywhere

x2 = (1 � y)2; that is, where

x = 1 � y, or x = �1 + y.

This is simply the set of all points on the cross formed by the two straight lines
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 A function  : I  C from a set I of reals into the complex numbers C is actually a familiar
concept from elementary calculus. It is simply a function from a subset of the reals into the
plane, what we sometimes call a vector-valued function. Assuming the function  is nice,
it provides a vector, or parametric, description of a curve. Thus, the set of all {(t) : (t) = eit

= cos t + i sin t = (cos t, sint), 0  t  2} is the circle of radius one, centered at the origin.

We also already know about the derivatives of such functions. If (t) = x(t) + iy(t), then the
derivative of  is simply �(t) = x�(t) + iy�(t), interpreted as a vector in the plane, it is tangent
to the curve described by  at the point (t).

 The real excitement begins when we consider function f : D  C in which the domain D is
a subset of the complex numbers. In some sense, these too are familiar to us from elementary
calculus�they are simply functions from a subset of the plane into the plane:

f(z) = f(x, y) = u(x, y) + iv(x, y) = (u(x, y), v(x, y))

Thus f(z) = z2 looks like f(z) = z2 = (x + iy)2 = x2 � y2 + 2xyi. In other words, u(x, y) = x2 � y2

and v(x, y) = 2xy. The complex perspective, as we shall see, generally provides richer and
more profitable insights into these functions.

The definition of the limit of a function f at a point z = z
0
 is essentially the same as that

which we learned in elementary calculus:

0z z
lim f(z) L




2.5 Keywords

Elementary calculus: A function  : I  C from a set I of reals into the complex numbers C is
actually a familiar concept from elementary calculus.

Limit of a function: The definition of the limit of a function f at a point z = z
0
 is essentially the

same as that which we learned in elementary calculus.

Derivatives: Suppose the function f given by f(z) = u(x, y) + iv(x, y) has a derivative at z = z
0
 =

(x
0
, y

0
). We know this means there is a number f�(z

0
) so that

0 0
0

z 0

f(z z) f(z )
f '(z ) lim

z 

  




2.6 Self Assessment

1. A function  : I  C from a set I of reals into the complex numbers C is actually a familiar
concept from ......................

2. The real excitement begins when we consider function ...................... in which the domain
D is a subset of the complex numbers.

3. The definition of the ...................... f at a point z = z
0
 is essentially the same as that which we

learned in elementary calculus.

4. If f has a derivative at z
0
, we say that f is ...................... at z

0
.

5. Suppose the function f given by f(z) = u(x, y) + iv(x, y) has a derivative at z = z
0
 = (x

0
, y

0
). We

know this means there is a number f�(z
0
) so that ......................
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1. Elementary calculus 2. f : D  C

3. Limit of a function 4. Differentiable

5. 0 0
0

z 0

f(z z) f(z )
f '(z ) lim

z 

  




2.7 Review Questions

1. (a) What curve is described by the function (t) = (3t + 4) + i(t � 6), 0  t  1?

(b) Suppose z and w are complex numbers. What is the curve described by

(t) = (1 � t)w + tz, 0  t  1?

2. Find a function  that describes that part of the curve y = 4x3 + 1 between x = 0 and x = 10.

3. Find a function  that describes the circle of radius 2 centered at z = 3 � 2i .

4. Note that in the discussion of the motion of a body in a central gravitational force field, it
was assumed that the angular momentum  is nonzero. Explain what happens in case
 =  0.

5. Suppose f(z) = 3xy + i(x � y2). Find 
z 3 2i
lim f(z),
 

 or explain carefully why it does not exist.

6. Prove that if f has a derivative at z, then f is continuous at z.

7. Find all points at which the valued function f defined by f(z) = z  has a derivative.

8. Find all points at which the valued function f defined by

f(z) = (2 ± i)z3 � iz2 + 4z � (1 + 7i)

has a derivative.

9. Is the function f given by

2(z)
, z 0

2f(z)
0 , z 0




 




differentiable at z = 0? Explain.

10. At what points is the function f given by f(z) = x3 + i(1 � y)3 analytic? Explain.

11. Find all points at which f(z) = 2y � ix is differentiable.

12. Suppose f is analytic on a connected open set D, and f�(z) = 0 for all z  D. Prove that f is
constant.
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Notes 13. Find all points at which

2 2 2 2

x x
f(z) i

x y x y
 

 

is differentiable. At what points is f analytic? Explain.

14. Suppose f is analytic on the set D, and suppose Re f is constant on D. Is f necessarily
constant on D? Explain.

15. Suppose f is analytic on the set D, and suppose |f(z)| is constant on D. Is f necessarily
constant on D? Explain.

2.8 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati, T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H.Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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CONTENTS

Objectives

Introduction

3.1 The Exponential Function

3.2 Trigonometric Functions

3.3 Logarithms and Complex Exponents

3.4 Summary

3.5 Keywords

3.6 Self Assessment

3.7 Review Questions

3.8 Further Readings

Objectives

After studying this unit, you will be able to:

 Define exponential function

 Discuss the trigonometric functions

 Describe the logarithms and complex exponents

Introduction

As we know, Complex functions are, of course, quite easy to come by � they are simply ordered
pairs of real-valued functions of two variables. We have, however, already seen enough to
realize that it is those complex functions that are differentiable are the most interesting. It was
important in our invention of the complex numbers that these new numbers in some sense
included the old real numbers � in other words, we extended the reals. We shall find it most
useful and profitable to do a similar thing with many of the familiar real functions. That is, we
seek complex functions such that when restricted to the reals are familiar real functions. As we
have seen, the extension of polynomials and rational functions to complex functions is easy; we
simply change x�s to z�s. Thus, for instance, the function f defined by :

f(z) = 
2z z 1

z 1

 



has a derivative at each point of its domain, and for z = x + 0i, becomes a familiar real rational
function :

2x x 1
f(x) .

x 1

 




What happens with the trigonometric functions, exponentials, logarithms, etc., is not so obvious.
Let us begin.

Richa Nandra, Lovely Professional University
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Let the so-called exponential function exp be defined by

exp(z) = ex(cos y + i sin y),

where, as usual, z = x + iy. From the Cauchy-Riemann equations, we see at once that this function
has a derivative every where�it is an entire function. Moreover,

d
exp(z) exp(z).

dz


Note next that if z = x + iy and w = u + iv, then

exp(z + w) = ex+u[cos(y + v) + i sin(y + v)]

= exeu[cos y cos v � sin y sin v + i(sin y cos v + cos y sin v)]

= exeu(cos y + i sin y) (cos v + i sin v)

= exp(z) exp(w).

We, thus, use the quite reasonable notation ez = exp(z) and observe that we have extended the
real exponential ex to the complex numbers.

Example: Recall from elementary circuit analysis that the relation between the voltage
drop V and the current flow I through a resistor is V = RI, where R is the resistance. For an

inductor, the relation is V = L
dl

,
dt

 where L is the inductance; and for a capacitor, C
dV

= I,
dt

 where

C is the capacitance. (The variable t is, of course, time.) Note that if V is sinusoidal with a
frequency , then so also is I. Suppose then that V = A sin(t + ). We can write this as
V = Im(Aeieit) = Im(Beit), where B is complex. We know the current I will have this same form:
I = Im (Ceit). The relations between the voltage and the current are linear, and so we can consider
complex voltages and currents and use the fact that eit = cos t + i sin t. We, thus, assume a more
or less fictional complex voltage V, the imaginary part of which is the actual voltage, and then
the actual current will be the imaginary part of the resulting complex current.

What makes this a good idea is the fact that differentiation with respect to time t becomes simply

multiplication by i: 
d

dt
Aeit = iwtAeit. If I = beit, the above relations between current and

voltage become V = iLI for an inductor, and iVC = I, or V = 


1
i C

 for a capacitor. Calculus is

thereby turned into algebra. To illustrate, suppose we have a simple RLC circuit with a voltage
source V =  sin t. We let E = aeit.

Then the fact that the voltage drop around a closed circuit must be zero (one of Kirchoff�s
celebrated laws) looks like
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i tI

i LI RI ae ,or
i C

   


b
i Lb Rb a

i C
   



Thus,

a
b

1
R i L

C


 

   
 

In polar form,

i

2
2

a
b e ,

1
R L

C




 
   

 

where

1
L

Ctan (R 0)
R

 
  

Hence,

i( t )i t

2
2

a
I Im(be ) Im e

1
R L

C

 

 
 
 

   
        

          = 
2

2

a
sin( t )

1
R L

C

  

 
   

 

This result is well-known to all, but it is hoped that you are convinced that this algebraic
approach afforded us by the use of complex numbers is far easier than solving the differential
equation. You should note that this method yields the steady state solution�the transient
solution is not necessarily sinusoidal.

3.2 Trigonometric Functions

Define the functions cosine and sine as follows:

cos z = 
iz �ize  + e

,
2

sin z = 
iz �ize  � e

2i

where we are using ez = exp(z).

First, let�s verify that these are honest-to-goodness extensions of the familiar real functions,
cosine and sine�otherwise we have chosen very bad names for these complex functions.
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Notes So, suppose z = x + 0i = x. Then,

eix = cos x + i sin x, and

e�ix = cos x � i sin x.

Thus,

cos x = 
ix �ixe  + e

,
2

sin x = 
ix �ixe  � e

2i

Next, observe that the sine and cosine functions are entire�they are simply linear combinations
of the entire functions eiz and e�iz. Moreover, we see that

d d
sin z cosz,and cosz sin z,

dz dz
  

just as we would hope.

It may not have been clear to you back in elementary calculus what the so-called hyperbolic sine
and cosine functions had to do with the ordinary sine and cosine functions.

Now perhaps it will be evident. Recall that for real t,

t t t te e e e
sin h t , and cos h t

2 2

 
 

 

Thus,

i( it ) i(it ) t te e e � e
sin (it) i sin h t

2i 2

 


  

Similarly,

cos (it) = cos ht.

Most of the identities you learned in the 3rd grade for the real sine and cosine functions are also
valid in the general complex case. Let�s look at some.

sin2z + cos2z = iz iz 2 iz iz 21
(e e ) (e e )

4
      

=
2iz iz iz 2iz 2iz iz iz 2iz1

e 2e e e e 2e e e
4

          

=
1

(2 2) 1
4

 

It is also relative straight-forward and easy to show that:

sin(z ± w) = sin z cos w ± cos z sin w, and

cos(z ± w) = cos z cos w   sin z sin w
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Let�s find the real and imaginary parts of these functions:

sin z = sin(x + iy) = sin x cos(iy) + cos x sin (iy)

  = sin x cos hy + i cos x sin hy.

In the same way, we get cos z = cos x cos h y � i sin x sin hy.

3.3 Logarithms and Complex Exponents

In the case of real functions, the logarithm function was simply the inverse of the exponential
function. Life is more complicated in the complex case�as we have seen, the complex exponential
function is not invertible.

There are many solutions to the equation ez = w.

If z  0, we define log z by

log z = ln|z| + i arg z.

There are thus many log z�s; one for each argument of z. The difference between any two of these
is, thus, an integral multiple of 2i. First, for any value of log z we have

elog z = eln|z|+ i arg z = eln|z|ei arg z = z.

This is familiar. But next there is a slight complication:

log(ez) = ln ex + i arg ez = x + y(y + 2k)i

          = z + 2ki,

where k is an integer. We also have

log(zw) = ln(|z||w|) + i arg(zw)

= ln|z| + i arg z + ln|w| + i arg w + 2ki

= log z + log w + 2ki

for some integer k.

There is defined a function, called the principal logarithm, or principal branch of the logarithm,
function, given by

Log z = ln|z| + iArg z,

where Arg z is the principal argument of z. Observe that for any log z, it is true that log z =
Log z + 2ki for some integer k which depends on z. This new function is an extension of the real
logarithm function:

Log x = ln x + iArg x = ln x.

This function is analytic at a lot of places. First, note that it is not defined at z = 0, and is not
continuous anywhere on the negative real axis (z = x + 0i, where x < 0). So, let�s suppose
z

0
 = x

0
 + iy

0
, where z

0
 is not zero or on the negative real axis, and see about a derivative of

Log z :

0
0 0

0 0
log z log zz z z z

0

Log z Log z Log z Log z
lim lim

z z e e 

 


 
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Notes Now if we let w = Log z and w
0
 = Log z

0
, and notice that w  w

0
 as z  z

0
, this becomes

0
0 0

0 0
wwz z w w

0

Log z Log z w w
lim lim

z z e e 

 


 

= 
0w

0

1 1
e z



Thus, Log is differentiable at z
0
, and its derivative is 

0

1
.

z

We are now ready to give meaning to zc, where c is a complex number. We do the obvious and
define

zc = ec log z.

There are many values of log z, and so there can be many values of zc. As one might guess,
ecLog z is called the principal value of zc.

Note that we are faced with two different definitions of zc in case c is an integer. Let�s see, if we
have anything to unlearn. Suppose c is simply an integer, c = n. Then

zn = en log z = en(Log z + 2ki)

    = enLog z e2kni = enLog z

There is, thus, just one value of zn, and it is exactly what it should be: enLog z = |z|nein arg z. It is easy
to verify that in case c is a rational number, zc is also exactly what it should be.

Far more serious is the fact that we are faced with conflicting definitions of zc in case z = e. In the
above discussion, we have assumed that ez stands for exp(z). Now we have a definition for ez that
implies that ez can have many values. For instance, if someone runs at you in the night and hands
you a note with e1/2 written on it, how do you know whether this means exp(1/2) or the two

values e  and e ?  Strictly speaking, you do not know. This ambiguity could be avoided, of
course, by always using the notation exp(z) for exeiy, but almost everybody in the world uses ez

with the understanding that this is exp(z), or equivalently, the principal value of ez. This will be
our practice.

3.4 Summary

 Let the so-called exponential function exp be defined by

exp(z) = ex(cos y + i sin y),

where, as usual, z = x + iy. From the Cauchy-Riemann equations, we see at once that this
function has a derivative every where�it is an entire function. Moreover,

d
exp(z) exp(z).

dz


Note next that if z = x + iy and w = u + iv, then

exp(z + w) = ex+u[cos(y + v) + i sin(y + v)]

= exeu[cos y cos v � sin y sin v + i(sin y cos v + cos y sin v)]

= exeu(cos y + i sin y) (cos v + i sin v)

= exp(z) exp(w).
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NotesWe, thus, use the quite reasonable notation ez = exp(z) and observe that we have extended
the real exponential ex to the complex numbers.

 First, let�s verify that these are honest-to-goodness extensions of the familiar real functions,
cosine and sine�otherwise we have chosen very bad names for these complex functions.

So, suppose z = x + 0i = x. Then,

eix = cos x + i sin x, and

e�ix = cos x � i sin x.

Thus,

cos x = 
ix �ixe  + e

,
2

sin x = 
ix �ixe  � e

2i

 In the case of real functions, the logarithm function was simply the inverse of the exponential
function. Life is more complicated in the complex case�as we have seen, the complex
exponential function is not invertible.

There are many solutions to the equation ez = w.

If z  0, we define log z by

log z = ln|z| + i arg z.

 There are many values of log z, and so there can be many values of zc. As one might guess,
ecLog z is called the principal value of zc.

Note that we are faced with two different definitions of zc in case c is an integer. Let�s see
if we have anything to unlearn. Suppose c is simply an integer, c = n. Then

zn = en log z = en(Log z + 2ki)

    = enLog z e2kni = enLog z

There is, thus, just one value of zn, and it is exactly what it should be: enLog z = |z|nein arg z. It
is easy to verify that in case c is a rational number, zc is also exactly what it should be.

3.5 Keywords

Exponential function: Let the so-called exponential function exp be defined by exp(z) = ex(cos y
+ i sin y),

Logarithm function: The logarithm function was simply the inverse of the exponential function.

Principal value: There are many values of log z, and so there can be many values of zc. As one
might guess, ecLog z is called the principal value of zc.

3.6 Self Assessment

1. Let the so-called exponential function exp be defined by ...................

2. If z  0, we define log z by ...................
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Notes 3. New function is an extension of the real logarithm function: ...................

4. There are many values of log z, and so there can be many values of zc. As one might guess,
ecLog z is called the ................... of zc.

3.7 Review Questions

1. Show that exp(z + 2i) = exp(z)

2. Show that 
exp(z)

exp(z w).
exp(w)

 

3. Show that |exp(z)| = ex, and arg (exp(z) = y + 2k for any arg (exp(z)) and some integer k.

4. Find all z such that exp(z) = �1, or explain why there are none.

5. Find all z such that exp(z) = 1 + i, or explain why there are none.

6. For what complex numbers w does the equation exp(z) = w have solutions? Explain.

7. Find the indicated mesh currents in the network:

8. Show that for all z,

(a) sin(z + 2p) = sin z; (b) cos(z + 2) = cos z;

(c) sin z cosz.
2
 

  
 

9. Show that |sin z|2 = sin2x + sinh2y and |cos z|2 = cos2x + sinh2y.

10. Find all z such that sin z = 0.

11. Find all z such that cos z = 2, or explain why there are none.

12. Is the collection of all values of log(i1/2) the same as the collection of all values of 
1

log i?
2

Explain.

13. Is the collection of all values of log(i2) the same as the collection of all values of 2log i ?
Explain.

14. Find all values of log(z1/2). (in rectangular form)

15. At what points is the function given by Log (z2 + 1) analytic? Explain.

16. Find the principal value of

(a) ii. (b) (1 � i)4i

17. Find all values of |ii|.
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NotesAnswers: Self Assessment

1. exp(z) = ex(cos y + i sin y) 2. log z = ln|z| + i arg z

3. Log x = ln x + iArg x = ln x. 4. principal value

3.8 Further Readings
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H.Lass : Vector & Tensor Analysis
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T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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4.8 Further Readings

Objectives

After studying this unit, you will be able to:

 Explain the evaluation of integrals

 Discuss the anti derivatives

Introduction

If  : D  C is simply a function on a real interval D = [, ], then the integral (t)dt




  of course,

simply an ordered pair of everyday 3rd grade calculus integrals:

(t)dt x(t)dt i y(t)dt,
  

  

    

where g(t) = x(t) + iy(t). Thus, for example,

Nothing really new here. The excitement begins when we consider the idea of an integral of an
honest-to-goodness complex function f : D  C, where D is a subset of the complex plane. Let�s
define the integral of such things; it is pretty much a straightforward extension to two dimensions
of what we did in one dimension back in Mrs. Turner�s class.

4.1 Integral

Suppose f is a complex-valued function on a subset of the complex plane and suppose a and b are
complex numbers in the domain of f. In one dimension, there is just one way to get from one
number to the other; here we must also specify a path from a to b. Let C be a path from a to b, and
we must also require that C be a subset of the domain of f.

Richa Nandra, Lovely Professional University
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Note we do not even require that a  b; but in case a = b, we must specify an orientation for the
closed path C. We call a path, or curve, closed in case the initial and terminal points are the same,
and a simple closed path is one in which no other points coincide. Next, let P be a partition of the
curve; that is, P = {z

0
, z

1
, z

2
,....., z

n
} is a finite subset of C, such that a = z

0
, b = z

n
, and such that z

j

comes immediately after z
j�1

 as we travel along C from a to b.

A Riemann sum associated with the partition P is just what it is in the real case:

n
*
j j

j 1

S(P) f(z ) z ,


 

where *
jz  is a point on the arc between z

j�1
 and z

j
, and zj = z

j
 � z

j�1
.

Notes For a given partition P, there are many S(P)�depending on how the points *
jz

are chosen.)

there is a number L so that given any  > 0, there is a partition P of C such that

|S(P) � L| < 

whenever P  P, then f is said to be integrable on C and the number L is called the integral of

f on C. This number L is usually written 
C

f(z)dz.

Some properties of integrals are more or less evident from looking at Riemann sums:

C C

cf(z)dz c f(z)dz 

for any complex constant c.

C C C

(f(z) g(z))dz f(z)dz g(z)dz    

4.2 Evaluating Integrals

Now, how on Earth do we ever find such an integral? Let  : [, ]  C be a complex description
of the curve C. We partition C by partitioning the interval [, ] in the usual way:  = t

0
 < t

1
 < t

2
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n
 = . Then {a = (), (t

1
), (t

2
),...,() = b} is partition of C. (Recall we assume that g�(t)  0

for a complex description of a curve C.) A corresponding Riemann sum looks like

n
*
j j j 1

j 1

S(P) f( (t ))( (t ) (t )).



    

We have chosen the points * *
j jz (t ),   where t

j�1
  *

jt   t
j
. Next, multiply each term in the sum by

1 in disguise:

n
j j 1*

j j j 1
j 1 j j 1

(t ) (t )
S(P) f( (t ))( )(t t ).

t t




 

  
  




Hope it is now reasonably convincing that �in the limit�, we have

C

f(z)dz f( (t)) '(t)dt.




   

(We are, of course, assuming that the derivative � exists.)

Example 1: We shall find the integral of f(z) = (x2 + y) + i(xy) from a = 0 to b = 1 + i along
three different paths, or contours, as some call them.

First, let C
1
 be the part of the parabola y = x2 connecting the two points. A complex description

of C
1
 is 

1
(t) = t + it2, 0  t  1:

Now, '
1(t)  = 1 + 2ti, and f(

1
(t)) = (t2 + t2) = itt2 = 2t2 + it3. Hence,

1C

f(z)dz  =
1

'
1 1

0

f( (t)) (t)dt 

=
1

2 3

0

(2t it )(1 2ti) dt 

=
1

2 4 3

0

(2t � 2t 5t i) dt

=
4 5

i
15 4


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2
 joining 0 and 1 + i.

Here we have 
2
(t) = t + it, 0  t  1. Thus, '

2(t)  = 1 + i, and our integral looks like

2C

f(z)dz  =
1

'
2 2

0

f( (t)) (t)dt 

=
1

2 2

0

[(t t) it ](1 i) dt  

=
1

2

0

[t i(t 2t )] dt 

=
1 7

i
2 6


Finally, let�s integrate along C
3
, the path consisting of the line segment from 0 to 1 together with

the segment from 1 to 1 + i.

We shall do this in two parts: C
31

, the line from 0 to 1 ; and C
32

, the line from 1 to 1 + i. Then we
have

3 31 32C C C

f(z)dz f(z)dz f(z)dz.   
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31

, we have (t) = t, 0  t  1. Hence,

31

1
2

C 0

1
f(z)dz t dt .

3
  

For C
32

, we have (t) = 1 + it, 0  t  1. Hence,

32

1

C 0

1 3
f(z)dz (1 t it)idt i.

2 2
      

Thus,

3 31 32C C C

f(z)dz f(z)dz f(z)dz.   

= 
1 3

i.
6 2

 

Suppose there is a number M so that |f(z)|  M for all z  C. Then,

C

f(z)dz  = f( (t)) '(t)dt




 

 f( (t)) '(t) dt




 

 M '(t) dt ML,




 

where L '(t) dt




   is the length of C.

4.3 Antiderivatives

Suppose D is a subset of the reals and  : D  C is differentiable at t. Suppose further that g is
differentiable at (t). Then let�s see about the derivative of the composition g((t). It is, in fact,
exactly what one would guess. First,

g((t)) = u(x(t), y(t)) + iv(x(t), y(t)),

where g(z) = u(x, y) + iv(x, y) and (t) = x(t) + iy(t). Then,

dy dyd u dx u v dx v
g( (t)) i .

dt x dt y dt x dt y dt

    
     

    

The places at which the functions on the right-hand side of the equation are evaluated are
obvious. Now, apply the Cauchy-Riemann equations:
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dy dyd u dx v v dx u

g( (t)) i
dt x dt x dt x dt x dt

    
     

    

= 
dyu v dx

i i
x x dt dt
    

   
   

= g�((t))�(t).

Now, back to integrals. Let F : D  C and suppose F�(z) = f(z) in D. Suppose that a and b are in D
and that C  D is a contour from a to b. Then

C

f(z)dz f( (t)) '(t)dt,




   

where  : [, ]  C describes C. From our introductory discussion, we know that 
d

F( (t))
dt

  =

F�((t))�(t) = f((t))�(t). Hence,

C

f(z)dz  = f( (t)) '(t)dt




 

=
d

F( (t))dt F( ( )) F( ( ))
dt





      

= F(b) � F(a)

This is very pleasing.

Notes Integral depends only on the points a and b and not at all on the path C. We say
the integral is path independent. Observe that this is equivalent to saying that the integral
of f around any closed path is 0. We have, thus, shown that if in D the integrand f is the

derivative of a function F, then any integral 
C

f(z)dz  for C  D is path independent.

Example:

Let C be the curve 2

1
y

x
  from the point z = 1 + i to the point z = 

i
3 .

9
  Let�s find

2

C

z dz

This is easy�we know that F�(z) = z2 , where F(z) = 31
z .

3
 Thus,

2

C

z dz  =

3
31 i

(1 i) 3
3 9

  
    

   
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260 728
i

27 2187
 

Now, instead of assuming f has an antiderivative, let us suppose that the integral of f between
any two points in the domain is independent of path and that f is continuous. Assume also that
every point in the domain D is an interior point of D and that D is connected. We shall see that
in this case, f has an antiderivative. To do so, let z

0
 be any point in D, and define the function F

by

zC

F(z) f(z)dz, 

where C
z
 is any path in D from z

0
 to z. Here is important that the integral is path independent,

otherwise F(z) would not be well-defined.

Notes Also we need the assumption that D is connected in order to be sure there
always is at least one such path.

Now, for the computation of the derivative of F:

F(z + z) � F(z) = 
zL

f(s)ds




where L
z

 is the line segment from z to z + z.

Figure 4.2

Next, observe that 
zL

ds z.


   Thus, f(z) = 
zL

1
(f(s) � f(z))ds.

z


 

Now then,

zL

1
(f(s)� f(z))ds

z


    z

1
z max{ f(s) f(z) : s L }

z   


 max{|f(s) � f(z)| : s  L
z

}.

We know f is continuous at z, and so z
z 0

lim max{ f(s) f(z) : s L } 0.
 

    Hence,

z 0

F(z z) F(z)
lim f(z)

z 

  



 =

z

z 0
L

1
lim (f(s) f(z))ds

z


 

 
 

  


= 0
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what we have shown in this section:

Suppose f : D  C is continuous, where D is connected and every point of D is an interior point.
Then f has an antiderivative if and only if the integral between any two points of D is path
independent.

4.4 Summary

 If  : D  C is simply a function on a real interval D = [, ], then the integral (t)dt




  of

course, simply an ordered pair of everyday 3rd grade calculus integrals:

(t)dt x(t)dt i y(t)dt,
  

  

    

where g(t) = x(t) + iy(t).

 A Riemann sum associated with the partition P is just what it is in the real case:

n
*
j j

j 1

S(P) f(z ) z ,


 

where *
jz  is a point on the arc between z

j�1
 and z

j
, and zj = z

j
 � z

j�1
.

 Suppose D is a subset of the reals and  : D  C is differentiable at t. Suppose further that
g is differentiable at (t). Then let�s see about the derivative of the composition g((t). It is,
in fact, exactly what one would guess. First,

g((t)) = u(x(t), y(t)) + iv(x(t), y(t)),

where g(z) = u(x, y) + iv(x, y) and (t) = x(t) + iy(t).

 f is continuous at z, and so z
z 0

lim max{ f(s) f(z) : s L } 0.
 

    Hence,

z 0

F(z z) F(z)
lim f(z)

z 

  



 =

z

z 0
L

1
lim (f(s) f(z))ds

z


 

 
 

  


= 0

In other words, F�(z) = f(z), and so, just as promised, f has an antiderivative! Let�s summarize
what we have shown in this section:

Suppose f : D  C is continuous, where D is connected and every point of D is an interior
point. Then f has an antiderivative if and only if the integral between any two points of D
is path independent.
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Calculus integrals: If  : D  C is simply a function on a real interval D = [, ], then the integral

(t)dt




  of course, simply an ordered pair of everyday 3 rd grade calculus integrals:

(t)dt x(t)dt i y(t)dt.
  

  

    

Antiderivative: Suppose f : D  C is continuous, where D is connected and every point of D is an
interior point. Then f has an antiderivative if and only if the integral between any two points of
D is path independent.

4.6 Self Assessment

1. If  : D  C is simply a function on a real interval D = [, ], then the integral (t)dt




  of

course, simply an ordered pair of everyday 3rd grade ................. (t)dt x(t)dt i y(t)dt.
  

  

    

2. A Riemann sum associated with the partition P is just what it is in the real case: .................

where *
jz  is a point on the arc between z

j�1
 and z

j
, and zj = z

j
 � z

j�1
.

3. Integral depends only on the points a and b and not at all on the path C. We say the integral
is .................

4. If in D the integrand f is the derivative of a function F, then any integral ................. for C 
D is path independent.

5. f is continuous at z, and so ................. Hence,

z 0

F(z z) F(z)
lim f(z)

z 

  



 =

z

z 0
L

1
lim (f(s) f(z))ds

z


 

 
 

  


= 0

6. Suppose f : D  C is continuous, where D is connected and every point of D is an interior
point. Then f has an ................. if and only if the integral between any two points of D is
path independent.

4.7 Review Questions

1. Evaluate the integral 
C

zdz,  where C is the parabola y = x2 from 0 to 1 + i.

2. Evaluate 
C

1
dz,

z
 where C is the circle of radius 2 centered at 0 oriented counter clockwise.

3. Evaluate 
C

f(z)dz,  where C is the curve y = x3 from �1 � i to 1 + i , and 
1 for y 0

f(z)
4y for y 0


 


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Notes4. Let C be the part of the circle (t) = eit in the first quadrant from a = 1 to b = i. Find as small

an upper bound as you can for 
42

C

(z z 5)dz . 

5. Evaluate 
C

f(z)dz  where f(z) = z 2z  and C is the path from z = 0 to z = 1 + 2i consisting of

the line segment from 0 to 1 together with the segment from 1 to 1 + 2i.

6. Suppose C is any curve from 0 to  + 2i. Evaluate the integral

C

z
cos dz.

2
 
 
 



7. (a) Let F(z) = log z, 
3 5

arg z .
4 4

      Show that the derivative F�(z) = 
1

.
z

(b) Let G(z) = 
7

log z, arg z .
4 4
 

    Show that the derivative G�(z) = 
1

.
z

(c) Let C
1
 be a curve in the right-half plane D

1
 = {z : Rez  0} from �i to i that does not pass

through the origin. Find the integral

1C

1
dz.

z

(d) Let C
2
 be a curve in the left-half plane D

2
 = {z : Rez  0} from �i to i that does not pass

through the origin. Find the integral.

2C

1
dz.

z

8. Let C be the circle of radius 1 centered at 0 with the clockwise orientation. Find

C

1
dz.

z

9. (a) et H(z) = zc, � < arg z < . Find the derivative H�(z).

(b) Let K(z) = zc, 
7

arg z .
4 4
 

    Find the derivative K�(z).

(c) Let C be any path from �1 to 1 that lies completely in the upper half-plane and does
not pass through the origin. (Upper half-plane {z : Imz  0}.) Find

C

F(z)dz,

where F(z) = zi, � < arg z  .

10. Suppose P is a polynomial and C is a closed curve. Explain how you know that 
C

P(z)dz 0.
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1. calculus integrals 2.
n

*
j j

j 1

S(P) f(z ) z ,


 

3. path independent 4.
C

f(z)dz

5. z
z 0

lim max{ f(s) f(z) : s L } 0
 

   6. antiderivative

4.8 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati,T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H.Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry
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CONTENTS

Objectives

Introduction

5.1 Homotopy

5.2 Cauchy�s Theorem

5.3 Summary

5.4 Keywords

5.5 Self Assessment

5.6 Review Questions

5.7 Further Readings

Objectives

After studying this unit, you will be able to:

 Define homotopy

 Discuss the Cauchy's theorem

 Describe examples of Cauchy's theorem

Introduction

In earlier unit, you have studied about complex functions and complex number. Cauchy-Riemann
equations which under certain conditions provide the necessary and sufficient condition for the
differentiability of a function of a complex variable at a point. A very important concept of
analytic functions which is useful in many application of the complex variable theory. Let's
discuss the concept of Cauchy's theorem.

5.1 Homotopy

Suppose D is a connected subset of the plane such that every point of D is an interior point�we
call such a set a region�and let C

1
 and C

2
 be oriented closed curves in D. We say C

1
 is homotopic

to C
2
 in D if there is a continuous function H : S  D, where S is the square S = {(t, s) : 0  s, t  1},

such that H(t,0) describes C
1
 and H(t,1) describes C

2
, and for each fixed s, the function H(t, s)

describes a closed curve C
s
 in D.

The function H is called a homotopy between C
1
 and C

2
. Note that if C

1
 is homotopic to C

2
 in D,

then C
2
 is homotopic to C

1
 in D. Just observe that the function K(t, s) = H(t,1 � s) is a homotopy.

It is convenient to consider a point to be a closed curve. The point c is a described by a constant
function (t) = c. We thus speak of a closed curve C being homotopic to a constant�we sometimes
say C is contractible to a point.

Sachin Kaushal, Lovely Professional University



42 LOVELY PROFESSIONAL UNIVERSITY

Complex Analysis and Differential Geometry

Notes Emotionally, the fact that two closed curves are homotopic in D means that one can be
continuously deformed into the other in D.

Figure 5.1

Example 1:

Let D be the annular region D ={z : 1 < |z| < 5}. Suppose C
1
 is the circle described by 

1
(t) = 2ei2t,

0  t  1; and C
2
 is the circle described by 

2
(t) = 4ei2t, 0  t  1. Then H(t, s) = (2 + 2s)ei2t is a

homotopy in D between C
1
 and C

2
. Suppose C

3
 is the same circle as C

2
 but with the opposite

orientation; that is, a description is given by 
3
(t) = 4e�i2t, 0  t  1. A homotopy between C

1
 and

C
3
 is not too easy to construct�in fact, it is not possible! The moral: orientation counts. From

now on, the term �closed curve� will mean an oriented closed curve.

Another Example

Let D be the set obtained by removing the point z = 0 from the plane. Take a look at the picture.
Meditate on it and convince yourself that C and K are homotopic in D, but  and  are homotopic
in D, while K and  are not homotopic in D.

5.2 Cauchy�s Theorem

Suppose C
1
 and C

2
 are closed curves in a region D that are homotopic in D, and suppose f is a

function analytic on D. Let H(t, s) be a homotopy between C
1
 and C

2
. For each s, the function 

s
(t)

describes a closed curve C
s
 in D. Let I(s) be given by

I(s) = 
sC

f(z)dz.

Then,

1

0

H(t,s)
I(s) f(H(t,s)) dt.

t




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NotesNow, let�s look at the derivative of I(s). We assume everything is nice enough to allow us to
differentiate under the integral:

I�(s)  =
1

0

d H(t,s)
f(H(t,s)) dt

ds t

 
 

 


=
1 2

0

H(t,s) H(t,s) H(t,s)
f '(H(t,s)) f(H(t,s)) dt

t t s t

   
 

    


=
1 2

0

H(t,s) H(t,s) H(t,s)
f '(H(t,s)) f(H(t,s)) dt

t t t s

   
 

    


=
1

0

H(t,s)
f(H(t,s)) dt

t s
  
   



= f(H(1, s))
H(1,s)

s



 � f(H(0, s))

H(0,s)
.

s




But we know each H(t, s) describes a closed curve, and so H(0, s) = H(1, s) for all s. Thus,

H(1,s) H(0,s)
I '(s) f(H(1,s)) f(H(0,s)) 0.

s s
 

  
 

which means I(s) is constant! In particular, I(0) = I(1), or

1 2C C

f(z)dz f(z)dz 

This is a big deal. We have shown that if C
1
 and C

2
 are closed curves in a region D that are

homotopic in D, and f is analytic on D, then 
1 2

( ) ( ) .
C C

f z dz f z dz 

An easy corollary of this result is the celebrated Cauchy�s Theorem, which says that if f is
analytic on a simply connected region D, then for any closed curve C in D,

C

f(z)dz 0.

In court testimony, one is admonished to tell the truth, the whole truth, and nothing but the
truth. Well, so far in this chapter, we have told the truth, but we have not quite told the whole
truth. We assumed all sorts of continuous derivatives in the preceding discussion. These are not
always necessary�specifically, the results can be proved true without all our smoothness
assumptions�think about approximation.

Example 2:

Look at the picture below and convince your self that the path C is homotopic to the closed path
consisting of the two curves C

1
 and C

2
 together with the line L. We traverse the line twice, once

from C
1
 to C

2
 and once from C

2
 to C

1
.

Observe then that an integral over this closed path is simply the sum of the integrals over C
1
 and

C
2
, since the two integrals along L, being in opposite directions, would sum to zero. Thus, if f is

analytic in the region bounded by these curves (the region with two holes in it), then we know
that

1 2C C C

f(z)dz f(z)dz f(z)dz.   
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 Suppose D is a connected subset of the plane such that every point of D is an interior
point�we call such a set a region�and let C

1
 and C

2
 be oriented closed curves in D. We

say C
1
 is homotopic to C

2
 in D if there is a continuous function H : S  D, where S is the

square S = {(t, s) : 0  s, t  1}, such that H(t,0) describes C
1
 and H(t,1) describes C

2
, and for

each fixed s, the function H(t, s) describes a closed curve C
s
 in D.

 The function H is called a homotopy between C
1
 and C

2
. Note that if C

1
 is homotopic to C

2

in D, then C
2
 is homotopic to C

1
 in D. Just observe that the function K(t, s) = H(t,1 � s) is a

homotopy.

It is convenient to consider a point to be a closed curve. The point c is a described by a
constant function (t) = c. We, thus, speak of a closed curve C being homotopic to a
constant�we sometimes say C is contractible to a point.

Emotionally, the fact that two closed curves are homotopic in D means that one can be
continuously deformed into the other in D.

 Suppose C
1
 and C

2
 are closed curves in a region D that are homotopic in D, and suppose f

is a function analytic on D. Let H(t, s) be a homotopy between C
1
 and C

2
. For each s, the

function 
s
(t) describes a closed curve C

s
 in D. Let I(s) be given by I(s) = 

sC

f(z)dz.

5.4 Keywords

Homotopy: The function H is called a homotopy between C
1
 and C

2
. Note that if C

1
 is homotopic

to C
2
 in D, then C

2
 is homotopic to C

1
 in D. Just observe that the function K(t, s) = H(t,1 � s) is a

homotopy.

Contractible: It is convenient to consider a point to be a closed curve. The point c is a described
by a constant function (t) = c. We thus speak of a closed curve C being homotopic to a constant�
we sometimes say C is contractible to a point.

Cauchy�s Theorem: Suppose C
1
 and C

2
 are closed curves in a region D that are homotopic in D,

and suppose f is a function analytic on D. Let H(t, s) be a homotopy between C
1
 and C

2
. For each

s, the function 
s
(t) describes a closed curve C

s
 in D. Let I(s) be given by I(s) = 

sC

f(z)dz.

5.5 Self Assessment

1. Suppose D is a connected subset of the plane such that every point of D is an interior
point�we call such a set a region�and let C

1
 and C

2
 be oriented closed .................

2. It is convenient to consider a point to be a closed curve. The point c is a described by a
constant function (t) = c. We thus speak of a closed curve C being homotopic to a constant�
we sometimes say C is ................. to a point.

3. Emotionally, the fact that two closed curves are ................. in D means that one can be
continuously deformed into the other in D.

4. If f is analytic in the region bounded by these curves (the region with two holes in it), then
we know that .................
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1. Suppose C
1
 is homotopic to C

2
 in D, and C

2
 is homotopic to C

3
 in D. Prove that C

1
 is

homotopic to C
3
 in D.

2. Explain how you know that any two closed curves in the plane C are homotopic in C.

3. A region D is said to be simply connected if every closed curve in D is contractible to a
point in D. Prove that any two closed curves in a simply connected region are homotopic
in D.

4. Prove Cauchy�s Theorem.

5. Let S be the square with sides x = ± 100, and y = ± 100 with the counterclockwise orientation.

Find 
s

1
dz.

z

6. (a) Find 
C

1
dz,

z 1  where C is any circle centered at z = 1 with the usual counterclockwise

orientation: (t) = 1 + Ae2it, 0  t  1.

(b) Find 
C

1
dz,

z 1  where C is any circle centered at z = �1 with the usual

counterclockwise orientation.

(c) Find 
2

C

1
dz,

z � 1  where C is the ellipse 4x2 + y2 = 100 with the counterclockwise

orientation. [Hint: partial fractions]

(d) Find 
2

C

1
dz,

z � 1  where C is the circle x2 � 10x + y2 = 0 with the counterclockwise

orientation.

7. Evaluate 
C

Log(z 3)dz,  where C is the circle |z| = 2 oriented counterclockwise.

8. Evaluate 
n

C

1
dz

z
 where C is the circle described by (t) = e2it, 0  t  1, and n is an

integer  1.

9. (a) Does the function f(z) = 
1
z

 have an antiderivative on the set of all z  0? Explain.

(b) How about f(z) = n

1
z

, n an integer  1?

10. Find as large a set D as you can so that the function 
2ze  have an antiderivative on D.

11. Explain how you know that every function analytic in a simply connected region D is the
derivative of a function analytic in D.
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1. curves in D 2. contractible

3. homotopic 4.
1 2C C C

f(z)dz f(z)dz f(z)dz.   

5.7 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati, T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H.Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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NotesUnit 6: Cauchy�s Integral Formula

CONTENTS

Objectives

Introduction

6.1 Cauchy�s Integral Formula

6.2 Functions defined by Integrals

6.3 Liouville�s Theorem

6.4 Maximum Moduli

6.5 Summary

6.6 Keywords

6.7 Self Assessment

6.8 Review Questions

6.9 Further Readings

Objectives

After studying this unit, you will be able to:

 Define Cauchy's integral formula

 Discuss functions defined by integrals

 Describe liouville's theorem

 Explain maximum moduli

Introduction

In last unit, you have studied about concept of Cauchy's theorem. A very important concept of
analytic functions which is useful in many application of the complex variable theory. This unit
provides you information related to Cauchy's integral formula, functions defined by integrals
and maximum moduli.

6.1 Cauchy�s Integral Formula

Suppose f is analytic in a region containing a simple closed contour C with the usual positive
orientation and its inside, and suppose z

0
 is inside C. Then it turns out that

0
0C

1 f(z)
f(z ) dz.

2 i z z


 

This is the famous Cauchy Integral Formula. Let�s see why it�s true.

Sachin Kaushal, Lovely Professional University
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Notes Let  > 0 be any positive number. We know that f is continuous at z
0
 and so there is a number 

such that |f(z) � f(z
0
)| <  whenever |z � z

0
| < . Now let  > 0 be a number such that  <  and the

circle C
0
 = {z : |z � z

0
| = } is also inside C. Now, the function 

0

f(z)
z z

 is analytic in the region

between C and C
0
; thus,

00 0C C

f(z) f(z)
dz dz.

z z z z


  

We know that 
0C

1
dz 2 i,

z z
 

  so we can write

0
0C

f(z)
dz � 2 if(z )

z z


  =
0

0
0 0C C

f(z) 1
dz � f(z ) dz

z z z z  

=
0

0

0C

f(z) f(z )
dz.

z z





For z  C
0
 we have

0

0

f(z) f(z )
z z



 = 0

0

f(z) f(z )

z z





 .




Thus,

0

0
0C

f(z)
dz 2 if(z )

z z
 

  =
0

0

0C

f(z) f(z )
dz

z z




 2 2 .


  


which is exactly what we set out to show.

Look at this result. It says that if f is analytic on and inside a simple closed curve and we know the
values f (z) for every z on the simple closed curve, then we know the value for the function at
every point inside the curve�quite remarkable indeed.

Example:

Let C be the circle |z| = 4 traversed once in the counterclockwise direction. Let�s evaluate the
integral

2
C

cosz
dz.

z 6z 5 

We simply write the integrand as

2

cosz cosz f(z)
,

z 6z 5 (z 5)(z 1) z 1
 

    
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Noteswhere

cosz
f(z) .

z 5




Observe that f is analytic on and inside C, and so,

2
C

cosz
dz

z 6z 5   =
C

f(z)
dz 2 if(1)

z 1
 



=
cos1 i

2 i cos1
1 5 2


  



6.2 Functions defined by Integrals

Suppose C is a curve (not necessarily a simple closed curve, just a curve) and suppose the
function g is continuous on C (not necessarily analytic, just continuous). Let the function G be
defined by :

G(z) = 
C

g(s)
ds

s z

for all z  C. We shall show that G is analytic. Here we go.

Consider,

G(z z) G(z)
z

  


 =

C

1 1 1
g(s)ds

z s z z s z
 

      


=
C

g(s)
ds.

(s z z)(s z)   

Next,

G(z z) G(z)
z

  


 � 

2
C

g(s)
ds

(s z)  = 2
C

1 1
g(s)ds

(s z Dz)(s z) (s z)

 
 

    


= 2
C

(s z) (s z z)
g(s)ds

(s z z)(s z)

     
 

    


=
2

C

g(s0
z ds.

(s z z)(s z)


   

Now we want to show that

2z 0
C

g(s)
lim z ds 0.

(s z z)(s z) 

 
  

    


To that end, let M = max {|g(s)| : s  C}, and let d be the shortest distance from z to C. Thus, for
s  C, we have |s � z|  d > 0 and also

|s � z � z|  |s � z| � |z|  d � |z|.
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2

g(s)

(s z z)(s z)   
  2

M
(d | z|)d 

for all s  C. Finally,

2
C

g(s)
z ds

(s z z)(s z)


      2

M
| z| length(C),

(d | z|)d


 

and it is clear that

2z 0
C

g(s)
lim z ds 0,

(s z z)(s z) 

 
  

    


just as we set out to show. Hence G has a derivative at z, and

2
C

g(s)
G'(z) ds

(s z)




Next we see that G� has a derivative and it is just what you think it should be. Consider

G'(z z) G'(z)
z

  


 = 2 2

C

1 1 1
g(s)ds

z (s z z) (s z)

 
 

     


=
2 2

2 2
C

1 (s z) (s z z)
g(s)ds

z (s z z) (s z)

     
 

     


=
2

2 2
C

1 2(s z) z ( z)
g(s)ds

z (s z z) (s z)

    
 

     


= 2 2
C

2(s z) z
g(s)ds

(s z z) (s z)

   
 

    


Next,

= 3
C

g(s)G'(z z) G'(z)
2 ds

z (s z)
  


 

= 2 2 3
C

2(s z) z 2
g(s)ds

(s z z) (s z) (s z)

   
 

     


=
2 2

2 3
C

2(s z) z(s z) 2(s z z)
g(s)ds

(s z z) (s z)

        
 

    


=
2 2 2

2 3
C

2(s z) z(s z) 2(s z) 4 z(s z) 2( z)
g(s)ds

(s z z) (s z)

           
 

    

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=
2

2 3
C

3 z(s z) 2( z)
g(s)ds

(s z z) (s z)

    
 

    


Hence,

3
C

g(s)G'(z z) G'(z)
2 ds

z (s z)
  


   = 

2

2 3
C

3 z(s z) 2( z)
g(s)ds

(s z z) (s z)

    
 

    


 2 3

( 3m 2 z )M
z ,

(d z) d

 


 

where m = max {|s � z| : s  C}. It should be clear then that

3z 0
C

g(s)G'(z z) G'(z)
lim 2 ds 0,

z (s z) 

  
 

 

or in other words,

3
C

g(s)
G''(z) 2 ds.

(s z)




Suppose f is analytic in a region D and suppose C is a positively oriented simple closed curve in
D. Suppose also the inside of C is in D. Then from the Cauchy Integral formula, we know that

C

f(s)
2 if(z) ds

s z
 



and so with g = f in the formulas just derived, we have

2 3
C C

1 f(s) 2 f(s)
f '(z) ds, and f ''(z) ds

2pi (s z) 2 i (s z)
 

   

for all z inside the closed curve C. Meditate on these results. They say that the derivative of an
analytic function is also analytic. Now suppose f is continuous on a domain D in which every

point of D is an interior point and suppose that 
C

f(z)dz 0  for every closed curve in D. Then we

know that f has an antiderivative in D�in other words f is the derivative of an analytic function.
We now know this means that f is itself analytic. We thus have the celebrated Morera�s Theorem:

If f : D  C is continuous and such that 
C

f(z)dz 0  for every closed curve in D, then f is analytic

in D.

Example:

Let�s evaluate the integral

z

3
C

e
dz,

z

where C is any positively oriented closed curve around the origin. We simply use the equation

3
C

2 f(s)
f ''(z) ds

2 i (s z)


 



52 LOVELY PROFESSIONAL UNIVERSITY

Complex Analysis and Differential Geometry

Notes with z = 0 and f(s) = es. Thus,

z
0

3
C

e
ie i dz.

z
    

6.3 Liouville�s Theorem

Suppose f is entire and bounded; that is, f is analytic in the entire plane and there is a constant M
such that | f(z)|   M for all z. Then it must be true that f�(z) = 0 identically. To see this, suppose

that f�(w)  0 for some w. Choose R large enough to insure that 
M

f'(w) .
R
  Now let C be a circle

centered at 0 and with radius  > max{R, |w|}. Then we have :

M
f'(w)

R
  

2
C

1 f(s)
ds

2 i (s w) 


2

1 M M
2 ,

2
 

  

a contradiction. It must, therefore, be true that there is no w for which f�(w)  0; or, in other
words, f�(z) = 0 for all z. This, of course, means that f is a constant function. What we have shown
has a name, Liouville�s Theorem:

The only bounded entire functions are the constant functions.

Let�s put this theorem to some good use. Let p(z) = a
n
zn + a

n�1
zn�1 + ... + a

1
z + a

0
 be a polynomial.

Then

nn 1 n 2 0
n 2 n

a a a
p(z) a ... z .

z z z
  

     
 

Now choose R large enough to insure that for each j = 1, 2,...,n, we have n j n
j

a a

z 2n

  whenever

|z| > R. (We are assuming that a
n
  0. ) Hence, for |z| > R, we know that

p(z)   nn 1 n 2 0
n 2 n

a a a
a ... z

z z z
    


nn 1 n 2 0

n 2 n

a a a
a � � ...� z

z z z
 

> nn n n
n

a a a
a � � ...� z

2n 2n 2n


>
nna

z .
2

Hence, for |z| > R,

n n
nn

1 2 2
.

p(z) a Ra z
 
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Now suppose p(z)  0 for all z. Then 

1
p(z)

 is also bounded on the disk |z|  R. Thus, 
1

p(z)
 is a

bounded entire function, and hence, by Liouville�s Theorem, constant! Hence the polynomial is
constant if it has no zeros. In other words, if p(z) is of degree at least one, there must be at least
one z

0
 for which p(z

0
) = 0. This is, of course, the celebrated fundamental theorem of algebra.

6.4 Maximum Moduli

Suppose f is analytic on a closed domain D. Then, being continuous, |f(z)| must attain its
maximum value somewhere in this domain. Suppose this happens at an interior point. That is,
suppose |f(z)|  M for all z  D and suppose that |f(z

0
)| = M for some z

0
 in the interior of D.

Now z
0
 is an interior point of D, so there is a number R such that the disk  centered at z

0
 having

radius R is included in D. Let C be a positively oriented circle of radius   R centered at z
0
. From

Cauchy�s formula, we know

0
0C

1 f(s)
f(z ) ds.

2 i s z


 

Hence,

2
it

0 0

0

1
f(z ) f(z e )dt,

2 i



  
 

and so,

2
it

0 0

0

1
M f(z ) f(z e ) dt M.

2



    
 

since |f(z
0
 + eit)|  M. This means

2
it

0

0

1
M f(z e ) dt.

2



  
 

Thus,

This integrand is continuous and non-negative, and so must be zero. In other words, |f(z)| = M
for all z  C. There was nothing special about C except its radius   R, and so we have shown
that f must be constant on the disk .

It is easy to see that if D is a region (i.e. connected and open), then the only way in which the
modulus | f(z)| of the analytic function f can attain a maximum on D is for f to be constant.

6.5 Summary

 Suppose f is analytic in a region containing a simple closed contour C with the usual
positive orientation and its inside, and suppose z

0
 is inside C. Then it turns out that

0
0C

1 f(z)
f(z ) dz.

2 i z z


 

This is the famous Cauchy Integral Formula.
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function g is continuous on C (not necessarily analytic, just continuous). Let the function G
be defined by

G(z) = 
C

g(s)
ds

s z
,

for all z  C. We shall show that G is analytic.

 Suppose f is analytic in a region D and suppose C is a positively oriented simple closed
curve in D. Suppose also the inside of C is in D. Then from the Cauchy Integral formula, we
know that

C

f(s)
2 if(z) ds

s z
 



and so with g = f in the formulas just derived, we have

2 3
C C

1 f(s) 2 f(s)
f '(z) ds, and f ''(z) ds

2pi (s z) 2 i (s z)
 

   

for all z inside the closed curve C. Meditate on these results. They say that the derivative
of an analytic function is also analytic. Now suppose f is continuous on a domain D in

which every point of D is an interior point and suppose that 
C

f(z)dz 0 , for every closed

curve in D.

 Suppose f is entire and bounded; that is, f is analytic in the entire plane and there is a
constant M such that |f(z)|  M for all z. Then it must be true that f�(z) = 0, identically. To

see this, suppose that f�(w)  0, for some w. Choose R large enough to insure that 
M

f'(w) .
R


Now let C be a circle centered at 0 and with radius  > max{R, |w|}. Then we have :

M
f'(w)

R
  

2
C

1 f(s)
ds

2 i (s w) 


2

1 M M
2 ,

2
 

  

a contradiction. It must therefore be true that there is no w for which f�(w)  0; or, in other
words, f�(z) = 0 for all z. This, of course, means that f is a constant function. What we have
shown has a name, Liouville�s Theorem:

The only bounded entire functions are the constant functions.

6.6 Keywords

Cauchy Integral Formula: Suppose f is analytic in a region containing a simple closed contour C
with the usual positive orientation and its inside, and suppose z

0
 is inside C. Then it turns out

that

0
0C

1 f(z)
f(z ) dz.

2 i z z


 

This is the famous Cauchy Integral Formula.
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NotesFunction: Suppose C is a curve (not necessarily a simple closed curve, just a curve) and suppose
the function g is continuous on C (not necessarily analytic, just continuous). Let the function G be
defined by

G(z) = 
C

g(s)
ds

s z

for all z  C. We shall show that G is analytic.

Fundamental theorem of algebra: In other words, if p(z) is of degree at least one, there must be
at least one z

0
 for which p(z

0
) = 0. This is, of course, the celebrated fundamental theorem of

algebra.

6.7 Self Assessment

1. Suppose f is analytic in a region containing a simple closed contour C with the usual
positive orientation and its inside, and suppose z

0
 is inside C. Then it turns out that

0
0C

1 f(z)
f(z ) dz.

2 i z z


 

This is the famous ..................

2. It says that if f is analytic on and inside a simple closed curve and we know the values f(z)
for every z on the .................., then we know the value for the function at every point inside
the curve�quite remarkable indeed.

3. Suppose C is a curve (not necessarily a simple closed curve, just a curve) and suppose the
function g is continuous on C (not necessarily analytic, just continuous). Let the ..................
G be defined by

G(z) = 
C

g(s)
ds

s z
,

for all z  C. We shall show that G is analytic.

4. If f : D  C is .................. such that 
C

f(z)dz 0  for every closed curve in D, then f is analytic

in D.

5. Now suppose p(z)  0 for all z. Then 
1

p(z)
 is also bounded on the disk |z|  R. Thus, 

1
p(z)

is a bounded entire function, and hence, by .................. , constant!

6. Suppose f is analytic on a closed domain D. Then, being continuous, |f(z)| must attain its
.................. somewhere in this domain.
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1. Suppose f and g are analytic on and inside the simple closed curve C, and suppose moreover
that f(z) = g(z) for all z on C. Prove that f(z) = g(z) for all z inside C.

2. Let C be the ellipse 9x2 + 4y2 = 36 traversed once in the counterclockwise direction. Define
the function g by :

2

C

s s 1
g(z) ds.

s z
 




Find : (a)  g(i) (b)  g(4i)

3. Find :

2z

2
C

e
dz

z 4

where, C is the closed curve in the picture:

4. Find 
2z

2

e
dz,

z 4


  where  is the contour in the picture:

5. Evaluate :

2
C

sin z
dz

z

where, C is a positively oriented closed curve around the origin.
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Notes6. Let C be the circle |z � i| = 2 with the positive orientation. Evaluate :

(a)
2

C

1
dz

z 4 (b)
2 2

C

1
dz

(z 4)

7. Suppose f is analytic inside and on the simple closed curve C. Show that :

2
C C

f '(z) f(z)
dz dz

z �w (z �w)
 

for every w  C.

8. (a) Let  be a real constant, and let C be the circle (t) = eit, �  t  . Evaluate :

az

C

e
dz.

z

(b) Use your answer in part a) to show that :

cos t

0

e cos( sin t)dt .



  

9. Suppose f is an entire function, and suppose there is an M such that Ref(z)  M for all z.
Prove that f is a constant function.

10. Suppose w is a solution of 5z4 + z3 + z2 � 7z + 14 = 0. Prove that |w|  3.

11. Prove that, if p is a polynomial of degree n, and if p(a) = 0, then p(z) = (z � a)q(z), where q
is a polynomial of degree n � 1.

12. Prove that, if p is a polynomial of degree n  1, then

p(z) = c(z � z
1
)k1 (z � z

2
)k2 ... (z � zj)kj ,

where k
1
, k

2
, ..., k

j
 are positive integers such that n �­ k1 �y k2 �y� �ykj.

13. Suppose p is a polynomial with real coefficients. Prove that p can be expressed as a product
of linear and quadratic factors, each with real coefficients.

14. Suppose f is analytic and not constant on a region D and suppose f(z)  0 for all z  D.
Explain why |f(z)| does not have a minimum in D.

15. Suppose f(z) = u(x, y) + iv(x, y) is analytic on a region D. Prove that if u(x, y) attains a
maximum value in D, then u must be constant.

Answers: Self Assessment

1. Cauchy Integral Formula. 2. simple closed curve

3. function 4. continuous

5. Liouville�s Theorem 6. maximum value



58 LOVELY PROFESSIONAL UNIVERSITY

Complex Analysis and Differential Geometry

Notes 6.9 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati, T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications
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CONTENTS

Objectives

Introduction

7.1 Transformations

7.1.1 Bilinear Transformation

7.1.2 Definitions

7.1.3 Transformation of a Circle

7.2 Conformal Mappings

7.2.1 Definition

7.3 Summary

7.4 Keywords

7.5 Self Assessment

7.6 Review Questions

7.7 Further Readings

Objectives

After studying this unit, you will be able to:

 Define transformation

 Discuss bilinear transformation

 Describe transformation of a circle

 Explain conformal mapping

Introduction

In earlier unit you have studied about concept of Cauchy's theorem, Cauchy's integral formula,
functions defined by integrals and maximum moduli. A conformal map is a function which
preserve angles. In the most common case, the function between domain is in the complex
plane.  This unit will explain you the concept of transformation and conformal mapping.

7.1 Transformations

Here, we shall study how various curves and regions are mapped by elementary analytic function.
We shall work in 


 i.e. the extended complex plane. We start with the linear function.

 w = Az �(1)

Sachin Kaushal, Lovely Professional University
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Notes where A is non zero complex constant and z  0. We write A and z in exponential form as

 A = aei, z = rei

Then w = (ar) ei( + ) �(2)

Thus we observe from (2) that transformation (1) expands (or contracts) the radius vector
representing z by the factor a = | A | and rotates it through an angle  = arg A about the origin.
The image of a given region is, therefore, geometrically similar to that region. The general
linear transformation,

 w = Az + B �(3)

is evidently an expansion or contraction and a rotation, followed by a translation. The image
region mapped by (3) is geometrically congruent to the original one.

Now we consider the function,

 w
1
z

 �(4)

which establishes a one to one correspondence between the non zero points of the zplane and
the wplane. Since z z  = | z |2, the mapping can be described by means of the successive
transformations

Z = 2

1
|z| z, w = Z �(5)

Geometrically, we know that if P and Q are inverse points w.r.t. a circle of radius r with centre
A, then

 (AP) (AQ) = r2

Thus a and b are inverse points w.r.t. the circle | z  a | = r if

(  a) ( a)  = r2

 

Q 
             
      a         P 
r         A 
         

where the pair  = a,  =  is also included. We note that , , a are collinear. Also points  and
 are inverse w.r.t a straight line l if  is the reflection of a in l and conversely. Thus, the first of
the transformation in (5) is an inversion w.r.t the unit circle | z | = 1 i.e. the image of a non-zero
point z is the point Z with the properties

 z Z  = 1, | Z | = 
1

|z| and arg Z = arg z

Thus, the point exterior to the circle | z | = 1 are mapped onto the non-zero points interior to it
and conversely. Any point on the circle is mapped onto itself. The second of the transformation
in (5) is simply a reflection in the real axis.
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z y 

x 

|z| = 1 

           Z 
 
    O 
            w 

Since  
z 0

1
lim

z
 =  and

z

1
lim

z
 = 0,

it is natural to define a oneone transformation w = T(z) from the extended z plane onto the
extended w plane by writing

 T(0) = , T() = 0

and T(z) = 
1
z

for the remaining values of z. It is observed that T is continuous throughout the extended z
plane.

When a point w = u + iv is the image of a non-zero point z = x + iy under the transformation w

= 
1
z

, writing w = 2

z
|z|  results in

u = 2 2

x
x y , v = 2 2

y
x y


 �(6)

Also, since  z = 2

1 w
w |w|
 , we get

 x = 2 2

u
u v

, y = 2 2

v
u v



�(7)

The following argument, based on these relations (6) and (7) between coordinates shows the

important result that the mapping w = 
1
z

 transforms circles and lines into circles and lines.

When a, b, c, d are real numbers satisfying the condition b2 + c2 > 4ad, then the equation

a(x2 + y2) + bx + cy + d = 0 �(8)

represents an arbitrary circle or line, where a  0 for a circle and a = 0 for a line.

If x and y satisfy equation (8), we can use relations (7) to substitute for these variables. Thus,
using (7) in (8), we obtain

 d(u2 + v2) + bu  cv + a = 0 �(9)
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x and y satisfy (8). From (8) and (9), it is clear that

(i) a circle (a  0) not passing through the origin (d  0) in the z plane is transformed into a
circle not passing through the origin in the w plane.

(ii) a circle (a  0) through the origin (d = 0) in the z plane is transformed into a line which does
not pass through the origin in the w plane.

(iii) a line (a = 0) not passing through the origin (d  0) in the z plane is transformed into a circle
through the origin in the w plane.

(iv) a line (a = 0) through the origin (d = 0) in the z plane is transformed into a line through the
origin in the w plane.

Hence, we conclude that w = 
1
z

 transforms circles and lines into circles and lines respectively.

Remark : In the extended complex plane, a line may be treated as a circle with infinite radius.

7.1.1 Bilinear Transformation

The transformation

 w = 
az b
cz d



, ad  bc  0 �(1)

where a, b, c, d are complex constants, is called bilinear transformation or a linear fractional
transformation or Möbius transformation. We observe that the condition ad  bc  0 is necessary
for (1) to be a bilinear transformation, since if

ad bc = 0, then 
b d
a c
  and we get

w = 
a(z b/a) a
c(z d/c) c





 i.e. we get a constant function which is not linear.

Equation (1) can be written in the form

cwz + dw  az  b = 0 �(2)

Since (2) is linear in z and linear in w or bilinear in z and w, therefore, (1) is termed as bilinear
transformation.

When c = 0, the condition ad  bc  0 becomes ad  0 and we see that the transformation reduces
to general linear transformation. When c  0, equation (1) can be written as

 w = 
a (z b/a) a b/a d/c

1
c (z d/c) c z d/c

  
  

  

= 2

a bc ad 1
c c z d/c


 


�(3)

We note that (3) is a composition of the mappings

 z
1

= z + 
d
c

, z
2
 = 

1

1
z , z

3
 = 2

bc ad
c


z
2
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and thus, we get w = 

a
c

 + z
3
.

The above three auxiliary transformations are of the form

 w = z + , w = 
1
z

, w = z �(4)

Hence, every bilinear transformation is the resultant of the transformations in (4).

But we have already discussed these transformations and thus, we conclude that a bilinear
transformation always transforms circles and lines into circles and lines respectively, because
the transformations in (4) do so.

From (1), we observe that if c = 0, a, d  0, each point in the w plane is the image of one and only

one point in the z-plane. The same is true if c  0, except when z = 
d
c

 which makes the

denominator zero. Since we work in extended complex plane, so in case z = 
d
c

, w =  and thus,

we may regard the point at infinity in the wplane as corresponding to the point z = 
d
c

 in the

zplane.

Thus, if we write

T(z) = w = 
az b
cz d



, ad  bc  0 �(5)

Then,  T() = , if c = 0

and  T() = 
a
c

, T
d
c

 
    = , if c  0

Thus, T is continuous on the extended z-plane. When the domain of definition is enlarged in this
way, the bilinear transformation (5) is oneone mapping of the extended z-plane onto the
extended w-plane.

Hence, associated with the transformation T, there is an inverse transformation T1 which is
defined on the extended w-plane as

T1(w) = z if and only if T(z) = w.

Thus, when we solve equation (1) for z, then

 z = 
dw b
cw a
 


, ad bc  0 �(6)

and thus,

T1(w) = z = 
dw b
cw a
 


, ad bc  0

Evidently, T1 is itself a bilinear transformation, where

T1() =  if c = 0
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and  T1

a
c

 
  

= , T1 () = 
d
c

, if c  0

From the above discussion, we conclude that inverse of a bilinear transformation is bilinear.

The points z = 
d
c

(w = ) and z = (w = 
a
c

) are called critical points.

Theorem

Composition (or resultant or product) of two bilinear transformations is a bilinear transformation.

Proof. We consider the bilinear transformations

w = 
az b
cz d



, ad  bc  0 �(1)

and  w
1

= 1 1

1 1

a w b
c w d




, a

1
d

1
  b

1
c

1
  0 �(2)

Putting the value of w from (1) in (2), we get

 w
1

= 
1 1

1 1 1 1

1 1 1 1
1 1

az b
a b

(a a b c)z (b d a b)cz d
az b (c a d c)z (d d c b)c d
cz d

 
     


    

  

Taking  A = a
1
a + b

1
c, B = b

1
d + a

1
b,

 C = c
1
a + d

1
c, D = d

1
d + c

1
b, we get

 w
1

= 
Az B
Cz D





Also  AD  BC = (a
1
a + b

1
c) (d

1
d + c

1
b)  (b

1
d + a

1
b) (c

1
a + d

1
c)

= (a
1
ad

1
d + a

1
ac

1
b + b

1
cd

1
d + b

1
cc

1
b)  (b

1
dc

1
a + b

1
d d

1
c + a

1
bc

1
a + a

1
bd

1
c)

= a
1
ad

1
d + b

1
bc

1
c  b

1
dc

1
a  a

1
bd

1
c

= ad(a
1
d

1
  b

1
c

1
)  bc(a

1
d

1
  b

1
c

1
)

= (ad  bc) (a
1
d

1
  b

1
c

1
)  0

Thus  w
1

= 
Az B
Cz D




, AD  BC  0

is a bilinear transformation.

This bilinear transformation is called the resultant (or product or composition) of the bilinear
transformations (1) and (2).

The above property is also expressed by saying that bilinear transformations form a group.
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(i) The points which coincide with their transforms under bilinear transformation are called

its fixed points. For the bilinear transformation w = 
az b
cz d



, fixed points are given by

w = z i.e. z = 
az b
cz d



�(1)

Since (1) is a quadratic in z and has in general two different roots, therefore, there are
generally two invariant points for a bilinear transformation.

(ii) If z
1
, z

2
, z

3
, z

4
 are any distinct points in the z-plane, then the ratio

 (z
1
, z

2
, z

3
, z

4
) = 1 2 3 4

2 3 4 1

(z z )(z z )
(z z )(z z )

 

 

is called cross ratio of the four points z
1
, z

2
, z

3
, z

4
. This ratio is invariant under a bilinear

transformation i.e.

 (w
1
, w

2
, w

3
, w

4
) = (z

1
, z

2
, z

3
, z

4
)

7.1.3 Transformation of a Circle

First we show that if p and q are two given points and K is a constant, then the equation

z p
z q



= K, (1)

represents a circle. For this, we have

 |z  p|2 = K2|z  q|2

  (z  p)  z p = K2(z  q)  z q

 (z  p) ( z p ) = K2(z  q) (z q)

 zz pz   p z pp = K2(z z qz qz qq   )

 (1  K2) z z (p  qK2) z (p q  K2)z = K2q q pp

 z z   
2 2 2 2 2

2 2 2

p qK p qK |p| K |q|
z z

1 K 1 K 1 K
     

         
= 0 �(2)

Equation (2) is of the form

zz bz bz c   = 0 (c is being a real constant)

which always represents a circle.

Thus equation (2) represents a circle if K  1.

If K = 1, then it represents a straight line

| z  p | = | z  q |
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circle is |z  z

0
| = r and p and q are inverse points w.r.t. it, then

 z  z
0

= rei, p  z
0
 = qei,

 q  z
0

= 
2

a


ei

Therefore,

z p
z q



= 

i i i i

2 i i
i i

e ae a e ae
ae e

e e
a

   

 
 

   


   
 

= K 
(cos i sin ) a(cos i sin ) a

, K
a(cos i sin ) (cos i sin )
       


       

= K 
( cos a cos ) i( sin asin )
(a cos cos ) i(asin sin )
        

       

= K 

1/22 2

2 2

( cos acos ) ( sin asin )
(a cos cos ) (asin sin )

         
 

         

= K, where K  1, since a  r

Thus, if p and q are inverse points w.r.t. a circle, then its equation can be written as

z p
z q



= K, K  1, K being a real constant.

Theorem

In a bilinear transformation, a circle transforms into a circle and inverse points transform into
inverse points. In the particular case in which the circle becomes a straight line, inverse points
become points symmetric about the line.

Proof : We know that 
z p
z q



 = K represents a circle in the z-plane with p and q as inverse points,

where K  1. Let the bilinear transformation be

w = 
az b
cz d



so that z = 

dw b
cw a



 

Then under this bilinear transformation, the circle transforms into

dw b
p

cw a
dw b

q
cw a




 



 

= K 
dw b p(q cw)
dw b q(a cw)

  

  
 = K
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
w(d cp) (ap b)
w(d cq) (aq b)

  

  
= K 

ap b
w

cp d
aq b

w
cq d











 = K 
cq d
cp d




�(1)

The form of equation (1) shows that it represents a circle in the w-plane whose inverse points are

ap b
cp d




 and 

aq b
cq d




. Thus, a circle in the z-plane transforms into a circle in the w-plane and the

inverse points transform into the inverse points.

Also if K
cq d
cp d




 = 1, then equation (1) represents a straight line bisecting at right angle the join

of the points 
ap b
cp d




 and 

aq b
cq d




 so that these points are symmetric about this line. Thus, in a

particular case, a circle in the z-plane transforms into a straight line in the w-plane and the
inverse points transform into points symmetrical about the line.

Example: Find all bilinear transformations of the half plane Im z  0 into the unit circle
| w |  1.

Solution. We know that two points z, z , symmetrical about the real z-axis(Im z = 0) correspond

to points w, 1
w

, inverse w.r.t. the unit wcircle. (|w| 1
|w|

 = 1). In particular, the origin and the

point at infinity in the w-plane correspond to conjugate values of z.

Let

w = 
az b
cz d



 = 

a( z b/a)
c (z d/c)




�(1)

be the required transformation.

Clearly c  0, otherwise points at  in the two planes would correspond.

Also, w = 0 and w =  are the inverse points w.r.t. | w | = 1. Since in (1), w = 0, w =  correspond

respectively to z = 
b
a

, z = 
d
c

, therefore, these two values of zplane must be conjugate to each

other. Hence, we may write


b
a

= , 
d
c

 =   so that

w = 
a z
c z

 

 
 (2)

The point z = 0 on the boundary of the half plane Im z  0 must correspond to a point on the
boundary of the circle | w | = 1, so that

1 = | w | = 
a 0 a
c 0 c

 


 
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

a
c

= ei  a = cei, where  is real.

Thus, we get

 w = ei z
z
  

   
�(3)

Since z =  gives w = 0,  must be a point of the upper half plane i.e. Im 
 
> 0. With this condition,

(3) gives the required transformation. In (3), if z is real, obviously | w | = 1 and if Im z > 0, then

z is nearer to  than to   and so | w | < 1. Hence, the general linear transformation of the half
plane Im z  0 on the circle | w |  1 is

w = ei
z
z
  

   
, Im  > 0.

Example: Find all bilinear transformations of the unit | z |  1 into the unit circle | w |
 1.

OR

Find the general homographic transformations which leaves the unit circle invariant.

Solution. Let the required transformation be

w = 
az b a (z b/a)
cz d c (z d/c)
 


 

�(1)

Here, w = 0 and w = , correspond to inverse points

z = 
b
a

, z = 
d
c

, so we may write


b
a

= , 
d
c

 = 
1


such that | a | < 1.

So, w = 
a z a z
c z 1/ c z 1
     

         
�(2)

The point z = 1 on the boundary of the unit circle in z-plane must correspond to a point on the
boundary of the unit circle in w-plane so that

1 = | w | = 
a 1 a
c 1 c
   


 

or a   = c ei, where  is real.

Hence (2) becomes,

w = eil 
z
z 1
 

   
, | a | < 1 �(3)
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| w | = 
i i

i( )

e be
be 1

 






 = 1.

If z = rei, where r < 1, then

|z  |2  | z  1|2 = r2 2rb cos() + b2  {b2r2  2br cos() + 1}

= (r2  1)(1  b2) < 0

and so

|z  a|2 < |z  1|2 
2

2

|z |
| z 1|

 

 
 < 1

i.e.  | w | < 1

Hence, the result.

Example: Show that the general transformation of the circle | z |   into the circle
| w | is

w =  ei 2

z
z

  
     , | a | < 

Solution. Let the transformation be

w = 
az b a z b/a
cz d c z d/c

  
    

�(1)

The points w = 0 and w = , inverse points of | w | =  correspond to inverse point z = b/a, z
= d/c respectively of | z | = r, so we may write


b
a

= , 
2d

c





, | a | < 

Thus, from (1), we get

w = 2 2

a z a z
c c z

z

 
       

        
 

�(2)

Equation (2) satisfied the condition | z |   and | w | . Hence, for | z | = r, we must have
| w | =  so that (2) becomes

 = | w | = 
a z
c z zz
  

 
, z z  = r2

= 
a 1 z a 1 z
c z z c z z
   


  
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= 

a 1
c



, | z  a | = | z   |

  = 
a
c



a
c


 =  ei,  being real.

Thus, the required transformation becomes

 w =  ei 2

z
z

  
     , | a | < .

Example: Find the bilinear transformation which maps the point 2, i, 2 onto the points
1, i, 1.

Solution. Under the concept of crossratio, the required transformation is given by

1 2 3 1 2 3

1 2 3 1 2 3

(w w )(w w ) (z z )(z z )
(w w )(w w) (z z )(z z)

   


   

Using the values of z
i
 and w

i
 , we get

(w 1)(i 1)
(1 i)( 1 w)

 

  
= 

(z 2)(i 2)
(2 i)( 2 z)

 

  

or  w 1
w 1



= 

z 2 2 i 1 i
z 2 2 i 1 i
       

            

or
w 1
w 1



= 

4 3i z 2
5 z 2
 



or
w 1 w 1

w 1 (w 1)
  

  
= 

(4 3i)(z 2) 5(z 2)
(4 3i)(z 2) 5(z 2)
   

   

or w = 
3z(3 i) 2i(3 i) 3z 2i

iz(z i) 6(3 i) (iz 6)
   


     

or  w = 
3z 2i
iz 6




which is the required transformation.

7.2 Conformal Mappings

Let S be a domain in a plane in which x and y are taken as rectangular Cartesian co-ordinates. Let
us suppose that the functions u(x, y) and v(x, y) are continuous and possess continuous partial
derivatives of the first order at each point of the domain S. The equations

u = u(x, y), v = v(x, y)

set up a correspondence between the points of S and the points of a set T in the (u, v) plane. The
set T is evidently a domain and is called a map of S. Moreover, since the first order partial
derivatives of u and v are continuous, a curve in S which has a continuously turning tangent is
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Notesmapped on a curve with the same property in T. The correspondence between the two domains
is not, however, necessarily a oneone correspondence.

For example, if we take u = x2, v = y2, then the domain x2 + y2 < 1 is mapped on the triangle
bounded by u = 0, v = 0, u + v = 1, but there are four points of the circle corresponding to each
point of the triangle.

7.2.1 Definition

A mapping from S to T is said to be isogonal if it has a oneone transformation which maps any
two intersecting curves of S into two curves of T which cut at the same angle. Thus, in an isogonal
mapping, only the magnitude of angle is preserved.

An isogonal transformation which also conserves the sense of rotation is called conformal
mapping. Thus, in a conformal transformation, the sense of rotation as well as the magnitude of
the angle is preserved.

The following theorem provides the necessary condition of conformity which briefly states that
if f(z) is analytic, mapping is conformal.

Theorem: Prove that at each point z of a domain D where f(z) is analytic and f(z)  0, the mapping
w = f(z) is conformal.

Proof. Let w = f(z) be an analytic function of z, regular and one valued in a region D of the
z-plane. Let z

0
 be an interior point of D and let C

1
 and C

2
 be two continuous curves passing

through z
0
 and having definite tangents at this point, making angles a

1
, a

2
, say, with the real axis.

We have to discover what is the representation of this figure in the w-plane. Let z
1
 and z

2
 be

points on the curves C
1
 and C

2
 near to z

0
. We shall suppose that they are at the same distance r

from z
0
, so we can write z

1
  z

0
 = rei1, z

2
  z

0
 = rei2.

Then as r  0, 
1
  

1
, q

2
  

2
. The point z

0
 corresponds to a point w

0
 in the w-plane and z

1
 and

z
2
 correspond to point w

1
 and w

2
 which describe curves C

1
 and C

2
, making angles b

1
 and b

2
 with

the real axis.

x 

y 

C1 

C2 

z1 

z2 

z0 

1 

tangent 

1 

u 

w0 

'
2C  '

1C  

w1 

w2 

v 

 
2 

 
2 

Let w
1
  w

0
 = 

1
 1ie  , w

2
  w

0
 = 

2
 2ie  ,

where 
1
, 

2
  0  

1
, 

2
  

1
, 

2
 , respectively.

Now, by the definition of an analytic function,

0

1 0

z z
1 0

w w
lim

z z




= f (z

0
)
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0
)  0, we may write it in the form Rei and thus,

lim
1

1

i
1

i

e
re






= Rei i.e. lim 1 1i( )1 e

r
   = Rei

  lim 1

r
 = R = |f (z

0
) |

and  lim (
1
  

1
) = 

i.e. lim 
1
  lim 

1
= 

i.e. 
1
  

1
=   

1
 = 

1
 + 

Similarly, 
2
 = 

2
 + .

Hence, the curves C
1
 and C

2
 have definite tangents at w

0
 making angles 

1
 +  and 

2
 + 

respectively with the real axis. The angle between C
1
 and C

2
 is


1
  

2
= (

1
 + )  (

2
  ) = 

1
 

2

which is the same as the angle between C
1
 and C

2
. Hence the curve C

1
 and C

2
 intersect at the

same angle as the curves C
1
 and C

2
. Also the angle between the curves has the same sense in the

two figures. So the mapping is conformal.

Special Case : When f(z
0
) = 0, we suppose that f(z) has a zero of order n at the point z

0
. Then in

the neighbourhood of this point (by Taylor�s theorem)

f(z) = f(z
0
) + a(z  z

0
)n+1 + �, where a  0

Hence,  w
1
  w

0
= a(z  z

0
)n+1 + �.

i.e.  
1
 1ie  = | a | rn+1 ei[d + (n +1)q1] + �

where,  = arg a

Hence,  lim 
1

= [d + (n + 1) 
1
] =  + (n + 1) 

1
|  is constant

Similarly,  lim 
2

= d + (n + 1) 
2

Thus, the curves C
1
 and C

2
 still have definite tangent at w

0
, but the angle between the tangents

is

 lim(
2
  

1
) = (n + 1) (

2
  

1
)

Thus, the angle is magnified by (n + 1).

Also the linear magnification, R = lim 1

r
  = 0 |  lim 1

r
  = R = |f (z

0
)| = 0

Therefore, the conformal property does not hold at such points where f (z) = 0

A point z
0
 at which f (z

0
) = 0 is called a critical point of the mapping. The following theorem is

the converse of the above theorem and is sufficient condition for the mapping to be conformal.

Theorem: If the mapping w = f(z) is conformal then show that f(z) is an analytic function of z.

Proof. Let w = f(z) = u(x, y) + iv(x, y)

Here, u = u(x, y) and v = v(x, y) are continuously differentiable equations defining conformal
transformation from z-plane to w-plane. Let ds and d be the length elements in z-plane and
w-plane respectively so that

 ds2 = dx2 + dy2, d2 = du2 + dv2 �(1)
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 du = 
u
x



dx + 

u
y



dy, dv = 

v v
dx dy

x y
 


 

  du2 + dv2 = 
2 2

u u v v
dx dy dx dy

x y x y

      
           

i.e. d2 = 
2 22 2

2 2u v u v
dx dy

x x y y

            
                        

+ 2
u u v v

dxdy
x y x y

    
     

�(2)

Since the mapping is given to be conformal, therefore, the ratio d2 : d2 is independent of
direction, so that from (1) and (2), comparing the coefficients, we get

2 2
2 2 u v u u v vu v

y y x y x yx x
1 1 0

                                   
 


2 2

u v
x x
    

       
= 

2 2
u v
y y

    
       

�(3)

and
u u v v
x y x y
   


   

= 0 �(4)

Equations (3) and (4) are satisfied if

u v
x y
 


  ,

v u
x y
 

 
  �(5)

or
u v
x y
 

 
  ,

v u
x y
 


  �(6)

Equation (6) reduces to (5) if we replace v by v i.e. by taking as image figure obtained by the
reflection in the real axis of the w-plane.

Thus, the four partial derivatives u
x
, u

y
, v

x­, 
v

y
 exist, are continuous and they satisfy CR equations

(5). Hence, f(z) is analytic.

Remarks

(i) The mapping w = f(z) is conformal in a domain D if it is conformal at each point of the
domain.

(ii) The conformal mappings play an important role in the study of various physical
phenomena defined on domains and curves of arbitrary shapes. Smaller portions of these
domains and curves are conformally mapped by analytic function to well-known domains
and curves.
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Example: Discuss the mapping w = z .

Solution. We observe that the given mapping replaces every point by its reflection in the real
axis. Hence, angles are conserved but their signs are changed and thus, the mapping is isogonal
but not conformal. If the mapping w = z  is followed by a conformal transformation, then
resulting transformation of the form w = f( z ) is also isogonal but not conformal, where f(z) is
analytic function of z.

Example: Discuss the nature of the mapping w = z2 at the point z = 1 + i and examine its
effect on the lines Im z = Re z and Re z = 1 passing through that point.

Solution. We note that the argument of the derivative of f(z) = z2 at z = 1 + i is

[arg 2z]
z = 1+ i

 = arg(2 + 2i) = /4

Hence, the tangent to each curve through z = 1 + i will be turned by the angle /4. The co-efficient

of linear magnification is |f (z)| at z = 1 + i, i.e. |2 + 2i| = 2 2 . The mapping is

 w = z2 = x2  y2 + 2ixy = u(x, y) + iv(x, y)

We observe that mapping is conformal at the point z = 1 + i, where the half lines y = x(y  0) and
x = 1(y  0) intersect. We denote these half lines by C

1
 and C

2
, with positive sense upwards and

observe that the angle from C
1
 to C

2
 is /4 at their point of intersection. We have

 u = x2  y2, v = 2xy

The half line C
1
 is transformed into the curve C

1
 given by

u = 0, v = 2y2 (y  0)

Thus, C
1
 is the upper half v  0 of the vaxis.

The half line C
2
 is transformed into the curve C

2
 represented by

 u = 1  y2, v = 2y (y  0)

Hence, C
2
 is the upper half of the parabola v2 = 4(u  1). We note that, in each case, the positive

sense of the image curve is upward.

For the image curve C
2 
,

dv/dydv 2 2
du du/dy 2y v

   


In particular, 
dv
du

 = 1 when v = 2. Consequently, the angle from the image curve C
1
 to the

image curve C
2
 at the point w = f(1 + i) = 2i is 

4
 , as required by the conformality of the mapping

there.

O 1 x 

y C2 C1 

1+i 

/4 

/2 

O 1 u 

'
3C

'
1C  

/2 

2i '
2C  

/4 

v 

C3 
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Notes  The angle of rotation and the scalar factor (linear magnification) can change from
point to point. We note that they are 0 and 2 respectively, at the point z = 1, since f (1) = 2,
where the curves C

2
 and C

2
 are the same as above and the non-negative x-axis (C

3
) is

transformed into the non-negative u-axis (C
3
).

Example: Discuss the mapping w = za, where a is a positive real number.

Solution. Denoting z and w in polar as z = rei, w = rei, the mapping gives r = ra,  = a.

Thus the radii vectors are raised to the power a and the angles with vertices at the origin are
multiplied by the factor a. If a > 1, distinct lines through the origin in the zplane are not mapped
onto distinct lines through the origin in the w-plane, since, e.g. the straight line through the

origin at an angle 
2
a


 to the real axis of the z-plane is mapped onto a line through the origin in

the wplane at an angle 2 to the real axis i.e. the positive real axis itself. Further, 
dw
dz

 = aza1,

which vanishes at the origin if a > 1 and has a singularity at the origin if a < 1. Hence, the
mapping is conformal and the angles are therefore preserved, excepting at the origin. Similarly
the mapping w = ez is conformal.

Example: Prove that the quadrant | z | < 1, 0 < arg z < 
2


 is mapped conformally onto

a domain in the w-plane by the transformation w = 2

4
(z 1)

.

Solution. If w = f(z) = 2

4
(z 1)

, then f (z) is finite and does not vanish in the given quadrant. Hence,

the mapping w = f(z) is conformal and the quadrant is mapped onto a domain in the w-plane
provided w does not assume any value twice i.e. distinct points of the quadrant are mapped to

distinct points of the w-plane. We show that this indeed is true. If possible, let 2
1

4
(z 1)

 = 2
2

4
(z 1)

,

where z
1
  z

2
 and both z

1
 and z

2
 belong to the quadrant in the z-plane. Then, since z

1
  z

2
, we have

(z
1
  z

2
) (z

1
 + z

2
 + 2) = 0

 z
1
 + z

2
 + 2 = 0 i.e. z

1
 = z

2
  2. But since z

2
 belongs to the quadrant, z

2
  2 does not, which

contradicts the assumption that z
1
 belongs to the quadrant. Hence w does not assume any value

twice.

7.3 Summary

 Here, we shall study how various curves and regions are mapped by elementary analytic
function. We shall work in 


 i.e. the extended complex plane. We start with the linear

function.

 w = Az �(1)

where A is non-zero complex constant and z  0. We write A and z in exponential form as

 A = aei, z = rei
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Thus, we observe from (2) that transformation (1) expands (or contracts) the radius vector
representing z by the factor a = | A | and rotates it through an angle  = arg A about the
origin. The image of a given region is, therefore, geometrically similar to that region. The
general linear transformation

 w = Az + B �(3)

is evidently an expansion or contraction and a rotation, followed by a translation. The
image region mapped by (3) is geometrically congruent to the original one.

  d(u2 + v2) + bu  cv + a = 0

which also represents a circle or a line. Conversely, if u and v satisfy (9), it follows from (6)
that x and y satisfy (8). From (8) and (9), it is clear that

(i) a circle (a  0) not passing through the origin (d  0) in the z plane is transformed into
a circle not passing through the origin in the w plane.

(ii) a circle (a  0) through the origin (d = 0) in the z plane is transformed into a line
which does not pass through the origin in the w plane.

(iii) a line (a = 0) not passing through the origin (d  0) in the z plane is transformed into
a circle through the origin in the w plane.

(iv) a line (a = 0) through the origin (d = 0) in the z plane is transformed into a line
through the origin in the w plane.

 The transformation

 w = 
az b
cz d



, ad  bc  0 �(1)

where a, b, c, d are complex constants, is called bilinear transformation or a linear fractional
transformation or Möbius transformation. We observe that the condition ad - bc  0 is
necessary for (1) to be a bilinear transformation, since if

ad  bc = 0, then 
b d
a c
  and we get

 In a bilinear transformation, a circle transforms into a circle and inverse points transform
into inverse points. In the particular case in which the circle becomes a straight line,
inverse points become points symmetric about the line.

 Let S be a domain in a plane in which x and y are taken as rectangular Cartesian
co-ordinates. Let us suppose that the functions u(x, y) and v(x, y) are continuous and
possess continuous partial derivatives of the first order at each point of the domain S. The
equations

u = u(x, y), v = v(x, y)

set up a correspondence between the points of S and the points of a set T in the (u, v) plane.
The set T is evidently a domain and is called a map of S. Moreover, since the first order
partial derivatives of u and v are continuous, a curve in S which has a continuously turning
tangent is mapped on a curve with the same property in T. The correspondence between
the two domains is not, however, necessarily a one-one correspondence.
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Transformation: The linear function.

 w = Az

where A is non-zero complex constant and z  0. We write A and z in exponential form as

 A = aei, z = rei

Then w = (ar) ei( + )

Oneone transformation: It is natural to define a oneone transformation w = T(z) from the
extended z plane onto the extended w plane by writing

 T(0) = , T() = 0

Bilinear transformation: The transformation

 w = 
az b
cz d



, ad  bc  0

where a, b, c, d are complex constants, is called bilinear transformation or a linear fractional
transformation or Möbius transformation.

Conformal Mappings: Let S be a domain in a plane in which x and y are taken as rectangular
Cartesian co-ordinates. Let us suppose that the functions u(x, y) and v(x, y) are continuous and
possess continuous partial derivatives of the first order at each point of the domain S. The
equations

u = u(x, y), v = v(x, y)

7.5 Self Assessment

1. The general linear transformation ................. is evidently an expansion or contraction and
a rotation, followed by a translation.

2. Any point on the circle is mapped onto itself. The second of the transformation in (5) is
simply a ................ in the real axis.

3. It is natural to define a ................ w = T(z) from the extended z plane onto the extended w
plane by writing

 T(0) = , T() = 0

4. The transformation  w = 
az b
cz d



, ad  bc  0 where a, b, c, d are complex constants, is called

................ or a linear fractional transformation or Möbius transformation.

5. Composition (or resultant or product) of two bilinear transformations is a ................

6. The points which coincide with their transforms under bilinear transformation are called
its fixed points. For the bilinear transformation ................, fixed points are given by w = z

i.e. z = 
az b
cz d




Since (1) is a quadratic in z and has in general two different roots, therefore, there are
generally two invariant points for a bilinear transformation.
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Notes 7. In a bilinear transformation, a circle transforms into a circle and inverse points transform
into ................

8. An ................ which also conserves the sense of rotation is called conformal mapping. Thus
in a conformal transformation, the sense of rotation as well as the magnitude of the angle
is preserved.

7.6 Review Questions

Find the bilinear transformation which maps

(i) 1, i, 2 onto 0, 2, i respectively.

(ii) 1, i, 0 onto 1, i, 1 respectively.

(iii) 0, 1,  onto , i, 1 respectively.

(iv) 1, , i into 0, , 1 respectively.

(v) , i, 0 onto 0, i, respectively.

(vi) 1, 0, 1 onto i, , 1 respectively.

(vii) 1, i, 1 onto i, 0, i respectively.

Answers: Self Assessment

1. w = Az + B 2. reflection

3. one-one transformation 4. bilinear transformation

5. bilinear transformation. 6. w = 
az b
cz d




7. inverse points. 8. isogonal transformation

7.7 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati,T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H.Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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8.3 Power Series

8.4 Integration of Power Series

8.5 Differentiation of Power Series

8.6 Summary

8.7 Keywords

8.8 Self Assessment

8.9 Review Questions

8.10 Further Readings

Objectives

After studying this unit, you will be able to:

 Define sequences

 Discuss series and power series

 Describe integration by power series

 Explain differentiation by power series

Introduction

In earlier unit, you have studied about concept of transformation and conformal mapping.
In this unit, we shall introduce you to series representation of a complex valued function f (z) .
In order to obtain and analyze these series, we need to develop some concepts related to series.
We shall start the unit by discussing basic facts regarding the convergence of sequences and
series of complex numbers.

8.1 Sequences

The basic definitions for complex sequences and series are essentially the same as for the real
case. A sequence of complex numbers is a function g : Z

+
  C from the positive integers into the

complex numbers. It is traditional to use subscripts to indicate the values of the function. Thus,
we write g(n)  z

n
 and an explicit name for the sequence is seldom used; we write simply (z

n
) to

Richa Nandra, Lovely Professional University



80 LOVELY PROFESSIONAL UNIVERSITY

Complex Analysis and Differential Geometry

Notes
stand for the sequence g which is such that g(n) = z

n
. For example, 

i
n

 
 
 

 is the sequence g for

which g(n) = 
i

.
n

The number L is a limit of the sequence (z
n
) if given an  > 0, there is an integer N


 such that

|zn � L| <  for all n  N

. If L is a limit of (z

n
), we sometimes say that (z

n
) converges to L. We

frequently write lim (z
n
) = L. It is relatively easy to see that if the complex sequence (z

n
) =

(u
n
 + iv

n
) converges to L, then the two real sequences (u

n
) and (v

n
) each have a limit: (u

n
) converges

to ReL and (v
n
) converges to ImL. Conversely, if the two real sequences (u

n
) and (v

n
) each have a

limit, then so also does the complex sequence (u
n
 + iv

n
). All the usual nice properties of limits of

sequences are thus true:

lim(z
n
 ± w

n
) = lim(z

n
) ± lim(w

n
);

lim(z
n
w

n
) = lim(z

n
) lim(wn); and

n

n

z
lim

w

 
 
 

 = n

n

lim(z )
.

lim(w )

provided that lim(z
n
) and lim(w

n
) exist. (And in the last equation, we must, of course, insist that

lim(w
n
)  0.)

A necessary and sufficient condition for the convergence of a sequence (a
n
) is the celebrated

Cauchy criterion: given  > 0, there is an integer N

 so that |a

n
 � a

m
| <  whenever n,m > N


.

A sequence (f
n
) of functions on a domain D is the obvious thing: a function from the positive

integers into the set of complex functions on D. Thus, for each z  D, we have an ordinary
sequence (fn(z)). If each of the sequences (fn(z)) converges, then we say the sequence of functions
(f

n
) converges to the function f defined by f(z) = lim(f

n
(z)). This pretty obvious stuff. The sequence

(f
n
) is said to converge to f uniformly on a set S if given an  > 0, there is an integer N


 so that

|f
n
(z) � f(z)| <  for all n  N


 and all z  S.

Notes It is possible for a sequence of continuous functions to have a limit function
that is not continuous. This cannot happen if the convergence is uniform.

To see this, suppose the sequence (f
n
) of continuous functions converges uniformly to f on a

domain D, let z
0
  D, and let  > 0. We need to show there is a  so that |f(z

0
) � f(z)| <  whenever

|z
0 
� z| < . Let�s do it. First, choose N so that |f

N
(z) � f(z)| < .

3


 We can do this because of the

uniform convergence of the sequence (f
n
). Next, choose  so that |f

N
(z

0
) � f

N
(z)| < 

3


 whenever

|z
0
 � z| < . This is possible because f

N
 is continuous.

Now then, when |z
0
 � z| < , we have

|f(z
0
) � f(

z
)| = |f(z

0
) � f

N
(z

0
) + f

N
(z

0
) � f

N
(z) + f

N
(z) � f(z)|

 |f(z
0
) � f

N
(z

0
)| + |f

N
(z

0
) � f

N
(z)| + |f

N
(z) � f(z)|
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< ,

3 3 3
  
   

Now suppose, we have a sequence (f
n
) of continuous functions which converges uniformly on a

contour C to the function f. Then the sequence n
C

f (z)dz
 
  
 
  converges to n

C

f (z)dz.  This is easy to

see. Let  > 0. Now let N be so that |f
n
(z) � f(z)| < 

A


 for n > N, where A is the length of C. Then,

n
C C

f (z)dz f(z)dz   = n
C

(f (z) f(z))dz

< A
A


 

whenever n > N.

Now suppose (f
n
) is a sequence of functions each analytic on some region D, and suppose the

sequence converges uniformly on D to the function f. Then f is analytic. This result is in marked
contrast to what happens with real functions�examples of uniformly convergent sequences of
differentiable functions with a non-differentiable limit abound in the real case. To see that this
uniform limit is analytic, let z

0
  D, and let S = {z : |z � z

0
| <  r}  D. Now consider any simple

closed curve C  S. Each f
n
 is analytic, and so n

C

f (z)dz 0  for every n. From the uniform

convergence of (f
n
), we know that 

C

f(z)dz  is the limit of the sequence n
C

f (z)dz ,
 
  
 
  and so

C

f(z)dz 0.  Morera�s theorem now tells us that f is analytic on S, and hence at z
0
. Truly a miracle.

8.2 Series

A series is simply a sequence (s
n
) in which s

n
 = a

1
 + a

2
 + ... + a

n
. In other words, there is sequence

(a
n
) so that s

n
 = s

n � 1
 + a

n
. The s

n
 are usually called the partial sums. Recall from Mrs. Turner�s class

that if the series 
n

j
j 1

a


 
  
 
  has a limit, then it must be true that nn

lim(a ) 0.




Consider a series 
n

j 1

fj(z)


 
  
 
  of functions. Chances are this series will converge for some values

of z and not converge for others. A useful result is the celebrated Weierstrass M-test: Suppose
(M

j
) is a sequence of real numbers such that M

j
  0 for all j > J, where J is some number., and

suppose also that the series 
n

j
j 1

M


 
  
 
  converges. If for all z  D, we have |fj(z)|  M

j
 for all j > J,

then the series 
n

j
j 1

f (z)


 
  
 
  converges uniformly on D.
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n

j
j m

M


 

for all n, m > N. (We can do this because of the famous Cauchy criterion.) Next, observe that

n n n

j j j
j m j m j m

f (z) f (z) M .
  

     

This shows that 
n

j
j 1

f (z)


 
  
 
  converges. To see the uniform convergence, observe that

n n m 1

j j j
j m j 0 j 0

f (z) f (z) f (z)


  

     

for all z  D and n > m > N. Thus,

n m 1 m 1

j j j j
n

j 0 j 0 j 0 j 0

lim f (z) f (z) f (z) f (z)
  


   

       

for m > N. (The limit of a series 
n

j
j 0

a


 
  
 
  is almost always written as j

j 0

a .)






8.3 Power Series

We are particularly interested in series of functions in which the partial sums are polynomials
of increasing degree:

s
n
(z) = c

0
 + c

1
(z � z

0
) + c

2
(z � z

0
)2 + ... + c

n
(z � z

0
)n.

(We start with n = 0 for esthetic reasons.) These are the so-called power series. Thus,

a power series is a series of functions of the form 
n

j
j 0

j 0

c (z z ) .


 
  

 


Let�s look first at a very special power series, the so-called Geometric series:

n
j

j 0

z .


 
  
 


Here,

s
n
 = 1 + z + z2 + ... + zn, and

zs
n
 = z + z2 + z3 + ... + zn+1.

Subtracting the second of these from the first gives us

(1 � z)s
n
 = 1 � zn+1.
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NotesIf z = 1, then we can�t go any further with this, but I hope it�s clear that the series does not have
a limit in case z = 1. Suppose now z  1. Then we have,

n 1

n

1 z
s .

1 z 1 z



 
 

Now if |z| < 1, it should be clear that lim(zn+1) = 0, and so

n
j

n
j 0

1
lim z lim s .

1 z

 
     



Or,

j

j 0

1
z , for z 1.

1 z





 




There is a bit more to the story. First, note that if |z| > 1, then the Geometric series does not have
a limit (why?). Next, note that if |z|   < 1, then the Geometric series converges uniformly to

1
.

1 z

Notes
n

j

j 0

 
  

 
  has a limit and appeal to the Weierstrass M-test.

Clearly, a power series will have a limit for some values of z and perhaps not for others. First,
note that any power series has a limit when z = z

0
. Let�s see what else we can say. Consider a

power series 
n

j
j 0

j 0

c (z z ) .


 
  

 
  Let

 = lim sup  j
jc .

(Recall from 6th grade that lim sup(a
k
) = lim(sup{a

k
 : k  n}.) Now let 

1
R .


 (We shall say R = 0

if l = , and R =  if  = 0. ) We are going to show that the series converges uniformly for all
|z � z

0
|   < R and diverges for all |z � z

0
| > R.

First, let�s show the series does not converge for |z � z
0
| > R. To begin, let k be so that

0

1 1
k .

z z R
   



There are an infinite number of c
j
 for which j

jc k,  otherwise lim sup  j
jc k.  For each of

these c
j 
, we have,

 
j

jj j
j 0 j 0 0c (z z ) c z z (k z z 1.     

It is, thus, not possible for n
n 0n

lim c (z z ) 0,


   and so the series does not converge.
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0
|   < R. Let k be so that

1 1
k .

R
   



Now, for j large enough, we have  j
jc k.  Thus, for |z � z

0
|  , we have

 j jj jj
j 0 j 0 0c (z z ) c z z (k z z (k ) .      

The geometric series 
n

j

j 0

(k )


 
  

 
  converges because k < 1 and the uniform convergence of

n
j

j 0
j 0

c (z z )


 
  

 
  follows from the M-test.

Example:

Consider the series 
0

1
.

!

n
j

j

z
j

 
  
 
  Let�s compute R = 1/ lim sup  j

jc  = lim sup ( !).j j  Let K be any

positive integer and choose an integer m large enough to insure that 2m > 
2

.
(2 )!

KK

K
 Now consider

!
,

n

n

K
 where n = 2K + m:

n 2K m 2K

2K

n! (2K m)! (2K m)(2K m 1)...(2K 1)(2K
K K KmK

(2K)!
2m 1

K



    
 

 

Thus n n! K.  Reflect on what we have just shown: given any number K, there is a number n

such that n n!  is bigger than it. In other words, R = lim sup  j j! ,   and so the series 
n

j

j 0

1
z

j!

 
  
 


converges for all z.

Let�s summarize what we have. For any power series 
n

j
j 0

j 0

c (z z ) ,


 
  

 
  there is a number

 j
j

1
R

lim sup c
  such that the series converges uniformly for |z � z

0
|   < R and does not

converge for |z � z
0
| > R.

Notes We may have R = 0 or R = .
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NotesThe number R is called the radius of convergence of the series, and the set |z � z
0
| = R is called

the circle of convergence. Observe also that the limit of a power series is a function analytic
inside the circle of convergence (why?).

8.4 Integration of Power Series

Inside the circle of convergence, the limit

j
j 0

j 0

S(z) c (z z )




 

is an analytic function. We shall show that this series may be integrated �term-by-term��that
is, the integral of the limit is the limit of the integrals. Specifically, if C is any contour inside the
circle of convergence, and the function g is continuous on C, then

j
j 0

j 0C C

g(z)S(z)dz c g(z)(z z ) dz.




  

Let�s see why this. First, let  > 0. Let M be the maximum of |g(z)| on C and let L be the length
of C. Then there is an integer N so that

j
j 0

j n

c (z z )
ML






 

for all n > N. Thus,

j
j 0

j nC

g(z) c (z z ) dz ML ,
ML





  
     

 


Hence,

n 1
j j

j 0 j 0
j 0 j nC C C

g(z)S(z)dz c g(z)(z z ) dz g(z) c (z z ) dz .
 

 

 
      

 
   

8.5 Differentiation of Power Series

Again, let

S(z) = j 0
j 0

c (z z )j.






Now we are ready to show that inside the circle of convergence,

j 1
j 0

j 1

S'(z) jc (z z ) .






 

Let z be a point inside the circle of convergence and let C be a positive oriented circle centered
at z and inside the circle of convergence. Define

2

1
g(s) ,

2 i(s z)


 
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j
j 0

j 0C C

g(s)S(s)ds c g(s)(s z ) ds,or




  

j
0

j2 2
j 0C C

1 S(s) 1 (s z )
ds c ds.

2 i (s z) 2 i (s z)








   
   Thus

j 1
j 0

j 0

S '(z) jc (z z ) .






 

8.6 Summary

 The basic definitions for complex sequences and series are essentially the same as for the
real case. A sequence of complex numbers is a function g : Z

+
  C from the positive

integers into the complex numbers. It is traditional to use subscripts to indicate the values
of the function. Thus, we write g(n)  z

n
 and an explicit name for the sequence is seldom

used; we write simply (z
n
) to stand for the sequence g which is such that g(n) = z

n
. For

example, 
i
n

 
 
 

 is the sequence g for which g(n) = 
i

.
n

 The number L is a limit of the sequence (z
n
) if given an  > 0, there is an integer N


 such that

|zn � L| <  for all n  N

. If L is a limit of (z

n
), we sometimes say that (z

n
) converges to L.

We frequently write lim (z
n
) = L. It is relatively easy to see that if the complex sequence

(z
n
) = (u

n
 + iv

n
) converges to L, then the two real sequences (u

n
) and (v

n
) each have a limit:

(u
n
) converges to ReL and (v

n
) converges to ImL. Conversely, if the two real sequences (u

n
)

and (v
n
) each have a limit, then so also does the complex sequence (u

n
 + iv

n
). All the usual

nice properties of limits of sequences are, thus, true:

lim(z
n
 ± w

n
) = lim(z

n
) ± lim(w

n
);

lim(z
n
w

n
) = lim(z

n
) lim(wn); and

n

n

z
lim

w

 
 
 

 = n

n

lim(z )
.

lim(w )

provided that lim(z
n
) and lim(w

n
) exist. (And in the last equation, we must, of course, insist

that lim(w
n
)  0.).

 A series is simply a sequence (s
n
) in which s

n
 = a

1
 + a

2
 + ... + a

n
. In other words, there is

sequence (a
n
) so that s

n
 = s

n � 1
 + a

n
. The s

n
 are usually called the partial sums. Recall from

Mrs. Turner�s class that if the series 
n

j
j 1

a


 
  
 
  has a limit, then it must be true that nn

lim(a ) 0.




Consider a series 
n

j 1

fj(z)


 
  
 
  of functions. Chances are this series will converge for some

values of z and not converge for others. A useful result is the celebrated Weierstrass M-
test: Suppose (M

j
) is a sequence of real numbers such that M

j
  0 for all j > J, where J is some
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number, and suppose also that the series 
n

j
j 1

M


 
  
 
  converges. If for all z  D, we have

|fj(z)|  M
j
 for all j > J, then the series 

n

j
j 1

f (z)


 
  
 
  converges uniformly on D.

 We are particularly interested in series of functions in which the partial sums are
polynomials of increasing degree:

s
n
(z) = c

0
 + c

1
(z � z

0
) + c

2
(z � z

0
)2 + ... + c

n
(z � z

0
)n.

(We start with n = 0 for esthetic reasons.) These are the so-called power series. Thus, a

power series is a series of functions of the form 
n

j
j 0

j 0

c (z z ) .


 
  

 


8.7 Keywords

Sequence: A sequence of complex numbers is a function g : Z
+
  C from the positive integers into

the complex numbers.

Partial sums: A series is simply a sequence (s
n
) in which s

n
 = a

1
 + a

2
 + ... + a

n
. In other words, there

is sequence (a
n
) so that s

n
 = s

n � 1
 + a

n
. The s

n
 are usually called the partial sums.

Power series: We are particularly interested in series of functions in which the partial sums are
polynomials of increasing degree:

s
n
(z) = c

0
 + c

1
(z � z

0
) + c

2
(z � z

0
)2 + ... + c

n
(z � z

0
)n.

(We start with n = 0 for esthetic reasons.) These are the so-called power series.

8.8 Self Assessment

1. A .................. of complex numbers is a function g : Z
+
  C from the positive integers into

the complex numbers.

2. A necessary and sufficient condition for the convergence of a sequence (a
n
) is the celebrated

Cauchy criterion: given  > 0, there is an integer N

 so that .................. whenever n, m > N


.

3. A sequence (f
n
) of functions on a domain D is the obvious thing: a function from the

positive integers into the set of .................. on D.

4. A series is simply a sequence (s
n
) in which s

n
 = a

1
 + a

2
 + ... + a

n
. In other words, there is

sequence (a
n
) so that s

n
 = s

n � 1
 + a

n
. The s

n
 are usually called the ..................

5. We are particularly interested in series of functions in which the partial sums are
polynomials of increasing degree:

s
n
(z) = c

0
 + c

1
(z � z

0
) + c

2
(z � z

0
)2 + ... + c

n
(z � z

0
)n.

(We start with n = 0 for esthetic reasons.) These are the so-called ..................

6. if C is any contour inside the circle of convergence, and the function g is continuous on C,
then ..................
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Notes 8.9 Review Questions

1. Prove that a sequence cannot have more than one limit. (We, thus, speak of the limit of a
sequence.)

2. Give an example of a sequence that does not have a limit, or explain carefully why there
is no such sequence.

3. Give an example of a bounded sequence that does not have a limit, or explain carefully
why there is no such sequence.

4. Give a sequence (f
n
) of functions continuous on a set D with a limit that is not continuous.

5. Give a sequence of real functions differentiable on an interval which converges uniformly
to a non-differentiable function.

6. Find the set D of all z for which the sequence 
n

n n

z
z 3

 
 

 
 has a limit. Find the limit.

7. Prove that the series 
n

j
j 1

a


 
  
 
  converges if and only if both the series 

n

j
j 1

Rea


 
  
 
  and

n

j
j 1

Im a


 
  
 
  converge.

8. Explain how you know that the series 
jn

j 1

1
z

  
     
  converges uniformly on the set |z|  5.

9. Suppose the sequence of real numbers (
j
) has a limit. Prove that

lim sum(
j
) = lim(

j
).

10. For each of the following, find the set D of points at which the series converges:

(a)
n

j

j 0

j!z .


 
  
 


(b)
n

j

j 0

jz .


 
  
 


(c)
2n

j
j

j 0

j
z .

3

 
  
 


(d)
jn

2 j
j2 2

j 0

( 1)
z .

2 ( j!)

 
  
 


11. Find the limit of

n
j

j 0

( j 1)z .


 
  

 


For what values of z does the series converge?
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jn

j 1

z
.

j

 
  
 


For what values of z does the series converge?

13. Find a power series 
n

j
j

j 0

c (z 1)


 
  

 
  such that

j
j

j 0

1
c (z 1) , for|z 1| 1.

z





   

14. Find a power series 
n

j
j

j 0

c (z 1)


 
  

 
  such that

log z = j
j 0

c (z 1)j, for|z 1| 1.




  

Answers: Self Assessment

1. sequence 2. |a
n
 � a

m
| < 

3. complex functions 4. partial sums

5. power series. 6.
j

j 0
j 0C C

g(z)S(z)dz c g(z)(z z ) dz.




  

8.10 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati,T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H.Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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Objectives
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9.1 Taylor Series

9.2 Laurent Series

9.3 Summary

9.4 Keywords

9.5 Self Assessment

9.6 Review Questions

9.7 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss Taylor series

 Describe the concept of  Laurent series

Introduction

In last unit, you have studied about concept of power series and also discussed basic facts
regarding the convergence of sequences and series of complex numbers. We shall show that if f
(z) is analytic in some domain D then it can be represented as a power series at any point z

0
  D

in powers of (z - z
0
) which is the Taylor series of f (z) . If f (z) fails to be analytic at a point z

0
 , we

cannot find Taylor series expansion of f (z) at that point. However, it is often possible to expand
f (z) in an infinite series having both positive and negative powers of (z - z

0
) . This series is called

the Laurent series.

9.1 Taylor Series

Suppose f is analytic on the open disk |z � z
0
| < r. Let z be any point in this disk and choose C to

be the positively oriented circle of radius , where |z � z
0
| <  < r. Then for s  C we have

j
0

j 1
0 j 00 0 0 0

0

1 1 1 1 (z z )
z zs z (s z ) (z z ) (s z ) (s z )1
s z






 
  
   

      
  



since 0

0

z z
s z



 < 1. The convergence is uniform, so we may integrate

Richa Nandra, Lovely Professional University
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j

0j 1
j 0 0C C

f(s) f(s)
dz ds (z z ) , or

s z (s z )






 
     
 

j
0j 1

j 0 0C C

1 f(s) 1 f(s)
f(z) ds ds (z z ) .

2 i s z 2 i (s z )






 
        

 

We have, thus, produced a power series having the given analytic function as a limit:

j
j 0 0

j 0

f(z) c (z z ) , z z r,




   

where

c
j
 = j 1

0C

1 f(s)
ds

2 i (s z ) 
 

This is the celebrated Taylor Series for f at z = z
0
.

We know we may differentiate the series to get

j 1
j 0

j 0

f '(z) jc (z z )






 

and this one converges uniformly where the series for f does. We can, thus, differentiate again
and again to obtain

j n(n)
j 0

j n

f (z) j( j 1)( j 2)...( j n 1)c (z z ) .






     

Hence,

f(n)(z
0
) = n!c

n
, or

0
n

f(n)(z )
c .

n!


But we also know that,

n n 1
0C

1 f(s)
c ds.

2 i (s z ) 


 

This gives us,

(n)
0 n 1

0C

n! f(s)
f (z ) ds,for n 0,1,2,.....

2 i (s z ) 
 

 

This is the famous Generalized Cauchy Integral Formula. Recall that we previously derived this
formula for n = 0 and 1.

What does all this tell us about the radius of convergence of a power series? Suppose we have,

j
j 0

j 0

f(z) c (z z ) ,




 
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for |z � z

0
| < R. We showed that if f is analytic in |z � z

0
| < r, then the series converges for

|z � z
0
| > r. Thus r  R, and so f cannot be analytic at any point z for which |z � z

0
| > R. In other

words, the circle of convergence is the largest circle centered at z
0
 inside of which the limit f is

analytic.

Example:

Let f(z) = exp(z) = ez. Then f(0) = f�(0) = ... = �(n)(0) = ... = 1, and the Taylor series for f at z
0
 = 0 is

j

j 0

1
z

j!







and this is valid for all values of z since f is entire. (We also showed earlier that this particular
series has an infinite radius of convergence.)

9.2 Laurent Series

Suppose f is analytic in the region R
1
 < |z � z

0
| < R

2
, and let C be a positively oriented simple

closed curve around z
0
 in this region.

Notes We include the possibilities that R
1
 can be 0, and R

2
 = .

We shall show that for z  C in this region

jj
j 0 j

j 0 j 1 0

b
f(z) a (z z ) ,

(z z )

 

 

  


 

where,

j j 1
0C

1 f(s)
a ds, for j 0,1,2,...

2 i (s z ) 
 

 

and

j j 1
0C

1 f(s)
b ds,for j 1,2,...

2 i (s z ) 
 

 

The sum of the limits of these two series is frequently written

j
j 0

j �

f(z) c (z z ) ,


 

 

where,

j j 1
0C

1 f(s)
c ds, j 0, 1, 2,....

2 i (s z ) 
   

 

This recipe for f(z) is called a Laurent series, although it is important to keep in mind that it is
really two series.
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1
 and r

2
 be so that R

1
 < r

1
  |z � z

0
|  r

2
 < R

2

and so that the point z and the curve C are included in the region r
1
  |z � z

0
|  r

2
. Also, let  be

a circle centered at z and such that  is included in this region.

Then 
f(z)
s z

 is an analytic function (of s) on the region bounded by C
1
, C

2
, and , where C

1
 is the

circle |z| = r
1
 and C

2
 is the circle |z| = r2. Thus,

2 1C C

f(z) f(z) f(z)
ds ds ds.

s z s z s z


 
    

(All three circles are positively oriented, of course.) But 
f(z)

ds 2 if(z),
s z



 


 and so we have

2 1C C

f(z) f(z)
2 if(z) ds ds

s z s z
  

  

Look at the first of the two integrals on the right-hand side of this equation. For s  C
2
, we have

|z � z
0
| < |s � z

0
|, and so

1
s z

 =
0 0

1
(s z ) (z z )  

=
0 0

0

1 1

s z z z
1

s z

 
 
 
   
  

   

=

j

0

j 00 0

1 z z

s z s z





 
 

  


= j
0j 1

j 0 0

1
(z z ) .

(s z )










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2C

f(z)
ds

s z  =
2

j
0j 1

j 0 0C

f(s)
ds (z z )

(s z )






 
 

  
 

=
2

j
0j 1

j 0 0C

f(s)
ds (z z )

(s z )






 
 

  
 

For the second of these two integrals, note that for s  C
1
 we have |s � z

0
| < |z � z

0
|, and so

1
s z

 =
0 0 0 0

0

1 1 1

(z z ) (s z ) z z s z
1

z z

 
 

   
      
  

   

=

j

j0
0 j 1

j 0 j 00 0 0

1 s z 1
(s z )

z z z z (z z )

 


 

  
   

   
 

= j 1
0 j j 1 j

j 0 j 10 0 0

1 1 1
(s z )

(z z ) (s z ) (z z )

 


 
 

 
     

   
 

As before,

1C

f(s)
ds

s z  =
1

j 1 j
j 1 0 0C

f(s) 1
ds

(s z ) (z z )



 


 
  

   
 

=
1

j 1 j
j 1 0 0C

f(s) 1
ds

(s z ) (z z )



 


 
  

   
 

Putting this altogether, we have the Laurent series:

f(z) =
2 1C C

1 f(s) 1 f(s)
ds ds

2 i s z 2 i s z


    

=  j
0j 1 j 1 j

j 0 j 10 0C C

1 f(s) 1 f(s) 1
ds (z z ) ds .

2 i (s z ) 2 i (s z0) (z z )

 

  
 

   
              

  

Let f be defined by

1
f(z) .

z(z 1)




First, observe that f is analytic in the region 0 < |z| < 1. Let�s find the Laurent series for f valid
in this region. First,

1 1 1
f(z) .

z(z 1) z z 1
   

 
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j

j 0

1
f(z) z .

z





  

Now let�s find another Laurent series for f, the one valid for the region 1 < |z| < .

First,

1 1 1
.

1z 1 z 1
z

 
 

  
  

 

Now since 
1

1,
z
  we have

j j

j 0 j 1

1 1 1 1
z z ,

1z 1 z z1
z

 
 

 

 
 

   
  

 

 

and so

j

j 1

1 1 1
f(z) z

z z 1 z






     




f(z) = j

j 2

z .








9.3 Summary

Suppose f is analytic on the open disk |z � z
0
| < r. Let z be any point in this disk and choose C to

be the positively oriented circle of radius , where |z � z
0
| <  < r. Then for s  C, we have,

j
0

j 1
0 j 00 0 0 0

0

1 1 1 1 (z z )
z zs z (s z ) (z z ) (s z ) (s z )1
s z






 
  
   

      
  



since 0

0

z z
s z



 < 1. The convergence is uniform, so we may integrate

j
0j 1

j 0 0C C

f(s) f(s)
dz ds (z z ) , or

s z (s z )






 
     
 

j
0j 1

j 0 0C C

1 f(s) 1 f(s)
f(z) ds ds (z z ) .

2 i s z 2 i (s z )






 
        

 
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j
j 0 0

j 0

f(z) c (z z ) , z z r,




   

where,

c
j
 = j 1

0C

1 f(s)
ds

2 i (s z ) 
 

9.4 Keywords

Taylor series: f is analytic on the open disk |z � z
0
| < r. Let z be any point in this disk and choose

C to be the positively oriented circle of radius , where |z � z
0
| <  < r. Then for s  C we have

j
0

j 1
0 j 00 0 0 0

0

1 1 1 1 (z z )
z zs z (s z ) (z z ) (s z ) (s z )1
s z






 
  
   

      
  



Cauchy Integral Formula

(n)
0 n 1

0C

n! f(s)
f (z ) ds,for n 0,1,2,.....

2 i (s z ) 
 

 

This is the famous Generalized Cauchy Integral Formula. Recall that we previously derived this
formula for n = 0 and 1.

9.5 Self Assessment

1. f is analytic on the open disk |z � z
0
| < r. Let z be any point in this disk and choose C to

be the positively oriented circle of radius , where |z � z
0
| <  < r. Then for s  C we

have

00 0 0

0

1 1 1 1
.................

z zs z (s z ) (z z ) (s z ) 1
s z

 
 
   

      
  

2. The circle of ................. is the largest circle centered at z
0
 inside of which the limit f is

analytic.

3. Suppose f is analytic in the region ................., and let C be a positively oriented simple
closed curve around z

0
 in this region.

4. Laurent series for f, the one valid for the region 1 < |z| < . When, j

j 0

1
f(z) z

z





    is

equal to .................
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1. Show that for all z,

jz

j 0

1
e e (z 1) .

j!





 

2. What is the radius of convergence of the Taylor series 
n

j
j

j 0

c z


 
  
 
  for tanh z ?

3. Show that

j

j 1
j 0

1 (z i)
1 z (1 i)









 


for |z � i| < 2.

4. If 
1

f(z) ,
1 z




 what is f(10)(i)?

5. Suppose f is analytic at z = 0 and f(0) = f�(0) = f��(0) = 0. Prove there is a function g analytic
at 0 such that f(z) = z3g(z) in a neighborhood of 0.

6. Find the Taylor series for f(z) = sin z at z
0
 = 0.

7. Show that the function f defined by

sin z
for z 0

zf(z)
1 for z 0




 




is analytic at z = 0, and find f�(0).

8. Find two Laurent series in powers of z for the function f defined by

2

1
f(z)

z (1 z)




and specify the regions in which the series converge to f(z).

9. Find two Laurent series in powers of z for the function f defined by

2

1
f(z)

z(1 z )




and specify the regions in which the series converge to f(z).

10. Find the Laurent series in powers of z � 1 for f(z) = 
1
z

 in the region 1 < |z � 1| < .
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1.
j

0
j 1

j 0 0

(z z )
(s z )









 2.  convergence

3. R
1
 < |z � z

0
| < R

2
4. f(z) = j

j 2

z .








9.7 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati,T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H.Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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10.5 Self Assessment

10.6 Review Questions

10.7 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss residues

 Describe the concept of singularities

Introduction

In last unit, you have studied about the Taylor series. Taylor series representation of a complex
valued function is discussed. In earlier unit, we have introduced the concept of absolute and
uniform convergence of power series and defined its radius of convergence. This unit will
explain  zeros and singularities of complex valued functions and use the Laurent series to
classify these singularities.

10.1 Residues

A point z
0
 is a singular point of a function f if f is not analytic at z

0
, but is analytic at some point

of each neighborhood of z
0
. A singular point z

0
 of f is said to be isolated if there is a neighborhood

of z
0
 which contains no singular points of f save z

0
. In other words, f is analytic on some region

0 < |z � z
0
| < .

Example:

The function f given by

2

1
f(z)

z(z 4)




has isolated singular points at z = 0, z = 2i, and z = �2i.

Richa Nandra, Lovely Professional University
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isolated singular points.

Suppose now that z
0
 is an isolated singular point of f . Then there is a Laurent series

j
j 0

j �

f(z) c (z z )


 

 

valid for 0 < |z � z
0
| < R, for some positive R. The coefficient c

�1
 of (z � z

0
)�1 is called the residue

of f at z
0
, and is frequently written

0z z

Res f .


Now, why do we care enough about c
�1

 to give it a special name? Well, observe that if C is any
positively oriented simple closed curve in 0 < |z � z

0
| < R and which contains z

0
 inside, then

1
C

1
c f(z)dz.

2 i 
 

This provides the key to evaluating many complex integrals.

Example:

We shall evaluate the integral

1/z

C

f dz

where C is the circle |z| = 1 with the usual positive orientation. Observe that the integrand has
an isolated singularity at z = 0. We know then that the value of the integral is simply 2i times
the residue of e1/z at 0. Let�s find the Laurent series about 0. We already know that

jz

j 0

1
e z

z!







for all z. Thus,

j1 /z
2

j 0

1 1 1 1
e z 1 ...

j! z 2! z






    

The residue c
�1

 = 1, and so the value of the integral is simply 2i.

Now suppose, we have a function f which is analytic everywhere except for isolated singularities,
and let C be a simple closed curve (positively oriented) on which f is analytic. Then there will be
only a finite number of singularities of f inside C (why?). Call them z

1
, z

2
, ..., z

n
. For each

k = 1, 2, ..., n, let C
k
 be a positively oriented circle centered at z

k
 and with radius small enough to

insure that it is inside C and has no other singular points inside it.
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Then,

C

f(z)dz  =
1 nC C 2 C

f(z)dz f(z)dz ... f(z)dz    

=
2

1 n
z zz z z z

2 i Res f 2 iResf ... 2 iRes f


 

     

=
k

n

z zk 1

2 i Res f.


 

This is the celebrated Residue Theorem. It says that the integral of f is simply 2i times the sum
of the residues at the singular points enclosed by the contour C.

10.2 Poles and other Singularities

In order for the Residue Theorem to be of much help in evaluating integrals, there needs to be
some better way of computing the residue�finding the Laurent expansion about each isolated
singular point is a chore. We shall now see that in the case of a special but commonly occurring
type of singularity the residue is easy to find. Suppose z

0
 is an isolated singularity of f and

suppose that the Laurent series of f at z
0
 contains only a finite number of terms involving

negative powers of z � z
0
. Thus,

n n 1 1
0 1 0n n 1

0 0 0

c c c
f(z) ... c c (z z ) ...

(z z ) (z z ) (z z )
   


       

  

Multiply this expression by (z � z
0
)n :

(z) = (z � z
0
)nf(z) = c

�n
 + c

�n+1
(z � z

0
) + ... + c

�1
(z � z

0
)n�1 + ...

What we see is the Taylor series at z
0
 for the function (z) = (z � z

0
)nf(z). The coefficient of

(z �  z
0
)n�1 is what we seek, and we know that this is

(n 1)
0(z )

(n 1)!






The sought after residue c
�1

 is thus,

0

(n 1)
0

1
z z

(z )
c Re s f ,

(n 1)!







 



where (z) = (z � z
0
)nf(z).
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Example:

We shall find all the residues of the function

z

2 2

e
f(z) .

z (z 1)




First, observe that f has isolated singularities at 0, and ± i. Let�s see about the residue at 0.

Here, we have,

z
2

2 2

e
(z) z f(z) .

z (z 1)
  



The residue is simply �(0) :

2 z z

2 2

(z 1)e 2ze
'(z) .

(z 1)
 

 


Hence,

z 0
Resf '(0) 1.


  

Next, let�s see what we have at z = i:

f(z) = (z � i)f(z) = 
z

2 2

e
,

z (z 1)

and so

i

z 0

e
Resf(z) (i) .

2i
   

In the same way, we see that

i

z i

e
Res f .

2i






Let�s find the integral 
z

2 2
C

e
dz,

z (z 1)  where C is the contour pictured:

Figure 10.2
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i and �i. Hence,

z

2 2
C

e
dz

z (z 1)  =
z 0 z i

2 i Res f Res f
 

 
  
 

=
i ie e

2 i
2i 2i

 
   
 

= �2i sin 1.

There is some jargon that goes with all this. An isolated singular point z
0
 of f such that the

Laurent series at z
0
 includes only a finite number of terms involving negative powers of z � z

0
 is

called a pole. Thus, if z
0
 is a pole, there is an integer n so that (z) = (z � z

0
)n f(z) is analytic at z

0
,

and f(z
0
)  0. The number n is called the order of the pole. Thus, in the preceding example, 0 is a

pole of order 2, while i and �i are poles of order 1. (A pole of order 1 is frequently called a simple
pole.) We must hedge just a bit here. If z

0
 is an isolated singularity of f and there are no Laurent

series terms involving negative powers of z � z
0
, then we say z

0
 is a removable singularity.

Example:

Let

sin z
f(z) ;

z


then the singularity z = 0 is a removable singularity:

f(z) =
3 51 1 z z

sinz (z ...)
z z 3! 5!

   

=
2 4z z

1 ...
3! 5!

  

and we see that in some sense f is �really� analytic at z = 0 if we would just define it to be the right
thing there.

A singularity that is neither a pole or removable is called an essential singularity.

Let�s look at one more labor-saving trick�or technique, if you prefer. Suppose f is a function:

p(z)
f(z) ,

q(z)


where p and q are analytic at z0, and we have q(z
0
) = 0, while q�(z

0
)  0, and p(z

0
)  0.

Then,

0 0 0
n

20
0 0 0

p(z) p(z ) p'(z )(z z ) ...
f(z)

q (z )q(z) q'(z )(z z ) (z z ) ...
2

  
 

  
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0 0 0
0 n

0
0 0

p(z ) p'(z )(z z ) ...
(z) (z z )f(z)

q (z )
q'(z ) (z z ) ...

2

  
   

  

Thus, z
0
 is a simple pole and

0

0
0

z z
0

p(z )
Resf (z ) .

q'(z )
  

Example:

Find the integral :

z
C

cosz
dz,

(e 1)

where C is the rectangle with sides x = ± 1, y = �, and y = 3.

The singularities of the integrand are all the places at which ez = 1, or in other words, the points
z = 0, ± 2i, ± 4i,.... The singularities enclosed by C are 0 and 2i. Thus,

z
C

cosz
dz

(e 1)  = 
z 0 z 2 i

2 i Res f Res f ,
  

 
  
 

where

z

cosz
f(z) .

e 1




Observe this is precisely the situation just discussed: f(z) = 
p(z)

,
q(z)

 where p and q are analytic, etc.,

etc. Now,

z

p(z) cosz
.

q'(z) e


Thus,

z 0

cos0
Resf 1,and

1
 

2p 2

2 iz 2 i

cos2 i e e
Res f cosh 2 .

e 2

 

 

 
   

Finally,

z
C

cosz
dz

e 1  =
z 0 z 2 i

2 i Res f Res f
  

 
  
 

= 2i(1 + cosh2)
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 A point z
0
 is a singular point of a function f if f not analytic at z

0
, but is analytic at some

point of each neighborhood of z
0
. A singular point z

0
 of f is said to be isolated if there is a

neighborhood of z
0
 which contains no singular points of f save z

0
. In other words, f is

analytic on some region 0 < |z � z
0
| < .

 Now suppose we have a function f which is analytic everywhere except for isolated
singularities, and let C be a simple closed curve (positively oriented) on which f is analytic.
Then there will be only a finite number of singularities of f inside C (why?). Call them
z

1
, z

2
, ..., z

n
. For each k = 1, 2, ..., n, let C

k
 be a positively oriented circle centered at z

k
 and with

radius small enough to insure that it is inside C and has no other singular points inside it.

Then,

C

f(z)dz  =
1 nC C 2 C

f(z)dz f(z)dz ... f(z)dz    

=
2

1 n
z zz z z z

2 i Res f 2 iResf ... 2 iRes f


 

     

=
k

n

z zk 1

2 i Res f.


 

This is the celebrated Residue Theorem. It says that the integral of f is simply 2i times the
sum of the residues at the singular points enclosed by the contour C.

 In order for the Residue Theorem to be of much help in evaluating integrals, there needs
to be some better way of computing the residue�finding the Laurent expansion about
each isolated singular point is a chore. We shall now see that in the case of a special but
commonly occurring type of singularity the residue is easy to find. Suppose z

0
 is an

isolated singularity of f and suppose that the Laurent series of f at z
0
 contains only a finite

number of terms involving negative powers of z � z
0
. Thus,

n n 1 1
0 1 0n n 1

0 0 0

c c c
f(z) ... c c (z z ) ...

(z z ) (z z ) (z z )
   


       

  

Multiply this expression by (z � z
0
)n :

(z) = (z � z
0
)nf(z) = c

�n
 + c

�n+1
(z � z

0
) + ... + c

�1
(z � z

0
)n�1 + ...

What we see is the Taylor series at z
0
 for the function (z) = (z � z

0
)n f(z). The coefficient of

(z �  z
0
)n�1 is what we seek, and we know that this is

(n 1)
0(z )

(n 1)!






10.4 Keywords

Singular point: A singular point z
0
 of f is said to be isolated if there is a neighborhood of z

0
 which

contains no singular points of f save z
0
.

Residue Theorem. It says that the integral of f is simply 2i times the sum of the residues at the
singular points enclosed by the contour C.
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1. A ................... z
0
 of f is said to be isolated if there is a neighborhood of z

0
 which contains no

singular points of f save z
0
.

2. ................... says that the integral of f is simply 2i times the sum of the residues at the
singular points enclosed by the contour C.

3. In order for the ................... to be of much help in evaluating integrals, there needs to be
some better way of computing the residue�finding the Laurent expansion about each
isolated singular point is a chore.

4. Suppose z
0
 is an isolated singularity of f and suppose that the ................... of f at z

0
 contains

only a finite number of terms involving negative powers of z � z
0
. Thus,

n n 1 1
0 1 0n n 1

0 0 0

c c c
f(z) ... c c (z z ) ...

(z z ) (z z ) (z z )
   


       

  

10.6 Review Questions

1. Evaluate the integrals. In each case, C is the positively oriented circle |z| = 2.

(a)
21 /z

C

e dz.

(b)
C

1
sin dz.

z
 
 
 



(c)
C

1
cos dz.

z
 
 
 



(d)
C

1 1
sin dz.

z z
 
 
 



(e)
C

1 1
cos dz.

z z
 
 
 



2. Suppose f has an isolated singularity at z
0
. Then, of course, the derivative f� also has an

isolated singularity at z
0
. Find the residue 

0z z

Res f '.


3. Given an example of a function f with a simple pole at z
0
 such that 

0z z

Res f 0,


  or explain

carefully, why there is no such function.

4. Given an example of a function f with a pole of order 2 at z
0
 such that 

0z z

Res f 0,


  explain

carefully, why there is no such function.

5. Suppose g is analytic and has a zero of order n at z0 (That is, g(z) = (z � z
0
)nh(z), where

h(z
0
)  0.). Show that the function f given by

1
f(z)

g(z)


has a pole of order n at z
0
. What is 

0z z

Res f?

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0
. Show that the function f given by

g'(z)
f(z)

g(z)


has a simple pole at z
0
, and 

0z z

Res f n.




7. Find :

2
C

cosz
dz,

z 4

where C is the positively oriented circle |z| = 6.

8. Find :

C

tanzdz,

where C is the positively oriented circle |z| = 2.

9. Find :

2
C

1
dz,

z z 1 

where C is the positively oriented circle |z| = 10.

Answers: Self Assessment

1. Singular point 2. Residue Theorem

3. Residue Theorem 4. Laurent series

10.7 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati, T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H. Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.



108 LOVELY PROFESSIONAL UNIVERSITY

Complex Analysis and Differential Geometry

Notes Unit 11: Rouche�s Theorem

CONTENTS

Objectives

Introduction

11.1 Argument Principle

11.2 Rouche�s Theorem
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Objectives

After studying this unit, you will be able to:

 Discuss the concept of argument principle

 Describe the Rouche's theorem

Introduction

In last unit, you have studied about the Taylor series, singularities of complex valued functions
and use the Laurent series to classify these singularities. This unit will explain the concept
related to argument principle and Rouche's theorem.

11.1 Argument Principle

Let C be a simple closed curve, and suppose f is analytic on C. Suppose moreover that the only
singularities of f inside C are poles. If f(z)  0 for all z  C, then  = (C) is a closed curve which
does not pass through the origin. If

(t), a  t  b

is a complex description of C, then

(t) = f((t)),   t  

is a complex description of . Now, let�s compute

C

f '(z) f '( (t))
dz '(t)dt.

f(z) f( (t))






 

 

Richa Nandra, Lovely Professional University



LOVELY PROFESSIONAL UNIVERSITY 109

Unit 11: Rouche�s Theorem

NotesBut notice that �(t) = f�((t))�(t). Hence,

C

f '(z) f '( (t)) '(t)
dz '(t)dt dt

f(z) f( (t)) (t)

 

 

 
  

   

where |n| is the number of times  �winds around� the origin. The integer n is positive in case
 is traversed in the positive direction, and negative in case the traversal is in the negative
direction.

Next, we shall use the Residue Theorem to evaluate the integral 
C

f '(z)
dz.

f(z)  The singularities of

the integrand 
f '(z)
f(z)

 are the poles of f together with the zeros of f. Let�s find the residues at these

points. First, let Z = {z
1
, z

2
, ..., z

K
} be set of all zeros of f. Suppose the order of the zero z

j
 is n

j
. Then

f(z) = (z � z
j
)nj h(z) and h(z

j
)  0. Thus,

f '(z)
f(z)  =

j j

j

m m 1
j j j j j

2m

(z p ) h '(z) m (z p ) h(z) (z p )m
.

h(z)(z pj)


   



=
j

j
m

j

mh'(z)
.

h(z) (z p )




Now then,

(z) = j jm m
j j j

f '(z) h'(z)
(z p ) (z p ) m ,

f(z) h(z)
   

and so

j
j j

z p

f '
Res (p ) m .

f
   

The sum of all these residues is

�P = �m
1
 � m

2
 � ... � m

j

Then,

C

f '(z)
dz 2 i(N P);

f(z)
  

and we already found that

C

f '(z)
dz n2 i,

f(z)
 

where n is the �winding number�, or the number of times  winds around the origin�n > 0
means  winds in the positive sense, and n negative means it winds in the negative sense.
Finally, we have

n = N � P,

where N = n
1
 + n

2
 + ... + n

K
 is the number of zeros inside C, counting multiplicity, or the order of

the zeros, and P = m
1
 + m

2
 + ... + m

J
 is the number of poles, counting the order. This result is the

celebrated argument principle.
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Suppose f and g are analytic on and inside a simple closed contour C. Suppose that |f(z)| >
|g(z)| for all z  C. Then we shall see that f and f + g have the same number of zeros inside C.
This result is Rouche�s Theorem. To see why it is so, start by defining the function (t) on the
interval 0  t  1 :

C

f '(z) tg '(t)1
(t) dz.

2 i f(z) tg(z)


 
 

Observe that the denominator of the integrand is never zero:

|f(z) + tg(z)|  ||f(t) � t|g(t)||  ||f(t)| � |g(t)|| > 0.

Observe that ¸ is continuous on the interval [0,1] and is integer-valued�t) is the number of
zeros of f + tg inside C. Being continuous and integer-valued on the connected set [0,1], it must
be constant. In particular, (0) = (1). This does the job!

C

1 f '(z)
(t) dz

2 i f(z)
 

 

is the number of zeros of f inside C, and

C

f '(z) g '(t)1
(t) dz.

2 i f(z) g(z)


 
 

is the number of zeros of f + g inside C.

Example:

How many solutions of the equation z6 � 5z5 + z3 � 2 = 0 are inside the circle |z| = 1? Rouche�s
Theorem makes it quite easy to answer this. Simply let f(z) = �5z5 and let g(z) = z6 + z3 � 2. Then
|f(z)| = 5 and |g(z)|  |z|6 + |z|3 + 2 = 4 for all |z| = 1. Hence |f(z)| > |g(z)| on the unit circle.
From Rouche�s Theorem we know then that f and f + g have the same number of zeros inside
|z| = 1. Thus, there are 5 such solutions.

The following nice result follows easily from Rouche�s Theorem. Suppose U is an open set
(i.e., every point of U is an interior point) and suppose that a sequence (f

n
) of functions analytic

on U converges uniformly to the function f. Suppose further that f is not zero on the circle
C ={z : |z : z

0
 | = R}  U. Then there is an integer N so that for all n  N, the functions f

n
 and f have

the same number of zeros inside C.

This result, called Hurwitz�s Theorem, is an easy consequence of Rouche�s Theorem. Simply
observe that for z  C, we have |f(z)| >  > 0 for some . Now let N be large enough to insure that
|f

n
(z) � f(z)| <  on C. It follows from Rouche�s Theorem that f and f + (f

n
 � f) = f

n
 have the same

number of zeros inside C.

Example:

On any bounded set, the sequence (f
n
), where f

n
(z) = 

2
nz z

1 z ... ,
2 n!

     converges uniformly to

f(z) = ez, and f(z)  0 for all z. Thus for any R, there is an N so that for n > N, every zero of
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nz z

1 z ... ,
2 n!

     has modulus > R. Or to put it another way, given an R there is an N so that for

n > N no polynomial 
2

nz z
1 z ... ,

2 n!
     has a zero inside the circle of radius R.

11.3 Summary

 Let C be a simple closed curve, and suppose f is analytic on C. Suppose moreover that the
only singularities of f inside C are poles. If f(z)  0 for all z  C, then  = (C) is a closed curve
which does not pass through the origin. If

(t),   t  

is a complex description of . Now, let�s compute

C

f '(z) f '( (t))
dz '(t)dt.

f(z) f( (t))






 

 

But notice that �(t) = f�((t))�(t). Hence,

C

f '(z) f '( (t)) '(t)
dz '(t)dt dt

f(z) f( (t)) (t)

 

 

 
  

   

where |n| is the number of times  �winds around� the origin. The integer n is positive
in case  is traversed in the positive direction, and negative in case the traversal is in the
negative direction.

 We shall use the Residue Theorem to evaluate the integral 
C

f '(z)
dz.

f(z)  The singularities of

the integrand 
f '(z)
f(z)

 are the poles of f together with the zeros of f. Let�s find the residues at

these points. First, let Z = {z
1
, z

2
, ..., z

K
} be set of all zeros of f. Suppose the order of the zero

z
j
 is n

j
. Then f(z) = (z � z

j
)nj h(z) and h(z

j
)  0. Thus,

f '(z)
f(z)  =

j j

j

m m 1
j j j j j

2m

(z p ) h '(z) m (z p ) h(z) (z p )m
.

h(z)(z pj)


   



=
j

j
m

j

mh'(z)
.

h(z) (z p )




 Suppose f and g are analytic on and inside a simple closed contour C. Suppose that |f(z)|
> |g(z)| for all z  C. Then we shall see that f and f + g have the same number of zeros
inside C. This result is Rouche�s Theorem. To see why it is so, start by defining the function
(t) on the interval 0  t  1 :

C

f '(z) tg '(t)1
(t) dz.

2 i f(z) tg(z)


 
 
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|f(z) + tg(z)|  ||f(t) � t|g(t)||  ||f(t)| � |g(t)|| > 0.

Observe that ¸ is continuous on the interval [0,1] and is integer-valued�t) is the
number of zeros of f + tg inside C. Being continuous and integer-valued on the connected
set [0,1], it must be constant. In particular, (0) = (1). This does the job!

C

1 f '(z)
(t) dz

2 i f(z)
 

 

is the number of zeros of f inside C, and

C

f '(z) g '(t)1
(t) dz.

2 i f(z) g(z)


 
 

is the number of zeros of f + g inside C.

11.4 Keyword

Rouche�s Theorem: Suppose f and g are analytic on and inside a simple closed contour C. Suppose
moreover that |f(z)| > |g(z)| for all z  C. Then we shall see that f and f + g have the same
number of zeros inside C. This result is Rouche�s Theorem.

11.5 Self Assessment

1. Let C be a simple closed curve, and suppose f is analytic on C. Suppose moreover that the
only ................ of f inside C are poles.

2. The integer n is positive in case G is traversed in the ................, and negative in case the
traversal is in the negative direction.

3. Being continuous and integer-valued on the connected set [0,1], it must be constant. In
particular, ................

11.6 Review Questions

1. Let C be the unit circle |z| = 1 positively oriented, and let f be given by f(z) = z3. How
many times does the curve f�°C�± wind around the origin? Explain.

2. Let C be the unit circle |z| = 1 positively oriented, and let f be given by

2

3

z 2
f(z) .

z




How many times does the curve f(C) wind around the origin? Explain.

3. Let p(z) = a
n
zn + a

n�1
zn�1 + ... + a

1
z + a0, with a

n
  0. Prove there is an R > 0 so that if C is the

circle |z| = R positively oriented, then

C

p'(z)
dz 2n i.

p(z)
 

4. How many solutions of 3ez � z = 0 are in the disk |z| < 1? Explain.
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Notes5. Suppose f is entire and f(z) is real if and only if z is real. Explain how you know that f has
at most one zero.

6. Show that the polynomial z6 + 4z2 � 1 has exactly two zeros inside the circle |z| = 1.

7. How many solutions of 2z4 � 2z3 + 2z2 � 2z + 9 = 0 lie inside the circle |z| = 1?

8. Use Rouche�s Theorem to prove that every polynomial of degree n has exactly n zeros
(counting multiplicity, of course).

9. Let C be the closed unit disk |z|  1. Suppose the function f analytic on C maps C into the
open unit disk |z| < 1�that is, |f(z)| < 1 for all z  C. Prove there is exactly one w  C such
that f(w) = w. (The point w is called a fixed point of f .)

Answers: Self Assessment

1. singularities 2. positive direction

3. Y(0) = Y(1)

11.7 Further Readings

Books Ahelfors, D.V. : Complex Analysis

Conway, J.B. : Function of one complex variable

Pati, T. : Functions of complex variable

Shanti Narain : Theory of function of a complex Variable

Tichmarsh, E.C. : The theory of functions

H.S. Kasana : Complex Variables theory and applications

P.K. Banerji : Complex Analysis

Serge Lang : Complex Analysis

H. Lass : Vector & Tensor Analysis

Shanti Narayan : Tensor Analysis

C.E. Weatherburn : Differential Geometry

T.J. Wilemore : Introduction to Differential Geometry

Bansi Lal : Differential Geometry.
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Objectives

After studying this unit, you will be able to:

 Discuss the concept of fundamental theorem on algebra

 Describe the calculus of residues

 Discuss the multivalued functions and its branches

Introduction

In last unit, you have studied about the Taylor series, singularities of complex valued functions
and use the Laurent series to classify these singularities. Also you studied about the concept
related to argument principle and Rouche's theorem. This unit will explain fundamental theorem
on algebra.

12.1 Fundamental Theorem of Algebra

Every polynomial of degree n has exactly n zeros.

Proof. Let us consider the polynomial

a
0
 + a

1
 z + a

2
 z2 + �+ a

n
 zn, a

n
  0

We take f(z) = a
n
 zn, g(z) = a

0
 + a

1
 z + a

2
 z2 +�+ a

n-1
 zn-1

Let C be a circle |z| = r, where r > 1.

Now,               | f(z)| = |a
n
 zn| = |a

n
| rn

|g(z)|  |a
0
| + |a

1
| r + |a

2
| r2+�+ |a

n-1
| rn-1

              (|a
0
| + |a

1
| +�+ |a

n-1
|) rn-1

Richa Nandra, Lovely Professional University
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g(z)

f(z)
 =

n 1
0 1 n 1

n
n

(|a | |a | ... |a |)r

|a |r



  

= 0 1 n 1

n

|a | |a | ... |a |
|a |r

  

Hence |g(z) < |f(z)|, provided that

0 1 n 1

n

|a | |a | ... |a |
|a |r

  
 < 1

i.e. r > 0 1 n 1

n

|a | |a | ... |a |
|a |

  
(1)

Since r is arbitrary, therefore, we can choose r large enough so that (1) is satisfied. Now, applying
Rouche�s theorem, we find that the given polynomial f(z + g(z) has the same number of zeros as
f(z). But f(z) has exactly n zeros all located at z = 0. Hence, the given polynomial has exactly n
zeros.

Example: Determine the number of roots of the equation

z8 � 4z5 + z2 � 1 = 0

that lie inside the circle |z| = 1

Solution. Let C be the circle defined by |z| = 1

Let us take f(z) = z8 � 4z5, g(z) = z2 � 1.

On the circle C,

g(z)

f(z)
 = 

2 2

8 5 5 3

z 1 |z| 1
z 4z |z||4 z |

 


 

 3

1 1 2 2
1

4 |z| 4 1 3


  
 

Thus, |g(z)| <|f(z)| and both f(z) and g(z) are analytic within and on C, Rouche�s theorem
implies that the required number of roots is the same as the number of roots of the equation
z8 � 4z5 = 0 in the region |z| < 1. Since z3 � 4  0 for |z| < 1, therefore, the required number of
roots is found to be 5.

Inverse Function

If f(z) = w has a solution z = F(w), then we may write

f{F(w) } = w, F{ f(z)} = z. The function F defined in this way, is called inverse function of f.

Theorem. (Inverse Function Theorem)

Let a function w = f(z) be analytic at a point z = z
0
 where f (z

0
)  0 and w

0
 = f(z

0
).
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0
 in the w-plane in which the function w = f(z) has a

unique inverse z = F(w) in the sense that the function F is single-valued and analytic in that
neighbourhood such that F(w

0
) = z

0
 and

F(w) = 
1

f '(z)
.

Proof. Consider the function f(z) � w
0
. By hypothesis, f(z

0
) w

0
 = 0. Since f (z

0
)  0, f is not a

constant function and therefore, neither f(z) � w
0
 not f (z) is identically zero. Also f(z) � w

0
 is

analytic at z = z
0
 and so it is analytic in some neighbourhood of z

0
. Again, since zeros are

isolated, neither f(z) � w
0
 nor f (z) has any zero in some deleted neighbourhood of z

0
. Hence,

there exists R > 0 such that f(z) � w
0
 is analytic for |z � z

0
|  R and f(z) � w

0
  0, f (z)  0  for

0 < |z � z
0
|  R. Let D denote the open disc

{z : |z � z
0
| < R}

and C denotes its boundary

{z : |z � z
0
| = R}.

Since f(z) � w
0
 for |z � z

0
|  R, we conclude that | f(z) � w

0
| has a positive minimum on the circle

C. Let

 
z C

min


| f(z) � w
0
| = m

and choose d such that 0 < d < m.

We now show that the function f(z) assumes exactly once in D every value w
1
 in the open disc

T = { w : |w � w
0
| < d}. We apply Rouche�s theorem to the functions w

0
 � w

1
 and f(z)-w

0
. The

condition of the theorem are satisfied, since

|w
0 
� w

1
| < d < m = |f(z) � w

0
|  |f(z) � w

0
| on C.

Thus, we conclude that the functions.

f(z) � w
0
 and (f(z) � w

0
) + (w

0
 � w

1
) = f(z) � w

1

have the same number of zeros in D.  But the function f(z) - w
0
 has only one zero in D i.e. a simple

zeros at z
0
, since (f(z) � w

0
) = f(z)  0 at z

0
.

Hence, f(z) � w
1
 must also have only one zero, say z

1
 in D. This means that the function f(z)

assumes the value w, exactly once in D. It follows that the function w = f(z) has a unique inverse,
say z = F(w) in D such that F is single-valued and w = f {F(w)}. We now show that the function
F is analytic in D. For fix w

1
 in D, we have f(z) = w

1
 for a unique z

1
 in D. If w is in T and F(w) = z,

then

1 1

1 1

F(w) F(w ) z z
w w f(z) f(z )
 


 

(2)

It is noted that T is continuous. Hence, z  z
1
 whenever w  w

1
. Since z

1
  D, as shown above

f (z
1
) exists and is zero. If we let w  w, then (2) shows that

F(w
1
) = 

1

1
.

f '(z )

Thus F(w) exists in the neighbourhood T of w
0
 so that the function F is analytic there.
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The main result to be discussed here is Cauchy�s residue theorem which does for meromorphic
functions what Cauchy�s theorem does for holomorphic functions. This theorem is extremely
important theoretically and for practical applications.

The Residue at a Singularity

We know that in the neighbourhood of an isolated singularity z = a, a one valued analytic
function f(z) may be expanded in a Laurent�s series as

f(z) = n n
n n

n 0 n 1

a (z a) b (z a)
 



 

   

The co-efficient b
1
 is called the residue of  f(z) at z = a and is given by the formula

Res (z = a) = b
1
= 

1
f(z) dz

2 i


 
| b

n  n 1

1 f(z)dz

2 i (z a) 


 

Where g is any circle with centre z = a, which excludes all other singularities of f(z). In case,
z = a is a simple pole, then we have

Res (z = a) = b
1
 = 

z a
lim


(z-a) f(z) |   n 1
n

0

b
a (z � a) +

z a






A more general definition of the residue of a function f(z) at a point z = a is as follows.

If the point z = a is the only singularity of an analytic function f(z) inside a closed contour C, then
the value f(z) dz is called the residue of f(z) at a.

Residue at Infinity

If f(z) is analytic or has an isolated singularity at infinity and if C is a circle enclosing all its
singularities in the finite parts of the z-plane, the residue of f(z) at infinity is defined by

Res (z = ) = 
C

1
f(z) dz,

2 i 
| or Res (z = ) � 

C

1
f(z) dz,

2 i 

 Integration taken in positive sense

the integration being taken round C in the negative sense w.r.t. the origin, provided that this
integral has a definite value. By means of the substitution z = w-1, the integral defining the
residue at infinity takes the form

1
2

1 dw
[ f(w )] ,

2 i w



 

taken in positive sense round a sufficiently small circle with centre at the origin.

Thus, we also say if

w 0
lim


[�f(w�1) w�1] or  
w 0
lim


[�z f(z)]

has a definite value, that value is the residue of f(z) at infinity.
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For example, consider the function f(z) = 
b

z a
 for this function

Res (z = ) = 
C

1
f(z) dz

2 i


 

       
 
= 

C

1 b
dz

2 i z a


 

       
 
= � 

i
2

i0

b re id
,

2 i re








 
 C being the circle |z � a| = r

       
 
= 

2

0

b
d b

2



   
 

 Res (z = ) = �b

Also, z = a is a simple pole of f(z) and its residue there is 
C

1
f(z) dz = b

2 i 

| or  
z a
lim


(z�a) f(z) = b

Thus, Res (z = a) = b � Res (z = )

(ii) If the function is analytic at a point z = a, then its residue at z = a is zero but not so at
infinity.

(iii) In the definition of residue at infinity, C may be any closed contour enclosing all the
singularities in the finite parts of the z-plane.

Calculation of Residues

Now, we discuss the method of calculation of residue in some special cases.

(i) If the function f(z)  has a simple pole at z = a, then, Res (z = a) = 
z a
lim


(z�a) f(z).

(ii) If f(z) has a simple pole at z = a and f(z) is of the form f(z) = 
(z)
(z)



 i.e. a rational function,

then

Res (z = a) = 
z a
lim


(z-a) f(z) = 
z a
lim


(z-a)
(z)
(z)




      
 
= 

z a
lim


(z)
(z) (a)

z a



 



       = 
(a)

,
'(a)




where (a) = 0, (a)  0, since (z) has a simple zero at z = a
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Notes(iii) If f(z) has a pole of order m at z = a then we can write

f(z) = m

(z)
(z a)



(1)

where (z) is analytic and (a)  0.

Now, Res (z = a) = b
1
 = 

C

1
f(z) dz

2 i 
 = 

m
C

1 (z)
dz

2 i (z a)


 

= m 1 1
C

m 11 (z)| dz
m 1 2 i (z a)|

 

 

  

=
1

m 1| 
m-1(a) [By Cauchy�s integral formula for derivatives]    (2)

Using (1), formula (2) take the form

Res (z = a) =
m 1

m 1

1 d
m 1 dz|






[(z�a)m f(z)] as z  a

            i.e. Res (z = a) =
m 1

m 1z a

1 d
lim

m 1 dz|



 
[(z-a)m f(z)] (3)

Thus, for a pole of order m, we can use either formula (2) or (3).

(iv) If z = a is a pole of any order for f(z), then the residue of f(z) at z = a is the co-efficient of

1
z a

 in Laurent�s expansion of f(z)

(v) Res (z = ) = Negative of the co-efficient of 
1
z

 in the expansion of f(z) in the neighbourhood

of z = .

Example: (a) Find the residue of 
4

2 2

z

z a
 at z = �ia

Solution. Let f(z) = 
4

2 2

z
.

z a

Poles of f(z) are z = ± ia

Thus z = �ia is a simple pole, so

Res (z = �ia) = 
z ia
lim


(z + ia) f(z)

          =
4

z ia

z
lim (z ia)

(z ia)(z ia)


 
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          =

4

4 4

4z ia

z
or (z)

z a z ia
lim

z /(z ia)z ia 2ia
as f(z)

(z ia)



 



 




          = 
4 3a i ia

2a 2


(b) Find the residues of eiz z-4 at its poles.

Solution. Let f(z) = 
iz

4

e

z

f(z) has pole of order 4 at z = 0, so

Res (z = 0) = 
3

iz
3

z 0

1 d i
(e )

3 dz 6| 

 
  

 
| (z) = eiz

Alternatively, by the Laurent�s expansion

iz

4 4 3 2

e 1 i 1 i
...

z z z 2z 3z| |
    

we find that

Res (z = 0) = co-efficient of 
1
z

= �
i
6

(c) Find the residue of 
3

2

z
at

z 1
 z = .

Solution. Let f(z) = 
13 3

2 2
2

2

z z 1
z 1

1z 1 zz 1
z



 
   

     
 

     = 2 4

1 1
z(1 ....)

z z
  

     = 3

1 1
z ...

z z
  

Therefore,

Res (z = ) = �(co-efficient of 
1

) 1
z
 

(d) Find the residues of at its poles.

Solution. Let f(z) = 
3

4

z

(z 1) (z 2)(z 3)  
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NotesPoles of f(z) are z = 1 (order four) and z = 2, 3 (simple)

Therefore,

Res (z = 2) = 
z 2
lim


(z�2) f(z) = 
3

4z 2

z
lim

(z 1) (z 3)  
= �8

Res (z = 3) = 
z 3
lim


(z - 3) f(z) = 
27
16

For z = 1, we take (z) = 
3z

(z 2)(z 3) 

where            f(z) = 4

(z)
(z 1)



 and thus, Res (z = 1) = 

3(1)
3|



Now, f(z) = z + 5 � 
8 27

z 2 z 3


 

3(z) =
4 4

48 162
(z 2) (z 3)


 

3(1) =
303

8

Thus,

Res (z = 1) =
303 101
8 3 16|



Theorem. (Cauchy Residue Theorem)

Let f(z) be one-valued and analytic inside and on a simple closed contour C, except for a finite
number of poles within C. Then

C

f(z) dz  = 2i [Sum of residues of f(z) at its poles within C]

Proof. Let a
1
, a

2
,�., a

n
 be the poles of f(z) inside C. Draw a set of circles g

r
 of radii  and centre a

r

(r = 1, 2,�, n) which do not overlap and all lie within C.  Then, f(z) is regular in the domain
bounded externally by C and internally by the circles g

r
.

     a1 

     a2     a3 

   a5 

   a4 

1 

 2 
3 

4 

5 

 C 
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C

f(z) dz  =
r

n

r 1

f(z) dz
 

 (4)

Now, if a
r
 is a pole of order m, then by Laurent�s theorem, f(z) can be expressed as

f(z) = (z) + 
m

s
s

s 1 r

b
(z a ) 



where (z) is regular within and on 
r 
.

Then

r

f(z) dz


  = 
r

m
s

s
s 1 r

b
dz

(z a ) 




 (5)

where 
r

f(z) dz 0,


  by Cauchy�s theorem

Now, on 
r
 |z-a

r
| =  i.e. z = a

r
 + ei

 dz =  iei d

where  varies from 0 to 2 as the point z moves once round g
r
.

Thus,
r

f(z) dz


  = 
m 2 (1 s)i1-s

s 0
s 1

b e id


 



  

= 2pi b
1

= 2pi [Residue of f(z) at a
r
]

where
2 (1 s )i

0
e d


 

  = 
0, if s 1

2 if s 1



 

Hence, from (4), we find

C

f(z)dz  = 
n

r 1

2 i


 [Residue of f(z) at a
r
]

    = 2i
n

r
r 1

Residue of f(z) at a


 
 
 


    = 2i [sum of Residues of f(z) at its poles inside C.]

which proves the theorem.

Remark. If f(z) can be expressed in the form f(z) = m

(z)
(z a)



 where (z) is analytic and (a)  0, then

the pole z = a is a pole of type I or overt.

If f(z) is of the form f(z) = 
(z)

,
(z)



 where (z) and (z) are analytic and (a)  0 and (z) has a zero

of order m at z = a, then z = a is a pole of type II or covert. Actually, whether a pole of f(z) is overt
or covert, is a matter of how f(z) is written.
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If 0    /2, the 
2

 sin   

This inequality is called Jordan inequality. We know that as  increases from 0 to /2, cos
decreases steadily and consequently, the mean ordinate of the graph of y = cos x over the range
0  x   also decreases steadily. But this mean ordinate is given by

0

1 sin
cosx dx

 


 

It follows that when 0    /2,

2 sin
1


 

 

Jordan�s Lemma

If f(z) is analytic except at a finite number of singularities and if f(z)0 uniformly as z, then

imz

R
T

lim e
  f(z) dz = 0 , m > 0

where T denotes the semi-circle |z| = R, I
m

. z  0, R being taken so large that all the singularities
of f(z) lie within T.

Proof. Since f(z)0 uniformly as |z|, there exists > 0 such that | f(z)| <    z on T.

Also |z| = R        z = Rei  dz = Rei id       |dz| = Rd

|eimz| = 
iim Re|e |


 = |eimR cos  e-mR sin |

        = e�mR sin

Hence, using Jordan inequality,

| imz

T

e  f(z) dz| | imz

T

e  f(z)| |dz|

 < mR sin a

0
e




  R d

= 
/2 mR sin

0
2 R e


   d

= 
/2 2mR /

0

2a
sin

2 R e d
2

i.e. sin


  

 


 
 

 





= 2  R
mR(1 e )

2mR /





= mR(1 e )
m m

 
 
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R
T

lim e
  f(z) dz = 0

Example: By method of contour integration prove that

                  ma
2 20

cosmx
dx e ,

x a 2a





  where m  0, a > 0

Solution. We consider the integral

 
C

f(z) dz,  where f(z) = 
imz

2 2

e

z a

and C is the closed contour consisting of T, the upper half of the large circle |z| = R and real axis
from �R to R.

Now, 2 2

1
z a

0 as |z| = R

Hence by Jordan lemma,

im

2 2R
T

e z
lim dz 0

z a




i.e.
R

T

lim f(z)dz 0


  (1)

Now, poles of f(z) are given by z = ±ia (simple), out of which z = ia lies within C.

 Res (z = ia) = 
mae

2ia



Hence by Cauchy�s residue theorem,

C

f(z)  = 2pi
mae

2ia



 = mae
a



or

T

f(z)dz  + 
R

R
f(x)dx

  = mae
a



Making R and using (1), we get

imx
ma

2 2

e
dx e

x a a











Equating real parts, we get

ma
2 2

cosmx
dx e

x a a











or  ma
2 20

cosmx
dx e

x a 2a






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Deduction. (i) Replacing m by a and a by 1 in the above example, we get

a
20

cosax
dx e

x 1 2







Putting a = 1, we get

1
20

cos x
e

x 1 2 2e


 

 


(ii) Taking m = 1, a = 2, we get

2 20

cos x
dx

x 4 4e

 




Example: Prove that 
3

ma / 2
4 4

x sinmx ma
e cos

x a 2 2






  
  

  
 m > 0, a > 0

Solution. Consider the integral 
C

f(z) dz, where

f(z) =
3 imz

4 4

z e

z a

and C is the closed contour�.

Since 
3

4 4

z

z a
0 as |z| = R, so by

Jordan lemma,

3 imz

4 4R
T

z e
lim dz

z a   = 0 (2)

Poles of f(z) are given by

     z4 + a4 = 0

or z4 = �a4 = e2ni ei a4

or z = a e(2n+1)i/4, n = 0, 1, 2, 3.

Out of these four simple poles, only

z = aei/4, a ei3/4 lie within C.

If f(z) = 
(z)

,
(z)



 then Res (z = ) = 

z

(z)
lim

'(z)




, a being simple pole.

 For the present case,

Res (z = ) = 
3 imz imz

3z z

z e e
lim lim .

4z 4 


Thus, Res (z = aei/4) + Res (z = a eiz/4)
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= 

1
4

[exp (ima ei/4) + exp (ima eiz/4)]

= 
1 i 1 1 i

exp ima exp ima
4 2 2

         
       

       

= 
1
4

ma ima ima
exp exp exp

2 2 2

       
      

      

= 
1 ma ma

exp cos
2 2 2

   
   
   

Hence by Cauchy�s residue theorem,

          
C

f(z)  dz = 
T

f(z)  dz + 
R

R
f(x)

  dx = i exp
ma ma

cos
2 2

   
   
   

Taking limit as R and using (1), we get

 
3 imx

4 4

x e ma ma
dx i exp cos

x a 2 2





   
     

    


Equating imaginary parts, we obtain

         
3

4 4

x sin mx ma ma
dx exp cos

x a 2 2





   
     

    


or     
3

4 40

x sin mx ma ma
dx exp cos

x a 2 2 2

     
    

    


12.4 Multivalued Function and its Branches

The familiar fact that sin q and cos q are periodic functions with period 2p, is responsible for the
non-uniqueness of  in the representation z = |z|ei i.e. z = rei. Here, we shall discuss
non-uniqueness problems with reference to the function arg z, log z and za. We know that a
function w = f(z) is multivalued when for given z, we may find more than one value of w. Thus,
a function f(z) is said to be single-valued if it satisfies

f(z) = f(z(r, )) = f(z(r,  + 2))

otherwise it is classified as multivalued function.

For analytic properties of a multivalued function, we consider domains in which these functions
are single valued. This leads to the concept of branches of such functions. Before discussing
branches of a many valued function, we give a brief account of the three functions arg z, log z
and za.

Argument Function

For each z  , z  0, we define the argument of z to be

arg z = [arg z] = {  R : z = |z|ei}
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i.e. [arg z] is multivalued. In fact, it is an infinite set of the form { + 2n : n  I}, where  is any

fixed number such that ei = 
z

.
|z|

For example, arg i = {(4n +1) /2 : n  I}

Also, arg
1
z
 
 
 

 = {� :   arg z}

Thus, for z
1
, z

2
  0, we have

        arg (z
1
 z

2
) = {

1
 + 

2
 : 

1
  arg z

1
, 

2
  arg z

2
}

              = arg z
1
 + arg z

2

and        arg = arg z
1
 � arg z

2

For principal value determination, we can use Arg z = , where z = |z| ei, � <    (or 0  
< 2). When z performs a complete anticlockwise circuit round the unit circle,  increases by 2
and a jump discontinuity in Arg z is inevitable. Thus, we cannot impose a restriction which
determines  uniquely and therefore for general purpose, we use more complicated notation
arg z or [arg z] which allows z to move freely about the origin with  varying continuously.  We
observe that

arg z = [arg z] = Arg z + 2n, n  I.

Logarithmic Function

We observe that the exponential function ez is a periodic function with a purely imaginary
period of 2i, since

ez+2i = ez. e2i = ez, e2i = 1.

i.e. exp (z + 2i) = exp z for all z.

If w is any given non-zero point in the w-plane then there is an infinite number of points in the
z-plane such that the equation

w = ez (1)

is satisfied. For this, we note that when z and w are written as z = x + iy and w =  ei (- <   ),
equation (1) can be put as

ez = ex+iy = ex eiy = r ei (2)

From here, ex =  and y =  + 2n, n  I.

Since the equation ex =  is the same as x = log
e
  = log  (base e understood), it follows that when

w =  ei(- <   ), equation (1) is satisfied if and only if z has one of the values

z = log  + i ( + 2n), n  I (3)

Thus, if we write

log w = log  + i ( + 2n), n  I (4)

we see that exp (log w) = w, this motivates the following definition of the (multivalued)
logarithmic function of a complex variable.
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log z = log r + i ( + 2n), n  I (5)

The principal value of log z is the value obtained from (5) when n = 0 and is denoted by Log z.
Thus,

Log z = log r + i i.e. Log z = log |z| + i Arg z (6)

Also, from (5) & (6), we note that

log z = Log z + 2ni, n  I (7)

The function Log z is evidently well defined and single-valued when z  0.

Equation (5) can also be put as

log z = {log |z| + i :   arg z}

or [log z] = {log |z| + i :   [arg z]} (8)

or log z = log |z| + i = log |z| + i arg z (9)

where  =  + 2np,  = Arg z.

From (8), we find that

log 1 = {2ni, n  I}, log (�1) = {(2n+1) pi, n  I}

In particular, Log 1 = 0, Log (�1) = i. Similarly log, log i = {(un+1) i/2, nI}, log (�i) = {un-1)
i/2, nI} In particular, Log i = i/2, Log (�i) = �i/2.

Thus, we conclude that complex logarithm is not a bona fide function, but a multifunction. We
have assigned to each z  0 infinitely many values of the logarithm.

Complex Exponents

When z  0 and the exponent a is any complex number, the function za is defined by the equation.

w = za = ea log z = exp (a log z)  (1)

where log z denotes the multivalued logarithmic function.  Equation (1) can also be expressed as

w = za = {ea(log |z| + i) :   arg z}

or [za] = {ea(log |z| + i) :   [arg z]}

Thus, the multivalued nature of the function log z will generally result in the many-valuedness
of za. Only when a is an integer, za does not produce multiple values. In this case, za contains a

single point zn. When a = 
1
n

(n = 2, 3,�), then

w = z1/n = (r ei)1/n = r1/n ei( + 2m )/n, m  I

We note that in particular, the complex nth roots of ±1 are obtained as

wn = 1       w = e2mi/n, wn = �1  w = e(2m+1)i/n, m = 0,1,�, n-1.

For example, i-2i = exp (�2 i log i) = exp [�2i (4n+1) i/2]

         = exp [(4n+1) ], n  I

It should be observed that the formula

xa xb = xa+b, x, a, b,  R
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Notescan be shown to have a complex analogue (in which values of the multi-functions involved have
to be appropriately selected) but the formula

x
1

2 x
2

a = (x
1
 x

2
)a, x

1
, x

2
, a  R

has no universally complex generalization.

Branches, Branch Points and Branch Cuts

We recall that a multifunction w defined on a set S    is an assignment to each z  S of a set
[w(z)] of complex numbers. Our main aim is that given a multifunction w defined on S, can we
select, for each z  S, a point f(z) in [w(z)] so that f(z) is analytic in an open subset G of S, where G
is to be chosen as large as possible? If we are to do this, then f(z) must vary continuously with
z in G, since an analytic function is necessarily continuous.

Suppose w is defined in some punctured  disc D having centre a and radius R i.e. 0 < |z - a| < R
and that f(z)  [w(z)] is chosen so that f(z) is at least continuous on the circle g with centre a and
radius r (0 < r < R). As z traces out the circle g starting from, say z

0
, f(z) varies continuously, but

must be restored to its original value f(z
0
) when z completes its circuit, since f(z) is, by hypothesis,

single valued. Notice also that if z � a = r ei(z), where (z) is chosen to vary continuously with z,
then (z) increases by 2p as z performs its circuit, so that (z) is not restored to its original value.
The same phenomenon does not occur if z moves round a circle in the punctured disc D not
containing a, in this case (z) does return to its original value. More generally, our discussion
suggests that if we are to extract an analytic function from a multi-function w, we shall meet to
restrict to a set in which it is impossible to encircle, one at a time, points a such that the definition
of [w(z)] involves the argument of (z-a). In some cases, encircling several of these �bad� points
simultaneously may be allowable.

A branch of a multiple-valued function f(z) defined on S   is any single-valued function F(z)
which is analytic in some domain D  S at each point of which the value F(z) is one of the values
of f(z). The requirement of analyticity, of course, prevents F(z) from taking on a random selection
of the values of f(z).

A branch cut is a portion of a line or curve that is introduced in order to define a branch F(z) of
a multiple-valued function f(z).

A multivalued function f(z) defined on S    is said to have a branch point at z
0
 when z describes

an arbitrary small circle about z
0
, then for every branch F(z) of f(z), F(z) does not return to its

original value. Points on the branch cut for F(z) are singular points of F(z) and any point that is
common to all branch cuts of f(z) is called a branch point. For example, let us consider the
logarithmic function

log z = log r + iq = log |z| + i arg z (1)

If we let  denote any real number and restrict the values of q in (1) to the interval  <  <  + 2,
then the function

log z = log r + i (r > 0,  <  <  + 2) (2)

with component functions

u(r, ) = log r and v(r, ) =  (3)

is single-valued, continuous and analytic function. Thus for each fixed a, the function (2) is a
branch of the function (1). We note that if the function (2) were to be defined on the ray  = a, it
would not be continuous there. For, if z is any point on that ray, there are points arbitrarily close
to z at which the values of v are near to a and also points such that the values of v are near to



130 LOVELY PROFESSIONAL UNIVERSITY

Complex Analysis and Differential Geometry

Notes  + 2. The origin and the ray  =  make up the branch cut for the branch (2) of the logarithmic
function.  The function

Log z = log r + i (r > 0, � <  < ) (4)

is called the principal branch of the logarithmic function in which the branch cut consists of the
origin and the ray  = . The origin is evidently a branch point of the logarithmic function.

  O x 

 

y 

For analyticity of (2), we observe that  the first order partial derivatives of u and v are continuous
and satisfy the polar form

u
r
 = r

1 1
v , v u

r r  

of the C-R equations. Further,

d
(log z)

dz
 = e-i (u

r
 + iv

r
)

      = e-i 
i

1 1
i0

r re 

 
  

 

Thus, 
d

(log z)
dz

 = 
1
z

(|z| = r > 0,  < arg z < a + 2p)

In particular,

d
(log z)

dz
 = 

1
z

(|z| > 0, � < Arg z < ).

Further, since log 
1
z

 = �log z,  is also a branch point of log z. Thus, a cut along any half-line

from 0 to  will serve as a branch cut.

Now, let us consider the function w = za in which a is an arbitrary complex number. We can write

w = za == ea log z (5)

where many-valued nature of log z results is many-valuedness of za. If Log z denotes a definite
branch, say the principal value of log z, then the various values of za will be of the form

za = ea(Log z + 2ni) = ea Log z e2 i a n (6)

where log z = Log z + 2ni, n  I.
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will be finite in the cases in which only a finite number of the values e2 ian, nI, are different from
one another. In such a case, there must exist two integers m and m (m = m) such that e2 iam =
e2 iam or e2 ia(m -m) = 1. Since ez = 1 only if z = 2in, thus we get a (m-m) = n and therefore it follows
that a is a rational number. Thus, za has a finite set of values iff a is a rational number. If a is not
rational, za has infinity of values.

We have observed that if z = rei and a is any real number, then the branch

log z = log r + i (r > 0,  <  <  + 2) (7)

of the logarithmic function is single-valued and analytic in the indicated domain. When this
branch is used, it follows that the function (5) is single valued and analytic in the said domain.
The derivative of such a branch is obtained as

ad
(z )

dz
 =

d
dz

[exp (a log z)] = exp ( a log z)
a
z

= a
exp(alog z)
exp(log z)

 = a exp [(a -1) log z]

= aza-1.

As a particular case, we consider the multivalued function f(z) = z1/2 and we define

z1/2 = r ei/2, r > 0,  <  <  + 2 (8)

where the component functions

u(r, ) = r cos /2, v(r, ) = r  sin /2 (9)

are single valued and continuous in the indicated domain. The function is not continuous on the
line  =  as there are points arbitrarily close to z at which the values of v (r, ) are nearer to

r  sin /2 and also points such that the values of v(r, ) are nearer to � r  sin /2. The function
(8) is differentiable as C-R equations in polar form are satisfied by the functions in (9) and

1 /2d
(z )

dz
 = i i

r r

1 1
e (u iv ) e cos /2 i sin /2

2 r 2 r
    

     
 

= i /2
1 /2

1 1
e

2z2 r
 



Thus, (8) is a branch of the function f(z) = z1/2 where the origin and the line  =  form branch cut.
When moving from any point z = rei about the origin, one complete circuit to reach again, at z,

we have changed arg z by 2. For original position z = rei, we have w = r ei/2, and after one

complete circuit, w = r ei(+2)/2 = - r ei/2. Thus, w has not returned to its original value and
hence, change in branch has occurred. Since a complete circuit about z = 0 changed the branch of
the function, z = 0 is a branch point for the function z1/2.
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 If f(z) = w has a solution z = F(w), then we may write

f{F(w) } = w, F{ f(z)} = z. The function F defined in this way, is called inverse function of f.

 Inverse Function Theorem

Let a function w = f(z) be analytic at a point z = z
0
 where f (z

0
)  0 and w

0
 = f(z

0
).

Then there exists a neighbourhood of w
0
 in the w-plane in which the function w = f(z) has

a unique inverse z = F(w) in the sense that the function F is single-valued and analytic in
that neighbourhood such that F(w

0
) = z

0
 and

F(w) = 
1

f '(z)
.

 If f(z) is analytic or has an isolated singularity at infinity and if C is a circle enclosing all its
singularities in the finite parts of the z-plane, the residue of f(z) at infinity is defined by

Res (z = ) = 
C

1
f(z) dz,

2 i 
| or Res (z = ) � 

C

1
f(z) dz,

2 i 

 Integration taken in positive sense

the integration being taken round C in the negative sense w.r.t. the origin, provided that
this integral has a definite value. By means of the substitution z = w-1, the integral defining
the residue at infinity takes the form

1
2

1 dw
[ f(w )] ,

2 i w



 

taken in positive sense round a sufficiently small circle with centre at the origin.

 (i) If the function f(z)  has a simple pole at z = a, then, Res (z = a) = 
z a
lim


(z�a) f(z).

(ii) If f(z) has a simple pole at z = a and f(z) is of the form f(z) = 
(z)
(z)



 i.e. a rational

function, then

Res (z = a) = 
z a
lim


(z-a) f(z) = 
z a
lim


(z-a)
(z)
(z)




      
 
= 

z a
lim


(z)
(z) (a)

z a



 



       = 
(a)

,
'(a)




where (a) = 0, (a)  0, since (z) has a simple zero at z = a
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f(z) = m

(z)
(z a)




where (z) is analytic and (a)  0.

Now, Res (z = a) = b
1
 = 

C

1
f(z) dz

2 i 
 = 

m
C

1 (z)
dz

2 i (z a)


 

= m 1 1
C

m 11 (z)| dz
m 1 2 i (z a)|

 

 

  

=
1

m 1| 
m-1(a) [By Cauchy�s integral formula for derivatives]

 A function f(z) is said to be single-valued if it satisfies

f(z) = f(z(r, )) = f(z(r,  + 2))

otherwise it is classified as multivalued function.

12.6 Keywords

n zeros: Every polynomial of degree n has exactly n zeros.

Inverse function: If f(z) = w has a solution z = F(w), then we may write f{F(w)} = w, F{f(z)} = z. The
function F defined in this way, is called inverse function of f.

Residue at infinity: If f(z) is analytic or has an isolated singularity at infinity and if C is a circle
enclosing all its singularities in the finite parts of the z-plane, the residue of f(z) at infinity is
defined by

Res (z = ) = 
C

1
f(z) dz,

2 i 

Cauchy Residue Theorem: Let f(z) be one-valued and analytic inside and on a simple closed
contour C, except for a finite number of poles within C. Then

C

f(z) dz  = 2i [Sum of residues of f(z) at its poles within C]

Multivalued function: a function f(z) is said to be single-valued if it satisfies f(z) = f(z(r, )) =
f(z(r,  + 2)) otherwise it is classified as multivalued function.

12.7 Self Assessment

1. Every polynomial of degree n has exactly ................

2. If f(z) = w has a solution z = F(w), then we may write f{F(w) } = w, F{ f(z)} = z. The function
F defined in this way, is called ................
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Notes 3. Integration taken in positive sense the integration being taken round C in the negative
sense w.r.t. the origin, provided that this integral has a definite value. By means of the
substitution z = w-1, the integral defining the residue at infinity takes the form ................
taken in positive sense round a sufficiently small circle with centre at the origin.

4. If the function f(z)  has a simple pole at z = a, then, Res (z = a) = ................

5. If f(z) is analytic except at a finite number of singularities and if f(z)0 uniformly as z,
then ................, where T denotes the semi-circle |z| = R, I

m
. z  0, R being taken so large that

all the singularities of f(z) lie within T.

6. a function f(z) is said to be single-valued if it satisfies f(z) = f(z(r, )) = f(z(r,  + 2))
otherwise it is classified as ................

7. A ................ is a portion of a line or curve that is introduced in order to define a branch F(z)
of a multiple-valued function f(z).

8. A ................ f(z) defined on S    is said to have a branch point at z
0
 when z describes an

arbitrary small circle about z
0
, then for every branch F(z) of f(z), F(z) does not return to its

original value.

12.8 Review Questions

1. Discuss the concept of fundamental theorem on algebra.

2. Describe the calculus of residues.

3. Discuss the multivalued functions and its branches.

Answers: Self Assessment

1.  n zeros. 2.  inverse function of f.

3. 1
2

1 dw
[ f(w )] ,

2 i w



 

4.
z a
lim


(z�a) f(z)

5. imz

R
T

lim e
  f(z) dz = 0 , m > 0 6.  multivalued function.

7. branch cut 8. multivalued function
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